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Abstract

Yang et al. proved that every 3-connected, essentially 11-connected
line graph is Hamilton-connected. This was extended by Li and Yang to
3-connected, essentially 10-connected graphs. Strengthening their result
further, we prove that 3-connected, essentially 9-connected line graphs are
Hamilton-connected. We use a method based on quasigraphs in combi-
nation with the discharging technique. The result extends to claw-free
graphs.

1 Introduction

A conjecture of Thomassen [13] states that every 4-connected line graph is hamil-
tonian. Motivated by this conjecture, Lai et al. [4] studied the hamiltonicity of
line graphs in relation to their essential connectivity (the definition is recalled
later in this section). They proved the following result:

Theorem 1. Every 3-connected, essentially 11-connected line graph is hamilto-
nian.

In fact, Yang et al. [14] prove that under the assumption of Theorem 1, the
graph is Hamilton-connected, i.e., any pair of its vertices is joined by a Hamilton
path. The result was recently improved by Li and Yang [7] who showed that
3-connected, essentially 10-connected graphs are Hamilton-connected.

This partially answered a question of Lai et al. [4] whether the constant in
Theorem 1 can be replaced by a smaller one. They note that the least possible
value is 4, which is improved to 5 in [15]. We add that there are 3-connected,
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(a) (b)

Figure 1: (a) A graph used to construct a 3-connected, essentially 4-edge-
connected line graph without a Hamilton path. (b) A graph G such that L(G) is
2-connected and essentially k-connected (for k = 9) and has no Hamilton path.

essentially 4-connected line graphs that do not even have a Hamilton path, such
as the line graph of a graph obtained by adding one pendant edge to each vertex
of the graph in Figure 1a.

Regarding the assumption of 3-connectedness in Theorem 1, we remark that
there are 2-connected line graphs of arbitrary essential connectivity that do not
have any Hamilton path. A class of examples can be constructed by replacing
each edge of the complete graph on 4 vertices by an odd number of internally
disjoint paths of length 3, as shown in Figure 1b.

The main result of the present paper is a further strengthening of Theorem 1
as follows:

Theorem 2. Every 3-connected, essentially 9-connected line graph is Hamilton-
connected.

Our approach uses a strengthening of the main result of [2], proved in a
companion paper [3]. In particular, we use a reduction to hypergraphs, which
is described in Section 2. Preliminaries on the Hamilton connectivity of line
graphs (and the implications on the hypergraph side of the problem) are given
in Section 3.

Section 4 describes quasigraphs, another crucial component of the approach
of [2, 3], and states the main technical tool of this paper, Theorem 13 proved
in [3]. A counting argument based on the outcome of Theorem 13 is given in
Section 5.

Section 6 is essentially a study of small configurations in the hypergraph
corresponding to a graph satisfying the hypothesis of Theorem 2. It prepares the
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way for the application of a discharging argument in Section 7. The final section is
devoted to an extension of the result to claw-free graphs and concluding remarks.

In the remainder of this section, we recall the necessary terminology and
notation. For graph-theoretical concepts not explained here, see, for example,
Diestel [1]. Unless otherwise noted, all graphs in this paper are loopless and
may contain parallel edges. When speaking of a line graph of a graph G, it is
understood that G may contain parallel edges (i.e., G may be a multigraph), but
L(G) is by definition a simple graph.

Let G be a graph. We write V (G) and E(G) for the set of vertices and the
set of edges of G, respectively. For i ≥ 0, Vi(G) is the set of vertices of degree i
in G.

A vertex-cut or edge-cut X is called essential if G − X has at least two
components which are nontrivial (i.e., contain more than one vertex). The graph
G is essentially k-connected if it has more than k vertices and contains no essential
vertex-cut of size less than k. Similarly, G is essentially k-edge-connected if it
contains no essential edge-cut of size less than k. It is not hard to see that L(G)
is k-connected if and only if G is essentially k-edge-connected and |E(G)| > k.

