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Abstract

Balogh, Bollobás and Weinreich showed that a parameter that has since been termed the

distinguishing number can be used to identify a jump in the possible speeds of hereditary classes

of graphs at the sequence of Bell numbers.
We prove that every hereditary class that lies above the Bell numbers and has finite dis-

tinguishing number contains a boundary class for well-quasi-ordering. This means that any
such hereditary class which in addition is defined by finitely many minimal forbidden induced

subgraphs must contain an infinite antichain. As all hereditary classes below the Bell numbers

are well-quasi-ordered, our results complete the answer to the question of well-quasi-ordering
for hereditary classes with finite distinguishing number.

We also show that the decision procedure of Atminas, Collins, Foniok and Lozin to decide
the Bell number (and which now also decides well-quasi-ordering for classes of finite distin-

guishing number) has run time bounded by an explicit (quadruple exponential) function of the

order of the largest minimal forbidden induced subgraph of the class.

1 Introduction

Whereas the question of whether a downset is well-quasi-ordered or not is answered completely

for the graph minor ordering (due to Robertson and Seymour [17]) and for the subgraph ordering

(due to Ding [9]), for the induced subgraph ordering the question remains largely open, as the

interface between well-quasi-ordering and not seems highly complex. Nevertheless, of the three

orderings, classes of graphs closed under taking induced subgraphs are the only ones that can

contain arbitrarily large graphs with high edge density, which makes this particular ordering

indispensable.

A hereditary property, or (throughout this paper) class of graphs, is a collection of graphs that is

closed under the induced subgraph ordering. That is, if C is a class, G ∈ C and H is an induced

subgraph of G, then H must also lie in C. Many natural collections of graphs form classes, for

example perfect graphs and chordal graphs are both hereditary properties of graphs.

A common – and computationally convenient – way to describe graph classes is via their set of
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minimal forbidden graphs. While some classes (such as perfect graphs and chordal graphs) have

infinitely many minimal forbidden graphs, for others (such as cographs) this set is finite, in which

case we say that the class is finitely defined. For brevity, since we will always be dealing with

minimal forbidden graphs, we will henceforth drop the word ‘minimal’ and instead simply refer

to ‘forbidden graphs.’

The collection of forbidden graphs of a class is an antichain in the induced subgraph ordering (that

is, no graph is an induced subgraph of another). Since there are non-finitely-defined classes, we

see that the set of all finite graphs with the induced subgraph relation is not a well-quasi-order.

However, we may still ask whether a class (having at least one forbidden graph) is well-quasi-

ordered, i.e. (since all classes are well-founded) if it contains no infinite antichains. Well-quasi-

ordering in graph classes has received considerable attention, see, for example [7, 8, 10, 12].

Classes that are well-quasi-ordered often possess a stronger property: well-quasi-ordering by the

labelled induced subgraph relation. Formally speaking, let (W,<) be a quasi-order of labels, and

consider graphs whose vertices are labelled by elements of W. We say that H is a labelled induced

subgraph of G if there is an isomorphism from H to an induced subgraph of G in which each

v ∈ V(H) is mapped to some u ∈ V(G) such that the label of v is less than or equal to the label

of u in the ordering on W. A class of (unlabelled) graphs C is labelled well-quasi-ordered if whenever

(W,<) is a well-quasi-order, the collection of labelled graphs from C contains no infinite antichain

in the labelled induced subgraph ordering.

In recent years, labelled well-quasi-ordering has emerged over unlabelled well-quasi-ordering in

significance. For example Daligault, Rao and Thomassé [7] conjectured that labelled well-quasi-

ordered classes must have bounded ‘clique-width’. This conjecture remains open (and is still

widely believed), but it was shown recently [14] that the corresponding question for unlabelled

well-quasi-ordering is false.

Given a graph class C, the speed of C is the sequence (|Cn|)n≥1, where Cn denotes the collection

of graphs in C on the vertex set {1, 2, . . . , n}. Independently, Scheinerman and Zito [18] and

Alekseev [1], observed that there were a number of discrete layers in the range of possible speeds.

From ‘slowest’ to ‘fastest’, these are constant, polynomial, exponential, factorial and superfactorial.

Balogh Bollobás and Weinreich [4] showed that the factorial layer (in which |Cn| = nθ(n)) can

further be divided into two by the Bell numbers, Bn, which count the number of partitions of a set

of size n. We say that a class C is above the Bell numbers if there exists N ≥ 1 such that |Cn| ≥ Bn

for all n ≥ N, and below otherwise. In [4] it was shown that all classes below the Bell numbers are

of constant, polynomial or exponential speed, or there exists k such that |Cn| = n(1−1/k+o(1))n. By

contrast, all classes above the Bell numbers have speeds |Cn| ≥ n(1+o(1))n.

In studying this dichotomy at the Bell numbers, the authors of [5] developed a concept which we

will call the ‘distinguishing number’. We postpone the details until later, but every class below the

Bell numbers has finite distinguishing number, while there are 13 minimal classes above the Bell

numbers that have infinite distinguishing number. Building on this, Atminas, Collins, Foniok and

Lozin [2] describe a procedure to determine whether a finitely defined class lies above or below

the Bell numbers. However, although the procedure is guaranteed to halt on any finite input,

neither the theory underpinning the procedure in [2] nor the extremal arguments in [5] can be

used directly to obtain explicit bounds on the running time of the algorithm.

Our main result comprises two distinct parts, and is as follows.
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Theorem 1.1. Let C be a class of graphs with finite distinguishing number. Then C is labelled well-quasi-

ordered if and only if C is below the Bell numbers. Moreover, if C is finitely defined and above the Bell

numbers, then it is not well-quasi-ordered.

The running time r = r(m) of the procedure to decide whether C lies above or below the Bell numbers

satisfies log log log log (r(m)) ≤ m1+o(1), where m is the order of the largest forbidden graph of C.

Note that one half of the first part of Theorem 1.1 (that classes below the Bell numbers are labelled

well-quasi-ordered) is readily deduced from the literature, by combining a structural result due to

Balogh, Bollobás and Weinreich [4, Theorem 30] with a result relating this structure to well-quasi-

ordering in Korpelainen and Lozin [12, Theorem 2]. For completeness, we have included a direct

proof of this direction in Appendix A.

In proving Theorem 1.1, we establish a number of other results. First, Theorem 3.5 is a gen-

eral result that shows ‘minimal’ antichains (equating to the ‘minimal bad sequences’ of Nash-

Williams [15]) and ‘boundary classes’ (see Korpelainen and Lozin [13]) refer to the same objects.

Second, Theorem 4.11 identifies infinitely many minimal antichains of graphs (or, equivalently,

boundary classes), lying (minimally) above the Bell numbers. Finally, in Theorem 5.7 we adapt the

extremal arguments used by Balogh, Bollobás and Weinreich in [4, 5] in order to obtain explicit

bounds on the run time of the existing procedure from [2]. Specifically, our Theorem 5.4 can be

thought of as a ‘finite’ version of Theorem 20 from [5] (presented as Theorem 2.1 in this work), and

the approach we take to complete the proof is comparable, although rather more intricate.

The rest of this paper is organised as follows. In Section 2 we define the distinguishing number

and the characterisation of classes with infinite distinguishing number. Section 3 contains the

(general and self-contained) result that relates minimal antichains to boundary classes. Section 4

establishes that the boundary for well-quasi-ordering coincides with the Bell numbers. Section 5

contains the required (largely Ramsey-theoretic) arguments to provide the bounds on the decision

procedure. Finally, we present a number of concluding remarks and future directions in Section 6.

