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Abstract

Let S, T be two distinct finite Abelian groups with |S| = |T |. A fundamental theo-

rem of Tutte shows that a graph admits a nowhere-zero S-flow if and only if it admits

a nowhere-zero T -flow. Jaeger, Linial, Payan and Tarsi in 1992 introduced group con-

nectivity as an extension of flow theory, and they asked whether such a relation holds

for group connectivity analogy. It was negatively answered by Hušek, Mohelńıková and

Šámal in 2017 for graphs with edge-connectivity 2 for the groups S = Z4 and T = Z
2

2
.

In this paper, we extend their results to 3-edge-connected graphs (including both cubic

and general graphs), which answers open problems proposed by Hušek, Mohelńıková

and Šámal(2017) and Lai, Li, Shao and Zhan(2011). Combining some previous results,

this characterizes all the equivalence of group connectivity under 3-edge-connectivity,

showing that every 3-edge-connected S-connected graph is T -connected if and only if

{S, T } 6= {Z4,Z
2

2
}.
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1 Introduction

Graphs considered in this paper are finite and loopless, with possible parallel edges. Through-

out this paper, let S, T be (additive) Abelian groups, and Zk the cyclic group of order k.

We follow [1] for undefined notation and terminology. Fix an orientation D of a graph G.

For any x ∈ V (G), let E+
D(x) (E

−
D(x), resp.) denote the set of all edges directed away from

(into, resp.) x. Given a mapping ϕ : E(G) 7→ S, define, for every vertex u ∈ V (G),

∂ϕ(u) =
∑

e∈E+

D
(u)

ϕ(e) −
∑

e∈E−

D
(u)

ϕ(e).
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Evidently, we have
∑

u∈V (G) ∂ϕ(u) = 0 since each directed edge is counted exactly once in

both its head and tail. A zero-sum boundary function is a mapping γ : V (G) 7→ S

satisfying
∑

u∈V (G) γ(u) = 0, which is necessary for the existence of such mapping ϕ with

∂ϕ = γ. Let Z(G,S) denote the collection of all zero-sum boundary functions of G. A

group flow, S-flow, of G is a mapping ϕ : E(G) 7→ S with ∂ϕ = 0, where 0 ∈ Z(G,S)

denotes the constant zero mapping. If ϕ(e) 6= 0 for each edge e ∈ E(G), then ϕ is called

a nowhere-zero S-flow, abbreviated as S-NZF. When S = Z and 0 < |ϕ(e)| < k for any

e ∈ E(G), it is known as a nowhere-zero k-flow, abbreviated as k-NZF.

The flow theory was initiated by Tutte [16] in studying face coloring problems of graphs

on the plane and other surfaces. Tutte [16] proposed some flow conjectures, which are con-

sidered as core problems in graph theory. Tutte’s 3-flow and 5-flow conjectures predict the

existence of flow for given edge-connectivity 4 and 2, respectively, regardless the topological

embedding structures of graphs. The 4-flow conjecture [17], generalizing the celebrated

Four Coloring Theorem, asserts every Petersen-minor-free graph admits a 4-NZF. Those

problems are widely studied and remain open, while significant progress have been made

by Jaeger [5], Seymour [14], Thomassen [15], and Lovász et al. [13]. We refer to [11] for

a recent survey on those topics. One of the critical tools in studying nowhere-zero flows is

the following fundamental theorem of Tutte [17], converting group flows into integer flows.

Theorem 1.1 [17] A graph admits a k-NZF if and only if it admits an S-NZF for some

Abelian group S with |S| = k.

The advantage of group flows is to provide much more flexibility in proving related

integer flow theorems, which allows to use certain contraction operations and local adjust-

ments on graphs. To facilitate this approach, Jaeger et al. [6] introduced group connec-

tivity concept as a generalization of S-flow. If for every γ ∈ Z(G,S), there is a mapping

ϕ : E(G) 7→ S \ {0} such that ∂ϕ = γ, then G is called S-connected. Due to certain

stronger conditions in group connectivity, some nice properties of flows can not be easily

extended to group connectivity. For example, the monotonicity fails for group connectivity.