We extend the above definitions as follows. An edge-cut X in a graph G is r-
essential (r ≥ 0) if there at least two components of G−C, each of which contains
at least r edges. The graph G is r-essentially k-edge-connected (k ≥ 1) if it has
no r-essential edge-cuts of size less than k. Thus, ‘0-essentially k-edge-connected’
is the same as ‘k-edge-connected’, while ‘1-essentially k-edge-connected’ is the
same as ‘essentially k-edge-connected’.

We note the following easy observation:

Observation 3. The line graph L(G) of a graph G is essentially k-connected if
and only if G is 2-essentially k-edge-connected and |E(G)| > k.

The length of a path is the number of its edges. The degree of a vertex v in
a graph G is denoted by dG(v). Given a set of vertices X ⊆ V (G), we let ∂G(X)
denote the set of edges of G with exactly one endvertex in X. Furthermore, we
extend the notation for the degree of a vertex and set dG(X) = |∂G(X)|.

Besides graphs, we will also consider 3-hypergraphs, that is, hypergraphs with
all hyperedges of size 2 or 3 (called 2-hyperedges or 3-hyperedges accordingly).
For a hypergraph H, V (H) and E(H) denote its vertex set and its hyperedge set,
respectively. The symbol Vi(H) denotes the set of vertices of degree i (i ≥ 0). In
addition, for i ∈ {2, 3}, we let Ei(H) denote the set of i-hyperedges of H. We
define a graph G(H) whose vertex set is V (H)∪E3(H), with vertices u, v joined
by an edge if either u, v are neighbours in H, or v ∈ E3(H) and u is a vertex
contained in v.

For X ⊆ V (H), we let ∂H(X) be the set of hyperedges of H intersecting X
but not contained in it, and define dH(X) = |∂H(X)| as in the graph case.

If e is a hyperedge of H and v is a vertex contained in e, then the detachment
of e from v is the operation which removes e from H and, in case |e| = 3, replaces
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it with e− {v}.

2 Reduction to hypergraphs

From this point on, let G be a graph whose line graph satisfies the hypothesis
of Theorem 2. By Observation 3 and the preceding discussion, G is essentially
3-edge-connected and 2-essentially 9-edge-connected.

We begin by transforming G to a graph G0 called the core of G. Recall that
the suppression of a vertex v of degree 2 is the contraction of one of its incident
edges (discarding any loop that may result). The graph G0 is obtained from
G− V1(G) by suppressing all the vertices of degree 2. By our assumption that G
is essentially 3-edge-connected, G− V1(G) has minimum degree at least 2 unless
G is a star. (Note also that that V2(G − V1(G)) = V2(G).) Clearly, either G0 is
trivial (i.e., it has only one vertex), or G0 has minimum degree at least 3. This
observation is strengthened in Lemma 5 below.

Given a set X ⊂ V (G0), we define X? as the union of X with the set of
vertices y ∈ V (G)− V (G0) such that NG(y) ⊆ X.

Observation 4. For any X ⊆ V (G0), it holds that dG0(X) = dG(X?). Fur-
thermore, if ∂G0(X) is an r-essential edge-cut in G0 (r ≥ 0), then ∂G(X?) is an
r-essential edge-cut in G.

Lemma 5. If L(G) is 3-connected and essentially 9-connected, then G0 has the
following properties:

(i) G0 is 3-edge-connected,

(ii) G0 is essentially 4-edge-connected,

(iii) G0 is 2-essentially 9-edge-connected.

Proof. Part (i) was proved by Shao [10] (see [4, Lemma 2.2(i)]). Part (iii) of the
lemma follows from Observation 4. We prove part (ii). For contradiction, let F
be an essential edge-cut in G0 of size at most 3. Let K and L be two components
of G0 − F containing at least one edge each. Since F is not 2-essential, one of
them (say, K) contains exactly one edge. The assumption that |F | ≤ 3 implies
that one of the two vertices of K has degree at most 2, a contradiction with part
(i).

The vertices of G which are not vertices of G0 are called transient. A vertex
v of G0 with dG0(v) = 3 is said to be protected if it is adjacent in G to a transient
vertex.