2 Distinguishing number and the Bell dichotomy

For a graph G and a set X = {v1, . . . , vt} ⊆ V(G), we say that the pairwise disjoint subsets

U1, . . . , Um of V(G) are distinguished by X (or X distinguishes U1, . . . , Um) if for each i, all vertices

of Ui have the same neighbourhood in X, and for each i 6= j, vertices x ∈ Ui and y ∈ Uj have

different neighbourhoods in X. (Note that we do not require that X is disjoint from the sets Ui.)

Given a graph G, clearly, for any set X ⊆ V(G) one can distinguish at most 2|X| sets, but not

all of these necessarily contain a large number of vertices. In order to establish the “jump” from

classes whose speeds are below the Bell numbers to those whose speeds are above, the authors of

[4, 5] identify a parameter for graph classes which, roughly speaking, identifies whether the class

contains graphs with arbitrarily many sets each of arbitrary cardinality that are distinguished by

some X ⊆ V(G).

More precisely, the distinguishing number1 of a class C, denoted kC , is defined as follows:

1Note that the term ‘distinguishing number’ is commonly used for a graph parameter that relates to vertex labellings

preserved under automorphisms. We will not need this notion here, so have kept the terminology used in earlier articles,

such as [2].
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(a) If for all k, ℓ ∈ N we can find a graph G ∈ C that admits some X ⊂ V(G) distinguishing at

least ℓ sets, each of size at least k, then we say that the distinguishing number is infinite, and

write kC = ∞.

(b) Otherwise, there exists a pair (k, ℓ) such that for any graph G ∈ C, any subset X ⊂ V(G)
distinguishes at most ℓ sets each of size at least k. We define kC to be the minimum value of k

in all such pairs.

When kC < ∞, we set ℓC to be the largest ℓ such that for every k there exists G ∈ C and a set

X ⊆ V(G) which distinguishes ℓ sets, each of size at least k. In other words, ℓC measures how

many arbitrarily large sets can be distinguished in graphs in C.

Infinite distinguishing number When a class C has infinite distinguishing number (kC = ∞),

then [5, Theorem 20] shows that |Cn| ≥ Bn, the nth Bell number. In fact, there are precisely 13

minimal classes with kC = ∞, illustrated in Figure 1:

X1: every graph is a disjoint union of cliques.

X2,X3,X4,X5: every graph can be partitioned into two sets V1 and V2, such that every v ∈ V2 has

at most one neighbour in V1. For X2, V1 and V2 are both independent sets; in X3, V1 is an

independent set and V2 a clique; X4 has V1 a clique and V2 an independent set; and in X5

both V1 and V2 are cliques.

X6,X7: every graph can be partitioned into two sets V1 and V2, such that the vertices in V1 can be

linearly ordered by the inclusion of their neighbourhoods in V2. For X6, V1 and V2 are both

independent sets; for X7, V1 is an independent set and V2 is a clique.

X8, . . . ,X13: The classes of the complements of the graphs in X1, . . . ,X6, respectively. (Note that

X7 = X7.)

Theorem 2.1 (Balogh, Bollobás and Weinreich [5, Theorem 20]). Let C be a class with kC = ∞. Then

C contains one or more of the (minimal) classes of graphs X1,X2, . . . ,X13.

Atminas, Collins, Foniok and Lozin [2] show that one can readily determine (in polynomial time)

whether a given finitely defined graph class C = Free(G1, . . . , Gs) contains any of the classes

X1, . . . ,X13. All such classes lie (minimally) above the Bell numbers, so in order to establish

whether a finitely defined class lies above or below the Bell numbers we now restrict our attention

to classes with finite distinguishing number.

Finite distinguishing number For classes with kC < ∞, the distinction between classes below

and above the Bell numbers is more subtle. Building on a basic structural description (which we

will introduce in Section 4) of such classes in [5], Atminas et al [2] show that the minimal classes

above the Bell numbers with kC < ∞ are characterised by P(w, H) classes, which we now review.

A word w over an alphabet A is a (possibly infinite) sequence w = w1w2w3 · · · of letters wi ∈ A. The

length, |w| of a word is the number of symbols it contains. We say that a finite word u = u1u2 · · · um

is a factor of w = w1w2 · · · if there exists an index a such that ui = wa+i for all 1 ≤ i ≤ m. In the

case where u is a factor of w with index a = 0, we say that u is an initial segment of w.

4



· · · · · · · · ·· · ·

X1

· · · · · · · · ·· · ·

· · ·

· · · · · · · · ·· · ·

· · ·

X2 X3

· · · · · · · · ·· · ·

· · ·

· · · · · · · · ·· · ·

· · ·

X4 X5

· · · · · · · · ·· · ·

· · ·

· · · · · · · · ·· · ·

· · ·

X6 X7

Figure 1: Typical representatives from the minimal classes X1, . . . ,X7 with infinite distinguishing num-
ber (grey regions indicate cliques). The other six minimal classes are formed by complementation,

X8 = X1, . . . ,X13 = X6 (note that X7 = X7).

Fix a finite alphabet A, a (possibly infinite) word w over A, and let H be a graph with loops

allowed with vertex set V(H) = A. For any increasing sequence i1 < i2 < · · · < ik of positive

integers (with ik ≤ |w| if w has finite length), define Gw,H(i1, i2, . . . , ik) to be the graph with vertex

set {i1, i2, . . . , ik} and an edge between ij and ij′ if and only if either

• |ij − ij′ | = 1 and wij
wij′ /∈ E(H), or

• |ij − ij′ | > 1 and wij
wij′ ∈ E(H).

Define P(w, H) to be the hereditary class consisting of the graphs Gw,H(i1, i2, . . . , ik) for all finite

increasing sequences i1 < i2 < · · · < ik of positive integers.

The classes P(w, H) enable a characterisation of the minimal classes with finite distinguishing

number that lie above the Bell numbers. In this characterisation, we can restrict our attention to

infinite words that satisfy a certain form of periodicity. Specifically, we say that a word w is almost

periodic if for any finite factor u of w, there is a constant c such that every factor of w of length c

contains u as a factor.

Theorem 2.2 (Atminas et al [2, Theorems 3.10 and 3.13]). Suppose C is a hereditary class above the Bell

numbers with finite distinguishing number kC . Then C contains some P(w, H) where H is a graph (with

loops allowed) of order at most ℓC , and w is an infinite almost periodic word over the alphabet V(H).

Furthermore, each such class P(w, H) is minimally above the Bell numbers (i.e. any proper hereditary

subclass of P(w, H) lies below the Bell numbers).

In the case of finitely defined classes, (i.e. classes of the form C = Free(G1, . . . , Gs)), one can

go further: C must contain some class P(w, H) where w is periodic, i.e. there exists c such that

wi = wi+c for all i ≥ 1, see [2, Theorem 4.6].
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This characterisation readily leads to a procedure to determine whether a given finitely defined

class C = Free(G1, . . . , Gs) is above or below the Bell numbers – see Algorithm 4.7 of [2]. However,

although this algorithm (which takes as input the forbidden graphs G1, . . . , Gs) will necessarily

eventually terminate, the underpinning theory gives no bound for ℓC , and thus in the condition ‘C
must contain some class P(w, H)’ there is no bound for the number of vertices in the graph H. We

will provide such a bound later in this paper.

3 Minimal antichains and boundary classes

In this short section, we will establish some generic theory concerning infinite antichains which

will be useful when we consider classes above the Bell numbers in the next section. In particular,

we establish that the concept of a boundary class, defined in [13], is equivalent to the concept of a

minimal infinite antichain, first introduced by Nash-Williams [15]. Except for basic definitions from

the introduction, this section is self-contained.

Let A and B be infinite antichains of graphs, under the induced subgraph ordering2. We say that

A � B if for every B ∈ B there exists A ∈ A such that A is an induced subgraph of B. An infinite

antichain A is minimal if it is minimal under �.

By following the “minimal bad sequence” argument given by Nash-Williams [15], we can obtain

the following result (for an explicit proof, see Gustedt [11]).