It follows from the definition that every k-NZF admissible graph has a (k+1)-NZF, and so

by Theorem 1.1 every T -NZF admissible graph has an S-NZF for any finite Abelian groups

S, T with |S| ≥ |T |. However, Jaeger et al. [6] showed that there exist Z5-connected graphs

which are not Z6-connected, and similar examples were exhibited for some other large groups

of prime order. On the positive side, an unusual monotonicity of group connectivity was

proved in [12] that every Z3-connected graph is S-connected for |S| ≥ 4.

For two distinct finite Abelian groups S, T with the same order, Jaeger et al. [6] asked
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whether S-connectivity and T -connectivity are equivalent, similar as Theorem 1.1, and they

remarked that it is even unknown for the first case concerning Z4 and Z
2
2. Lai et al. [10]

further proposed the problem below for 3-edge-connected graphs.

Problem 1.2 (Problem 1.8 in Lai et al. [10]) Let F(S) be the family of all 3-edge-connected

S-connected graphs. Is it true that for two Abelian groups S1 and S2, if |S1| = |S2|, then

F(S1) = F(S2)?

With a computer-aided approach, Hušek, Mohelńıková and Šámal [4] constructed 2-

edge-connected graphs to show that Z4-connectivity and Z
2
2-connectivity are not equivalent

and obtained the following theorem, which provides a negative answer to the question of

Jaeger et al. [6].

Theorem 1.3 [4] Denote by H1,H2 as the graphs depicted in Figure 1.

(1) The graph H1 is Z
2
2-connected but not Z4-connected.

(2) The graph H2 is Z4-connected but not Z2
2-connected.

Furthermore, infinitely many such examples can be constructed by replacing some vertices

with triangles repeatedly.
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H1 H2

Figure 1: The graphs for Theorem 1.3.

By developing a 2-sum operation for group connectivity (as defined below), we extend

Theorem 1.3 to 3-edge-connected graphs.

Theorem 1.4

(1) There exists a 3-edge-connected graph which is Z4-connected but not Z2
2-connected.

(2) There exists a 3-edge-connected graph which is Z
2
2-connected but not Z4-connected.

3



Furthermore, infinitely many such graphs can be generated by a number of 2-sum operations.

It is worth noting that our proof of Theorem 1.4 is theoretical, although it assumes the

truth of Theorem 1.3 (whose proof is computer-aided).

Extending Jaeger’s 4-flow theorem and Seymour’s 6-flow theorem, Jaeger et al. [6]

obtained the following group connectivity analogy.

Theorem 1.5 [6] (i) Every 4-edge-connected graph is S-connected for |S| ≥ 4.

(ii) Every 3-edge-connected graph is S-connected for |S| ≥ 6.

Combining Theorems 1.4 and 1.5, we immediately have the following corollary, charac-

terizing the equivalence of group connectivity for all 3-edge-connected graphs completely.

This answers Problem 1.2.

Corollary 1.6 Let S, T be two distinct Abelian groups with |S| = |T |. Then every 3-edge-

connected S-connected graph is T -connected if and only if {S, T} 6= {Z4,Z
2
2}.

In [4], Hušek et al. also asked whether such 3-edge-connected cubic graphs exist. In fact,

Theorem 1.4 was obtained in early 2018, and the second author communicated with Robert

Šámal in SIAM Conference on Discrete Mathematics, Denver, June 2018. The existence of

such 3-edge-connected cubic graphs was still open for a while, see Section 5 in Hušek et al.

[4]. Now we are able to solve it by a new construction method.

Theorem 1.7

(1) There exists a 3-edge-connected cubic graph which is Z4-connected but not Z2
2-connected.

(2) There exists a 3-edge-connected cubic graph which is Z2
2-connected but not Z4-connected.

Moreover, infinitely many such graphs can be constructed by substituting some vertices with

triangles repeatedly.

The paper is organized as follows. In Section 2 we first develop a 2-sum operation for

group connectivity and use it to prove Theorem 1.4. Then in Section 3 we apply a new

method to construct such cubic graphs through flow properties of two special graphs. In

Section 4, we end this paper with a few concluding remarks.
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2 Constructions via 2-sum operations

For 1 ≤ i ≤ 2, let Γi be a graph with two distinct vertices ui, vi ∈ V (Γi). If u1v1 ∈ E(Γ1),

then we define Γ = Γ1(u1v1) ⊕ Γ2(u2, v2), called the 2-sum of Γ1 and Γ2, as the graph

obtained from Γ1 and Γ2 by removing the edge u1v1 in Γ1, and then identifying u1 and u2

as a new vertex u, and identifying v1 and v2 as a new vertex v (see Figure 2).

