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Abstract

A subset of vertices is a maximum independent set if no two of the vertices are adjacent and
the subset has maximum cardinality. A subset of vertices is called a maximum dissociation
set if it induces a subgraph with vertex degree at most 1, and the subset has maximum
cardinality. Zito [J. Graph Theory 15 (1991) 207–221] proved that the maximum number

of maximum independent sets of a tree of order n is 2
n−3

2 if n is odd, and 2
n−2

2 + 1 if n

is even and also characterized all extremal trees with the most maximum independent sets,
which solved a question posed by Wilf. Inspired by the results of Zito, in this paper, by
establishing four structure theorems and a result of k-König-Egerváry graph, we show that
the maximum number of maximum dissociation sets in a tree of order n is







3
n

3
−1 + n

3
+ 1, if n ≡ 0 (mod 3);

3
n−1

3
−1 + 1, if n ≡ 1 (mod 3);

3
n−2

3
−1, if n ≡ 2 (mod 3),

and also give complete structural descriptions of all extremal trees on which these maxima
are achieved.

Keywords: dissociation set; König-Egerváry graphs; tree

1 Introduction

In this paper, we consider undirected labeled graphs without loops or multiple edges and

use standard graph-theoretic terminology (see [5]). An independent set of a graph G is a set of

vertices no two of which are joined by an edge. An independent set is called maximal if it cannot

be contained in any other independent set, and is maximum if it has maximum cardinality. The

independence number α(G) of G is the cardinality of a maximum independent set of G.

A subset of vertices in a graph G is called a dissociation set if it induces a subgraph with

vertex degree at most 1. The dissociation number of a graph G, denoted by diss(G), is the

cardinality of a maximum dissociation set of G. The problem of computing diss(G) (dissociation

number problem) has been introduced by Yannakakis [27] and was shown to be NP-complete for

the class of bipartite graphs. Actually, Orlovich, Dolgui, Finke, Gordon and Werner [18] showed

that it remains NP-hard even in planar line graphs of planar bipartite graphs. Cameron and

Hell [7] proved that the problem can be solved in polynomial time for chordal graphs, weakly

chordal graphs, asteroidal triple-free graphs and interval-filament graphs. The complexity of the
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problem on some classes of graphs has been studied in [1, 4, 6, 7, 18, 19]. Note that a set S of

vertices of a graph G is a dissociation set if and only if its complement V (G) \ S is a so-called

3-path vertex cover, that is, a set of vertices intersecting every path of order 3 in G. The 3-path

vertex cover problem is to find a minimum 3-path vertex cover in a given graph and has been

well studied [3, 6, 12, 26].

In 1986, Wilf [24] determined the maximum number of maximal independent sets in a tree.

Later, Sagan [20] gave a short proof and characterized the extremal trees. Füredi [9] found

the maximum number of maximal independent sets for connected graphs on n > 50 vertices.

Independently, Griggs, Grinstead and Guichard [10] determined the maximum number of max-

imal independent sets for connected graphs on n vertices for all values of n and completely

characterized all the extremal graphs. For more results on the maximum number of maximal

independent sets, we refer to [13, 14, 16, 21, 23, 25]. Zito [28] proved that the maximum number

of maximum independent sets of a tree of order n is 2
n−3

2 if n is odd, and 2
n−2

2 + 1 if n is even

and she also characterized all extremal trees with the most maximum independent sets, which

solved a question posed by Wilf [24]. Alvarado, Dantas, Mohr and Rautenbach [2] showed that

every tree with independence number α has at most 2α−1 + 1 maximum independent sets.

Inspired by the results of Zito [28], in this paper, we consider the analogous problem of

finding the maximum number of maximum dissociation sets and the extremal graphs for trees

of order n. By establishing four structure theorems and a result of k-König-Egerváry graph, we

show that the maximum number of maximum dissociation sets in a tree of order n is







3
n

3
−1 + n

3 + 1, if n ≡ 0 (mod 3);

3
n−1

3
−1 + 1, if n ≡ 1 (mod 3);

3
n−2

3
−1, if n ≡ 2 (mod 3),

and also characterize the structure of the extremal trees with the most maximum dissociation

sets.

The paper is organized as follows. In next section, we introduce and study the k-König-

Egerváry graphs. We show that any forest is a k-König-Egerváry graph, which plays a key

role in presenting structure theorems in Section 3. In Section 3, four structure theorems are

established. In Section 4, we apply these structure theorems to find the families of trees with

the most maximum dissociation sets.

2 k-König-Egerváry graphs

Let G be a graph. The set of neighbors of a vertex v in G is denoted by NG(v). Let U be

a set of vertices in G. The set of all neighbors of the vertices in U is denoted by NG(U). For a

positive integer k, a k-path is a (not necessarily induced) path of order k. Let Pk be the path

with k vertices.
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A matching in a graph G is a set of edges no two of which share one common vertex. The

matching number µ(G) is the cardinality of a maximum matching of G. The famous König-

Egerváry theorem states that for any bipartite graph G, the sum of independence number α(G)

and matching number µ(G) equals |V (G)|. A graph G is called a König-Egerváry graph if

α(G) + µ(G) = |V (G)|. Clearly, every bipartite graph is a König-Egerváry graph. König-

Egerváry graphs have been extensively studied [8, 11, 15, 17, 22].