Proposition 3.1. Every hereditary class C that is not well-quasi-ordered by the induced subgraph relation

contains a minimal antichain.

Given an infinite antichain A, define the proper closure to be the hereditary property of all graphs

that are (proper) induced subgraphs of elements of A, i.e. P<A = {G : G < A for some A ∈ A}.

For G ∈ P<A, let A‖G = {A ∈ A : G 6≤ A}. Finally, we say that A is complete3 if for every graph

G, we have either G ∈ A, or there exists A ∈ A such that G < A or A < G. We have the following

characterisation of minimal antichains.

Proposition 3.2 (Gustedt [11, Theorem 6]). Let A be an infinite antichain of graphs under the induced

subgraph ordering. Then A is minimal if and only if P<A is well-quasi-ordered, A‖G is finite for every

G ∈ P<A, and A is complete.

By virtue of the above result, the proper closure of a minimal antichain is equal to the hereditary

class whose set of minimal forbidden elements is A, that is, P<A = Free(A).

An alternative viewpoint to this notion of minimal antichain was provided by Korpelainen et

al [13]. We say that a graph class C is a limit class if there is a sequence of classes C1 ⊃ C2 ⊃ · · ·
for which each Ci is not well-quasi-ordered, and C = ∩∞

i=1Ci. Trivially, every infinitely defined

class is a limit class. Restricting to finitely defined classes, this notion simply characterises the

non-well-quasi-ordered classes, as the following lemma shows.

Lemma 3.3 (Korpelainen et al [13, Lemma 1]). A finitely defined class is a limit class if and only if it is

not well-quasi-ordered.

2Although we specialise to graphs here, much of the theory we present here holds more generally for generic posets.
3Some authors use the term “maximal” instead of complete. We have avoided this to prevent confusion with the

ordering �.
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Note in particular that any class that fails to be well-quasi-ordered (finitely defined or otherwise)

is a limit class. Next, we say that any class C is a boundary class if it is a minimal limit class.

By necessity, boundary classes must be well-quasi-ordered, and thus by the above are not finitely

defined. We have the following characterisation.

Lemma 3.4 (Korpelainen et al [13, Lemma 5]). A limit class C = Free(A) is a boundary class if and

only if for every G ∈ C there is a finite subset T ⊂ A such that Free({G} ∪ T) is well-quasi-ordered.

We now show that boundary classes and minimal antichains describe the same structures, and

thus we can use these concepts interchangeably.

Theorem 3.5. Let A be an antichain. Then A is minimal if and only if Free(A) is a boundary class.

Proof. Suppose first that A is minimal (which implies that A is an infinite antichain). Write A =
{A1, A2, . . .}, and let C = Free(A). Set Ci = Free(A1, . . . , Ai) so that C = ∩∞

i=1Ci, which shows that

C is a limit class. By Proposition 3.2, C = Free(A) = P<A is well-quasi-ordered, and for any G ∈ C
the set A‖G is finite. Therefore we have that for any G ∈ C, the hereditary class Free({G} ∪A‖G) is

finitely defined, and as it is a subclass of C = P<A, it is well-quasi-ordered. Thus, by Lemma 3.4,

C is a boundary class.

Now suppose that C = Free(A) is a boundary class. First, note that C must be well-quasi-ordered.

Otherwise, C would contain an infinite antichain B, say. Pick some B ∈ B, and consider C ∩
Free(B) ( C: this class is not well-quasi-ordered (it contains B \ {B}), and therefore it is a limit

class, contradicting the minimality of C. Thus C is well-quasi-ordered. By Lemma 3.3, this also

implies that A is an infinite antichain.

We next show that A is complete. Suppose to the contrary that there exists G such that {G} ∪A is

an infinite antichain. Then G ∈ C, and Free({G} ∪ A) is a proper subclass of C, and since it is not

finitely defined, it is a limit class, a contradiction showing that A is complete. Note that A being

complete implies that Free(A) = P<A, and therefore P<A = C is well-quasi-ordered.

Finally, for any G ∈ Free(A) = P<A, by Lemma 3.4, we can find a finite set T ⊂ A such that

Free({G} ∪ T) is well-quasi-ordered. This means that the set A‖G \ T (which is contained in

Free({G} ∪ T)) must be finite, which implies that A‖G is finite. Thus, by Proposition 3.2 A is

a minimal antichain.

4 Characterising well-quasi-ordering

Our aim in this section is to characterise the boundary between well-quasi-ordering and not for

classes with finite distinguishing number.

We first briefly mention the case of classes that lie below the Bell numbers. As noted in the

introduction, the following result is readily deduced by combining Theorem 30 of [4] with Theorem

2 of [12].

Theorem 4.1 (Balogh, Bollobás and Weinreich [4] & Korpelainen and Lozin [12]). Every hereditary

class below the Bell numbers is labelled-well-quasi-ordered.
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Since Theorem 4.1 has not previously been explicitly mentioned, and since its proof is spread over

two papers that use different notation, for the sake of completeness we have presented a proof of it

in Appendix A. Both the case of classes below the Bell numbers and those above rely on a concept

known as ‘sparsification’, which the next subsection handles.

We make here one further remark. In [7] the following observation was made.

Lemma 4.2 (Daligault, Rao and Thomassé [7]). If C is a labelled well-quasi-ordered class, then C is

finitely defined.

This gives the following interesting corollary of Theorem 4.1.

Corollary 4.3. Every hereditary class below the Bell numbers is finitely defined.

4.1 (ℓ, d)-graphs and sparsification

For an arbitrary graph G, let U, W ⊆ V(G) be two (not necessarily disjoint) sets of vertices. Let

∆(U, W) = max{|N(u) ∩ W|, |N(w) ∩ U| : u ∈ U, w ∈ W},

denote the size of the largest neighbourhood of some vertex from U or W in the other set. Note

that ∆(U, U) records the maximum degree of a vertex in the graph induced on the vertex set U.

Similarly, letting N(u) = V(G)\(N(u) ∪ {u}) denote the non-neighbourhood of u, define

∆(U, W) = max{|N(u) ∩ W|, |N(w) ∩ U| : w ∈ W, u ∈ U},

which records the size of the largest non-neighbourhood of a vertex from U or W in the other set.

A partition π = {V1, V2, . . . , Vℓ′} of V(G) is an (ℓ, d)-partition if ℓ′ ≤ ℓ and for each pair of integers

1 ≤ i, j ≤ ℓ′ (not necessarily distinct) either ∆(Vi, Vj) ≤ d or ∆(Vi, Vj) ≤ d. We say that G is an

(ℓ, d)-graph if it admits some (ℓ, d)-partition. We will often refer to the sets Vi as bags.

If in some (ℓ, d) partition π = {V1, V2, . . . , Vℓ′} of V(G) we have |Vi| ≥ t for some t and for all

i = 1, . . . , ℓ′, then we call π a t-strong (ℓ, d) partition, and G is a t-strong (ℓ, d) graph.

We are particularly interested in (ℓ, d) graphs where d is ‘small’, even when the bags in the partition

are large. If ∆(Vi, Vj) ≤ d (respectively, ∆(Vi, Vj) ≤ d), we say that the pair (Vi, Vj) is d-sparse (resp.

d-dense). Note that in a t-strong partition where t ≥ 2d + 1, the terms d-dense and d-sparse are

mutually exclusive.

The significance of (ℓ, d)-graphs for classes with finite distinguishing number is the following

result, which guarantees that every G in C is an (ℓ, d)-graph after removing a bounded number of

vertices. Recall that when kC < ∞, we defined ℓC to be the largest number of sets, each of size at

least kC , that can be distinguished in any graph in C.

