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Partitioning a graph into cycles

with a specified number of chords

Shuya Chiba∗ Suyun Jiang† Jin Yan‡

Abstract

For a graph G, let σ2(G) be the minimum degree sum of two non-adjacent vertices in

G. A chord of a cycle in a graph G is an edge of G joining two non-consecutive vertices of

the cycle. In this paper, we prove the following result, which is an extension of a result of

Brandt et al. (J. Graph Theory 24 (1997) 165–173) for large graphs: For positive integers

k and c, there exists an integer f (k, c) such that, if G is a graph of order n ≥ f (k, c) and

σ2(G) ≥ n, then G can be partitioned into k vertex-disjoint cycles, each of which has at

least c chords.
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1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges.

For terminology and notation not defined in this paper, we refer the readers to [3]. Let G be a

graph. For a vertex v of G, we denote by dG(v) and NG(v) the degree and the neighborhood of v

in G. Let δ(G) be the minimum degree of G and let σ2(G) be the minimum degree sum of two

non-adjacent vertices in G, i.e., if G is non-complete, then σ2(G) = min
{

dG(u) + dG(v) : u, v ∈
V(G), u , v, uv < E(G)

}

; otherwise, let σ2(G) = +∞. If the graph G is clear from the context,

we often omit the graph parameter G in the graph invariant. We denote by Kt the complete

graph of order t. In this paper, “partition” and “disjoint” always mean “vertex-partition” and

“vertex-disjoint”, respectively.

A graph is hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all the vertices of

the graph. It is well known that determining whether a given graph is hamiltonian or not, is

NP-complete. Therefore, it is natural to study sufficient conditions for hamiltonicity of graphs.

∗Applied Mathematics, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1

Kurokami, Kumamoto 860-8555, Japan (E-mail address: schiba@kumamoto-u.ac.jp). This work was sup-

ported by JSPS KAKENHI Grant Number 17K05347.
†School of Mathematics, Shandong University, Jinan 250100, China; Institute for Interdisciplinary Research,

Jianghan University, Wuhan, China (E-mail address: jiang.suyun@163.com).
‡School of Mathematics, Shandong University, Jinan 250100, China (E-mail address: yanj@sdu.edu.cn).

This work was supported by National Natural Science Foundation of China (No.11671232).

1

http://arxiv.org/abs/1808.03893v1


In particular, since the approval of the following two theorems, various studies have considered

degree conditions.

Theorem A (Dirac [7]) Let G be a graph of order n ≥ 3. If δ ≥ n
2
, then G is hamiltonian.

Theorem B (Ore [16]) Let G be a graph of order n ≥ 3. If σ2 ≥ n, then G is hamiltonian.

In 1997, Brandt et al. generalized the above theorems by showing that the Ore condition,

i.e., the σ2 condition in Theorem B, guarantees the existence of a partition of a graph into a

prescribed number of cycles.

Theorem C (Brandt et al. [4]) Let k be a positive integer, and let G be a graph of order n ≥
4k − 1. If σ2 ≥ n, then G can be partitioned into k cycles, i.e., G contains k disjoint cycles

C1, . . . ,Ck such that
⋃

1≤p≤k V(Cp) = V(G).

In order to generalize results on Hamilton cycles, degree conditions for partitioning graphs

into a prescribed number of cycles with some additional conditions, have been extensively stud-

ied. See a survey paper [6].

On the other hand, Hajnal and Szemerédi (1970) gave the following minimum degree con-

dition for graphs to be partitioned into k complete graphs of order t.

Theorem D (Hajnal and Szemerédi [12]) Let k and t be integers with k ≥ 1 and t ≥ 3, and let

G be a graph of order n = tk. If δ ≥ t−1
t

n, then G can be partitioned into k subgraphs, each of

which is isomorphic to Kt.

In 2008, Kierstead and Kostochka improved the δ condition into the followingσ2 condition.

Theorem E (Kierstead and Kostochka [13]) Let k and t be integers with k ≥ 1 and t ≥ 3, and

let G be a graph of order n = tk. If σ2 ≥ 2(t−1)

t
n − 1, then G can be partitioned into k subgraphs,

each of which is isomorphic to Kt.

The above two theorems concern with the existence of an equitable (vertex-)coloring in

graphs. In fact, Theorem D implies that a conjecture of Erdős [9] (“every graph of maximum

degree at most k − 1 has an equitable k-coloring”) is true. Motivated by this conjecture, Sey-

mour [17] proposed a more general conjecture, which states that every graph of order n ≥ 3

and of minimum degree at least t−1
t

n contains (t − 1)-th power of a Hamilton cycle. It is also

a generalization of Theorem A by including the case t = 2. In [15], Komlós et al. proved the

Seymour’s conjecture for sufficiently large graphs by using the Regularity Lemma. For other

related results, see a survey paper [14].