A k-matching in a graph G is a set of vertex-disjoint k-paths in G, and the k-matching

number µk(G) of G is the cardinality of a maximum k-matching in G. A k-vertex cover is a

set of vertices of G intersecting every k-path, and the k-vertex cover number τk(G) of G is the

cardinality of a minimum k-vertex cover in G. A k-independent set is a set S of vertices such

that the subgraph induced by S contains no k-paths, and the k-independence number αk(G)

is the cardinality of a maximum k-independent set in G. Note that µ2(G), α2(G) and α3(G)

are exactly the matching number µ(G), independence number α(G) and dissociation number

diss(G), respectively.

It can be easily seen that for any graph G, αk(G) + τk(G) = |V (G)|, µk(G) ≤ τk(G) and

αk(G) + µk(G) ≤ |V (G)|. Now we introduce a generalization of the König-Egerváry graphs,

which are called k-König-Egerváry graphs.

Definition 2.1. Given a positive integer k ≥ 2, a graph G is called a k-König-Egerváry graph

if αk(G) + µk(G) = |V (G)|.

Clearly, a graph G is k-König-Egerváry if and only if τk(G) = µk(G). In a rooted tree, the

level of a vertex v is the length of the unique path from the root to the vertex v, denoted by

ℓ(v).

Theorem 2.2. For a positive integer k ≥ 2, any forest is a k-König-Egerváry graph.

Proof. It suffices to show that any tree T is a k-König-Egerváry graph. We prove this by

induction on the number of vertices of T .

If |V (T )| ≤ k − 1, then τk(T ) = µk(T ) = 0 and T is a k-König-Egerváry graph.

Assume that the result is true for all trees with fewer than n vertices. Let T be a tree with

n (n ≥ k) vertices. Change the tree T into a rooted tree by choosing any vertex as the root.

Suppose that a vertex u is chosen such that there is a k-path in the subtree Tu rooted at u and,

subject to this condition, the level of u is as large as possible. It is easy to see that any k-path

in the subtree Tu must contain the vertex u. Let T ′ := T − Tu.

Suppose that F is a minimum k-vertex cover of T . Then F ∩ V (Tu) 6= ∅ and F1 := (F \

V (Tu))∪{u} is also a minimum k-vertex cover of T . Thus F1 \ {u} is a k-vertex cover of T ′ and

τk(T ′) ≤ τk(T ) − 1. On the other hand, if F ′ is a minimum k-vertex cover of T ′, then F ′ ∪ {u}

is a k-vertex cover of T . Thus, τk(T ) ≤ τk(T ′) + 1. So, τk(T ) = τk(T ′) + 1.
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Let M be a maximum k-matching of T and P a k-path of Tu. We can change M into

a maximum k-matching M1 such that P ∈ M1 and M1 \ {P} is a k-matching of T ′. Thus,

µk(T ′) ≥ µk(T ) − 1. On the other hand, if M′ is a maximum k-matching of T ′, then M′ ∪ {P}

is a k-matching of T and µk(T ) ≥ µ(T
′) + 1. So, µ(T ) = µk(T ′) + 1.

By the induction hypothesis, τk(T ′) = µk(T ′). Thus τk(T ) = µk(T ) and T is a k-König-

Egerváry graph.

3 The structure theorems

In this section, we give four structure theorems concerning α3-critical edges and three types

of vertices.

An edge e of a graph G is called α3-critical if α3(G− e) > α3(G). An edge e of a graph G is

called µ3-critical if µ3(G− e) < µ3(G). A subgraph of a graph G is called critical if all its edges

are α3-critical in G. An α3-critical edge of a graph G is called insulated if it is not adjacent to

any other α3-critical edge of G. If M is a 3-matching, an edge of a 3-path of M is said to be

covered by M , and each vertex of a 3-path of M is said to be saturated by M .

A vertex in a graph G is said to be flexible if it is in some but not all maximum dissociation

sets of G, in what follows we use FG to denote the set of all flexible vertices of G. A vertex is

called static if it is either in all maximum dissociation sets or in no maximum dissociation sets.

If a vertex is in all maximum dissociation sets call it static-included, and we use AG to denote

the set of all static-included vertices of G. If a vertex is in no maximum dissociation set call it

static-excluded, and we use NG to denote the set of all static-excluded vertices of G.

Lemma 3.1. Let G be a graph and uv an edge of G. If uv is an α3-critical edge of G, then

every maximum dissociation set of G− uv contains both u and v, and α3(G− uv) = α3(G) + 1.

Proof. Let F ′ be a maximum dissociation set of G− uv. Suppose, to the contrary, that either

u or v is not in F ′. Then F ′ is also a dissociation set of G. Thus, α3(G) ≥ α3(G − uv), a

contradiction. So F ′ contains both u and v. On the other hand, F ′ − u is a dissociation set of

G. Thus α3(G) ≥ α3(G− uv) − 1 and α3(G− uv) = α3(G) + 1.

Similarly, we have

Lemma 3.2. Let G be a graph and uv an edge of G. If uv is a µ3-critical edge of G, then it is

covered by every maximum 3-matching of G, and µ3(G− uv) = µ3(G) − 1.