Lemma 4.4 (Atminas et al [2, Lemma 2.11]). Let C be a class with kC < ∞, , and let t ≥ 0 be fixed. Then

there exist ℓC , dC and cC = cC(t) such that for all G ∈ C, the graph G contains an induced subgraph G′

such that G′ is a t-strong (ℓC , dC)-graph and |V(G)\V(G′)| < cC .

Note that a version of this result can be found in [4], but the version we are using here guarantees

that the (ℓ, d) partition is t-strong, for an arbitrary positive integer t: this is achieved simply by

allowing cC to be a function of t.
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Sparsification Given a graph G with an (ℓ, d)-partition π = {V1, V2, . . . , Vℓ′}, define φ(G, π) to be

the graph obtained from G by replacing edges between Vi and Vj with non-edges, and vice-versa,

for every d-dense pair (Vi, Vj). i.e. take the bipartite complement between the sets Vi and Vj. We

call φ the sparsification of G with respect to the partition π.

It was shown in [2] that if t ≥ 5 × 2ℓd, then for a t-strong (ℓ, d)-graph G and any two t-strong

(ℓ, d)-partitions π and π′, the graphs φ(G, π) and φ(G, π′) are identical. In this case, therefore,

we can simply talk about the sparsification of G, without reference to any particular partition. This

uniqueness is critical for the rest of our analysis.

4.2 Above the Bell numbers

In this subsection, by considering the minimal classes P(w, H) above the Bell numbers, we will

prove the following.

Theorem 4.5. Let C be a hereditary class with kC < ∞ which lies above the Bell numbers. Then C is not

labelled well-quasi-ordered. Moreover, if C is finitely defined, then C is not well-quasi-ordered.

The starting point is Theorem 2.2, which guarantees that any such class contains some class

P(w, H) where w is almost periodic, and H has at most ℓC vertices. Our proof will show that the

classes P(w, H) are boundary classes for well-quasi-ordering. In order to do this, we will show that

we can use the method of sparsification to prove that some (specific) infinite sets of (ℓ, d)-graphs

form infinite antichains, by relating how one such graph can embed in another to embeddings in

their sparsifications. We begin by reviewing a few preliminary results about (ℓ, d)-graphs.

Lemma 4.6 (Balogh et al [5, Lemma 10]). Let G be a graph with an (ℓ, d)-partition π. If two vertices

u, v ∈ V(G) are in the same bag V ∈ π, then the symmetric difference of their neighbourhoods N(u)⊖ N(v)

is of size at most 2ℓd.

For t ≥ 2d + 1, given any t-strong (ℓ, d)-partition π = {V1, V2, . . . , Vℓ′} we define an equivalence

relation ∼ on the bags by putting Vi ∼ Vj if and only if for each k, either Vk is d-dense with respect

to both Vi and Vj, or Vk is d-sparse with respect to both Vi and Vj. Let us call a partition π prime if

all its ∼-equivalence classes are of size 1. If the partition π is not prime, let p(π) be the partition

consisting of unions of bags in the ∼-equivalence classes for π.

Lemma 4.7 (Atminas et al [2, Lemma 2.3]). Let t ≥ 2d + 1 and consider any t-strong (ℓ, d)-graph G

with t-strong partition π. Then p(π) is a t-strong (ℓ, ℓd)-partition.

Lemma 4.8 (Atminas et al [2, Lemma 2.5]). Let G be a graph with a t-strong (ℓ, d)-partition π with

t ≥ 2d + 1. If two vertices u, v ∈ V(G) belong to different bags of the partition p(π), then the symmetric

difference of their neighbourhoods N(x)⊖ N(y) is of size at least t − 2d.

Let G and H be graphs. An embedding of G into H is an injective function f : V(G) → V(H) such

that uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). That is, an embedding is an instance of a mapping

of G into H that witnesses G as an induced subgraph of H.

We are now ready to prove the result concerning embeddings that we require. Note the condition

that the graphs are (5× 2ℓd)-strong, which ensures that sparsification is unique regardless of which

(ℓ, d)-partition we take.
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Lemma 4.9. Suppose G and H are (5 × 2ℓd)-strong (ℓ, d)-graphs with corresponding partitions πG and

πH, respectively. Assume further that the partitions p(πG) = {V1, . . . , VℓG
} and p(πH) = {W1, . . . WℓH

}
have the same number ℓ′ = ℓG = ℓH of bags. Then for every embedding f of G into H, the following holds:

(1) There is a permutation σf on {1, . . . , ℓG} such that f (Vi) ⊆ Wσf (i);

(2) The pair (Vi, Vj) is d-dense if and only if the pair (Wσf (i), Wσf (j)) is d-dense;

(3) f is an embedding of φ(G) into φ(H), i.e. uv ∈ E(φ(G)) if and only if f (u) f (v) ∈ E(φ(H)).

Proof. Consider G and H as in the statement and an embedding f : G → H. For i ∈ {1, . . . , ℓG}
put S(i) = {k : f (Vi) ∩ Wk 6= ∅}.

We claim that for i 6= j we have S(i) ∩ S(j) = ∅. Suppose, for the sake of contradiction, that

for some i 6= j we can find k ∈ S(i) ∩ S(j). Then there are two vertices vi ∈ Vi, vj ∈ Vj such

that f (vi), f (vj) ∈ Wk. Now p(πH) is an (ℓ, ℓd)-partition by Lemma 4.7 and f (vi), f (vj) are two

vertices in the same bag of p(πH). Thus by Lemma 4.6 we conclude that |N( f (vi))⊖ N( f (vj))| ≤
2ℓ(ℓd) = 2ℓ2d. As f is an embedding, we have f (N(vi)⊖ N(vj)) ⊆ N( f (vi))⊖ N( f (vj)); hence

|N(vi) ⊖ N(vj)| ≤ 2ℓ2d. However, vi and vj belong to different bags of p(πG), so by Lemma 4.8

we obtain that |N(vi) ⊖ N(vj)| ≥ 5 × 2ℓd − 2d. This implies 5 × 2ℓd − 2d ≤ 2ℓ2d which is a

contradiction.

So for all i 6= j we have S(i) ∩ S(j) = ∅. This implies that

ℓH ≥ |S(1) ∪ · · · ∪ S(ℓG)| = |S(1)|+ · · ·+ |S(ℓG)| ≥ ℓG.

By assumption, ℓG = ℓH , so |S(i)| = 1 for each i. Therefore there exists a (unique) permutation σf

of [ℓG ] such that f (Vi) ⊆ Wσf (i) for each i, which proves (1).

It is not hard to see that Vi is d-dense with respect to Vj if and only if Wσf (i) is d-dense with respect

to Wπ f (j). Indeed, if one pair is d-dense and the other d-sparse, then since f (Vi) ⊆ Wσf (i) and

f (Vj) ⊆ Wσf (j) we have that (Vi, Vj) is both d-sparse and d-dense. This implies that |Vi| ≤ 2d + 1, a

contradiction which establishes (2).

Finally, to show (3), consider any u, v ∈ V(G), u ∈ Vi and v ∈ Vj. Then by definition uv ∈ E(φ(G))
if and only if uv ∈ E(G) and (Vi, Vj) is d-sparse, or uv /∈ E(G) and (Vi, Vj) d-dense. But as

uv ∈ E(G) if and only if f (u) f (v) ∈ E(H), and (Vi, Vj) is d-sparse (d-dense, respectively) if

and only if (Wσf (i), Wσf (j)) is d-sparse (d-dense, respectively), we conclude that the statement is

equivalent to saying that f (u) f (v) ∈ E(φ(H)).

Minimal antichains above the Bell numbers We know that the classes P(w, H) where w is

almost periodic are the minimal classes with finite distinguishing number that lie above the Bell

numbers. We now show that every such class P(w, H) is a boundary class. First, we find an infinite

collection of forbidden graphs of any such class P(w, H).

