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TOPOLOGICALLY 4-CHROMATIC GRAPHS AND SIGNATURES

OF ODD CYCLES

GORD SIMONS, CLAUDE TARDIF, DAVID WEHLAU

Abstract. We investigate group-theoretic “signatures” of odd cycles of a
graph, and their connections to topological obstructions to 3-colourability. In
the case of signatures derived from free groups, we prove that the existence
of an odd cycle with trivial signature is equivalent to having the coindex of
the hom-complex at least 2 (which implies that the chromatic number is at
least 4). In the case of signatures derived from elementary abelian 2-groups
we prove that the existence of an odd cycle with trivial signature is a sufficient
condition for having the index of the hom-complex at least 2 (which again
implies that the chromatic number is at least 4).
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1. Introduction

This paper is motivated by so-called “topological bounds” on the chromatic
number of a graph:

(1) χ(H) ≥ ind(Hom(K2, H)) + 2 ≥ coind(Hom(K2, H)) + 2.

Here, Hom(K2, H) is a “hom-complex” which can be viewed both as a Z2-poset
and as the geometric realisation of its order complex. Its index ind(Hom(K2, H))
and coindex coind(Hom(K2, H)) will defined in the next section.

The bounds (1) have been useful in determining chromatic numbers for various
classes of graphs. However for general graphs, the index and coindex are not known
to be computable. In contrast, the chromatic number is in NP. The computational
aspects of such topological invariants are now being investigated (see [2, 1]). In this
paper we focus on the case when the bounds give a chromatic number of at least
4. We present an algebraic approach.

For a graph H , let A(H) denote the set of its arcs. That is, for [u, v] ∈ E(H),
A(H) contains the two arcs (u, v) and (v, u). Let V be a variety of groups (in the
sense of universal algebra: a class of groups defined by a set of identities). Let
FV(A(H)) be the free group in V generated by the elements of A(H). We define
the congruence θ on FV(A(H)) by the relations

(a, b)(c, b)−1(c, d)(a, d)−1 θ 1

for all 4-cycles a, b, c, d ofH . The group GV(H) is defined as the quotient FV(A(H))/θ.
Let Cn denote the cycle with vertex-set Zn = {0, . . . , n − 1} and edges [i, i + 1],
i ∈ Zn. If n is odd and f : Cn → H is a homomorphism, we define the V-signature
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σV(f) of f as

σV(f) =

n−1∏

i=0

(f(2i), f(2i+ 1)) · (f(2i+ 2), f(2i+ 1))−1,

where the indices are taken modulo 2n + 1 and the product is developed left to

right:
∏k

i=0 xi = x0x1 · · ·xk rather than xkxk−1 · · ·x0.
We will consider two varieties of groups and related signatures: the variety V1 of

all groups and the variety V2 of elementary abelian 2-groups (where we use additive
notation). We let σ1(f) and σ2(f) denote respectively σV1

(f) and σV2
(f). We prove

the following results.

Theorem 1. Let H be a graph. Then coind(Hom(K2, H)) ≥ 2 if and only if for

some odd n, there exists a homomorphism f : Cn → H such that σ1(f) = 1.

Theorem 2. Let H be a graph. If for some odd n there exists a homomorphism

f : Cn → H such that σ2(f) = 0, then ind(Hom(K2, H)) ≥ 2.

We will show that the existence of an odd n and a homomorphism f : Cn → H
such that σ2(f) = 0 can be decided in polynomial time. Therefore if the con-
verse of Theorem 2 holds, then the question as to whether a graph H satisfies
ind(Hom(K2, H)) ≥ 2 can be decided in polynomial time. In contrast, Theorem 1
provides a necessary and sufficient algebraic condition for a graph H to satisfy
coind(Hom(K2, H)) ≥ 2, but it is not clear whether this condition can be decided
at all, let alone in polynomial time. In fact, as pointed out by Zimmerman [8], it is
not clear whether the word problem in GV1

(H) is always decidable.

2. Preliminaries

In this section we introduce the terminology necessary to define the index and
coindex of hom-complexes, and characterise them in ways that will allow us to
prove Theorems 1 and 2.

2.1. Topology. The hom-complex Hom(K2, H) of H is the set with elements (A,B)
such that A,B are nonempty subsets of H and every element of A is joined by
an edge of H to every element of B. Here, K2 denotes the complete graph on
two vertices 0 and 1; the name “hom”-complex is derived from the fact that if
(A,B) ∈ Hom(K2, H), then for any a ∈ A and b ∈ B, there is a homomorphism f
of K2 to H defined by f(0) = a and f(1) = b.

We view Hom(K2, H) primarily as a Z2-poset, that is a poset with a fixed-point
free automorphism of order two (denoted −). The order relation on Hom(K2, H)
is coordinatewise inclusion, and the Z2 involution is given by −(A,B) = (B,A). A
Z2-map between Z2-posets P and Q is an order-preserving map f : P → Q such
that f(−x) = −f(x).

Any poset P can also be viewed as a simplicial complex, by viewing chains as
simplices. The geometric realization of P is the topological space ∆P ⊆ RP induced
by the functions f : P → [0, 1] whose support (i.e., set of elements with nonzero
image) is a chain in P , and which satisfy

∑
{f(x) : x ∈ P} = 1. If P is a Z2-

poset, then ∆P is a Z2-space, that is, a topological space with a fixed-point free
homeomorphism of order 2. A Z2-map between Z2-spaces X and Y is a continous
map f : X → Y such that f(−x) = −f(x).
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The index ind(X) and coindex coind(X) of a Z2-space X are defined in terms of
the unit sphere Sn ⊆ Rn+1, viewed as a Z2-space:

• ind(X) is the smallest n such that X admits a Z2-map to Sn;
• coind(X) is the largest n such that Sn admits a Z2-map to X .