We now turn G0 into a 3-hypergraph H0. Let W3 be the set of vertices of
degree 3 inG0, and letW×

3 be the subset ofW3 consisting of the protected vertices.
We choose a maximal independent subset W of W3 −W×

3 . The 3-hypergraph
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{x, y}+
x y

(c)

Figure 2: The transformation of G0 to H0. (a) Part of the graph G0 with vertices
in W filled white. (b) The corresponding part of H0, where the three incident
lines without a common vertex mark represent a 3-hyperedge. (c) The set {x, y}+
includes all of the vertices of W shown in the picture.

H0 is constructed from G0 −W by adding, for each w ∈ W , a hyperedge h(w)
consisting of the neighbours of w in G0 provided that there are at least two such
neighbours; if there are exactly two, then |h(w)| = 2. The procedure is illustrated
in Figure 2. In all the figures in this paper, a 3-hyperedge is represented by three
lines meeting at a point which is not marked as a vertex.

The vertices in W are called temporary, the other vertices of G0 permanent.
Thus, the set of permanent vertices is the vertex set of H0. Note that all protected
vertices are permanent.

Lemma 6. Every edge of G has a permanent endvertex.

Proof. Assume that an edge e of G has endvertices u and v, and that u is not
permanent. If u is transient, then v is protected and hence permanent. Other-
wise, u is temporary, in which case v is neither transient (as this would make u
permanent) nor temporary (since temporary vertices form an independent set).
Hence, v is permanent.

Similarly to the set X? above, we introduce a set Y + ⊆ V (G0), where Y ⊆
V (H0). The definition is illustrated in Figure 2c. The set Y + is defined as
the union of Y with the set of all the vertices w ∈ W such that in G0, w is
incident with at least two edges to Y (possibly parallel). As in Observation 4, we
have dH0(Y ) = dG0(Y +). Since G0 is 3-edge-connected, we obtain the following
observation:

Observation 7. The hypergraph H0 is 3-edge-connected.
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A more detailed study of the properties of H0 is undertaken in Section 6. The
results will be used in the design of a discharging procedure in Section 7.

We add one more definition. To each edge e of G, we want to assign a
hyperedge k(e) of H0 which ‘corresponds’ to e in H0. First, let us define a value
k1(e) which is either an edge of G0, or the empty set:

k1(e) =


∅ if e is incident with V1(G),

e′ if e is incident with a transient vertex z /∈ V1(G)

and e′ is obtained by suppressing z,

e otherwise.

Observe that k1(e) is well-defined, because the assumption that G is essentially
3-edge-connected implies that V1(G) ∪ V2(G− V1(G)) is an independent set.

Next, we associate a hyperedge k2(f) of H0 with each edge f of G0. In the
definition, we allow f or k2(f) to be the empty set.

k2(f) =


∅ if f = ∅,
h(w) if f is incident with a temporary vertex w,

f otherwise.

Finally, for an edge e of G, we define

k(e) = k2(k1(e)).

3 Hamilton connectivity of line graphs

For the cases where the core G0 is small, we will be able to verify Theorem 2
directly using the following result [5, Lemma 3.3]:

Lemma 8. If L(G) is 3-connected and G0 contains two edge-disjoint spanning
trees, then L(G) is Hamilton-connected.

Lemma 8 will be used in conjunction with the characterization of graphs with
two disjoint spanning trees, which follows from a more general result of Tutte [11]
and Nash-Williams [8]:

Theorem 9 (Tutte and Nash-Williams). The graph G0 has two edge-disjoint
spanning trees if and only if for every partition P of V (G0), the number of edges
of V (G0) with endvertices in different classes of P is at least 2(|P| − 1).

Using Lemma 8 and Theorem 9, we obtain the following:

Lemma 10. If G0 has at most 5 vertices, then L(G) is Hamilton-connected.
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Proof. We use Theorem 9 to show that G0 admits two edge-disjoint spanning
trees. Let P be a partition of V (G0) and let F be the set of edges with endvertices
in different classes of P. By Lemma 5(i), G0 is 3-edge-connected and thus |F | ≥
3 |P| /2. Since |P| ≤ 5, we have d3 |P| /2e ≥ 2(|P| − 1). The lemma follows from
Theorem 9 and Lemma 8.