Lemma 4.10. Every class P(w, H) with w almost periodic is defined by infinitely many minimal forbidden

elements.

Proof. Consider the word a = w1w2 · · · wk, with k large enough to contain every letter of H at least

10 × 2|H| times, to guarantee that sparsification of the graph defined by a is unique, since all such

graphs are (|H|, 2)-graphs. Since w is almost periodic, a appears in w infinitely often so we can
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pick some other occurrence wℓ+1wℓ+2 · · · wℓ+k for some ℓ > k. Let b = wk+1wk+2 · · · wℓ be the

word between these two occurrences. Consider the graph Gℓ = Gw,H(1, 2, . . . , ℓ) formed from the

vertices of the prefix ab, and let G+
ℓ

denote the graph obtained from Gℓ by complementing the

edges between the vertices corresponding to w1 and wℓ.

We claim that either G+
ℓ

is itself a minimal forbidden induced subgraph for P(w, H), or it contains

one of order at least k. Suppose first that G+
ℓ
∈ P(w, H). Then there is some p ≥ ℓ such that G+

ℓ

is an induced subgraph of Gp. Fix any embedding f of G+
ℓ

into Gp. By Lemma 4.9 it follows that

f is an embedding of φ(Gℓ) into an induced subgraph of φ(Gp). It is clear that φ(Gℓ) is a cycle

on ℓ vertices, but φ(Gp) is a path on p vertices, and hence f cannot embed φ(Gℓ) into φ(Gp), a

contradiction, and so G+
ℓ
6∈ P(w, H).

Now, suppose that G+
ℓ

is not itself a minimal forbidden subgraph of P(w, H). Observe that G+
ℓ
−

i ∈ P(w, H) for every vertex i satisfying 1 ≤ i ≤ k: this follows since w begins with a prefix of the

form aba, and thus G+
ℓ
− i ∼= Gw,H(i + 1, i + 2 . . . , ℓ+ i− 1). Thus, any minimal forbidden subgraph

that is contained in G+
ℓ

(and there must be at least one) must contain all the vertices 1, . . . , k, and

thus has order at least k.

To construct infinitely many minimal forbidden induced subgraphs we proceed as follows. We let

k0 = k, ℓ0 = ℓ and F0 = G+
ℓ

as above. F0 is either itself a minimal forbidden induced subgraph, or

it contains one of order at least k0. For i > 0, set ki = |Fi−1|+ 1. Then as above we construct G+
ℓi

and let Fi = G+
ℓi

. Each Fi is either itself a minimal forbidden induced subgraph of P(w, H), or it

contains a minimal forbidden induced subgraph with at least ki vertices. In either case, since by

construction |Fi−1| < ki, the minimal forbidden induced subgraph contained in Fi contains strictly

more vertices than all the previous ones, completing the proof.

Theorem 4.11. Every class P(w, H) with w almost periodic is a boundary class for well-quasi-ordering by

the induced subgraph relation.

Proof. Consider the set of minimal forbidden induced subgraphs M for P(w, H), i.e. P(w, H) =

Free(M). By Lemma 4.10, M is infinite, which implies that P(w, H) is a limit class. By Lemma 3.4,

it suffices to show that for every G ∈ P(w, H), there exists a finite set M′′ ⊂ M such that

Free({G} ∪ M′′) is well-quasi-ordered.

To prove that P(w, H) is a minimal limit class, consider G ∈ P(w, H). Then let M′ = {Hi ∈
M|Hi ⊃ G} and M′′ = M − M′. It is clear that {G} ∪ M′′ is an antichain and hence a list of

minimal induced subgraphs for the class Free({G} ∪ M′′) = Free({G} ∪ M). As Free({G} ∪ M)

is a proper subclass of P(w, H), we know that it is below the Bell number by the second part

of Theorem 2.2. Hence this class is well-quasi-ordered by Theorem 4.1 and finitely defined by

Corollary 4.3. Hence for G ∈ P(w, H) we found a finite set M′′ ⊂ M such that Free(G ∪ M′′) is

well-quasi-ordered, as required.

Proof of Theorem 4.5. First, if C is not finitely defined, then by Lemma 4.2, C is not labelled well-

quasi-ordered. So now we can assume that C = Free(G1, . . . , Gs) is finitely defined.

By Theorem 2.2, C contains a class P(w, H) for some graph H and almost periodic word w. By

Theorem 4.11, P(w, H) is a boundary class, so by Theorem 3.5, P(w, H) = Free(A) for a minimal

antichain A. Thus, if C = Free(G1, . . . , Gs) is finitely defined, then each Gi cannot lie in P(w, H),
and hence is either isomorphic to some graph in A, or contains (at least one) graph from A. Either
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way, we conclude that all but finitely many of the graphs in A must also be contained in C, and

hence C is not well-quasi-ordered (and therefore also not labelled well-quasi-ordered).

Note that if C is not finitely defined then C immediately fails to be labelled well-quasi-ordered by

Lemma 4.2. However, such classes can still be well-quasi-ordered: for example, if C = P(w, H) for

some H and almost periodic w.

5 A bound on kC and ℓC

While Balogh et al [5] provide an easy-to-check characterisation to determine whether a class C has

finite or infinite distinguishing number, in this section we provide an upper bound on the value

of kC whenever C = Free(G1, . . . , Gs) has kC < ∞, as a function of the number of vertices in the

largest graph in {G1, . . . , Gs}. This also gives us a bound on the parameter ℓC , which counts how

many sets can be distinguished in graphs in C which can have arbitrarily large cardinality.

In order to establish this bound, we seek to derive a ‘finite’ version of Theorem 2.1. First, we recall

a number of concepts which are essentially in Balogh et al [5], although note that in [5] these are

defined in terms of hypergraphs, but our treatment here is equivalent.

Given a pair of disjoint sets of vertices U and V in a graph G, we say that U and V are joined if

uv ∈ E(G) for all u ∈ U, v ∈ V, and co-joined if uv /∈ E(G) for all u ∈ U, v ∈ V. Suppose G is

a graph with a partition V(G) = X ∪ V1 ∪ · · · ∪ Vr such that X = {v1, . . . , vr}, and V1, . . . , Vr is a

collection of disjoint sets of vertices. Then we call G:

• an r-star if each vi is joined to Vi and co-joined to Vj for j 6= i.

• an r-costar if each vi is co-joined to Vi but joined to Vj for j 6= i.

• an r-skewchain if each vi is joined to Vj for j ≤ i and co-joined to Vj for j > i.

Where necessary, we say that vi is the vertex of X that corresponds to the set Vi. In the case where

|Vi| ≥ t for all i, we say that the r-star, r-costar or r-skewchain is t-strong. In the case when |Vi| = 1

for all i and the graph G is bipartite with one part equal to X, we call the graphs an r-matching, an

r-comatching and an r-halfgraph, respectively.

Proposition 5.1 (Balogh et al [5]). For all p, q, r ∈ N there is a number f (p, q, r) such that every bipartite

graph in which one part has f (p, q, r) vertices with pairwise distinct neighbourhoods, contains a p-matching,

a q-comatching, or an r-halfgraph as an induced subgraph.

We require two more results concerning unavoidable structures. First, for completeness we state

Ramsey’s theorem.

Theorem 5.2 (Ramsey [16]). There is a number R(n) such that any graph with R(n) vertices contains a

clique or an independent set of size n.

The second result we require concerns finding uniformity in graphs which can be partitioned into

a large number of large parts. A suitable result is proved in [5] (see Corollary 8), but the result we

give here, which can be found in Brian Cook’s MSc Thesis [6, Lemma 4.3.4], provides us with an

improved bound on the size of graph needing to be considered.
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Lemma 5.3 (Cook [6]). There is a number nk(t) such that if G has a partition into k sets V1, . . . , Vk, each

containing at least nk(t) vertices, then G contains an induced subgraph H with partition W1, . . . , Wk such

that

(i) |Wi| ≥ t for all i,

(ii) Wi ⊆ Vi for all i = 1, . . . , k,

(iii) For each i 6= j, Wi and Wj are either joined or co-joined.