In this paper, we focus on a relaxed structure of a complete subgraph in graphs as follows.

For an integer c ≥ 1, a cycle C in a graph G is called a c-chorded cycle if there are at least c

edges between the vertices on the cycle C that are not edges of C, i.e.,
∣

∣

∣E(G[V(C)]) \ E(C)
∣

∣

∣ ≥ c,

where for a vertex subset X of G, G[X] denotes the subgraph of G induced by X. We call each

edge of E(G[V(C)]) \ E(C) a chord of C. Since a Hamilton cycle of Kt has exactly
t(t−3)

2
chords,

we can regard a c-chorded cycle as a relaxed structure of Kt for c =
t(t−3)

2
. Concerning the
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existence of a partition into such structures, we give the following result. Here, for positive

integers k and c, we define f (k, c) = 8k2c + 10kc − 4k + 2c + 1.

Theorem 1 Let k and c be positive integers, and let G be a graph of order n ≥ f (k, c). If σ2 ≥ n,

then G can be partitioned into k c-chorded cycles.

This theorem says that for a sufficiently large graph, the Ore condition also guarantees the

existence of a partition into k subgraphs, each of which is a relaxed structure of a complete

graph. The complete bipartite graph K n−1
2
, n+1

2
(n is odd) shows the sharpness of the lower bound

on the degree condition. But we do not know whether the order condition (the function f (k, c))

is sharp or not. It comes from our proof techniques.

Related results can be found in [1, 2, 5, 10, 11]. In these papers, degree conditions for

packing cycles with many chords in a graph, i.e., finding a prescribed number of disjoint cycles

with many chords (it may not form a partition of a graph), are given and some of the results are

also generalizations of Theorem D.

In Section 2, we give lemmas which are obtained from arguments for hamiltonian problems.

By using the lemmas, in Section 3, we first show that the collection of disjoint c-chorded cycles

in a graph G satisfying the conditions of Theorem 1, can be transformed into a partition of G

(Theorem 2 in Section 3). Then we show that Theorem 2 and a result on packing cycles lead to

Theorem 1 as a corollary (see the last of Section 3). In Section 4, we give some remarks on the

order condition and show that the order condition in Theorem 1 can be improved for the case of

the Dirac condition.

2 Lemmas

We prepare terminology and notations which will be used in our proofs. Let G be a graph. For

v ∈ V(G) and X ⊆ V(G), we let NX(v) = NG(v) ∩ X and dX(v) = |NX(v)|. For V, X ⊆ V(G),

let NX(V) =
⋃

v∈V NX(v). For a subgraph F of G, we define EG(F) = E(G[V(F)]) \ E(F). A

(u, v)-path in G is a path from a vertex u to a vertex v in G. We write a cycle (or a path) C with a

given orientation by
−→
C . If there exists no fear of confusion, we abbreviate

−→
C by C. Let C be an

oriented cycle (or path). We denote by
←−
C the cycle (or the path) C with the reverse orientation.

For v ∈ V(C), we denote by v+ and v− the successor and the predecessor of v on
−→
C , respectively.

For X ⊆ V(C), we define X+ = {v+ : v ∈ X} and X− = {v− : v ∈ X}. For u, v ∈ V(C), we denote

by C[u, v] the (u, v)-path on
−→
C . The reverse sequence of C[u, v] is denoted by

←−
C [v, u]. In the rest

of this paper, we often identify a subgraph F of G with its vertex set V(F).

We next prepare some lemmas. In the proof, we use the technique for proofs concerning

hamiltonian properties of graphs. To do that, in the rest of this section, we fix the following.

Let k and c be positive integers, and let G be a graph of order n and L a fixed vertex subset of

G. Let C1, . . . ,Ck be k disjoint c-chorded cycles each with a fixed orientation in G, and suppose

that C∗ :=
⋃

1≤p≤k Cp is not a spanning subgraph of G. Let H∗ = G − C∗ and H be a component

of H∗. Assume that C1, . . . ,Ck are chosen so that

(A1) |V(C∗) ∩ L| is as large as possible, and

3



(A2) |C∗| is as large as possible, subject to (A1).

Then the choices lead to the following.

Lemma 1 Let C = Cp with 1 ≤ p ≤ k, and let v ∈ NC(H) and x ∈ V(H). Then (i) v+x < E(G),

and (ii) dH∗∪C(v+) + dH∗∪C(x) ≤ |H∗ ∪C| − 1.