Lemma 3.3. Let G be a 3-König-Egerváry graph and e an edge of G. Then e is α3-critical in

G if and only if:

(i) e is µ3-critical in G,
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(ii) G− e is a 3-König-Egerváry graph.

Proof. Suppose that e is α3-critical in G. By Lemma 3.1, α3(G) = α3(G− e) − 1. We have

α3(G) + µ3(G) = α3(G− e) − 1 + µ3(G) = |V (G)| and

α3(G− e) + µ3(G− e) ≤ |V (G− e)| = |V (G)|.

Thus, µ3(G) ≥ µ3(G − e) + 1. So e is µ3-critical in G and µ3(G) = µ3(G − e) + 1. Moreover,

α3(G− e) + µ3(G− e) = |V (G− e)| and G− e is a 3-König-Egerváry graph.

On the other hand, suppose that e is µ3-critical in G and G−e is a 3-König-Egerváry graph.

Then α3(G) + µ3(G) = |V (G)| = |V (G− e)| = α3(G− e) + µ3(G− e) = α3(G− e) + µ3(G) − 1.

So, α3(G− e) = α3(G) + 1 and e is α3-critical in G.

By Theorem 2.2 and Lemma 3.3, we have the following corollary.

Corollary 3.4. Let T be a tree. An edge of T is α3-critical if and only if it is µ3-critical.

The first structure theorem concerns the relationship between α3-critical edges and flexible

vertices in trees.

Theorem 3.5. Let T be a tree. Then

(1) every maximum dissociation set of T contains at least one end-vertex of each α3-critical

edge;

(2) a vertex of T is flexible if and only if it is an end-vertex of an α3-critical edge.

Proof. (1) Let uv be an α3-critical edge in T , and let S be a maximum dissociation set

of T . Suppose, to the contrary, that neither u nor v is in S. Denote by Tu (resp. Tv) the

connected component of T − uv containing u (resp. v). Let S′ be a maximum dissociation set

of T − uv. By Lemma 3.1, |S′| = α3(T − uv) = α3(T ) + 1. Both S1 = (S ∩ Tu) ∪ (S′ ∩ Tv) and

S2 = (S ∩ Tv) ∪ (S′ ∩ Tu) are dissociation sets of T , as shown in Figure 1. Since |S1| + |S2| =

|S| + |S′| = 2α3(T ) + 1, one of S1 and S2 must contain α3(T ) + 1 vertices, a contradiction.

(2) Let v be a flexible vertex of T . Let u1, u2, . . . , uk be the neighbors of v in T , and

T1, T2, . . . , Tk be the connected components of T − v such that ui ∈ Ti, as shown in Figure 2.

Let Sv be a maximum dissociation set of T containing v and Sv a maximum dissociation set of

T that does not contain v. Then

|{v}| +
k∑

i=1

|Sv ∩ Ti| = 1 +
k∑

i=1

|Sv ∩ Ti| = α3(T ) and

k∑

i=1

|Sv̄ ∩ Ti| = α3(T ).
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Tu Tv

u v
S′ ∩ TvS′ ∩ Tu

S ∩ Tu S ∩ Tv

Fig. 1. Dissociation sets S1 = (S ∩ Tu) ∪ (S′ ∩ Tv) and S2 = (S ∩ Tv) ∪ (S′ ∩ Tu).

Thus there exists j ∈ {1, 2, . . . , k} such that

|Sv̄ ∩ Tj | > |Sv ∩ Tj | .

Thus S = (Sv̄ ∩ Tj) ∪ (Sv ∩ (T − Tj)) is a dissociation set of T − vuj and |S| > |Sv| = α3(T ). It

means that the edge vuj is α3-critical in T and v is incident to an α3-critical edge.

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

s

s ss q q q q q q

❅
❅
❅
❅
❅
❅
❅

�
�

�
�

�
�

�u1

v

uj uk

T1 Tj Tk

Fig. 2. Tree components used in the proof of Theorem 3.5(2).

Let uv be an α3-critical edge in T and S a maximum dissociation set of T − uv. By Lemma

3.1, both u and v are in S. It is easy to see that both S \ {u} and S \ {v} are maximum

dissociation sets of T . Thus both u and v are flexible in T .

The second structure theorem gives adjacency rules that determine the sets of flexible ver-

tices, static-included vertices and α3-critical edges of a tree.

Theorem 3.6. Let T be a tree. Then

(1) there is no critical 4-path or critical K1,3 in T ,

(2) every end-vertex of each insulated α3-critical edge has exactly one neighbor in AT and

the neighbor must be an isolated vertex of T [AT ],

(3) every vertex of each critical 3-path is not adjacent to any vertex of AT .

Proof. (1) By Corollary 3.4 and Lemma 3.2, if an edge of T is α3-critical, then it is µ3-critical
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and is covered by all maximum 3-matchings of T . Thus, there is no critical 4-path or critical

K1,3 in T .

(2) Let uv be an insulated α3-critical edge of T . By Theorem 3.5(2), both u and v are flexible

in T . Let S be a maximum dissociation set of T containing u. Since S contains all vertices of

AT , u has at most one neighbor in AT and the neighbor must be an isolated vertex of T [AT ].

Similarly, v has at most one neighbor in AT and the neighbor must be an isolated vertex of

T [AT ].