Proof. We prove this by induction on k. Clearly, we can take n1(t) = t.

Now consider a graph G with a partition into k+ 1 sets V1, . . . , Vk+1. First, if V1, . . . , Vk each contain

at least nk(2t) vertices, then by induction we can find sets W ′
1, . . . , W ′

k each of size 2t satisfying the

statement of the lemma for the subgraph of G induced on V1, . . . , Vk.

Next, providing the set Vk+1 contains at least t22kt vertices, then by the pigeonhole principle there

is a set Wk+1 ⊆ Vk+1 containing at least t vertices which have the same neighbourhood with the

2kt vertices in W ′
1, . . . , W ′

k.

Furthermore, since each set W ′
i contains 2t vertices, we can find a set Wi ⊆ W ′

i containing at least

t vertices which are either all adjacent or all nonadjacent to Wk+1. Therefore, W1, . . . , Wk+1 induces

the necessary subgraph H of G, and we may take nk+1(t) = max{t22kt , nk(2t)}.

For later reference, the final condition nk+1(t) = max{t22kt , nk(2t)} together with n1(t) = t gives

us that n2(t) = t24t and thence for k ≥ 3 we have nk(t) = 2k−2t22k t.

We are now nearly ready for our ‘finite’ version of Theorem 2.1. Roughly speaking, given an

arbitrary graph in which we can find a set X that distinguishes a large number of large sets

V1, V2, . . . , Vk, we seek an induced subgraph that is an r-star, r-costar or r-skewchain, and in which

the relationship between and within the various sets of vertices is ‘uniform’.

For an r-star, r-costar or r-skewchain with vertex partition X ∪ V1 ∪ · · · ∪ Vr where |X| = |Vi| = r

for all i, we will take the set X to be either an independent set or a clique, all Vis will form

independent sets or all Vis form cliques, and all pairs Vi and Vj (i 6= j) will be joined or all pairs

will be co-joined. This gives 3 × 2 × 2 × 2 = 24 minimal graphs, which we will call Ur
1, Ur

2, . . . , Ur
24,

in some (arbitrary) order. Note that each Ur
i is an r-star, an r-costar or an r-skewchain with r2 + r

vertices.

In the theorem below, we use R4(k) to denote the 4-coloured Ramsey number, sometimes denoted

R(k, k, k, k).

Theorem 5.4. If a graph G contains a set X which distinguishes ℓ(m) = f (M, M, M) sets where M =
R4(2m − 1), each of size k(m) = nM(R(m)), then the graph G contains Um

i for some 1 ≤ i ≤ 24.

Proof. Let the collection of sets distinguished by X be F = {Vi : 1 ≤ i ≤ ℓ(m)}. Construct an

auxiliary bipartite graph H in which one part is the distinguishing set X (with edges removed),

and the other is V = {v1, . . . , vℓ(m)} where vi has the same neighbourhood in X as Vi has with X in

G. Notice that, by definition of the distinguishing set X, it follows that no two vertices of V have

the same neighbourhood in X. Hence, part V has f (M, M, M) vertices with distinct neighbour-

hoods, which by Proposition 5.1 implies that we can find a subset X1 ⊆ X with |X1| = M and a
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set {vi1 , . . . , viM
} such that X1 ∪ {vi1 , . . . , viM

} induces an M-matching, -comatching or -halfgraph

inside H. In G, the induced subgraph on the vertices X1 together with F1 = {Vi1 , . . . , ViM
} ⊆ F is

therefore a k(m)-strong M-star, -costar or -skewchain.

Next, as each of the M sets Vij
∈ F1 contains at least k(m) = nM(R(m)) vertices, by Lemma 5.3

we can find sets Wj ⊆ Vij
with |Wj| ≥ R(m) so that between each pair Wj, Wj′ there are either all

edges or none. Letting F2 = {W1, . . . , WM} and X2 = X1, we have an R(m)-strong M-star, -costar

or -skewchain where every pair of sets in F2 is joined or co-joined.

Write X2 = {x1, . . . , xM}, with the indices arranged so that xi ∈ X2 corresponds to Wi ∈ F2 for each

i. Now consider the M = R4(2m − 1) vertex-set pairs (xi, Wi). Between each (xi, Wi) and (xj, Wj)
we identify an edge relation eij with one of four colours, depending on whether xixj ∈ E(G) or

not, and whether Wi is joined or co-joined to Wj.

As there are R4(2m − 1) pairs (xi, Wi), we can find 2m − 1 pairs so that all edges have the same

colour. Let F3 denote the collection of 2m − 1 sets Wi, and X3 the corresponding 2m − 1 vertices xi.

Thus X3 and F3 induce in G an R(m)-strong (2m − 1)-star, -costar or -skewchain, in which X3 is a

clique or independent set, and either all edges are present between all pairs in F3, or no edges are

present between any pair.

Finally, as each set U ∈ F3 contains R(m) vertices, we can find a collection of m vertices in U which

induce a clique or an independent set in G. Since F3 contains 2m − 1 sets, at least m of these sets in

F3 will induce cliques, or at least m will induce independent sets. Thus by first reducing the sets in

F3 to subsets of size at least m, and then choosing at least m of these sets, we can find a collection

F4 of m sets each of size m, and corresponding vertices X4 which creates an induced Um
i in G, for

some 1 ≤ i ≤ 24.

The astute reader will have noticed that although we have defined 24 ‘unavoidable’ graphs, there

are still only 13 minimal classes with infinite distinguishing number. The discrepancy here arises

because of the unavoidable graphs Um
1 , . . . , Um

24, one can find a disjoint union of m cliques each

of size at least m in six of them, the Turán graph T(m2, m) in another six, and the m-strong m-

skewchain where one part is a clique and the other an independent set appears twice in the list.

From this observation, we can readily deduce the following.

Lemma 5.5. Each graph Um
i is m-universal for some Xj. That is, Um

i contains every graph on m vertices

from Xj.

We can now obtain an explicit bound for kC and ℓC for a finitely defined class C in which we know

kC < ∞.

Theorem 5.6. Let C = Free(G1, G2, . . . , Gs) be a class with finite distinguishing number and let m =

max{|Gi| : 1 ≤ i ≤ s} be the order of the largest forbidden graph. Then kC ≤ k(m) and ℓC < ℓ(m) where

k(m) and ℓ(m) are as given in Theorem 5.4.

Proof. For the sake of contradiction, suppose that C contains a graph G with a set X distinguishing

ℓ(m) sets each of size at least k(m). Then, by Theorem 5.4, G contains one of the graphs Um
i for

some i. In particular, this means that Um
i ∈ C, and therefore by Lemma 5.5 every graph on m

vertices from some Xj is contained in C. However, as m is the size of the largest forbidden induced

subgraph of C, it follows that Xj ⊆ C, but this is impossible as it would imply kC = ∞.
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From this, we see that for any graph G ∈ C, one can distinguish at most ℓ(m)− 1 sets of size k(m),

and thus by definition kC ≤ k(m). Similarly, by definition of ℓC we see that ℓC < ℓ(m).

For the record, we now give a rough analysis of the sizes of ℓ(m) and k(m). First note that Balogh

et al [5] proved that the function f (p, q, r) in Proposition 5.1 satisfies

f (p, q, r) = 2(r − 1)(r − 2) f (p − 1, q, r) f (p, q − 1, r) + 1

whenever p, q, r > 2, while f (1, q, r) = f (p, 1, r) = f (p, q, 1) = 1, f (2, q, r) = f (p, 2, r) = r and

f (p, q, 2) = 2. From this, we can deduce (e.g. by induction) that f (p, q, r) ≤ r2p+q−3 ≤ r2p+q
.