✬

✫

✩

✪

✬

✫

✩

✪
Γ1 Γ2

ru1
r
v1

ru2
r
v2

⊕

✬

✫

✩

✪

✬

✫

✩

✪

ru
r
v

Γ

=

Figure 2: The 2-sum Γ = Γ1(u1v1)⊕ Γ2(u2, v2).

This 2-sum operation can be viewed as a dual operation of Hajós join on graph coloring.

It was first developed by Kochol [7] in studying 3-flow problem, and later generalized to Z3-

connectivity in [3]. Here we extend this 2-sum property to group connectivity of arbitrary

finite Abelian groups.

Lemma 2.1 Let S be a finite Abelian group with |S| ≥ 3. If neither Γ1 nor Γ2 is S-

connected, then Γ = Γ1 ⊕ Γ2 is not S-connected.

Proof. Let u, v ∈ V (Γ) and ui, vi ∈ V (Γi) where i = 1, 2 as defined above. That is,

Γ = Γ1(u1v1) ⊕ Γ2(u2, v2). Since Γi is not S-connected for each i ∈ {1, 2}, there exists a

βi ∈ Z(Γi, S) such that for any orientation of Γi and any mapping ϕi : E(Γi) 7→ S \ {0}, we

have ∂ϕi 6= βi.

For each z ∈ V (Γ), define

ε(z) =























β1(u1) + β2(u2) if z = u;

β1(v1) + β2(v2) if z = v;

β1(z) if z ∈ V (Γ1) \ {u1, v1};

β2(z) otherwise.

It is routine to check that
∑

z∈V (Γ) ε(z) =
∑

x∈V (Γ1)
β1(x) +

∑

y∈V (Γ2)
β2(y) = 0, and so

ε ∈ Z(Γ, S).
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Suppose, on the contrary, that Γ is S-connected. Fix an orientation D of Γ. Then there

exists a mapping η : E(Γ) 7→ S \ {0} such that ∂η = ε. In particular, we have

∑

e∈E+

D
(u)

η(e)−
∑

e∈E−

D
(u)

η(e) = ∂η(u) = ε(u)

and
∑

e∈E+

D
(v)

η(e) −
∑

e∈E−

D
(v)

η(e) = ∂η(v) = ε(v).

Let D2 be the restriction of D in Γ2. Consider D2 and η on Γ2. As ∂η(z) = β2(z),∀z ∈

V (Γ2) \ {u2, v2}, we have

∂η(u2) + ∂η(v2) = 0−
∑

z∈V (Γ2)\{u2,v2}

∂η(z)

= 0−
∑

z∈V (Γ2)\{u2,v2}

β2(z)

= β2(u2) + β2(v2).

Since ∂ϕ 6= β2 for any mapping ϕ : E(Γ2) 7→ S \ {0}, it follows that ∂η 6= β2, and so

∂η(u2) 6= β2(u2) from the above equation. Thus there exists a nonzero element b ∈ S such

that ∂η(u2) = β2(u2) + b and ∂η(v2) = β2(v2)− b in Γ2.

Now consider η and D1, the restriction of D on Γ1 − u1v1. We have

∂η(u1) = ε(u)− [β2(u2) + b] = [β1(u1) + β2(u2)]− [β2(u2) + b] = β1(u1)− b

and

∂η(v1) = ε(v) − [β2(v2)− b] = β1(v1) + b.

We orient the edge u1v1 from u1 to v1 in Γ1. Together with D1, this gives an orientation

D′
1 of Γ1. Define a mapping ω : E(Γ1) 7→ S \ {0} such that, for every e ∈ E(Γ1),

ω(e) =

{

b if e = u1v1;

η(e) otherwise.

Then ∂ω(z) = ∂η(z) = β1(z), ∀z ∈ V (Γ1)\{u1, v1}. Moreover, ∂ω(u1) = ∂η(u1)+ω(u1v1) =

β1(u1) and ∂ω(v1) = ∂η(v1) − ω(u1v1) = β1(v1). Conclude that ∂ω = β1, which is a

contradiction.