For the purposes of this paper, Lemma 10 enables us to restrict ourselves to
the case that G0 has at least 6 vertices.

We recall a well-known necessary and sufficient condition for the line graph
L(G) to be Hamilton-connected. Let e1, e2 be edges of G. A trail T in G is an
(e1, e2)-trail if its first edge is e1 and its last edge is e2. The trail T is internally
dominating if every edge of G is incident with an internal vertex of T . Similarly, T
is internally spanning if every vertex of G appears as an internal vertex of T . The
following is a folklore analogue of Harary and Nash-Williams’ characterization of
hamiltonian line graphs (cf. [6, Theorem 1.5]).

Theorem 11. Let G be a graph with at least 3 edges. Then L(G) is Hamilton-
connected if and only if for every pair of edges e1, e2 ∈ E(G), G has an internally
dominating (e1, e2)-trail.

We will infer the existence of internally dominating trails in G using hyper-
graphs obtained by a small modification of H0 (the 3-hypergraph associated with
G as in Section 2). First, we define a 3-hypergraph He and a pair of vertices
a1, a2 of He. The edges ei and the vertices ai (i = 1, 2) will be considered fixed
throughout the paper.

For i = 1, 2, let ai be a permanent vertex of ei (which exists by Lemma 6). If
possible, we choose a1 and a2 so as to be distinct. The hypergraph He is obtained
from H0 by detaching k(e1) from a1 and, subsequently, detaching k(e2) from a2.
We also define Ge as the graph G(He) corresponding to He. Note that every
permanent vertex of G is a vertex of Ge.

We say that a trail T in a graph G′ spans a set X ⊆ V (G′) if X ⊆ V (T ).
If the first and last vertices of T are a and b, respectively, we say that T is an
ab-trail. The case a = b is allowed in this definition.

The following lemma provides a bridge between spanning a1a2-trails in G(He)
and internally dominating (e1, e2)-trails in G:

Lemma 12. If Ge admits an a1a2-trail spanning V (He), then G contains an
internally dominating (e1, e2)-trail.

Proof. Let T e be an a1a2-trail in Ge spanning V (He). Let T be the corresponding
a1a2-trail in G (that is, whenever T e uses an edge f obtained by suppressing a
vertex w, T uses the two edges incident with w). Since ai is an endvertex of
ei (i = 1, 2), we can construct an (e1, e2)-trail T ′ in G by prepending e1 and
appending e2 to T . Since T spans all permanent vertices and every edge of G has
a permanent endvertex, T ′ is internally dominating.
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In view of Lemma 12, proving Theorem 2 reduces to finding an a1a2-trail span-
ning V (He) in Ge for each choice of e1, e2. A basic tool for this is Proposition 14
in Section 4.

4 Quasigraphs

Our proof relies on a strengthening of the so-called Skeletal Lemma [2, Lemma
17]. The required stronger version is proved in [3]. The formulation and proof of
this result use the language and some theory of quasigraphs; in this section, we
recall just the bare minimum allowing us to state Theorem 13.

Recall that a 3-hypergraph is a hypergraph whose edges have size 2 or 3. Let
H be a 3-hypergraph.

A quasigraph in H is a mapping π that assigns to each hyperedge e of H
either a subset of e of size 2, or the empty set. The hyperedges e with π(e) 6= ∅
are said to be used by π.

Let π be a quasigraph in H. We let π∗ denote the graph on V (H), obtained
by considering the pairs π(e) (e ∈ E(H)) as edges whenever π(e) 6= ∅. If π∗ is
a forest, then π is said to be acyclic. If π∗ is the union of a circuit and a set
of isolated vertices, then π is a quasicycle. The hypergraph H is acyclic if there
exists no quasicycle in H.

Let X ⊆ V (H). We say that the quasigraph π is connected on X if the
induced subgraph of π∗ on X is connected. A somewhat more involved notion
is anticonnectedness: we say that π is anticonnected on X if for each nontrivial
partition R of X, there is a hyperedge f such that f intersects at least two classes
of R and π(f) is contained in one of them.