The fact that ind(Sn) = coind(Sn) = n is not trivial, but is a restatement of the
Borsuk-Ulam theorem.

For a Z2-poset P , we write ind(P ) and coind(P ) respectively for ind(∆P ) and
coind(∆P ). Now consider the (2n + 2)-element Z2-poset Qn, with elements {±0,
. . . ,±n} ordered by the relation {+i,−i} < {+j,−j} (in Qn) when i < j (in N).
Then Qn is the face-poset of the cross-polytope of dimension n, and therefore ∆Qn

is Z2-homeomorphic to Sn. This correspondence can be used to characterise the
index and the coindex of a Z2-poset in terms of order-preserving Z2-maps.

The barycentric subdivision of a poset P is the poset S(P ) whose elements are
the chains of P , ordered by inclusion. Note that when P is a Z2-poset, S(P ) is
also a Z2-poset. The exponential notation is used to denote iterated barycentric
subdivisions. By simplicial approximation, the following holds for any Z2-poset P :

• ind(P ) is the smallest n such that for some m, Sm(P ) admits a Z2-map to
Qn;

• coind(P ) is the largest n such that for some m, Sm(Qn) admits a Z2-map
to P .

2.2. Graph theory. For a graph H , the characterisation of ind(Hom(K2, H))
given just above will be sufficient to prove Theorem 2 in Section 4 below. For
a proof of Theorem 1, we rely on a further characterisation of coind(Hom(K2, H))
in terms of graph homomorphisms.

The categorical product of two graphs G and G′ is the graph G×G′ defined by

V (G×G′) = V (G) × V (G′),

E(G×G′) = {[(u, u′), (v, v′)] : [u, v] ∈ E(G) and [u′, v′] ∈ E(G′)}.

For q ∈ N
∗
, let Pq denote the path with vertices 0, 1, . . . , q linked consecutively, with

a loop at 0. For a graph G, the q-th cone Mq(G) (or q-th generalised Mycielskian)
over G is the graph (G× Pq)/ ∼q, where ∼q is the equivalence which identifies all
vertices whose second coordinate is q. The vertex (V (G) × {q})/ ∼q is called the
apex of Mq(G), while V (G)×{0} is the base of Mq(G). Any set V (G)×{i} is called
a level of Mq(G).

Figure 1. Generalised Mycielskian
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The cone construction allows us to define classes of “generalisedMycielski graphs”
inductively: Let K2 = {K2}, and for k ≥ 3, put

Kk = {Mq(G) : G ∈ Mk−1, q ∈ N
∗
}.

Lemma 3 ([7]). For any graph H, coind(Hom(K2, H)) is the largest k such that

there exist a G ∈ Kk+2 admitting a homomorphism to H.

The complex used in [7] was the box complex B(H) rather than the hom-complex
Hom(K2, H). However the two complexes are Z2-homotopy equivalent by a result
of Csorba [3].

3. Proof of Theorem 1

3.1. Overview of the proof. One implication of Theorem 1 has been proved
in [7]:

Lemma 4 (Proposition 5 of [7]). If coind(Hom(K2, H)) ≥ 2, then there exists an

odd cycle Cn and a homomorphism f : Cn → H such that σ1(f) = 1.

Proof. For reference it is worthwhile to give a sketch of the proof here. In view of
Lemma 3, our hypothesis implies the existence of a homomorphism g : Mq(Cn) →
H . We will write ui,j for g((i, j)/ ∼q). (Note that (i, j)/ ∼q= {(i, j)} except when
j = q; ui,q is the image of the apex of Mq(Cn) for any i ∈ Zn.) We will show that
the homomorphism f : Cn → H defined by f(i) = ui,0 satisfies σ1(f) = 1.

Consider the expressions Lj, Rj , j = 0, . . . , q − 1 in GV1
(H) given by

Lj = (u0,j , u1,j+1)(u2,j , u1,j+1)
−1(u2,j, u3,j+1)(u4,j, u3,j+1)

−1 · · · (un−1,j, u0,j+1),

Rj = (u0,j+1, u1,j)
−1(u2,j+1, u1,j)(u2,j+1, u3,j)

−1(u4,j , u3,j+1) · · · (un−1,j, u0,j+1).

We then have

LjRj =

n−1∏

i=0

(u2i,j , u2i+1,j+1)(u2i+2,j , u2i+1,j+1)
−1, j = 0, . . . , q − 1.

In particular, Lq−1Rq−1 simplifies to 1, since u2i+1,q is the constant image of the
apex of Mq(Cn). Also, by definition of θ, for j = 1, . . . , q − 1, we have

(u2i,j , u2i+1,j+1)(u2i+2,j , u2i+1,j+1)
−1 = (u2i,j , u2i+1,j−1)(u2i+2,j , u2i+1,j−1)

−1

for i = 0, . . . , n− 1. Therefore

LjRj =
n−1∏

i=0

(u2i,j , u2i+1,j−1)(u2i+2,j , u2i+1,j−1)
−1j = 0, . . . , q − 1.