Proof of Lemma 1. We let
−→
P be a (v+, x)-path consisting of the path C[v+, v] and a (v, x)-path

in G[V(H) ∪ {v}].
Suppose first that there exists a vertex a in

(

NP(v+)
)− ∩NP(x), where the superscript − refers

to the orientation of
−→
P (see Figure 1). Consider the cycle D := v+P[a+, x]

←−
P [a, v+]. Then by the

definitions of P and D, we have
(

EG(C)\{v+a+})∪{vv+} ⊆ EG(D) or EG(C)∪{aa+} ⊆ EG(D), and

hence D is a c-chorded cycle in G[V(H∗ ∪ C)]. Moreover we also have V(C) ⊂ V(P) = V(D).

Therefore, by replacing C with D, this contradicts (A1) or (A2). Thus

(

NP(v+)
)− ∩ NP(x) = ∅. (1)

This in particular implies that v+x < E(G). Thus (i) holds.

Suppose next that there exists a vertex b in NG(v+) ∩ NG(x) ∩
(

V(H∗ ∪C) \ V(P)
)

. Consider

the cycle D′ := P[v+, x]bv+. Then by the similar argument as above, replacing C with D′ would

violate (A1) or (A2). Thus NG(v+) ∩ NG(x) ∩ (V(H∗ ∪C) \ V(P)
)

= ∅. Combining this with (1),

we get dH∗∪C(v+) + dH∗∪C(x) ≤ |H∗ ∪C| − 1. Thus (ii) holds. �

is as large as possible, subject to (A1).

to the following.

, and let . Then (i)

≤ | | −

Proof of Lemma 1. We let
−→

be a ( of the path , v] and a (v,

in ∪ { ].

exists a vertex in ), where the superscript rs

to the orientation of
−→

cycle
←−
, v ]. Then by the

of , we have \{ ∪{vv } ⊆ ) or ∪{aa } ⊆ ), and

is a cycle in ver we also have ).

by replacing , this contradicts (A1) or (A2). Thus

in particular implies that ). Thus (i) holds.

next that there exists a vertex in . Consider

cycle . Then by the similar argument as above, replacing would

or (A2). Thus . Combining this with (1),

we get ≤ | | − 1. Thus (ii) holds.

P

H

C

x

v v
+
= a

P

H

C

x

v v
+

a

a+

: chord of C

a+ P

H

C

x

v = a+
v
+

a

1: Lemma 1

, and let , v . If

, then the following hold.

≥ |

≥ |

Proof of Lemma 2. by Lemma 1-(i) , v ). Since , it follows

| −

| −

We use the symmetry of
−→ ←−

a vertex of

Figure 1: Lemma 1

Lemma 2 Let C = Cp with 1 ≤ p ≤ k, and let u∗, v∗ ∈ (NC(H)
)− ∪ (NC(H)

)+
and x ∈ V(H). If

σ2(G) ≥ n, then the following hold.

(i) dCq
(u∗) + dCq

(x) ≥ |Cq| + 1 for some q with q , p.

(ii) dCq′ (u
∗) + dCq′ (v

∗) ≥ |Cq′ | + 1 for some q′ with q′ , p.

Proof of Lemma 2. Note that by Lemma 1-(i) 1, u∗x, v∗x < E(G). Since σ2(G) ≥ n, it follows

from Lemma 1-(ii) 1 that

dC∗−C(u∗) + dC∗−C(x) ≥ n −
(

|H∗ ∪C| − 1
)

= |C∗ − C| + 1, (2)

dC∗−C(v∗) + dC∗−C(x) ≥ n − (|H∗ ∪ C| − 1
)

= |C∗ −C| + 1. (3)

1We use the symmetry of
−→
C and

←−
C for a vertex of

(

NC(H)
)−

.
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Then (2) and the Pigeonhole Principle yield that (i) holds. Since dCr
(x) ≤ |Cr|/2 for 1 ≤ r ≤ k

by Lemma 1-(i), combining (2) and (3), and the Pigeonhole Principle yield that (ii) holds. �

3 Proof of Theorem 1

In order to show Theorem 1, we first prove the following theorem.

Theorem 2 Let k, c and G be the same as the ones in Theorem 1. Suppose that G contains k

disjoint c-chorded cycles. If σ2 ≥ n, then G can be partitioned into k c-chorded cycles.

In the proof of Theorem 2, we use the following lemma.

Lemma A (see Lemma 2.3 in [8]) Let d be an integer, and let G be a 2-connected graph of

order n and a ∈ V(G). If dG(u) + dG(v) ≥ d for any two distinct non-adjacent vertices u, v of

V(G) \ {a}, then G contains a cycle of order at least min{d, n}.