For X ⊆ E(G), the contraction G/X is the graph obtained by identifying the two

ends of each edge in X and then deleting the resulting loops from G. If H is a subgraph of

G, G/H is used to represent G/E(H) for short. For proving S-connectivity, the following

lemma would be helpful.
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Lemma 2.2 [9] (1) A cycle Cn of length n is S-connected if and only if |S| ≥ n+ 1.

(2) If H is an S-connected subgraph of a graph G, then G is S-connected if and only if

G/H is S-connected.

A vertex of degree k is called a k-vertex. Let C4 be a 4-cycle with V (C4) = {v4, v3, v2, v1}.

Fix i ∈ {1, 2}. In Figure 1, observe that there are exactly three 2-vertices, denoted by

xi, yi, zi in Hi. Attach two copies of Hi, namely Hi and H ′
i (whose corresponding 2-vertices

are x′i, y
′
i, z

′
i). Let H1

i be the graph obtained from C4 and Hi by the 2-sum operation on

v1v2 and xi, yi, namely H1
i = C4(v1v2)⊕Hi(xi, yi). Construct a graph H2

i from H1
i and H ′

i

by the 2-sum operation on v4v3 and x′i, y
′
i, that is, H

2
i = H1

i (v4v3)⊕H ′
i(x

′
i, y

′
i). See Figure

3 for the construction of H2
1 .✓

✒

✏

✑

✓

✒

✏

✑
H1 H ′

1
qqq qqq

q
q q

q
⊕ ⊕

x′1
y′1
z′1

x1
y1
z1

v1

v2

v4

v3

Figure 3: The graph H2

1
in Lemma 2.3.

Lemma 2.3 (1) The graph H2
1 is Z

2
2-connected, but not Z4-connected.

(2) The graph H2
2 is Z4-connected, but not Z

2
2-connected.

Proof. (1) By Theorem 1.3, H1 and H ′
1 are Z

2
2-connected. Notice that

(H2
1/H1)/H

′
1 = (C4/v1v2)/v3v4 = C2,

which is Z
2
2-connected. By Lemma 2.2 we see that H2

1/H1 is Z
2
2-connected. As H1 is Z

2
2-

connected and by Lemma 2.2 again, H2
1 is Z2

2-connected as desired. Since H1
1 = C4(v1v2)⊕

H1(x1, y1) is obtained from the 2-sum of two non-Z2
2-connected graphs C4 and H1, we know

that H1
1 is not Z2

2-connected by Lemma 2.1. Similarly, as H2
1 = H1

1 (v4v3)⊕H ′
1(x

′
1, y

′
1), where

neither H1
1 nor H ′

1 is Z2
2-connected, it follows from Lemma 2.1 that H2

1 is not Z2
2-connected

either.

(2) The proof is very similar to (1). Since H2 is Z4-connected, but not Z
2
2-connected,

after applying the 2-sum operation twice, the resulting graph H2
2 is Z4-connected by Lemma

2.2, but not Z2
2-connected by Lemma 2.1.

Note that, by the construction above, the graph H2
i , for each i ∈ {1, 2}, has precisely

two vertices zi and z′i of degree two. Now we would construct H3
i = C4 ⊕H2

i ⊕H2
i ⊕H2

i ,

7
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✘
✙

✛
✚

✘
✙

H2
1 H2

1

H2
1

✛
✚

✘
✙

✛
✚

✘
✙

rv4rv1

rv3rv2

rz1
r
z′1

⊕ ⊕

⊕rz2 rz′2

rz3
r
z′3

Figure 4: H3
1 : Graph of Theorem 2.4 (1).

i ∈ {1, 2}, that would be used in the following theorem. The way to construct H3
2 from

H2
2 is the same as constructing H3

1 from H2
1 . So we take H3

1 as an example. Attach three

copies of H2
1 , whose 2-vertices are denoted by z1, z

′
1, z2, z

′
2 and z3, z

′
3, respectively. Apply

the 2-sum operation three times on C4 and the copies of H2
1 . Specifically, we first apply

2-sum on the edge v1v2 with z1, z
′
1 in the first copy of H2

1 , then apply 2-sum on the edge

v2v3 with z2, z
′
2 in the second copy, and apply the last 2-sum on the edge v3v4 with z3, z

′
3

in the third copy, as demonstrated in Figure 4. This gives the resulting graph H3
1 .