This is the image φ(Rj−1Lj−1) of Rj−1Lj−1 under the (well-defined) automorphism
φ of GV1

(H) which interchanges (x, y) with (x, y)−1 for all (x, y) ∈ A(H). Therefore
if LjRj = 1, then Rj−1Lj−1 = 1 and Lj−1Rj−1 = 1, since Lj−1Rj−1 and Rj−1Lj−1

are conjugates. Therefore, LjRj = 1 for all j = 0, . . . , q − 1. Again by definition of
θ, we then have

σ1(f) =
∏n−1

i=0 (u2i,0, u2i+1,0)(u2i+2,0, u2i+1,0)
−1

=
∏n−1

i=0 (u2i,0, u2i+1,1)(u2i+2,0, u2i+1,1)
−1 = L0R0 = 1.

�
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It would be nice to be able to reverse the arguments of this proof to prove the
second direction. That is, start with f : Cn → H such that σ1(f) = 1, and use
the definition of θ to extend it to a homomorphism g : Mq(Cn) → H . However an
example in [7] shows that this is not always possible; Cn may be to small as a base.

Thus we need to start from the basic information provided by the equation
σ1(f) = 1. Since GV1

(H) = FV(A(H))/θ this means that in FV1
, σ1(f) is equal to

a product
∏k

i=1 γ
−1
i ρiγi of conjugates of the relations ρi defining θ.

The first difficulty here is that there is a useful feature common to σ1(f) and

the generators ρi of θ, which is lost in the expression
∏k

i=1 γiρiγ
−1
i : the fact that

words alternate in forward arcs and inverses of backward arcs along a walk in H .
This feature provides a natural connection between algebraic expressions and path
homomorphisms. For this reason, we will fix a root vertex r in H , and associate
to each arc (x, y) a closed walk from r through (x, y), called a “loop”. The use

of loops will transform
∏k

i=1 γiρiγ
−1
i into a word which is much longer, but which

has the desired alternating property. We will identify this word with an expression
of the type LjRj defining homomorphic images of two consecutive levels of some
Mq(C2m+1).

We will then extend this homomorphism to the apex of Mq(C2m+1) using the

definition of θ, and towards its base using the simplification of
∏k

i=1 γiρiγ
−1
i to

σ1(f). Our basic tool to convert algebraic simplifications to homomorphism ex-
tensions is the extension along “bricks”, that is, essentially rectangular pieces that
dissect Mq(C2m+1).

The last phase of the extension will be the connection to the base of Mq(C2m+1),
which is equivalent to finding an extension that is equal on two consecutive levels.

3.2. Loops. Most of our work will be done in the free monoid (A(H) ∪A(H)−1)∗

generated by A(H) ∪ A(H)−1, where A(H)−1 = {(u, v)−1 : (u, v) ∈ A(H)} is a
set of symbols disjoint from A(H). Of course, FV1

(A(H)) = (A(H) ∪A(H)−1)∗/ι,
where ι is the congruence which identifies (u, v)(u, v)−1 and (u, v)−1(u, v) to 1 for
all (u, v) ∈ A(H). However, for a suitable correspondence between words and walks,
it is sometimes useful to avoid this identification.

A walk u0, u1, . . . , un in H is the image of a homomorphism f of some path with
vertices 0, 1, . . . n linked consecutively. To such a walk we can associate a word

ω(f) = (u0, u1)(u2, u1)
−1(u2, u3)(u4, u3)

−1 · · ·

ending in (un−1, un) or (un, un−1)
−1 depending on whether n is odd or even. This

word alternates symbols from A(H) and symbols from A(H)−1, with the symbol
following (u2i, u2i+1) being (u2i+2, u2i+1)

−1 for some u2i+2 ∈ V (H), and the symbol
following (u2i, u2i−1)

−1 being (u2i, u2i+1) for some u2i+1 ∈ V (H). Conversely, a
word with these properties naturally corresponds to a walk in H .

Now for our purposes we can assume that H is connected and nonbipartite, if
necessary by restricting our attention to the component of H that contains an odd
cycle with trivial signature. We fix a root vertex r and for every vertex u of H , we
fix an even path pe(u) and an odd path po(u), both from r to u. For an arc (u, v)
of H , we define the loop L(u, v) ∈ (A(H) ∪ A(H)−1)∗ corresponding to (u, v) by

L(u, v) = ω(pe(u)) · (u, v) · ω(po(v))
−1.
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Of course, (a1a2 · · · an)
−1 means a−1

n a−1
n−1 · · ·a

−1
1 , though this needs to be stated

formally since inversion does not exist in (A(H) ∪ A(H)−1)∗. With this notation,
we define L((u, v)−1) as (L(u, v))−1.

The loop function naturally extends to (A(H)∪A(H)−1)∗ by putting L(a1 · · · an) =
L(a1) · · ·L(an). The map L : (A(H)∪A(H)−1)∗ → (A(H)∪A(H)−1)∗ is an endo-
morphism whose image consists of words corresponding to even closed walks rooted
at r.

3.3. Cycles with trivial signature. Now let Cn′ be an odd cycle and f : Cn′ →
H a homomorphism such that σ1(f) = 1. For our purposes, it is useful to assume
that for i ∈ Zn′ = V (Cn′), we have f(i− 1) 6= f(i+ 1). This can be done without
loss of generality, since if f(i − 1) = f(i + 1), then we can remove i and identify
i − 1 and i + 1 to create a copy of Cn′−2 on which f induces a homomorphism
f ′ : Cn′−2 → H . We then have σ1(f

′) = σ1(f), since σ1(f
′) is obtained from σ1(f)

by cancelling out (f(i− 1), f(i)) with (f(i+ 1), f(i))−1 and (f(i), f(i− 1))−1 with
(f(i), f(i + 1)) (unless i = 0, in which case we get a conjugation of the identity
element instead of the second cancellation).