Proof of Theorem 2. Let L, C1, . . . ,Ck, C∗ and H∗ be the same ones as in the paragraph pre-

ceding Lemma 1 in Section 2.

Claim 1 If H is a component of H∗, then |NCp
(H)| ≤ 2c for 1 ≤ p ≤ k.

Proof. Let H be a component of H∗. It suffices to consider the case p = 1. Suppose that

|NC1
(H)| ≥ 2c + 1. Let e1, . . . , ec be c distinct edges in EG(C1). Note that by Lemma 1-(i),

NC1
(H) ∩ (NC1

(H)
)+
= ∅. Then, since |NC1

(H)| ≥ 2c + 1, we can take two distinct vertices v1, v2

in NC1
(H) such that

the end vertices of e1, . . . , ec do not appear in C1[v+1 , v
−
2 ], i.e., e1, . . . , ec ∈ EG(C1[v2, v1]). (4)

We apply Lemma 2-(ii) with (p, u∗, v∗) = (1, v+1 , v
−
2 ). Then there exists another cycle Cq with

q , 1, say q = 2, such that dC2
(v+1 )+dC2

(v−2 ) ≥ |C2|+1. This inequality implies that 2 there exists

an edge w−w in E(
−→
C2) such that v+1w

−, v−2w ∈ E(G). We consider two cycles

D1 := C1[v2, v1]P[v1, v2] and D2 := C1[v+1 , v
−
2 ]C2[w, w−]v+1 ,

where P[v1, v2] denotes a (v1, v2)-path in G[V(H)∪ {v1, v2}] such that V(P)∩V(H) , ∅. Then by

(4), D1 is a c-chorded cycle. Since EG(C2) ⊆ EG(D2), D2 is also a c-chorded cycle. Moreover,

V(D1) ∩ V(D2) = ∅ and V(D1) ∪ V(D2) = V(C1) ∪ V(C2) ∪ V(P). Hence, replacing C1 and C2

with D1 and D2, this contradicts (A1) or (A2). �

Now we define the fixed vertex subset L of G as follows:

L =
{

v ∈ V(G) : dG(v) <
n

2

}

.

Case 1. |H∗| ≥ n
2
− 2kc + 1.

2Change the orientation of C2 if necessary.
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Since G is connected, there exists a vertex x ∈ V(H∗) and a cycle Cp, say p = 1, such that

NC1
(x) , ∅. Let H∗∗ = H∗ − {x}.
In this case, we show that the following claim holds.

Claim 2 H∗∗ contains a c-chorded cycle.

Proof. We first define the following real number ω(c). Let ω(c) be the positive root of the

equation
t(t−3)

2
− c = 0, i.e., ω(c) =

√
8c+9+3

2
. Since |E(Kt)| − t =

t(t−3)

2
, it follows that a Hamilton

cycle of a complete graph of order at least ⌈ω(c)⌉ has at least c chords.

If V(H∗∗) ⊆ L, then by the definition of L, H∗∗ is a complete graph, and hence a Hamilton

cycle of H∗∗ has at least c chords since |H∗∗| ≥ n
2
− 2kc ≥ ω(c). Thus we may assume that

V(H∗∗) \ L , ∅. Let H′ be a component of H∗∗ such that V(H′) \ L , ∅. Note that by Claim 1,

for x′ ∈ V(H′) \ L, |H′| ≥ dH′(x′) + 1 ≥
(

n
2
− dC∗(x′) − |{x}|

)

+ 1 ≥ n
2
− 2kc ≥ 3.

We define an induced subgraph B of H′ as follows: If H′ is not 2-connected, let B be an end

block with a single cut vertex a such that V(B) \ ({a} ∪ L) , ∅ (note that we can take such a

block B because |H′| ≥ 3 and hence H′ has at least two end blocks); If H′ is 2-connected, then

let B = H′ and a be a vertex of H′ such that V(B) \ ({a} ∪ L) , ∅ (recall that V(H′) \ L , ∅).
Then by Claim 1, the definitions of B and a, it follows that for b ∈ V(B) \ ({a} ∪ L),

|B| ≥ dB(b) + 1 ≥
(

n

2
− dC∗(b) − |{x}|

)

+ 1 ≥ n

2
− 2kc.

In particular, B is 2-connected since n
2
− 2kc ≥ 3. Moreover, we also see that

dB(u) + dB(v) ≥ n − 4kc − 2|{x}| = n − 4kc − 2 for u, v ∈ V(B) \ {a} with u , v and uv < E(G).

Hence, by Lemma A,

B contains a cycle C of order at least min{n − 4kc − 2, |B|}.

To complete the proof of the claim, we show that the cycle C is a c-chorded cycle.