Theorem 2.4 (1) The graph H3
1 is 3-edge-connected, Z2

2-connected, but not Z4-connected.

(2) The graph H3
2 is 3-edge-connected, Z4-connected, but not Z

2
2-connected.

Proof. (1) As H2
1 is Z2

2-connected and, after contracting copies of H2
1 in H3

1 , the resulting

graph is a singleton which is Z
2
2-connected, we conclude by Lemma 2.2 that H3

1 is Z
2
2-

connected. Since H3
1 is obtained from 2-sum operation of non-Z4-connected graphs, Lemma

2.1 shows that it is not Z4-connected.

It is also very straightforward to verify that H3
1 is 3-edge-connected. Firstly, one can

easily check that H1 has only three trivial 2-edge-cuts. Secondly, the graph H2
1 , obtained

from 2-sum of C4 and two copies ofH1, has exactly three 2-edge-cuts, each of which separates

z1 and z′1. At last, we can use these facts to show that H3
1 is 3-edge-connected as follows.

Specifically, the minimal degree of H3
1 is three, so we only look at nontrivial edge-cuts. If

an edge-cut separates zk and z′k for some k ∈ {1, 2, 3} in a copy of H2
1 , then it has a size at

least 3 since we need at least two edges to separate zk and z′k in the copy of H2
1 and there

is a zkz
′
k-path outside that copy. Assume instead, an edge-cut does not separate zk and z′k

for any k ∈ {1, 2, 3}. Then either it lies in the edges incident to V (C4), or it separates a

copy of H2
1 (where zk and z′k are in one component). In each case, the edge-cut must have

a size at least 3. This proves that H3
1 is 3-edge-connected.

(2) The proof applies the same argument as (1) and thus omitted.
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v1 v2

v3v4

1 11 1

1

1

(1)

b

a

c

aa
b
c

b
c

(2)

Figure 5: A Z4-flow of K4 with boundary 1 and a 3-prism.

Now Theorem 1.4 follows from Theorem 2.4 and Lemma 2.1.

3 Constructions of cubic graphs

The constructions in this section rely on some basic properties of K4 and 3-prism (see Figure

5), as shown in the following lemmas.

Lemma 3.1 Let G be the complete graph K4 with an orientation D. Define β : V (G) 7→

{1}, which is a zero-sum boundary function in Z(G,Z4). Then for any mapping ϕ : E(G) 7→

Z4 \ {0} with ∂ϕ = β, there exists a vertex v of G such that each edge e = uv ∈ E(G) is

either directed into v with flow value ϕ(e) = 1 or directed away from v with flow value

ϕ(e) = 3.

Proof. Since 3 = −1(mod 4), for convenience we may assign the flow value of edges in

{1, 2} and adapt an appropriate orientation from D. By contradiction, suppose that there

exists an orientation of G and a mapping ϕ : E(G) 7→ {1, 2} with ∂ϕ = β such that no

vertex satisfies that all incident edges are directed into it and with flow value 1. Since for

any v ∈ V (G), the degree of v is 3 and β(v) = 1, there is at least one edge e assigned with

flow value ϕ(e) = 1. By symmetry, assume ϕ(v1v2) = 1 and the orientation is from v1 to v2

as in Figure 5 (1). Since β(v2) = 1, we must have ϕ(v2v3) = ϕ(v2v4) = 1 and v2v3, v2v4 are

all directed away from v2. The similar assignments are applied for v3v1 and v3v4. At last,

we need only to assign the orientation and flow value of v1v4 to satisfy β = ∂ϕ. We shall

find that all the edges incident to v4 are directed into v4 with flow value 1, a contradiction.

A 3-prism is a graph obtained by adding a perfect matching between two vertex-disjoint

triangles (see Figure 5(2)).

9



Lemma 3.2 The 3-prism graph is unique 3-edge-colorable. (That is, all proper 3-edge-

colorings φ : E(G) 7→ {a, b, c} are isomorphic. See Figure 5(2).)

Proof. This fact is easy to observe and thus omitted.

Now we shall prove Theorem 1.7 with the following constructions.

Theorem 3.3 Construct a graph G by replacing every vertex of K4 with a copy of H1,

where every 2-vertex in each copy is incident with an edge of K4 (see Figure 6). Then the

3-edge-connected cubic graph G is Z
2
2-connected, but not Z4-connected.