We begin by lifting the condition σ1(f) = 1 from G(H) to FV1
(A(H)): by

definition, this means that there exists a sequence

{ρi = (ai, bi)(ci, bi)
−1(ci, di)(ai, di)

−1 : i = 1, . . . , k}

of generators of θ and a sequence γ1, . . . , γk of conjugating elements such that

(2)

n′
−1∏

i=0

(f(2i), f(2i+ 1)) · (f(2i+ 2), f(2i+ 1))−1 =

k∏

i=1

γi · ρi · γ
−1
i .

Note that the left side is reduced in FV1
(A(H)), since f(j − 1) 6= f(j + 1) for

all j ∈ Zn′ . This means that the right side simplifies to the left, by repeatedly
cancelling out adjacent terms that are inverse of each other.

We view the terms in this equation as elements of (A(H) ∪ A(H)−1)∗ (that is,
as their simplest preimage under ι). In this way the terms L(ρi) and L(γi) are well
defined. Now consider the word

w′ =
k∏

i=1

L(γi) · L(ρi) · L(γ
−1
i ).

Its length is a multiple of 4, since for each i, the length of L(γi) ·L(ρi) ·L(γ
−1
i ) is a

multiple of 4. Therefore for any neighbour s of r, the word w = w′ · (r, s) · (r, s)−1

has length equal to 2n for some odd n. We then have w = ω(g) for some closed
walk g. We identify the domain of g with the 2n-cycle Cn × K2, whose vertices
correspond to two consecutive levels of some Mq(Cn). We will show such that it is
possible to choose q and the correspondence such that g extends to a homorphism
of Mq(Cn) to H .
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3.4. Bricks and simplifications. For integers i and j, the bricks Bs(i, j) and
Bd(i, j)(i, j) are the graphs defined by

V (Bs(i, j)) = {(x, y) : 0 ≤ x ≤ i, 0 ≤ y ≤ j, x and y have the same parity},

E(Bs(i, j)) = {[(x, y), (x′, y′)] : |x− x′| = 1, |y − y′| = 1};

V (Bd(i, j)) = {(x, y) : 0 ≤ x ≤ i, 0 ≤ y ≤ j, x and y have different parities},

E(Bd(i, j)) = {[(x, y), (x′, y′)] : |x− x′| = 1, |y − y′| = 1};

Thus, Bs(i, j) and Bd(i, j) are the two connected components of the categorical
product of paths of lengths i and j. The sets of vertices of Bs(i, j) and Bd(i, j)
with second coordinate 0 are called the lower side of Bs(i, j) and Bd(i, j), and
similarly, their upper, left, and right sides are defined by obvious conditions.

For any i, Bs(2i, 1) and Bd(2i, 1) are paths of length 2i. We use the following
extension properties of their homomorphisms to H .

Lemma 5. Let h : Bs(2i, 1) → V (H), h′ : Bs(2i, 1) → V (H) be homomorphisms.

(i) For any j ≥ 0, the map ĥ defined by ĥ(x, y) = h(x, (y mod 2)) is a homo-

morphism of Bs(2i, j) to H. Similarly, for any j ≥ 0, the map ĥ′ defined

by ĥ′(x, y) = h(x, 1− (y mod 2)) is a homomorphism of Bd(2i, j) to H.

(ii) If h(x, x mod 2) = h(2i − x, x mod 2) for x = 0, . . . i, then there exists a

homomorphism ĥ : Bs(2i, 2⌈i/2⌉) → H extending h such that ĥ is identi-

cally equal to h(0) on the left, upper and right sides of Bs(2i, 2⌈i/2⌉). Sim-

ilarly, if h′(x, 1 − (x mod 2)) = h′(2i − x, 1 − (x mod 2)) for x = 0, . . . i,

then there exists a homomorphism ĥ′ : Bd(2i, 2⌊i/2⌋+1) → H extending h

such that ĥ is identically equal to h(0, 1) on the left, upper and right sides

of Bd(2i, 2⌊i/2⌋+ 1).

Proof. Item (i) is straightforward. To prove the first part of item (ii) , we note that
the distance between two vertices (x, y), (x′, y′) of Bs(2i, j) is the “bus distance”

max{|x − x′|, |y − y′|}. Therefore the map ĥ : Bs(2i, 2⌈i/2⌉) → H defined by

ĥ(x, y) = h(x′, y′), where (x′, y′) ∈ Bs(2i, 1) is at the same distance as (x, y) from
(i, (i mod 2)), is a homomorphism with the prescribed properties. The second part
is proved similarly. �

3.5. Extension to the apex. We apply Lemma 5 to extend the homomorphism
g : Cn × K2 → H towards the apex of some Mq(Cn). Consider the restrictions

g1, . . . , gk of g such that ω(gi) = L(γi) · L(ρi) · L(γ
−1
i ). For a fixed i, we further

decompose gi into five restrictions ha, hb, hc, hd, h
′
a such that

ω(ha) = L(γi) · ω(pe(ai)),

ω(hb) = ω(po(bi))
−1 ◦ ω(po(bi)),

ω(hc) = ω(pe(ci))
−1 ◦ ω(pe(ci)),

ω(hd) = ω(po(di))
−1 ◦ ω(po(di)),

ω(h′
a) = ω(pe(ai))

−1 · L(γi).

By Lemma 5 (ii), hc extends to a homomorphism ĥc of some Bc = Bs(2ℓ, ℓ) to
H (ℓ being the length of pe(ci)), which is identically equal to ci on its left, upper

and right sides. Similarly hb and hd extend to ĥb and ĥd, which are identically
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Figure 2. Extension of gi

equal to bi and di respectively on their left, upper and right sides. Moreover, the

extensions ĥb, ĥc, ĥd of hb, hc, hd to Bb, Bc, Bd can be carried simultaneously side
by side, since ci is adjacent to bi and di.