Suppose G[V(C)\{a}] is complete. Since n ≥ f (k, c) and |B| ≥ n
2
−2kc, we have |V(C)\{a}| ≥

min{n− 4kc− 3, |B| − 1} ≥ ω(c), and hence it follows that C has at least c chords. Thus we may

assume that there exist two distinct non-adjacent vertices u, v of V(C) \ {a}. Then by Claim 1,

the definitions of B and a, we have

dC(u) + dC(v) ≥ n − (dC∗(u) + dC∗(v)
) − (dB−C(u) + dB−C(v)

) − 2|{x}|
≥ n − 4kc − 2

(

|B| − |C|
)

− 2

≥ n − 4kc − 2
(

|B| −min{n − 4kc − 2, |B|}
)

− 2

= n − 4kc − 2 + 2 ·min{n − 4kc − 2 − |B|, 0}.

Note that each Ci has order at least ω(c) because Ci has at least c chords, and hence

|B| ≤ |H∗∗| = |H∗ − {x}| = n − 1 − |C∗| ≤ n − 1 − k · ω(c).

6



Since n ≥ f (k, c), it follows that

dC(u) + dC(v) ≥ n − 4kc − 2 + 2 ·min{n − 4kc − 2 − (n − 1 − k · ω(c)), 0}
= n − 12kc + 2k · ω(c) − 4 ≥ c + 4.

This implies that C has at least c chords. �

Now let D1 be a c-chorded cycle in H∗∗ (= H∗−{x}). Recall that NC1
(x) , ∅. Let v ∈ NC1

(x).

Then by Lemma 2-(i), there exists a cycle Cq with q , 1, say q = 2, such that dC2
(v+)+ dC2

(x) ≥
|C2| + 1. This inequality implies that there exists an edge w−w in E(

−→
C2) such that v+w−, xw ∈

E(G). Let D2 = C1[v+, v] x C2[w, w−]v+. Then, since EG(C2) ⊆ EG(D2), D2 is a c-chorded cycle.

Moreover, V(D1) ∩ V(D2) = ∅ and V(C1) ∪ V(C2) ⊂ V(D1) ∪ V(D2) ⊆ V(C1) ∪ V(C2) ∪ V(H∗).

Hence, replacing C1 and C2 with D1 and D2 would violate (A1) or (A2), a contradiction.

This completes the proof of Case 1.

Case 2. |H∗| < n
2
− 2kc + 1.

The following two claims are essential parts in this case.

Claim 3 (i) V(H∗) ⊆ L (in particular, H∗ is complete) and |H∗| ≤ 2c + 1.

(ii)
(

V(C∗) \ NC∗(H
∗)
)

∩ L = ∅.

(iii) dCp
(v) ≥ |Cp| − 2kc + 1 for 1 ≤ p ≤ k and v ∈ V(Cp) \ NCp

(H∗).

Proof. We first show (i) and (ii). If there exists a vertex x of V(H∗) such that x < L, then by

Claim 1, |H∗| ≥ dH∗(x)+ |{x}| ≥ (n
2
− 2kc

)

+ 1, which contradicts the assumption of Case 2. Thus

V(H∗) ⊆ L.

In particular, H∗ is a complete graph. Then by the definition of L, we have

(

V(C∗) \ NC∗ (H
∗)
) ∩ L = ∅.

This together with Claim 1 implies that |V(Cp) ∩ L| ≤ 2c for 1 ≤ p ≤ k. Therefore, if |H∗| ≥
2c + 2, then by replacing the cycle C1 with a Hamilton cycle of H∗, this contradicts (A1). Thus

we have 3

|H∗| ≤ 2c + 1.

We finally show (iii). Let 1 ≤ p ≤ k and v ∈ V(Cp) \ NCp
(H∗). We may assume that p = 1.

Let x be an arbitrary vertex of H∗. Then by Claim 1, and since v < NCp
(H∗), we get

dC∗(v) ≥ n − dC∗(x) − dH∗(x) ≥ n − 2kc − (|H∗| − 1) = |C∗| − 2kc + 1.

Since dCq
(v) ≤ |Cq| for 2 ≤ q ≤ k, we have dC1

(v) ≥ |C1| − 2kc + 1. Thus (iii) holds. �

3This argument actually implies that |H∗| ≤ max{2c, 3}. But we make no attempt to optimize the upper bound

on |H∗| since it does not lead to a significant improvement of the condition on n.
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Claim 4 Let C = Cp with 1 ≤ p ≤ k, and w−w ∈ E(
−→
C ) and S = NC(H∗). If |C| ≥ 8kc + 10c− 4,

then there exist two distinct chords u1v1, u2v2 of C satisfying the following conditions (A)–(C).