Let P be a partition of V (H). If e ∈ E(H), then e/P is defined as the set of all
classes of P intersected by e. If there is more than one such class, then e is said to
be P-crossing. The hypergraph H/P has vertex set P and its hyperedges are all
the sets of the form e/P, where e is a P-crossing hyperedge of H. A quasigraph
π/P in this hypergraph is defined by setting, for every P-crossing hyperedge e of
H,

(π/P)(e/P) =

{
π(e)/P if π(e) is P-crossing,

∅ otherwise.

The complement π of π is the subhypergraph of H (on the same vertex set)
consisting of the hyperedges not used by π.

A partition π of V (H) is π-skeletal if both of the following conditions hold:

(1) for each X ∈ P, π is both connected on X and anticonnected on X,

(2) the complement of π/P in H/P is acyclic.
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Figure 3: A bad leaf u.

For our purposes, the version of the Skeletal Lemma stated below in Theo-
rem 13 needs to take care of a particular configuration we call ‘bad leaf’ since it
presents a problem in our computations. Let us describe this configuration.

Recall that π is a quasigraph in a 3-hypergraph H. Assume now that π is
acyclic. In each component of the graph π∗, we choose an arbitrary root and
orient all the edges of π∗ toward the root. A hyperedge e of H is associated with
a vertex u if it is used by π and u is the tail of π(e) in the resulting oriented
graph. Thus, every vertex has at most one associated hyperedge, and conversely,
each hyperedge is associated with at most one vertex.

A vertex u of H is a bad leaf for π (and the given choice of the roots of the
components of π∗) if all of the following hold:

(i) u is a leaf of π∗,

(ii) u is incident with exactly three hyperedges, exactly one of which has size
3 (say, e), and

(iii) e is associated with u.

Bad leaves can be eliminated at the cost of performing certain local modifi-
cations in the hypergraph. More precisely, if u is a vertex of the 3-hypergraph
H incident with exactly two hyperedges of size 2 and exactly one hyperedge of
size 3, then a switch at u is the operation depicted in Figure 4. (We remark
that in [3], the switch operation acts on quasigraphs in H as well, but this is not
necessary for our purposes.)

We say that a 3-hypergraph H̃ is related to H if it can be obtained from H by
a finite sequence of switches at suitable vertices. Note that, in this case, G(H̃) is
isomorphic to G(H).

We can now finally state the main technical result mentioned above, a strength-
ening of the Skeletal Lemma proved in [3]:

Theorem 13. Let H be a 3-hypergraph. There exists a hypergraph H̃ related to
H and an acyclic quasigraph σ in H̃ such that σ has no bad leaves (for any choice
of the roots of the components of σ∗) and V (H̃) admits a σ-skeletal partition S.

Theorem 13 will be used in conjunction with the following result, implied by
a special case of Lemma 28 in [2]:
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u

(a)

u

(b)

Figure 4: (a) A 3-hypergraph H with a vertex u suitable for a switch. (b) The
hyperedges incident with u in the 3-hypergraph resulting from the switch. The
other hyperedges are not modified.

Proposition 14. Let H be a 3-hypergraph and b1, b2 vertices of H. If H admits
an acyclic quasigraph that is both connected and anticonnected on V (H), then the
graph G(H) contains a b1b2-trail spanning V (H).

Proposition 14 will be useful in Section 8, where we infer that the assumption
of the proposition is satisfied, which will enable us to apply Lemma 12.

5 Counting the hyperedges

Recall that G is a graph satisfying the assumptions of Theorem 2, and that H0

is a 3-hypergraph associated with the core G0 of G. Additionally, e1, e2 are fixed
edges of G, a1, a2 are their permanent endvertices, and He is a modification of
H0 defined in Section 3.