Next, we show that both u and v have at least one neighbor in AT . If the statement is not

true, then we have the following two cases.

Case 1. Neither u nor v has a neighbor in AT .

Let Tu (resp. Tv) be the connected component of T − uv containing u (resp. v). Let

{u1, . . . , uh} (resp. {v1, . . . , vk}) be the vertices of Tu (resp. Tv) that are adjacent to u (resp. v)

and are flexible in T , and let {e1, . . . , eh′} (resp. {f1, . . . , fk′}) be the α3-critical edges of T that

are incident to ui (resp. vi), as shown in Figure 3. Let T ′ be the forest obtained by deleting all

edges of {uu1, . . . , uuh, vv1, . . . , vvk} from T .

s s s s s s

s s

s

s

s

s

s s

♣
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♣

♣
♣

♣

♣
♣

♣
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♣

❩
❩
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✚
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s s
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u v

f1
f2

fk′

e1

e2

eh′

v1

vkuh

u1

u′1

u′p

v′1

v′r

α3-critical edges non α3-critical edges

Fig. 3. All vertices of {u′

1
, . . . , u′

p, v
′

1
, . . . , v′r} that are static-excluded in T .

By Corollary 3.4, all edges in {uv, e1, . . . , eh′ , f1, . . . , fk′} are µ3-critical in T and are covered

by all maximum 3-matchings of T . Thus, none of edges in {uu1, . . . , uuh, vv1, . . . , vvk} is covered

by any maximum 3-matching of T , this means that µ3(T
′) = µ3(T ). By Theorem 2.2, α3(T

′) +

µ3(T
′) = |V (T ′)| = |V (T )| = α3(T ) + µ3(T ). Hence, α3(T ′) = α3(T ).

On the other hand, let S be a maximum dissociation set of T that does not contain u. Then

S ∪ {u} is a dissociation set of T ′, which implies that α3(T
′) ≥ α3(T ) + 1, a contradiction.

Case 2. There is only one vertex in {u, v} that has a neighbor in AT .

W.l.o.g, assume that v has a neighbor w in AT . The proofs are almost identical, the

major change being the substitution of T ′ = T − {vw, uu1, . . . , uuh, vv1, . . . , vvk} for T ′ =

T − {uu1, . . . , uuh, vv1, . . . , vvk}. Since w is a vertex in AT , the edge vw is not α3-critical in

7



T . Thus, vw is not µ3-critical in T and there exists a maximum 3-matching of T that does not

cover vw. We have µ3(T
′) = µ3(T ) and α3(T

′) = α3(T ).

On the other hand, let S be a maximum dissociation set of T that does not contain u. It

can be easily seen that S ∪{u} is a dissociation set of T ′. Thus, α3(T ′) ≥ α3(T ) + 1 which leads

to a contradiction.

(3) Let v be any vertex in AT . We first show that v is not saturated by all maximum 3-

matchings of T . Suppose, to the contrary, that v is saturated by all maximum 3-matchings of

T , which means that µ3(T − v) = µ3(T ) − 1. Since both T and T − v are 3-König-Egerváry

graphs, α3(T − v) + µ3(T − v) = n − 1 and α3(T ) + µ3(T ) = n. Thus α3(T ) = α3(T − v). On

the other hand, since v is in AT , α3(T − v) = α3(T ) − 1, a contradiction.

Let u1u2u3 be a critical 3-path of T , and let M be a maximum 3-matching of T which

does not saturate v. Suppose, to the contrary, that v is adjacent to a vertex of {u1, u2, u3}.

W.l.o.g., suppose that v is adjacent to u1. Since u1u2u3 is critical in T , it is a 3-path of M .

Then M ′ = M \ {u1u2u3} ∪ {vu1u2} is also a maximum 3-matching of T and the edge u2u3 is

not covered by M ′, which contradicts to the fact that u2u3 is µ3-critical in T and it should be

covered by any maximum 3-matching of T .

The proof is complete.

The third structure theorem shows that every maximum dissociation set of a tree contains

exactly one end-vertex of each insulated α3-critical edge and two vertices of each critical 3-path.

Theorem 3.7. Let T be a tree and η(T ) the number of α3-critical edges of T . Then

(1) every maximum dissociation set contains exactly one end-vertex of each insulated α3-

critical edge;

(2) every maximum dissociation set contains exactly two vertices of each critical 3-path;

(3) α3(T ) = |AT | + η(T ).

Proof. (1) By Theorem 3.6(2), every end-vertex of each insulated α3-critical edge has exactly

one neighbor in AT . On the other hand, every maximum dissociation set contains all vertices

of AT and at least one end-vertex of each α3-critical edge. Thus, every maximum dissociation

set contains exactly one end-vertex of each insulated α3-critical edge.

(2) Change the tree T into a rooted tree by choosing any vertex as the root. Let

S = AT ∪ {u|uv is an α3-critical edge of T and ℓ(u) > ℓ(v)}.

If uv is an edge of T , it is impossible that ℓ(u) = ℓ(v). Thus, S is well-defined. If v is a vertex

in the rooted tree other than the root, the parent of v is the unique vertex u such that there is

a directed edge from u to v. It’s a simple fact that if uv is an edge of T , then ℓ(u) < ℓ(v) if and

only if u is the parent of v in the rooted tree. We divide our proof in three steps.
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First, our task is to show that S contains exactly two vertices of each critical 3-path. Clearly,

S contains at most two vertices of each critical 3-path. Let u1u2u3 be a critical 3-path of T .