We then add one level to Bc and extend ĥc by mapping the new level to bi, and

add two levels to each of Bb and Bd and extend ĥb and ĥd by mapping the new
levels to ci and bi respectively. We then use Lemma 5 (i) on the top two levels of
Qb, Qc and Qd to add levels and equalize their heights if necessary. We can then
use Lemma 5 (i) to extend ha and h′

a upwards to match the height of Bb, Bc and
Bd.

We have thus extended gi to ĝi : Bi → H such that the restriction g′i of ĝi to the
top two levels of Qi satisfies

ω(g′i) = L(γi)◦ω(pe(ai))◦(ai, bi)((ci, bi)
−1(ci, bi))

ei(ai, bi)
−1◦ω(pe(ai))

−1◦L(γi)
−1,

for some ei (see Figure 2). Using Lemma 5 (ii), we extend g′i to ĝ′i : B
′
i → H which

is identically r on the left, top and right sides of B′
i.

These extensions of gi to ĝi and ĝ′i can be carried simultaneously for i = 1, . . . , k,
since they all have the value r at their common boundaries. We can then use
Lemma 5 (i) to equalize heights, and bring up the part of g corresponding to
(r, s)(r, s)−1 to the same height. Since the value of the extensions is identically r
at the top level, we can identify all the vertices of this top level. We have extended
g to the apex of some Mq(Cn).

3.6. Extension towards the base. The extension of g towards the base ofMq(Cn)
is a second extension independent from the extension to the apex. It again uses
Lemma 5, thus we keep the terminology of extending in the “upper” direction. The
two extensions will afterwards be merged together by identifying their bottom level.

In FV1
(A(H)), the word

∏k
i=1 γi · ρi · γ

−1
i of (A(H) ∪ A(H)−1)∗ simplifies to

σ1(f) =

n′
−1∏

i=0

(f(2i), f(2i+ 1)) · (f(2i+ 2), f(2i+ 1))−1.

Specifically, this means that there exists a sequence of basic simplifications of∏k
i=1 γi · ρi · γ

−1
i eliminating everything but the terms of σ1(f). In each of these

basic simplification, some term ti = x will cancel out either with the next term
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ti+1 = x−1, or with a further term ti+2j = x−1, where all the intermediate terms
ti+1, . . . , ti+2j−1 have been previously simplified.

In
∏k

i=1 L(γi·ρi·γ
−1
i ), a term ti is replaced by L(ti). Consider the homomorphism

corresponding to the word L(ti)◦((r, s)(r, s)
−1)ei ◦L(t−1

i ) for some ei. By Lemma 5
(ii), it extends to a homomorphism of some Bi to H with value identically r on its
left, upper and right sides. We can then add a level with value identically s, and
use Lemma 5 (i) to bring up the remainder of the extension of g to the same level.

In this way, we match each step in the simplification of
∏k

i=1 γi · ρi · γ
−1
i to a

corresponding step in the extension. We end up with an extension where the two
upper levels correspond to a word with the terms L(f(2i), f(2i+ 1)) and L(f(2i+
2), f(2i+ 1))−1 separated by terms of the form ((r, s)(r, s)−1)e.

Now in this word, between (f(2i), f(2i− 1))−1 and (f(2i), f(2i+1)) is a word of
the form ω(pe(f(2i))

−1 ◦ ((r, s)(r, s)−1)e ◦ω(pe(f(2i)). By Lemma 5 (ii), it extends
to a homomorphism of some brick to H with value identically f(2i) on its left,
upper and right sides. We can then add a level with value identically f(2i − 1).
Similarly between (f(2i), f(2i+1)) and (f(2i+2), f(2i+1))−1 is a word of the form
ω(po(f(2i + 1))−1 ◦ ((r, s)(r, s)−1)e ◦ ω(po(f(2i+ 1)). By Lemma 5 (ii), it extends
to a homomorphism of some brick to H with value identically f(2i+ 1) on its left,
upper and right sides. We can then add a level with value identically f(2i).

These extensions can be carried out side by side simultaneously, since f(j) is
adjacent to f(j + 1) for all j. We use Lemma 5 (i) to equalize the height. We now
have extended g so that (after a suitable cyclic shift), the homomorphism on the
top two levels corresponds to a word of the form

∏n′
−1

i=0

[
((f(2i), f(2i+ 1))(f(2i), f(2i+ 1))−1)ei(f(2i), f(2i+ 1))

·((f(2i+ 2), f(2i+ 1))−1(f(2i+ 2), f(2i+ 1)))e
′

i (f(2i+ 2), f(2i+ 1))−1
]
.

3.7. Connection to the base. Let f ′ : Cn × K2 → H be the homomorphism
corresponding to the top two levels of the second extension of g. Note that f ′ follows
the original f twice around its image, with every arc traced back and forth many
times. More precisely, f ′ = h ◦ f , where h : Cn ×K2 → Cn′ is a homomorphism.
The only thing missing is to have h(i, 0) = h(i, 1) for all i, that is, to have f ′ equal
on the two levels. These levels could then be identified to form the base of Mq(Cn).

We label the vertices on Cn×K2 = C2n consecutively u0, . . . , u2n−1 (with indices
in Z2n). We label the edge [ui, ui+1] with the sign + (resp. −) if for some j ∈ Zn′

we have h(ui) = j and h(ui+1) = j + 1 (resp h(ui+1) = j − 1). The word ω(f ′)
above shows that the number of edges with label + is n + n′, and the number of
edges with label − is n− n′.