Next, naive bounds for Ramsey’s theorem give us R(m) ≤ 22m and M = R4(2m − 1) ≤ 44(2m−1) ≤
216m, while the comments after the proof of Lemma 5.3 tell us that nk(t) ≤ 2k−2t22k t. Thus, we have

ℓ(m) = f (M, M, M) ≤ M4M ≤ 216m4216m

and

k(m) = nM(R(m)) ≤ 2M−2R(m)22MR(m) ≤ 22216m
4m

2216m
4m.

Theorem 5.7. Let C = Free(G1, G2, . . . , Gs) be a class with finite distinguishing number and let m =

max{|Gi| : 1 ≤ i ≤ s}. If C is above the Bell numbers then it contains a class P(w, H) where w is

a periodic word on at most ℓ(m) letters and with period p(m) ≤ ℓ(m)m + 1, where ℓ(m) is as given in

Theorem 5.4.

Proof. By Theorem 2.2, C contains some class P(w, H) where w is almost periodic and H has at

most ℓ(m) vertices. Take an initial segment u = u1 · · · uℓ(m)m+m of the word w of size ℓ(m)m + m,

and consider the ℓ(m)m + 1 factors f1, . . . , fℓ(m)m+1 of length m formed by starting at u1, u2, . . . ,

uℓ(m)m+1. There are ℓ(m)m distinct factors of length m over an alphabet of size ℓ(m), and therefore

there exist two factors fi and f j (with, say, i < j) which are identical. We now distinguish two

cases: if j − i ≥ m (in which case fi and f j are disjoint), and if j − i < m (in which case fi and f j

overlap).

First suppose j − i ≥ m, so that the factors fi and f j are disjoint. Let a = fi(= f j), and let the

portion of the word u between fi and f j be b. Thus, starting at letter ui, inside u we have a factor

of the form aba. Since w is almost periodic, it must contain arbitrarily many copies of the factor

aba, and we claim that C contains P(x, H) with x = (ab)∞. If not, then some forbidden graph Gi

of C is contained in P(x, H), so there exists a subsequence i1 < · · · < ik (where k = |G| ≤ m) such

that Gx,H(i1, . . . , ik) ∼= Gi.

Following the proof of [2, Theorem 4.6], we now identify a function ϕ : {i1, . . . , ik} → N with the

following properties: (1) ϕ(ij) < ϕ(ij′) if and only if ij < ij′ ; (2) wϕ(ij) = xij
for all j = 1, . . . , k; and

(3) ϕ(ij)− ϕ(ij′) = 1 if and only if ij − ij′ = 1. The existence of such a ϕ will tell us that

Gi
∼= Gx,H(i1, . . . , ik) ∼= Gw,H(ϕ(i1), . . . , ϕ(ik)) ∈ P(w, H) ⊆ C,

which is a contradiction.

To construct such a ϕ, consider a maximal-length sequence ij, ij+1, . . . , ij+p consisting of consecutive

integers (i.e. iq + 1 = iq+1 for all q = j, j + 1, . . . , j+ p− 1). Since this can have length at most k ≤ m,

we can find it as a factor of x embedded inside some aba factor of x. Thus, every maximal block of
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consecutive integers of x embeds inside aba. Now, aba appears infinitely often in w, and therefore

we can construct ϕ to map the first block of consecutive entries to a factor in the first instance

of aba inside w, the second block to a factor in the second instance of aba, and so on. Thus ϕ

is order-preserving (giving condition (1)), preserves letters (condition (2)) and maps consecutive

entries to consecutive entries (which gives (3)).

The second case we consider is where j − i < m, in which case the factors fi and f j of u overlap.

Here, we let a = uiui+1 · · · uj−1 denote the initial prefix of fi before f j. After this initial prefix, we

repeatedly see copies of a until we find a suffix a′ of f j (which is necessarily a prefix of a). This

means that the factor uiui+1 · · · uj+m−1 of u forms a copy of the word aa · · · aa′, where there are at

least two as, and where a′ is a prefix of a. Note that, since j > i, this factor aa · · · aa′ is of length at

least m + |a|, which means that every factor of a∞ of length m appears in aa · · · aa′.

We now claim that C contains the class P(x, H) where x = a∞. The argument is exactly the same

as before upon replacing aba with aa · · · aa′, and we omit the details.

Finally, the maximum length of the period occurs in the case where fi and f j do not overlap, in

which case the period has length |ab| ≤ ℓ(m)m + 1.

The above theorem provides a bound on the number of minimal classes of the form P(w, H) which

could be contained in C = Free(G1, G2, . . . , Gs), by bounding the order of the graph H in terms of

the sizes of minimal forbidden subgraphs. From this, we can conclude the following.

Corollary 5.8. There exists a procedure to decide whether C = Free(G1, G2, . . . , Gs) is above or below the

Bell numbers, with running time r(m) satisfying

log log log log (r(m)) ≤ m1+o(1)

where m = max{|G1|, . . . , |Gs|}.

Proof. First, checking whether C contains one of the minimal classes X1, . . . ,X13 with infinite dis-

tinguishing number can be done in polynomial time, so we assume that C has kC < ∞. Now, by

Theorem 5.4, if C lies above the Bell numbers then it contains some class P(w, H) from a finite list,

ranging over all graphs H (with loops allowed) of order at most ℓC ≤ ℓ(m), and all periodic words

w whose period is less than p(m) ≤ ℓ(m)m + 1.

For each class P(w, H) from this list, it suffices to check for each Gi (i = 1, . . . , s) whether Gi ∈
P(w, H). Since |Gi| ≤ m, if Gi ∈ P(w, H) then Gi can be embedded in an initial segment of w of

length at most 2mp(m).

Thus C lies below the Bell numbers if and only if every graph Gw,H(1, 2, . . . , 2mp(m)) contains some

Gi as an induced subgraph, ranging over all graphs H with up to ℓ(m) vertices, and all periodic

words with period up to length p(m).

To bound the runtime r = r(m), note that there are no more than p(m) · 2(
p(m)

2 ) possible choices

of graph Gw,H(1, 2, . . . , 2mp(m)) where H has order at most ℓ(m) ≤ p(m) and w has period at

most p(m). In addition, the total number s of possible forbidden graphs Gi of C satisfies s ≤ m ·
2(

m
2 ). Checking whether Gi is an induced subgraph of Gw,H(1, 2, . . . , 2mp(m)) can be completed by

considering every subset of size m, i.e. (2mp(m)
m ) ≤ (2mp(m))m instances of the graph isomorphism
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problem on graphs with at most m vertices, which has runtime at most 2O(
√

m log m) (see Babai,

Kantor and Luks [3]).

Thus, we have

r(m) ≤ p(m)2(
p(m)

2 ) · m2(
m
2 ) · (2mp(m))m · 2O(

√
m log m)

from which we note the dominant term is 2(
p(m)

2 ) and is a quadruple exponential in m. The stated

bound then follows.

Together with the results from the previous section we can now conclude with the following

decision procedure, which also completes the proof of Theorem 1.1.

Corollary 5.9. Let C = Free(G1, G2, . . . , Gs) be a class with finite distinguishing number and m =

max{|G1|, |G2|, . . . , |Gs|}. Then there is an algorithm to decide whether C is well-quasi-ordered or not,

whose running time r(m) satisfies log log log log (r(m)) ≤ m1+o(1).

Proof. By Theorems 4.1 and 4.5, C is well-quasi-ordered if and only if it lies below the Bell numbers.

However, this procedure has an algorithm with the required running time by Corollary 5.8.