Assume that |S ∩ {u1, u2, u3}| = 1. According to the definition of S, S ∩ {u1, u2, u3} = {u2}.

Thus, ℓ(u1) < ℓ(u2), ℓ(u3) < ℓ(u2), and both u1 and u3 are the parents of u2 in the rooted tree.

This is impossible. Hence, S contains exactly two vertices of each critical 3-path.

Next, we need to prove that S is a dissociation set of T . To prove the assertion, we present

the following claim.

Claim: Let v be a vertex of FT , and let uv be an edge rather than an α3-critical edge of T .

If ℓ(u) < ℓ(v), then S cannot contain the vertex v.

Proof of Claim. Let Tv be the subtree rooted at v. If w is a vertex in Tv rather than the

vertex v, then ℓ(w) > ℓ(v). According to the definition of the set S, S cannot contain the vertex

v.

By Theorem 3.6 and Claim, if the induced subgraph T [S] contains a 3-path, say v1v2v3, then

{v1, v3} ⊆ FT and v2 ∈ AT . Moreover ℓ(v1) < ℓ(v2), ℓ(v3) < ℓ(v2) and both v1 and v3 are the

parents of v2 in the rooted tree. This is impossible. Thus we are led to the conclusion that S is

a dissociation set of T .

Finally, we prove the statement in (2). Let F be a maximum dissociation set of T . Clearly,

AT ⊆ F ⊆ AT ∪FT . By Theorem 3.7(1), |F ∩FT | ≤ η(T ) and |F | ≤ |AT |+ η(T ). On the other

hand, S is a dissociation set and |S| = |AT | + η(T ). Thus, S is a maximum dissociation set of

T , and every maximum dissociation of T contains exactly two vertices of each critical 3-path.

(3) Since the set S defined in the proof of (2) is a maximum dissociation set of T and

|S| = |AT | + η(T ), α3(T ) = |AT | + η(T ).

The fourth structure theorem gives adjacency rules that determine the sets of static-included

vertices and static-excluded vertices of a tree.

Theorem 3.8. Let T be a tree and u a vertex of T . If u is in NT and is adjacent to p isolated

vertices of T [AT ] and q end-vertices of isolated edges of T [AT ], then p+ 2q ≥ 4 or p = 3. Thus,

if NT 6= ∅, then |AT | ≥ 3.

Proof. Change the tree T into a rooted tree by choosing the vertex u as the root. Let

S = AT ∪ {v|vw is an α3-critical edge of T and ℓ(v) > ℓ(w)}.

According to the proof of Theorem 3.7(2), S is a maximum dissociation set of T , and the vertex

u is not adjacent to any of the flexible vertices contained in S.

Next, we show that p + 2q ≥ 4 or p = 3 and consider the following three cases.

Case 1. q = 0

9



Let NT (u) ∩ AT = {u1, . . . , up}. Suppose, for a contradiction, that p ≤ 2. According to

Claim in the proof of Theorem 3.7(2), each ui is not adjacent to any of the flexible vertices

contained in S. Thus, (S \ {up})∪{u} is also a maximum dissociation set of T , a contradiction.

Hence, in this case p ≥ 3.

Case 2. q = 1

Let w1w2 be an edge of T [AT ] and w1 a neighbor of u. Suppose, for a contradiction, that

p ≤ 1. Now, (S \ {w1}) ∪ {u} is also a maximum dissociation set of T . This leads to a

contradiction. Hence, in this case p ≥ 2.

Case 3. q ≥ 2

In this case, it is obvious that p + 2q ≥ 4.

Consequently, we infer that p+2q ≥ 4 or p = 3. It follows that if NT 6= ∅, then |AT | ≥ 3.

4 The maximum number of maximum dissociation sets of a tree

In this section, we use the structure theorems presented in Section 3 to find upper bounds

on the number of maximum dissociation sets among all trees of order n.

Lemma 4.1. Let T be a tree with k flexible vertices. If T has x critical 3-paths and k−3x
2

insulated α3-critical edges, then T has at most 3x · 2
k−3x

2 maximum dissociation sets.

Proof. By Theorem 3.6, there is no critical 4-path or critical K1,3 in T . By Theorem 3.7,

every maximum dissociation set contains exactly two vertices of each of the x critical 3-paths

and exactly one end-vertex of each of the k−3x
2 insulated α3-critical edges. Thus, T has at most

3x · 2
k−3x

2 maximum dissociation sets.

Let f(x) = 3x · 2
k−3x

2 . Since f(x) is an increasing function of x, we have

Lemma 4.2. Let T be a tree with k flexible vertices. Then

(1) if k = 3t, T has at most 3t maximum dissociation sets, and the upper bound is achieved

only if T contains t critical 3-paths,

(2) if k = 3t+ 1, T has at most 3t−1 · 22 maximum dissociation sets, and the upper bound is

achieved only if T contains t− 1 critical 3-paths and two insulated α3-critical edges,

(3) if k = 3t + 2, T has at most 3t · 2 maximum dissociation sets, and the upper bound is

achieved only if T contains t critical 3-paths and one insulated α3-critical edge,

(4) the larger k, the larger upper bound of the number of maximum dissociation sets of T .