Opposite signs on two consecutive edges [ui, ui+1], [ui+1, ui+2] happen precisely
when h(ui) = h(ui+2). We then have h(ui+1) ∈ {h(ui)− 1, h(ui)+1}. Substituting
one value for the other will interchange the signs of [ui, ui+1] and [ui+1, ui+2]. In
terms of the extension of g, this corresponds to adding two levels to match the
operation. That is, the extension on the two new levels is identical to the extension
on the previous two levels, except that value at the vertex corresponding to ui+1

switches from one term in {f(h(ui)− 1), f(h(ui) + 1)} to the other.
Proceeding this way, we can move the labels around in any way we please. In

particular we can rearrange the labels until there are (n+n′)/2 “+” labels followed
by (n− n′)/2 “−” labels, then by (n+ n′)/2 “+” labels and (n− n′)/2 “−” labels.
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In this way, between any ui and ui+n, the value of h moves forward (n+n′)/2 times
and backward (n− n′)/2 times so that it ends up n′ places forward in Cn′ , exactly
where it started. Our second extension of g is then equal on the top two levels, so
that these levels can be identified to form the base of Mq(Cn). This concludes the
proof of Theorem 1.

4. Proof of Theorem 2

4.1. Algorithmic considerations. To prove Theorem 2, we will show that the
existence of an odd cycle inH with zero signature is incompatible with the existence
of a Z2-map of some Sm(Hom(K2, H)) to Q1. Note that Hom and S are both
exponential constructions. We will first show that the detection of an odd cycle
with zero signature can be done efficiently in terms of the size of H .

To each arc (u, v) of H we associate a variable Xu,v ∈ Z2. We consider the
system consting of the following equations.

• The flow constraint at a vertex u of H is the equation
∑

v∈NH(u)

(Xu,v +Xv,u) = 0.

(Where NH(u) is the neighbourhood of u in H .)
• The parity constraint is the global condition

∑

(u,v)∈A(H)

Xu,v = 1.

• The signature constraint is the equation
∑

(u,v)∈A(H)

((Xu,v −Xv,u) · (u, v)) = 0.

The flow and parity constraints are equations in Z2. The signature constraint is a
single equation in GV2

(H). The group GV2
(H) has a minimal generating set with

no more than |A(H)| elements. Each arc (u, v) can be expressed in terms of this
generating set. The signature constraint is then the set of constraints corresponding
to voiding the coefficient of each element of this generating set in the expression∑

(u,v)∈A(H)(Xu,v −Xv,u) · (u, v). Thus the system has no more than |V (H)|+1+

|A(H)| linear equations in |A(H)| variables.
If for some odd cycle Cn there is a homomorphism f : Cn → H such that

σ2(f) = 0, then the system above has a solution, obtained by putting Xu,v = 1 if
there is an odd number of elements i of Zn such that f(i) = u and f(i+1) = v, and
Xu,v = 0 otherwise. Conversely, for each solution of the system, the subdigraph of
H spanned by the arcs (u, v) such that Xu,v = 1 is Eulerian, though not necessarily
connected. We can modify the solution by giving the value 1 to variables Xu,v,
Xv,u corresponding to opposite arcs, to make the subdigraph connected. Indeed it
is clear that this modification does not alter the validity of the solution. An Euler
tour of the subdigraph then corresponds to a homomorphism f : Cn → H with n
odd, such that σ2(f) = 0. Thus, the existence of some odd cycle with zero signature
can be detected in polynomial time.
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4.2. Z2-maps of crown. Most of our work will involve groups of the form ZP 2

2 ,
where P is a poset. Here, 2 is the poset with elements 0, 1 such that 0 < 1. For
a poset P , P 2 is the set of all order-preserving maps of 2 to P , including the
constant maps. We will represent an element of P 2 by the comparability (x ≤ y)

it represents. ZP 2

2 is the 2-group generated by P 2. To an order preserving-map

f : P → Q, we naturally associate the group homomorphism f̂ : ZP 2

2 → Z
Q2

2 which
extends the map between generators defined by f .

A Z2-crown is a Z2-poset P with elements ±0, . . . ,±(2n− 1) and the relations

0 < 1 > 2 < 3 > · · · < 2n− 1 > −0 < −1 > −2 < −3 > · · · < −(2n− 1) > 0.

The strict order indicator 1<P on P is the element of ZP 2

2 with value 1 on injective
maps and 0 on constant maps. Our argument is partly based on the following result,
which is a simplicial statement of the fact that an antipodal continuous self-map of
the circle has “odd degree”.

Lemma 6. Let P be a Z2-crown and f : P → Q1 a Z2-map. Then f̂(1<P ) = 1<Q1
.

Proof. Each connected component of f−1(+0) and of f−1(−0) starts and ends in
an even number, and each connected component of f−1(+1) and of f−1(−1) starts
and ends in an odd number. Thus the coefficient of each of (+0,+0), (−0,−0),

(+1,+1), (−1,−1) in f̂(1<P ) is 0. Now suppose without loss of generality that
f(0) = 0 and f(−0) = −0. Then on the “positive zig-zag” 0 < 1 > 2 < 3 >
· · · < 2n − 1 > −0, the image of f will switch from +0 to −0 some n times,
and switch back from −0 to +0 n − 1 times. Every switch goes through +1 or
−1, so one of the pairs (+0,+1), (−0,+1) or (+0,−1), (−0,−1) of strict compar-
ibilities is touched an odd number of times, and the other an even number of
times. Since f is a Z2-map, these numbers are reversed on the “negative zig-zag”
−0 < −1 > −2 < −3 > · · · < −2n+1 > 0, so that each of the strict comparibilities
(+0,+1), (−0,+1), (+0,−1), (−0,−1) is touched an odd number of times. Thus

f̂(1<P ) = 1<Q1
. �

4.3. Cycles with null signature. A graph homomorphism g : Cn → H induces
the Z2-map g′ : Hom(K2, Cn) → Hom(K2, H) defined by g′(A,B) = (g(A), g(B)).
However, it will be useful to associate to g a different map g+ : Hom(K2, C) →
Hom(K2, H) defined as follows.