Proof. Clearly, G is 3-edge-connected. It follows from Lemma 2.2(1) that C2 and C3

are Z
2
2-connected, thus by Lemma 2.2(2) K4 is Z

2
2-connected by contracting 3-cycles and

2-cycles consecutively. By Lemma 2.2 again, G is Z2
2-connected since both H1 and K4 are

Z
2
2-connected. We shall prove below that G is not Z4-connected. For 1 ≤ i ≤ 4, let Ai be

a copy of H1, where the 2-vertices of Ai are xi, yi and zi (see Figure 6). Since H1 is not

Z4-connected, there is a failed zero-sum boundary β1 ∈ Z(H1,Z4) such that

for any orientation of H1,

there is no mapping ϕ : E(H1) 7→ Z4 \ {0} such that ∂ϕ = β1. (1)

Suppose, on the contrary, that G is Z4-connected. Define β : V (G) 7→ Z4 by

β(v) =

{

β1(v)− 1 if v ∈ {xi, yi, zi|1 ≤ i ≤ 4};

β1(v) otherwise.

Since
∑

v∈V (Ai)
β1(v) ≡ 0 (mod 4) for each i, we have

∑

v∈V (G)

β(v) = 4
∑

v∈V (A1)

β1(v) − 12 ≡ 0 (mod 4),

and so β ∈ Z(G,Z4). Hence there is an orientation of G and a mapping f : E(G) 7→ Z4\{0}

such that ∂f = β.

Consider the graph F = G/{
⋃

1≤i≤4 Ai}, which is a K4. Suppose wi of V (F ) is the

vertex corresponds to Ai. Let

β′(wi) =
∑

v∈V (Ai)

β(v) =
∑

v∈V (Ai)

β1(v)− 3 = 1(mod 4).

Denote f ′ as the restriction of f on F . Obviously, β′ is a zero-sum boundary of F and

∂f ′ = β′. By Lemma 3.1, there is a vertex u in F such that each incident edge of u is

10



A 1

A
3 A 4

A
2

x1

y1

z1

x3
y3

z3

x2

y2
z2

x4

y4
z4

Figure 6: A 3-edge-connected cubic graph that is Z
2

2-connected, but not Z4-connected.

either directed into u with flow value 1 or directed away from u with flow value 3. Assume,

without loss of generality, that the vertex u corresponds to A1 in G.

This implies that ϕ = f |A1
, f restricted to A1, is a mapping such that ∂ϕ = β1 by the

definition of β, which contradicts (1). Hence G is not Z4-connected.

In the proof of Theorem 3.3, one may observe that the key ingredient is to apply Lemma

3.1 to show that the flow values outside a copy Ai are uniquely determined, and so the flow

restricted to Ai satisfies the failed zero-sum boundary, yielding a contradiction. The next

construction is based on the same motivation, for which we apply the property of 3-prism

in Lemma 3.2 instead.

B 1

B
3 B 4

B
2

z1
y1
x1

x3

y3
z3

x2

y2
z2

z4
y4
x4

B5
y5z5

x5

B6
z6 y6

x6

a
c

c

b
b

b

c

a
a

Figure 7: A 3-edge-connected cubic graph that is Z4-connected, but not Z
2

2-connected.
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Let Bi(1 ≤ i ≤ 6) be a copy of H2, where the 2-vertices of Bi are xi, yi and zi.

Theorem 3.4 Assume that the 3-prism is 3-edge-colored with colors a, b, c. Let (pi, qi, ri)

(1 ≤ i ≤ 6) be all the permutations of a, b, c. Replace each vertex of the 3-prism with a copy

Bi of H1, where the vertex-triple (xi, yi, zi) is identified with edges incident to that vertex

with color-triple (pi, qi, ri) for each 1 ≤ i ≤ 6. Let G be the resulting graph. See Figure 7.

Then G is Z4-connected, but not Z
2
2-connected.