Let S∗

T1,...,Tr
be the tree consisting of r induced subtrees T1, . . ., Tr with a common leaf. For

10



simplicity, we use a rectangle to represent a critical 3-path (see Figure 4). A vertex v is said

to be adjacent to a critical 3-path P if v is adjacent to a vertex of P . Two critical 3-paths are

adjacent if they are connected by an edge.

or

A critical 3-path

s s s
Fig. 4. A critical 3-path and its symbolic representations.

Theorem 4.3. Let m be a positive integer and T a tree on 3m + 1 vertices. Then T has at

most 3m−1 + 1 maximum dissociation sets. This bound is best possible. When m ≥ 2, the bound

is achieved only on the families of trees S∗

P3,P2,T1,...,Tm−1
, where Ti

∼= P4 or K1,3 (1 ≤ i ≤ m− 1)

(see Figure 5).
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m− 1

α3-critical edges

non α3-critical edgesq q qq q q

Fig. 5. Trees on 3m + 1 vertices with the most maximum dissociation sets.

Proof. We proceed to prove this theorem and distinguish the following two cases.

Case 1. NT 6= ∅.

By Theorem 3.8, |AT | ≥ 3. Thus, there are at most 3m−3 flexible vertices in T . By Lemma

4.2, in this case T has at most 3m−1 maximum dissociation sets.

Case 2. NT = ∅.

We first show that |AT | ≥ 2. Suppose, for a contradiction, that |AT | ≤ 1. By Theorem 3.6,

there is no insulated α3-critical edge in T , and AT = ∅. Now, each vertex in T is a vertex of a

critical 3-path, which contradicts the fact that the number of vertices of T is 3m + 1. Thus, we

have proved that |AT | ≥ 2.

Next, we consider the following three subcases.

Subcase 2.1. |AT | = 2.

By Theorem 3.6, T has one insulated α3-critical edge and m − 1 critical 3-paths. Let

AT = {v1, v2}, and let v3v4 be the insulated α3-critical edge of T . W.l.o.g, suppose that the

vertex v4 is adjacent to a critical 3-path, as shown in Figure 6.
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s s s s s
s s

✧
✧✧

✧
✧✧

✧
✧✧

❜
❜❜

❜
❜❜

❜
❜❜

v3 v4

v1 v2v1 v2

v3 v4

(b)(a) (c)

s s s
s s

s
s

v1 v2

v3 v4s s
s s

α3-critical edges non α3-critical edges

Fig. 6. Subgraphs used in Subcase 2.1, where (c) is a symbolic representation of (a) and (b).

When m = 2, any tree in the family pictured in Figure 5 has 3m−1 +1 maximum dissociation

sets.

When m ≥ 3, T must contain a subgraph that is isomorphic to a tree in the family H1, or

to a tree in the family H2, or to a tree in the family H3. The three families of trees H1, H2

and H3 are shown in Figure 7. A tree in the family H1 has exactly 6 maximum dissociation

sets. Thus, if T contains a subgraph that is isomorphic to a tree in the family H1, then T has

at most 6 · 3m−3 maximum dissociation sets. A tree in the family H2 has at most 9 maximum

dissociation sets. Thus if T contains a subgraph that is isomorphic to a tree in the family H2,

then T has at most 9 · 3m−3 maximum dissociation sets.

v1 v2

v3 v4

(H1)

s s
s s

α3-critical edges non α3-critical edges

v1 v2

v3 v4

(H2)

s s
s s v1 v2

v3 v4

(H3)

s s
s s

Fig. 7. Three families H1, H2, and H3.

It follows that in this subcase if T has 3m−1 + 1 maximum dissociation sets, then all critical

3-paths of T are adjacent to a common vertex. On the other hand, consider a tree T in which all

critical 3-paths are adjacent to a common vertex, i.e., a tree in the families pictured in Figure

5. By simple calculation, there are 3m−1 + 1 maximum dissociation sets in T . Thus, the upper

bound can be achieved by these families of trees.

Subcase 2.2. |AT | = 3.

By Theorem 3.6, T has two insulated α3-critical edges and m− 2 critical 3-paths. Moreover,

T contains a subgraph H that is isomorphic to P7. See Figure 8. Since H has three maximum

dissociation sets, in this subcase T has at most 3 · 3m−2 maximum dissociation sets.

Subcase 2.3. |AT | ≥ 4.
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▲
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α3-critical edges

non α3-critical edges

Fig. 8. A subgraph H that is isomorphic to P7.

In this subcase, there are at most 3m − 3 flexible vertices in T . By Lemma 4.2, T has at

most 3m−1 maximum dissociation sets.

We can now derive the final conclusion. A tree on 3m + 1 vertices has at most 3m−1 + 1

maximum dissociation sets. When m ≥ 2, the upper bound is achieved only in Subcase 2.1 and

only on the families of trees pictured in Figure 5.

We now handle the case when the number of vertices of T is 3m+2. Define a special tree LT8

on 8 vertices to contain two insulated α3-critical edges u1u2 and u3u4, and five non α3-critical

edges u2u3, and uivi for i = 1 to 4. See Figure 9.