• A minimal element ({i}, {j}) of Hom(K2, Cn) correspond to an arc (i, j) =
(i, i±1) of C, and we put g+({i}, {j}) = ({f(i)}, {f(j)}), its natural image
induced by g.

• For a maximal element of the form ({i}, {i− 1, i+1}), we put g+({i}, {i−
1, i+1}) = ({g(i)}, NH(g(i))). Similarly, for a maximal element of the form
({i− 1, i+ 1}, {i}), we put g+({i− 1, i+ 1}, {i}) = (NH(g(i)), {g(i)}).

Thus if f : Hom(K2, H) → Q1 is a Z2-map, then f̂ ◦ g+(1<Hom(K2,C)) = 1<Q1
by

Lemma 6. The same holds with barycentric subdivisions: Sm(Hom(K2, C)) is a Z2-

crown, and if f : Sm(Hom(K2, H)) → Q1 is a Z2-map, then ̂f ◦ Sm(g+)(1<
Sm(Hom(K2,C))) =

1<Q1
.

Now, if σ2(g) = 0, then in FV2
(A(H)) we have

(3) σ2(g) =

n−1∑

i=0

[(g(2i), g(2i+ 1)) + (g(2i+ 2), g(2i+ 1))] =

k∑

j=1

ρj ,
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where ρ1, . . . , ρk are relations of the form ρj = (aj , bj) + (cj , bj) + (cj , dj) + (aj , dj)
defining the congruence θ on FV2

(A(H)). To ρ = (a, b) + (c, b) + (c, d) + (a, d), we
associate the subposet ρ+ of Hom(K2, H) induced by the the set {({a}, NH(a)),
(NH(b), {b}), ({c}, NH(c)), (NH(d), {d}), ({a}, {b}), ({c}, {b}), ({c}, {d}), ({a}, {d})}.
(See Figure 3.)

Our next Lemma adapts Equation (3) to the groups Z
Hom(K2,H)2

2 and Z
Hom(K2,S

m(H))2

2

for all m ≥ 1. Recall that g+ : Hom(K2, Cn) → Hom(K2, H) induces ĝ+ :

Z
Hom(K2,Cn)

2

2 → Z
Hom(K2,H)2

2 ; g+ also induces Sm(g+) : Sm(Hom(K2, Cn)) →

Sm(Hom(K2, H)) for allm ≥ 1, which in turn induce ̂Sm(g+) : Z
Sm(Hom(K2,Cn))

2

2 →

Z
Sm(Hom(K2,H))2

2 .

Lemma 7.

ĝ+(1<Hom(K2,Cn)
) =

k∑

j=1

1<
ρ
+

j

,

hence

Ŝm(g)(1<
Sm(Hom(K2,Cn))

) =

k∑

j=1

1<
Sm(ρ+

j
)

for all m ≥ 1.

Proof. Let Og be the set of arcs of H which appear an odd number of times as
(g(i), g(i + 1)) or (g(i + 1), g(i)) for some i ∈ Zn. Thus in FV2

(A(H)), we have
σ2(g) =

∑
(u,v)∈Og

(u, v). By Equation 3, Og coincides with the set of arcs which

appear an odd number of times as terms in ρ1, . . . , ρk.
Now for (u, v) ∈ A(H), let V (u, v) be the subposet

(NH(v), {v}) > ({u}, {v}) < ({u}, NH(u))

of Hom(K2, H). Then

ĝ+(1<Hom(K2,Cn)
) =

∑

(u,v)∈Og

1<
V (u,v),

and similarly for all

Ŝm(g)(1<
Sm(Hom(K2,C))) =

∑

(u,v)∈Og

1<
Sm(V (u,v))

for all m ≥ 1. Equation 3 then implies that

∑

(u,v)∈Og

1<
V (u,v) =

k∑

j=1

1<
ρ
+

j

and
∑

(u,v)∈Og

1<
Sm(V (u,v)) =

k∑

j=1

1<
Sm(ρ+

j
)

for all m ≥ 1. �

We will next see that the conclusion

Ŝm(g)(1<
Sm(Hom(K2,C))) =

k∑

j=1

1<
Sm(ρ+

j
)
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of Lemma 7 is incompatible with the conclusion

Ŝm(g)(1<
Sm(Hom(K2,C))) = 1<Q1

of Lemma 6.

4.4. Domination and dismantlability. In a poset Q, an element p is said to be
dominated by an element q if p is comparable to q and every element comparable
to p is comparable in the same way to q. Q is said to be dismantlable if it can be
reduced to a single point by recursively removing dominated elements.

Figure 3. ρ+ and D(ρ+)

For instance, consider the subposet D(ρ+) of Hom(K2, H) obtained by adding
the elements ({a}, {b, d}), ({a, c}, {b}), ({c}, {b, d}), ({a, c}, {d}) and ({a, c}, {b, d})
to ρ+. (See Figure 3.) In D(ρ+), ({a}, NH(a)), (NH(b), {b}), ({c}, NH(c)) and
(NH(d), {d}) are dominated respectively by ({a}, {b, d}), ({a, c}, {b}), ({c}, {b, d})
and ({a, c}, {d}). Removing these dominated elements leaves ({a, c}, {b, d}) as
the unique maximum. We then have ({a}, {b, d}), ({a, c}, {b}), ({c}, {b, d}) and
({a, c}, {d}) dominated by ({a, c}, {b, d}), and removing these leaves ({a}, {b}),
({c}, {b}), ({c}, {b}) and ({c}, {d}) dominated by ({a, c}, {b, d}). Hence D(ρ+)
is dismantlable.