(A) u1, u2, v2, v1 are appear in the order along
−→
C ,

(B) w−, w ∈ C[v1, u1] and S ⊆ C[v1, u1] ∪C[u2, v2],

(C) dC[v1 ,u1](u1) ≥ c + 2 and dC[u2 ,v2](u2) ≥ c + 2.

Proof. Note that by Claim 3-(i), H∗ consists of exactly one component, and hence Claim 1

yields that |S | ≤ 2c. Note also that by Claim 3-(iii), dC(v) ≥ |C| − 2kc + 1 for v ∈ V(C) \ S .

We first define four vertices u1, u2, x, y of V(C) by the following procedure (I)–(III) (the ver-

tices u1, u2 will be the end vertices of the desired chords, and the vertices x, y will be candidates

of the end vertices of the desired chords). See also Figure 2.

(I) Let u1, u2 be vertices of V(C) such that

u1 = u−2 , (I-1) and u1, u2 < {w−} ∪ S . (I-2)

Note that we can take such two vertices because |C| ≥ 8kc+10c−4 and |{w−}∪S | ≤ 2c+1.

Choose u1, u2 so that |C[w, u1]| is as small as possible. Then by the choice,

|C[w, u1]| ≤ 2|S | + |{u1}| ≤ 4c + 1. (I-3)

(II) Since dC(u1) ≥ |C| − 2kc + 1 ≥ c + 2 and u1u2 ∈ E(G), and by (I-1), (I-2), we can take a

vertex x of NC(u1) such that

w− ∈ C[x, u1], (II-1) and dC[x,u1](u1) ≥ c + 2. (II-2)

In fact, the vertex u2 can be such a vertex x. Choose x so that dC[x,u1](u1) is as small as

possible, subject to (II-1) and (II-2). Then by the choice,

if dC[w,u1](u1) ≤ c + 1,

then dC[x,w−](u1) = c + 2 − dC[w,u1](u1), that is, dC[x,u1](u1) = c + 2;

if dC[w,u1](u1) ≥ c + 2,

then dC[x,w−](u1) = |{x}| = 1, that is, dC[x,u1](u1) ≤ |V(C[w, u1]) \ {u1}| + 1.

In either case, by (I-3),

dC[x,u1](u1) ≤ 4c + 1. (II-3)

Moreover, since |V(C) \ NC(u1)| ≤ |C| − (|C| − 2kc + 1) = 2kc − 1, we have

|C[x, u1]| =
∣

∣

∣NC[x,u1 ](u1)
∣

∣

∣ +

∣

∣

∣V(C[x, u1]) \ NC[x,u1](u1)
∣

∣

∣

≤ (4c + 1) + (2kc − 1) = 2kc + 4c. (II-4)
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(III) Let y be the vertex of NC(u2) such that

dC[u2 ,y](u2) = c + 2. (III-1)

By the similar argument as in (II-4), we have

|C[u2, y]| ≤ (c + 2) + (2kc − 1) = 2kc + c + 1. (III-2)

Recall that |C| ≥ 8kc + 10c − 4. Hence by the definitions of x, y and, (I-1), (II-4) and

(III-2),

y and x appear in the order along C[u+2 , u
−
1 ], and y+ , x. (III-3)

be the vertex of ) such that

,y

By the similar argument as in (II-4), we have

, y | ≤ 2) (2kc 1) kc

| ≥ kc 10 4. Hence by the definitions of , y

in the order along ], and

u1 u2

w

w
−

z0 = x

v1 = zi

z1

zi+1 = v2

z2c

y = z2c+1

∈ S

C

2: The vertices , v , v

To complete the proof of the claim, we next define two vertices , v of ) as follows.

We first show that

∈ {

])

| − (2 1) (2 1)

Figure 2: The vertices u1, u2, v1, v2

To complete the proof of the claim, we next define two vertices v1, v2 of V(C) as follows.

(IV) We first show that

∣

∣

∣NC[y+ ,x−](u1) ∩ NC[y+ ,x−](u2)
∣

∣

∣ ≥ 2c. (IV-1)

Assume not. Then for some i with i ∈ {1, 2},

dC[y+,x−](ui) ≤
1

2

(∣

∣

∣

∣

V(C[y+, x−]) \
(

NC[y+ ,x−](u1) ∩ NC[y+ ,x−](u2)
)

∣

∣

∣

∣

)

+

∣

∣

∣NC[y+ ,x−](u1) ∩ NC[y+ ,x−](u2)
∣

∣

∣

≤ 1

2

(|C[y+, x−]| − (2c − 1)
)

+ (2c − 1).
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If this inequality holds for i = 1, then by (I-1), (II-2), (II-3) and (III-1)–(III-3),

|C| − 2kc + 1 ≤ dC(u1)

≤ dC[x,u1](u1) + dC[u2 ,y](u1) + dC[y+ ,x−](u1)

≤ (4c + 1) + (2kc + c + 1) +
1

2

(|C[y+, x−]| − (2c − 1)
)

+ (2c − 1)

=
|C|
2
− 1

2

(|C[x, u1]| + |C[u2, y]|) + 2kc + 6c +
3

2

≤ |C|
2
− 1

2
(c + 3 + c + 3) + 2kc + 6c +

3

2

=
|C|
2
+ 2kc + 5c − 3

2
.