α3-critical edges

non α3-critical edgesv1 v2

u1 u2

v3 v4

u3 u4s s s s
s s s s

Fig. 9. A special tree LT8 on 8 vertices.

Theorem 4.4. Let m be a positive integer and T a tree on 3m + 2 vertices. Then T has at

most 3m−1 maximum dissociation sets. This bound is best possible. When m = 2, the bound is

achieved only on the families of trees LT8, S
∗

P3,P3,T1
, S∗

P2,P2,P2,P2,T1
, and S∗

P3,P2,P2,T1
, where T1

∼=

P4 or K1,3. When m 6= 2, the bound is achieved only on the families of trees S∗

P3,P3,T1,...,Tm−1
,

S∗

P2,P2,P2,P2,T1,...,Tm−1
and S∗

P3,P2,P2,T1,...,Tm−1
where Ti

∼= P4 or K1,3 (1 ≤ i ≤ m− 1) (see Figure

10).
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Fig. 10. Trees on 3m + 2 vertices with the most maximum dissociation sets.

Proof. We proceed to prove this theorem and distinguish the following two cases.

Case 1. NT 6= ∅.

It follows from Theorem 3.8 that |AT | ≥ 3.
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Subcase 1.1. |AT | = 3.

Let u be a vertex in NT , and let AT = {v1, v2, v3}. By Theorem 3.8, all vertices of AT

are isolated vertices of T [AT ] and T [{u, v1, v2, v3}] is a star of four vertices. We first show that

there is no insulated α3-critical edge in T . Suppose, for a contradiction, that e is an insulated

α3-critical edge. By Theorem 3.6, every end-vertex of e has a neighbor in {v1, v2, v3}, which

leads to a cycle in T . This is impossible. It follows that every vertex in V (T ) \ {u, v1, v2, v3}

is a vertex of a critical 3-path. This also contradicts the fact that the number of vertices of

V (T ) \ {u, v1, v2, v3} is 3m− 2.

Consequently, this subcase is impossible to happen.

Subcase 1.2. |AT | = 4.

In this subcase, T has at most 3m− 3 flexible vertices. By Lemma 4.2, T has at most 3m−1

maximum dissociation sets. And the upper bound is achieved only if T contains one static-

excluded vertex and m− 1 critical 3-paths. By Theorem 3.6, all critical 3-paths are adjacent to

the static-excluded vertex. Thus, the upper bound is achieved only if T is a tree in the families

pictured in Figure 10. On the other hand, it can easily be seen that there are 3m−1 maximum

dissociation sets in a tree in the families pictured in Figure 10. Thus, the upper bound can be

achieved by these families of trees.

Subcase 1.3. |AT | ≥ 5.

It follows that there are at most 3m−4 flexible vertices in T . By Lemma 4.2, in this subcase

T has at most 2 · 3m−2 maximum dissociation sets.

Case 2. NT = ∅.

We first show that |AT | ≥ 2. Suppose, for a contradiction, that |AT | ≤ 1. By Theorem

3.6(2), there is no insulated α3-critical edge in T . Thus, AT = ∅. Now, every vertex in T is a

vertex of a critical 3-path. This contradicts the fact that the number of vertices of T is 3m + 2.

Hence, |AT | ≥ 2.

Subcase 2.1. |AT | = 2.

Let AT = {u1, u2}. By Theorem 3.6, in this subcase there is exactly one insulated α3-critical

edge, say v1v2, in T . Let U = {u1, u2, v1, v2}. Every vertex in V (T ) \ U is a vertex of a critical

3-path. This leads to a contradiction because the number of vertices of V (T ) \ U is 3m− 2. It

follows that this subcase is impossible to happen.

Subcase 2.2. |AT | = 3.

Let AT = {u1, u2, u3}. By Theorem 3.6, in this subcase there are exactly two insulated

α3-critical edges, say v1v2 and v3v4, in T . Let U = {u1, u2, u3, v1, v2, v3, v4}. Every vertex in

V (T ) \ U is a vertex of a critical 3-path. This leads to a contradiction because the number of
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vertices of V (T ) \ U is 3m− 5. It follows that this subcase is also impossible to happen.

Subcase 2.3. |AT | = 4.

When m = 1, this subcase is impossible to happen. When m = 2, T has 8 vertices and is

isomorphic to LT8. On the other hand, LT8 has 3(= 3m−1) maximum dissociation sets. Thus,

when m = 2, the upper bound can be achieved by the special tree LT8.

When m > 2, there are at least two insulated α3-critical edges and at most m − 2 critical

3-paths. Moreover, T must contain a subgraph that is isomorphic to a tree in the family H

pictured in Figure 11. Since any tree in the family H has at most 4 maximum dissociation sets,

T has at most 4 · 22−1 · 3(m−2)−1 maximum dissociation sets. It follows that in this subcase T

has at most 8 · 3m−3 maximum dissociation sets.

v1 v2

v3 v4s s
s s

α3-critical edges

non α3-critical edges

H

Fig. 11. The family H .

Subcase 2.4. |AT | ≥ 5.

In this subcase, there are at most 3m − 3 flexible vertices and at least three insulated α3-

critical edges in T . By Lemma 4.2, T has at most 23 · 3m−3 maximum dissociation sets.