By Theorem 13, there is a 3-hypergraph H̃ related to He and an acyclic
quasigraph σ in H̃ with no bad leaves such that V (H̃) admits a σ-skeletal partition
S. Our ultimate use of σ is to find a connected X(e1, e2)-join in the graph G(He)
to be used in Lemma 12. Since G(H̃) is isomorphic to G(He) if H̃ and He are
related, we may assume without loss of generality that H̃ = He.

As we will see in Section 8, the proof of Theorem 2 is simple in the case that
|S| = 1. In the following calculations, we therefore assume S ≥ 2.

Recall that for a 3-hypergraph H, an edge e of H and a partition P of V (H),
the notation e/P and H/P has been defined in Section 4.

Let us write d0(P ) for the degree of a vertex P ∈ S in the hypergraph H0/S.
We proceed as in Section 8 of [2]. We set τ = σ/S. Let n = |S| and let

m denote the number of hyperedges of He/S. For k ∈ {2, 3}, let mk be the
number of k-hyperedges of He/S used by σ, and let mk denote the number of
k-hyperedges of τ . Since S is σ-solid, the graph τ ∗ is acyclic. It has n vertices
and m2 +m3 edges, and hence

m2 +m3 ≤ n− 1. (1)

Similarly, the complement τ is an acyclic hypergraph. Consider the graph G(τ),
defined in Section 1. Since τ is acyclic, so is G(τ). As G(τ) has n + m3 vertices
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and m2 + 3m3 edges, we get

m2 + 2m3 ≤ n− 1. (2)

Moreover, by the assumption, either τ ∗ or G(τ) is disconnected and therefore it
has at most n− 2 edges. Adding (1) to (2) and using this fact, we find

m ≤ 2n− 3−m3. (3)

For any hypergraph H, let s(H) be the sum of vertex degrees in H. Let us
set

ε = s(H0/S)− s(He/S)

and observe that by the definition of the hypergraph He, ε ≤ 4. Furthermore,
we have

s(He/S) = 2(m2 +m2) + 3(m3 +m3) = 2m+ (m3 +m3)

≤ 4n− 6 +m3 −m3,

where the last inequality follows by using (3) to substitute for m. Substituting
s(H0/S)− ε for s(He/S), we obtain

s(H0/S) ≤ 4n− 6 + (m3 −m3) + ε. (4)

The quasigraph τ in He/S determines an (acyclic) quasigraph τ 0 in H0/S
in a natural way. Let m0

3 be the number of 3-hyperedges of H0/S used by τ 0

and observe that m0
3 ≥ m3. Furthermore, let m̃0

i (i ∈ {2, 3}) be the number of
i-hyperedges of H0/S, whether used by τ 0 or not.

Inequality (4) has two corollaries. Firstly, using the fact that ε ≤ 4 and
m0

3 ≥ m3, and ignoring the m3 term, we find∑
P∈V (H0/S)

(d0(P )− 4)−m0
3 ≤ −2. (5)

For the second corollary, note that since s(H0/S) = 2m̃0
2+3m̃0

3 and m3−m3 ≤
m̃0

3, (4) implies

m̃0
2 + m̃0

3 ≤ 2n− 3 +
ε

2
. (6)

For later use, we record an observation concerning classes X of S such that
|X+| ≥ 1; let us call such classes nontrivial.

Observation 15. If X is a nontrivial class of S, then G0[X+] is not a matching.

Proof. Suppose that X ∈ S is nontrivial. We prove that G0[X+] has at least
two incident edges. If |X| > 1, then this follows from the fact that σ is both
connected and anticonnected on X by the choice of S. On the other hand, if
|X| = 1, then some vertex of X+ − X is incident with at least two edges to X
and the assertion also holds.
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6 Structural observations

We continue to use the notation and assumptions of Section 5. The objective of
this and the following section is to rule out most cases in the proof of Theorem 2
by establishing the following:

Proposition 16. If G0 has at least 6 vertices, then the partition S has at most
4 classes.

For the sake of a contradiction, let us assume that |S| ≥ 5. We now prove
several claims concerning the structure of the hypergraph H0/S in this case.