This implies that |C| ≤ 8kc + 10c − 5, a contradiction. Similarly, for the case i =

2, it follows from (I-1), (II-2), (II-4), (III-1) and (III-3) that |C| ≤ 8kc + 10c − 5, a

contradiction again. Thus (IV-1) is proved.

By (IV-1), we can take 2c distinct vertices z1, . . . , z2c in NC[y+ ,x−](u1) ∩ NC[y+ ,x−](u2). We

may assume that z2c, . . . , z2, z1 appear in the order along C[y+, x−]. Let z0 = x and

z2c+1 = y. Then

z2c+1, z2c, . . . , z2, z1, z0 appear in the order along C[u+2 , u
−
1 ]. (IV-2)

Note also that

zi ∈ NG(u1) for 0 ≤ i ≤ 2c and zi ∈ NG(u2) for 1 ≤ i ≤ 2c + 1. (IV-3)

Moreover, since |S | ≤ 2c, it follows that there exists an index i with 0 ≤ i ≤ 2c such

that

zi = z+i+1, or zi , z+i+1 and C[z+i+1, z
−
i ] ∩ S = ∅. (IV-4)

Then we define

v1 = zi and v2 = zi+1. (IV-5)

Now let u1, u2, v1, v2 be the vertices defined as in the above (I)–(IV). By (IV-3) and (IV-5),

u1v1 and u2v2 are chords of C. By (IV-2) and (IV-5), we also see that u1, u2, v2, v1 appear in

the order along
−→
C . Thus (A) holds. By (I-1), (I-2), (II-1), (IV-4) and (IV-5), we have w−, w ∈

C[v1, u1] and S ⊆ C[v1, v2] = C[v1, u1] ∪C[u2, v2]. Thus (B) holds. By (II-2), (III-1) and (IV-5),

we have dC[v1,u1](u1) ≥ c + 2 and dC[u2 ,v2](u2) ≥ c + 2. Thus (C) also holds.

This completes the proof of Claim 4. �

Let x ∈ V(H∗) and Cp be a cycle with 1 ≤ p ≤ k such that NCp
(x) , ∅. Let v ∈ NCp

(x). We

may assume that p = 1. Then by Lemma 2-(i), there exists a cycle Cq with q , 1, say q = 2,

such that dC2
(v+) + dC2

(x) ≥ |C2| + 1. This inequality implies that there exists an edge w−w in

E(
−→
C2) such that v+w−, xw ∈ E(G). On the other hand, since |C∗| = n − |H∗| ≥ n − 2c − 1 by

Claim 3-(i), there exists a cycle Cr with 1 ≤ r ≤ k such that |Cr | ≥ 1
k
(n − 2c − 1).

10



Suppose that r ≥ 3, say r = 3. Then, since |C3| ≥ 1
k
(n − 2c − 1) ≥ 1

k

(

f (k, c) − 2c − 1
)

≥
8kc+10c−4, we can apply Claim 4 to C3 with S = NC3

(H∗) 4, i.e., C3 has two chords u1v1, u2v2

satisfying the conditions (A)–(C). Let

D1 := C1[v+, v] x C2[w, w−]v+, D2 := u1C3[v1, u1] and D3 := C3[u2, v2]u2.

Since EG(C1) ⊆ EG(D1), D1 is a c-chorded cycle. By the condition (C), D2 and D3 are also

c-chorded cycles. By the definitions of D1,D2,D3, the condition (B) and Claim 3-(ii), we have

V(C1) ∪ V(C2) ∪ (V(C3) ∩ L) ∪ {x} ⊆
⋃

1≤s≤3 V(Ds) ⊆
⋃

1≤s≤3 V(Cs) ∪ {x}. Moreover, by the

condition (A), D1,D2 and D3 are disjoint. Since x ∈ L by Claim 3-(i), replacing C1,C2 and C3

with D1,D2 and D3 would violate (A1), a contradiction.