Consequently, we infer that a tree on 3m+2 vertices has at most 3m−1 maximum dissociation

sets. When m = 2, the upper bound is achieved only in Subcase 1.2 and 2.3 and only on LT8

and the families of trees pictured in Figure 10. When m 6= 2, the upper bound is achieved only

in Subcase 1.2 and only on the families of trees pictured in Figure 10.

Theorem 4.5. Let m be a positive integer and T a tree on 3m vertices. Then T has at most

3m−1 + m + 1 maximum dissociation sets. This bound is best possible. The bound is achieved

only on the family of trees S∗

P3,T1,...,Tm−1
where Ti

∼= P4, (1 ≤ i ≤ m− 1) (see Figure 12).
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Fig. 12. Trees on 3m vertices with the most maximum dissociation sets.
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Proof. We proceed to prove this theorem and distinguish the following two cases.

Case 1. NT 6= ∅.

By Theorem 3.8, |AT | ≥ 3. It follows that there are at most 3m − 4 flexible vertices in T .

By Lemma 4.2, in this case T has at most 2 · 3m−2 maximum dissociation sets.

Case 2. NT = ∅.

We distinguish the following three subcases.

Subcase 2.1. AT = ∅.

By Theorem 3.6, there is no insulated α3-critical edge. Thus, T contains exactly m critical

3-paths.

If a tree T is in the family S∗

P3,T1,...,Tm−1
, where Ti

∼= P4(1 ≤ i ≤ m− 1) (see Figure 12), then

T has exactly m critical 3-paths and 3m−1 +m+ 1 maximum dissociation sets. Thus the upper

bound is achieved by this family of trees pictured in Figure 12. Now we show that the upper

bound is achieved only on this family in this subcase.

Claim 1. Let T be a tree with 3m vertices and m critical 3-paths. If T has the most maximum

dissociation sets, then T does not contain a subgraph that is isomorphic to a tree in the family

H1, or to a tree in the family H2. The two families of trees H1 and H2 are pictured in Figure

13.

(H2)

s s s
(H1)

α3-critical edges non α3-critical edges

s ss
s

Fig. 13. The families H1 and H2.

Proof of Claim 1. A tree in the family H1 or H2 has at most 10 maximum dissociation sets.

When m = 3, 10 < 3m−1 + m + 1 and any tree in the family H1 or H2 is not the tree with the

most maximum dissociation sets.

Consider the case when m > 3. Suppose, for a contradiction, that T contains a subgraph R

that is isomorphic to a tree in the family H1, or to a tree in the family H2. Because m > 3, the

subgraph R is adjacent to another critical 3-path of T . The larger subgraph that contains four

critical 3-paths is denoted by Q. By simple calculation, Q has at most 24 maximum dissociation

sets. Thus, T has at most 24 · 3m−4 maximum dissociation sets. This leads to a contradiction

since 24 · 3m−4 < 3m−1 + m + 1. The proof is complete.

Claim 2. Let T be a tree with 3m vertices and m critical 3-paths. If T is a tree with the most
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maximum dissociation sets, then there are not four critical 3-paths P1, P2, P3 and P4 such that

Pi is adjacent to Pi+1 for each 1 ≤ i ≤ 3, in other words, T does not contain a subgraph that is

isomorphic to a tree in the family H pictured in Figure 14.

P1 P2 P3 P4

H

Fig. 14. The family H .

Proof of Claim 2. A tree in the family H pictured in Figure 14 has at most 28 maximum

dissociation sets. When m = 4, since 28 < 3m−1 + m + 1, any tree in the family H is not the

tree with the most maximum dissociation sets.

Consider the case when m > 4. Suppose, for a contradiction, that T contains a subgraph R

that is isomorphic to a tree in the families H. As m > 4, the subgraph R is adjacent to another

critical 3-path of T . The larger subgraph that contains five critical 3-paths is denoted by Q.

By calculation, Q has at most 68 maximum dissociation sets. Thus, T has at most 68 · 3m−5

maximum dissociation sets. This leads to a contradiction since 68 · 3m−5 < 3m−1 + m + 1. The

proof is complete.

By Claim 2, there exists a critical 3-path P in T such that every other critical 3-path is

adjacent to the path P . By Claim 1, all other critical 3-paths are adjacent to a common vertex

of the path P . Furthermore, if T is not isomorphic to a tree in the family pictured in Figure 12,

then T has at most 3m−1 + m maximum dissociation sets by simple calculations.

Now we have proved that in this subcase the upper bound is achieved only on the family of

trees pictured in Figure 12.

Subcase 2.2. |AT | = 2.

By Theorem 3.6, in this subcase there is exactly one insulated α3-critical edge in T . Thus,

each of the remaining vertices is a vertex of a critical 3-path. This contradicts the fact that the

number of the remaining vertices is 3m−4. It follows that this subcase is impossible to happen.

Subcase 2.3. |AT | ≥ 3.

There are at most 3m − 3 flexible vertices in T in this subcase. By Lemma 4.2, T has at

most 3m−1 maximum dissociation sets.

Consequently, we infer that a tree T on 3m vertices has at most 3m−1 + m + 1 maximum

dissociation sets. The upper bound is achieved only in Subcase 2.1 and only on the family of

trees pictured in Figure 12.
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