Lemma 17. Suppose that G0 has at least 6 vertices. Then the following hold:

(i) G0 contains no path of length 2 with two vertices of degree 3 and one
vertex of degree at most 4,

(ii) no permanent vertex of degree 3 in G0 is adjacent to a permanent vertex
of degree at most 4.

Proof. (i) We prove that if x1x2x3 is a path in G0, then
∑3

i=1 dG0(xi) ≥ 11.
Suppose the contrary. Define X = {x1, x2, x3}. Then dG0(X) ≤ 6. Since G0 −X
must be a matching on at least 3 vertices, and G0 has minimum degree at least
3, we have dG0(X) ≥ 7. This is a contradiction.

(ii) Let x, y be permanent vertices of G0 such that dG0(x) = 3 and dG0(y) ≤ 4.
By part (i), the vertex x has no temporary neighbour. Therefore, x must have a
transient neighbour in G. Since G is 2-essentially 9-edge-connected, G0 − {x, y}
must be a matching and we obtain a similar contradiction as in the proof of
(i).

Lemma 18. Let P,Q be neighbouring vertices of the hypergraph H0/S. If |S| ≥ 5
and G0 has at least 6 vertices, then the following holds:

(i) if dH0/S(P ) = 3, then dH0/S(Q) ≥ 7,

(ii) if dH0/S(P ) = 4 and P is incident with a 3-hyperedge of H0/S, then
dH0/S(Q) ≥ 6.

Proof. We prove (i). Since G0 is essentially 4-edge-connected, the class P is
trivial by Observation 15; say, P = {u}. Being a permanent vertex of degree 3
in G0, the vertex u is either protected, or adjacent to a temporary vertex.

We set

X =

{
(P ∪Q)+ ∪ {z} if u is adjacent to a temporary vertex z,

(P ∪Q)+ otherwise.

12



P Q

(a)

(b) (c)

Figure 5: Forbidden configurations in H0/S. Figure (a) illustrates part (i) of
Lemma 18, (b) and (c) relate to part (ii). The gray regions represent the classes
P and Q of S, dashed lines represent optional hyperedges. The dotted line in
figure (a) means that the hyperedge can be of size 2 or 3.

Suppose that u is adjacent to a temporary vertex z. By Lemma 17(i), u is
not adjacent to any other temporary vertex, which implies

dG0(X) ≤ 8. (7)

Since G0[X] is not a matching, G0−X must be a matching as G0 is 2-essentially
9-edge-connected.

A similar argument shows that G0 − X is a matching just as well if u is
protected. In particular, in either case, no temporary vertex of G0 has two
neighbours outside X.

Enumerate the classes of S other than P and Q as Y1, . . . , Yk. By Observa-
tion 15, each Yi is a trivial class, say Yi = {yi}.

Since k ≥ 3 and dG0(yi) ≥ 3 for 1 ≤ i ≤ k, inequality (7) implies that
G0 contains an edge joining two of the vertices yi — say, y1 and y2. Since
dG0({y2, . . . , yk}) ≥ 3, we have dG0({y1, y2}) ≤ 5, so without loss of generality,
dG0(y1) = 3 and dG0(y2) ≤ 4. This is a contradiction with Lemma 17(ii).

Part (ii) can be proved using a minor modification of the above argument,
which we leave to the reader.

7 Discharging

We continue the discussion of Section 6 by using a discharging-type argument
to prove Proposition 16. The discharging process takes place in the hypergraph
H0/S. Recall our hypothesis that the partition S has at least 5 classes.

In Section 5, we defined τ 0 as the quasigraph in H0/S corresponding to the
quasigraph τ = σ/S in He/S. The notion of a hyperedge associated with a vertex
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Figure 6: The rules for the redistribution of charge. Thick lines represent the
quasigraph τ 0, with the association of a hyperedge to a vertex shown by thick
arrows. Gray arrows indicate the flow of the stated amount of charge. The degree
of P is not represented.

will be carried over from He to H0/S: by definition, a hyperedge e/S of H0/S is
associated with P ∈ S if the corresponding hyperedge of He is associated with a
vertex of He contained in P . Note that the definition makes sense thanks to the
fact that σ[P ] is a quasitree (and hence σ[P ]∗ is connected).