6 Concluding remarks and open problems

Boundary classes In the previous section, we proved that every class P(w, H) where w is al-

most periodic is a boundary class, and consequently defines a minimal antichain in the induced

subgraph ordering. This family includes every previously-identified boundary class from [13].

It would be interesting to know what other boundary classes (or, equivalently, minimal antichains)

there are. When a class has infinite distinguishing number, it contains at least one of the classes

X1, . . . ,X13. To our minds, the natural first place to start exploring these structures are in classes

that contain one of X6, X7 or X13, being those that contain vertices that are linearly ordered by

their neighbourhood inclusions.

Periodic minimal antichains When C is a finitely defined class with finite distinguishing number,

it contains some class P(w, H) where w is a periodic word. Since P(w, H) is a boundary class, it

defines some minimal antichain, being the forbidden graphs of P(w, H). It seems likely (though

we have not proved it here) that the sufficiently large elements of this minimal antichain will have

a periodic construction. This would add evidence to support the conjecture that if any finitely

defined class C contains some infinite antichain, then it contains a periodic one.

Labelled well-quasi-ordering Lemma 4.2 (Proposition 3 in Daligault, Rao and Thomassé [7])

tells us that every labelled well-quasi-ordered class must be finitely defined. A partial converse to

this has been conjectured:

Conjecture 6.1 (Korpelainen et al [13]). Let C be a well-quasi-ordered hereditary class. Then C is finitely

defined if and only if it is labelled well-quasi-ordered.

We remark that our work here confirms this conjecture when C has finite distinguishing number.
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Classes below the Bell numbers The proof of Theorem 4.1 (either the one given here or the

essentially identical argument in [4, 12]) did not use the fact that classes below the Bell numbers

are finitely defined to establish the result (instead, this came as a consequence of labelled well-

quasi-ordering). Thus, the following question remains open:

Question 6.2. If C = Free(G1, . . . , Gs) is a class below the Bell numbers, can every graph in C be seen as

a k-uniform graph where k is bounded by some function of s and m = max{|G1|, |G2|, . . . , |Gs|}?
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A Classes below the Bell numbers: a proof of Theorem 4.1

Instead of simply making reference to Theorem 30 of [4], the starting point we will use is a struc-

tural characterisation provided a few pages earlier in the same paper, which builds on constants

guaranteed by Lemma 4.4.

Theorem A.1 (Balogh et al [4, Theorem 28]). Let C be a hereditary class with kC < ∞, and let t ≥
5× 2ℓC dC be fixed. Then |Cn| ≥ n(1+o(1))n if and only if for every m there exists a t-strong (ℓC , dC)-graph G

in C such that its sparsification φ(G) has a component of order at least m.

Combined with Lemma 4.4, this says that for any class C that lies below the Bell numbers, there

exist constants cC , dC and mC such that for any graph G ∈ C, after removing at most cC vertices

from G we can form a t-strong (ℓC, dC)-graph. Moreover, for any (ℓC, dC)-partition of this graph,

the sparsification with respect to this partition has components each of size at most mC . This is

essentially the same statement as Theorem 30 of [4].

The other result that is needed is Theorem 2 of [12], so we now introduce the necessary definitions

in order to be able to state it.

Fix k ∈ N, let Fk be a graph with V(Fk) = {1, . . . , k}, and let M be an undirected graph with loops

allowed on the same vertex set {1, . . . , k}.4 We construct an infinite graph H(M, Fk) as follows. Let

V(H(M, Fk)) = V1 ∪ V2 ∪ · · · ∪ Vk consists of k disjoint copies of N (complete with the ordering

on N). Within each set Vi, we form a clique if there is a loop on vertex i in the graph M, and an

independent set if there is no loop. Between each pair of sets Vi and Vj with i 6= j, the graphs M

and Fk give four possibilities:

• ij ∈ E(Fk), ij 6∈ E(M): matching between Vi and Vj (connecting the ℓth vertex of Vi to the ℓth

vertex of Vj);

• ij ∈ E(Fk), ij ∈ E(M): co-matching between Vi and Vj (the ℓth vertex of Vi and the ℓth vertex

of Vj are co-connected);

4In other texts, M is (equivalently) defined to be a k × k symmetric 0/1 matrix. We have defined it to be another

graph here to improve consistency with the construction of P(w, H) classes.
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• ij 6∈ E(Fk), ij 6∈ E(M): Vi and Vj are co-joined;

• ij 6∈ E(Fk), ij ∈ E(M): Vi and Vj are joined.

Informally, the graph M determines whether there is a high or low density of edges between Vi

and Vj, and the graph Fk then specifies whether this relationship is a matching/co-matching or

joined/co-joined.

We say that a (finite) graph G is k-uniform if it is an induced subgraph of H(M, Fk) for some pair

of graphs M and Fk. We will require the following two facts about k-uniform graphs:

Lemma A.2 (Korpelainen and Lozin [12, Lemma 2]). If a graph G has a subset W of at most c vertices

such that G −W is k-uniform, then G is (2c(k + 1)− 1)-uniform.

Theorem A.3 (Korpelainen and Lozin [12, Theorem 2]). For any fixed k, the set of k-uniform graphs is

labelled-well-quasi-ordered.

The following technical lemma provides the connection to (ℓ, d)-graphs that we require.

Lemma A.4. Let t ≥ 5 × 2ℓd, and let G be a t-strong (ℓ, d)-graph. If each component in the sparsification

φ(G) of G contains at most m vertices, then G is a k-uniform graph for k ≤ mℓm2(
m
2 )+1.

Proof. Since G is a t-strong (ℓ, d) graph for t ≥ 5× 2ℓd, the sparsification φ(G) is unique irrespective

of the chosen (ℓ, d) partition. Thus, fix any (ℓ, d) partition π of G, and consider the connected

components of φ(G), all of which contain at most m vertices.

We define the following equivalence relation: two components C and C′ of φ(G) are π-equivalent if

there is a graph isomorphism f : C → C′ such that for every vertex v ∈ C both v and f (v) belong

to the same bag Vi of the partition π.

Set V ′ to be a subset of vertices of V(G) which in φ(G) induces exactly one component from each

π-equivalence class. There are fewer than 2(
m
2 )+1 graphs on at most m vertices, and each such

graph can be embedded into bags of the partition π in at most ℓm different (non-π-equivalent)

ways, therefore (since each graph has at most m vertices) |V ′| ≤ mℓm2(
m
2 )+1.

Now set k = |V ′|, and let Fk be the subgraph of φ(G) induced on the set V ′. For two vertices

u, v ∈ V ′, u ∈ Vi, v ∈ Vj set uv 6∈ E(M) if (Vi, Vj) is d-sparse, and uv ∈ E(M) if (Vi, Vj) is d-dense.

Now, by the definition of k-uniformity, G is an induced subgraph of H(M, Fk), as required.

The proof of Theorem 4.1 will be completed by the next theorem, when combined with Theo-

rem A.3.

Theorem A.5. Let C be a hereditary class below the Bell numbers. Then there exists a constant k such that

every graph in C is a k-uniform graph.

Proof. Let C be a hereditary class below the Bell numbers, necessarily therefore of finite distin-

guishing number kC . Given any G ∈ C, by Lemma 4.4 we know that by removing at most cC
vertices from G we can find a t-strong (ℓC, dC) induced subgraph G′, where t = 5 × 2ℓC dC . Fix any

(ℓC, dC) partition π of G′.

By Theorem A.1 there is an absolute constant mC depending only on C such that the sparsification

of G′ has every component of size at most mC . From Lemma A.4 it follows that G′ is a k′-uniform
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graph with k′ = mCℓ
mC
C 2(

mC
2
)+1. Since G contains at most cC more vertices than G′, Lemma A.2 tells

us that G is k-uniform, where k = 2cC (k′ + 1)− 1.
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