Lemma 8. Let P be a Z2-crown, Q a dismantlable poset and f : P → Q1 an

order-preserving map which factors through Q, that is, f = h ◦ g where g : P → Q,

h : Q → Q1 are order-preserving. Then f̂(1<P ) = 0.

Proof. The result is clear if Q is a single point. Thus we can proceed by induction
on the number of elements in Q. Let p be dominated by q in Q; we will suppose
that p < q (the other case being symmetric). Let r : Q → Q be the retraction
which maps p to q and fixes everything else. Then f ′ = h ◦ r ◦ g : P → Q1 factors
through the dismantlable poset r(Q) which has one element less than Q, so by the

induction hypothesis, f̂ ′(1<P ) = 0. Thus if f = f ′, then f̂(1<P ) = 0. We can therefore
suppose that f 6= f ′. This means that h(p) 6= h(q). We will suppose without loss
of generality that h(p) = 0 and h(q) = 1.

Let g′ : P → Q1 be the map obtained from g by changing the image of every
maximal element x such that g(x) = p from p to q. For each such x, there are two
minimal elements y, z of P which are below x. We then have f(y), f(z) ≤ f(x) = 0,
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so that f(y) = f(z) = 0. Therefore the two compararabilities (y ≤ x), (z ≤ x) are

mapped to (0 ≤ 0) by f̂ and to (0 ≤ 1) by ĥ ◦ g′. Thus ĥ ◦ g′(1<P ) = f̂(1<P ).
Now r ◦ g is obtained from g′ by changing the image of every minimal element x

such that g′(x) = p from 0 to 1. For each such x, there are two maximal elements
y, z of P which are above x. Now since q dominates p, we have g′(y), g′(z) ≥ q
hence h ◦ g′(y) = h ◦ g′(z) = 1. Therefore the two compararabilities (x ≤ y),

(x ≤ z) are mapped to (0 ≤ 1) by ĥ ◦ g′ and to (1 ≤ 1) by ̂h ◦ r ◦ g = f̂ ′. Thus

f̂ ′(1<P ) = ĥ ◦ g′(1<P ) = f̂(1<P ). Therefore f̂ ′(1<P ) = 0 implies f̂(1<P ) = 0. �

Lemma 9. If Q is a dismantlable poset, then for any m, Sm(Q) is dismantlable.

Proof. It suffices to show that if Q is dismantlable, then S(Q) is dismantlable. We
will again proceed by induction on the number of elements in Q, the result being
clear if Q is a single point. Let p be dominated by q in Q. We will show that
S(Q) dismantles to S(Q \ {p}). The elements of S(Q) are chains in Q, and since
q dominates p, for every element C of S(Q) containing p, C ∪ {q} is an element
of S(Q). Let m be the number of elements of S(Q) which contain p but not q.
We construct a sequence S(Q) = R0, R1, . . . , Rm of subposets of S(Q), where Ri is
obtained from Ri−1 by removing a maximal element Ci of Ri−1 which contains p
but not q. Since Ci is dominated by Ci∪{q} in Ri−1, the sequence is a dismantling
of S(Q) to its subposet Rm which consists of all the elements which contain q
whenever they contain p. Let Rm, Rm+1, . . . , R2m be a sequence of subposets of
Rm, where Ri is obtained from Ri−1 by removing a minimal element Ci of Ri−1

which contains p. Since Ci is dominated by Ci \ {p} in Ri−1, the sequence is a
dismantling of Rm to its subposet R2m = S(Q \ {p}). Thus S(Q) dismantles to
S(Q \ {p}). Therefore if S(Q \ {p}) is dismantlable, then so is S(Q). �

Proof of Theorem 2. Suppose that for some odd n there exists a homomorphism
f : Cn → H such that σ2(g) = 0. Then there exists a sequence ρ1, . . . , ρk of

generators of θ such that σ2(f) =
∑k

j=1 ρj in FV2
(A(H)). By Lemma 7, we then

have

̂Sm(f+)(1<
Sm(Hom(K2,Cn))

) =

k∑

j=1

1<
Sm(ρ+

j
)

for all m ≥ 0. Now for j = 1, . . . , k, ρ+j is contained in D(ρ+j ) which is dismantlable,

hence Sm(D(ρ+j )) is dismantlable for all m by Lemma 9. Hence by Lemma 9, for

any order-preserving map g : Sm(Hom(K2, H)) → Q1, we have ĝ(1<
Sm(ρ+

j
)
) = 0 for

j = 1, . . . , k. Therefore

̂g ◦ Sm(f+)(1<
Sm(Hom(K2,Cn))

) =

k∑

j=1

ĝ(1<
Sm(ρ+

j
)
) = 0.

By Lemma 6, g ◦ Sm(f+) : Sm(Hom(K2, Cn)) → Q1 cannot be a Z2-map. Since
Sm(f+) : Sm(Hom(K2, Cn)) → Sm(Hom(K2, H)) is a Z2-map, we conclude that
there does not exist a Z2-map g : Sm(Hom(K2, H)) → Q1. Therefore ind(Hom(K2, H)) ≥
2. �
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