Suppose next that r ∈ {1, 2}, say 5 r = 2. We apply Claim 4 to C2 so that the edge w−w of C2

is the same one as in Claim 4 and S = NC2
(H∗), i.e., C2 has two chords u1v1, u2v2 satisfying the

conditions (A)–(C). Let

D1 := C1[v+, v] x C2[w, u1]C2[v1, w
−]v+ and D2 := C2[u2, v2]u2.

Since EG(C1) ⊆ EG(D1), D1 is a c-chorded cycle. By the condition (C), D2 is also a c-chorded

cycle. By the definitions of D1,D2, the condition (B) and Claim 3-(ii), we have V(C1)∪(V(C2)∩
L)∪{x} ⊆ V(D1)∪V(D2) ⊆ V(C1)∪V(C2)∪{x}. Moreover, by the condition (A), D1 and D2 are

disjoint. Since x ∈ L, replacing C1 and C2 with D1 and D2 would violate (A1), a contradiction

again.

This completes the proof of Theorem 2. �

We finally prove Theorem 1. In 2009, Babu and Diwan gave the following result concerning

the existence of k disjoint c-chorded cycles in graphs. (They actually proved a stronger result,

see [1] for the detail. See also [6, Theorem 3.4.16].)

Theorem F (Babu and Diwan [1]) Let k and c be positive integers, and let G be a graph of

order at least k(c + 3). If σ2 ≥ 2k(c + 2) − 1, then G contains k disjoint c-chorded cycles.

Combining this with Theorem 2, we get Theorem 1 as follows.

Proof of Theorem 1. Let k, c and G be the same ones as in Theorem 1, and suppose σ2(G) ≥ n.

Since σ2(G) ≥ n ≥ f (k, c) ≥ max{k(c + 3), 2k(c + 2) − 1}, Theorem F yields that G contains

k disjoint c-chorded cycles. Then by Theorem 2, G can be partitioned into k c-chorded cycles.

�

4 Concluding remarks

In this paper, we have shown that for a sufficiently large graph G, the Ore condition for partition-

ing the graph G into k cycles (Theorem C), also guarantees the existence of a partition of G into

4We do not use w−w in Claim 4.

5Since (C1, v, v
+) and (

←−
C2, w, w

−) are symmetric, we may assume that r = 2.
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k cycles with c chords which are relaxed structures of a complete graph (see Theorem 1). But,

as mentioned in Section 1, we do not know whether the order condition (the function f (k, c)) is

sharp or not. Perhaps, a weaker order condition may suffice to guarantee the existence.

For the case of the Dirac condition, it follows from our arguments that the order condition

can be improved as follows. If we assume δ(G) ≥ n
2
, then we have L = ∅ in the proof of

Theorem 2, i.e., Case 2 does not occur (see Claim 3-(i)). On the other hand, in the proof of

Case 1 of Theorem 2, we have used the order condition in the following parts:

• n
2
− 2kc ≥ ω(c) (=

√
8c+9+3

2
≥ 3),

• min{n − 4kc − 3, |B| − 1} ≥ min{n − 4kc − 3, n
2
− 2kc − 1} ≥ ω(c),

• n − 12kc + 2k · ω(c) − 4 ≥ c + 4.

In the proof of Theorem 1, we have also used the order condition in the following part:

• n ≥ max{k(c + 3), 2k(c + 2) − 1}.

Therefore, as a corollary of our arguments, we get the following.

Theorem 3 Let k and c be positive integers, and let G be a graph of order n ≥ 12kc−2k ·ω(c)+

c + 8, where ω(c) =
√

8c+9+3

2
. If δ ≥ n

2
, then G can be partitioned into k c-chorded cycles.

We finally remark about the necessary order condition. Let c be a positive integer, and let

ψ(c) be the positive root of the equation t(t − 2) − c = 0, i.e., ψ(c) =
√

c + 1 + 1. Note that

|E(Kt,t)| − 2t = t(t − 2). If a bipartite graph contains a c-chorded cycle, then by the definition of

ψ(c), it follows that the order of the bipartite graph is at least 2⌈ψ(c)⌉. Therefore, the complete

bipartite graph G � Kk⌈ψ(c)⌉−1,k⌈ψ(c)⌉−1 satisfies δ(G) = |G|/2 and σ2(G) = |G|, but G cannot be

partitioned into k c-chorded cycles. Thus the order at least 2k⌈ψ(c)⌉ − 1 is necessary, and the

order conditions in Theorems 1 and 3 might be improved into n ≥ 2k⌈ψ(c)⌉ − 1. Theorem C

supports it by including the case c = 0, since ψ(c) = 2 for the case c = 0. For the case c = 1,

related results can be also found in [6, Corollary 3.4.7].
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