Proof. Since both H2 and the 3-prism are Z4-connected, the graph G is Z4-connected

by Lemma 2.2. We shall show below that G is not Z2
2-connected. Note that for Z

2
2-group

connectivity, the orientation is irrelevant since each element is self-inverse. Thus we will

omit the statements of orientations. As H2 is not Z2
2-connected, there is a failed boundary

β1 ∈ Z(H2,Z
2
2) such that

there is no mapping ϕ : E(H2) 7→ {(0, 1), (1, 0 ), (1, 1)} with ∂ϕ = β1. (2)

Define a function β : V (G) 7→ Z
2
2 as follows:

β(v) =























β1(v)− (0, 1) if v ∈ {xi|1 ≤ i ≤ 6};

β1(v)− (1, 0) if v ∈ {yi|1 ≤ i ≤ 6};

β1(v)− (1, 1) if v ∈ {zi|1 ≤ i ≤ 6};

β1(v) otherwise.

Since
∑

v∈V (Bi)
β1(v) = (0, 0) in Z

2
2 for each 1 ≤ i ≤ 6, we have

∑

v∈V (G)

β(v) =

6
∑

i=1





∑

v∈V (Bi)

β1(v)



 − 6[(0, 1) − (1, 0) − (1, 1)] = (0, 0) in Z
2
2,

and thus β ∈ Z(G,Z2
2).

By contradiction, suppose that G is Z
2
2-connected. So there is a mapping f : E(G) 7→

{(0, 1), (1, 0), (1, 1)} such that ∂f = β.

Consider the graph F = G/{
⋃

1≤i≤6 Bi}, which is a 3-prism. The flow f restricted

to it provides a nowhere-zero Z
2
2-flow, which is indeed a proper 3-edge-coloring and the

color-classes are precisely the edges with values (0, 1), (1, 0), (1, 1), respectively. Hence the

color-triple (a, b, c) is a permutation of (0, 1), (1, 0), (1, 1). Notice that edges incident to

the triples of {xi, yi, zi|1 ≤ i ≤ 6} for different i are colored with different permutation of

color-set {a, b, c}. So each of the six permutations appears on exactly one vertex. Hence

there exists a triple (xk, yk, zk) corresponding to ((0, 1), (1, 0), (1, 1)), say k = 1 without

12



loss of generality. That is f(x1x3) = (0, 1), f(y1z2) = (1, 0) and f(z1z5) = (1, 1). Now by

definition of β, the mapping f restricted to B1, ϕ = f |B1
, is a mapping of H2 such that

∂ϕ = β1, a contradiction to (2). Therefore, G is not Z2
2-connected.

4 Concluding Remarks

Theorem 1.5 of Jaeger et al. [6] says that every 4-edge-connected graph is S-connected for

|S| ≥ 4. This particularly shows that group connectivity is equivalent for distinct groups of

a same size for 4-edge-connected graphs. In fact, the graphs constructed in Theorems 1.4

and 1.7 are far from being 4-edge-connected and contain a lot of 3-edge-cuts. It would be

curious that whether lowing down the number of 3-edge-cuts could guarantee the equivalence

relation of group connectivity.

Problem 4.1 What is the maximum number k such that, for all 3-edge-connected graphs

with at most k 3-edge-cuts, Z2
2-connectivity and Z4-connectivity are equivalent?

Note that, using a smaller Z4-connected non-Z2
2-connected graph obtained in Section

2 of [4] (Figure 2 in that paper), the smallest such 3-edge-connected graphs that we can

construct in Theorem 1.7 have 48 edge-cuts of size three, which shows k < 48.

On the other hand, we provide a partial positive result from some known results on

collapsible graphs (which are contractible graphs for Eulerian subgraph problem). A graph

G is collapsible if for any N ⊆ V (G) of even order, there is a spanning connected subgraph

of G whose vertices have degree exactly odd in N and even otherwise. Lai [8] showed that

every collapsible graph is both Z4-connected and Z
2
2-connected. Moreover, it was proved

in [2] that every 3-edge-connected graph with at most nine 3-edge-cuts is collapsible, and

therefore, both Z4-connected and Z
2
2-connected. Hence, we conclude that

9 ≤ k ≤ 47.

It would also be interesting to find the smallest Z4-connected non-Z2
2-connected graphs

(with edge-connectivity 3), and the other way around. This may help to solve Problem

4.1.

In this paper, Corollary 1.6 completely answers the equivalence of group connectivity

for 3-edge-connected graphs. The dual problem on graph coloring is still open, see [10].

Is it true that for distinct groups S and T with a same order, S-group-colorability and

T -group-colorability are equivalent (for simple graphs)?
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