We write Vi = Vi(H
0/S). Furthermore, V 4i denotes the subset of Vi consisting

of vertices which have an associated 3-hyperedge and V 4 is the union of all V 4i .
Given a vertex P of H0/S, the symbol N∗(P ) denotes the multiset consisting of
vertices Q such that P and Q are contained in a hyperedge of H0/S, with one
occurrence of Q for each such hyperedge.

We begin by assigning charges to the vertices and hyperedges of H0/S, guided
by inequality (5):

• each vertex P will get a charge of d0(P )− 4 units,

• a 3-hyperedge of H0/S will get a charge of −1 if it is used by τ 0 and a zero
charge otherwise,

• 2-hyperedges of H0/S get zero charge.

By (5), the total charge is negative. At the same time, the only elements of H0/S
with negative charge are 3-vertices and 3-hyperedges used by τ 0.

As usual in discharging arguments, we will describe rules for the redistribu-
tion of charge which keep the total charge unchanged and (given the assumptions
about the graph G) make all the individual charges non-negative. This contra-
diction will show that σ is actually a quasitree with connected complement.

Charge will only be sent by vertices, the recipient may be either a vertex or
a hyperedge. Let P be a vertex of H0/S (that is, P ∈ S). The rules (more than
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one of which may apply) are in the following list. See Figure 6 for a schematic
representation.

(D1) if P ∈ V 4, then P sends its associated hyperedge 1 unit of charge,

(D2) if P has an associated 2-hyperedge whose head is a degree 3 vertex Q,
then P sends 1 unit of charge to Q,

(D3) if P has a neighbour Q in V 44 , then P sends Q a charge of 1/5 for each
common hyperedge,

(D4) if P has a degree 3 neighbour Q, then P sends Q a charge of 1/3 for each
common hyperedge which is not associated with P .

We claim that after the redistribution of charge, all vertices and hyperedges
of H0/S will have nonnegative charge. This is clear for 2-hyperedges and for 3-
hyperedges not used by τ 0. Furthermore, each 3-hyperedge used by τ 0 will obtain
1 unit of charge by rule (D1), making the resulting charge zero.

Let us therefore investigate the ways a vertex P may be discharged. Suppose
first that the degree d0(P ) of P is at least 7. Since at most one unit of charge is
transferred from P based on rules (D1) and (D2), the total transfer from P is at
most

1 + (d0(P )− 1) · 1

3
≤ d0(P )− 4,

where the inequality follows from the assumption that d0(P ) ≥ 7. Since the right
hand side is the original charge of the vertex, the resulting charge is nonnegative.

We may thus assume that d0(P ) ≤ 6. By Lemma 18(i), no neighbour P ′ of P
in H0/S has d0(P ′) = 3. Suppose that d0(P ) = 6. If P is discharged according
to rule (D1) or (D2), then rule (D4) does not apply to P , and the transfer from
P is at most 1 + 5 · 1/5 = 2, the initial charge of P . On the other hand, if none
of (D1) and (D2) apply, then P sends at most 6 · 1/3 = 2 units of charge as well.

If d0(v) = 5, then P has no neighbour in V 44 (Lemma 18(ii)), which rules out
the use of (D3) for the discharging of P . Furthermore, the applicability of (D1),
(D2) and (D4) is mutually exclusive. This means that P only sends at most a
charge of 1 unit, which equals its initial charge.

We are left with the case that d0(P ) ≤ 4. Suppose that d0(P ) = 4 (so its
initial charge is zero). Lemma 18 implies that no neighbour of P in H0/S is
contained in V3 ∪ V 44 . Thus, if P sends any charge at all, it must be according
to rule (D1). In this case, P ∈ V 44 and according to rule (D3), P receives a
charge of 1/5 from each of the five vertices in N∗(P ), so its resulting charge is
−1 + 5 · 1/5 = 0.

It remains to consider the case that d0(P ) = 3. By Lemma 5(ii), P contains
a single vertex v of H0. By the property (Q2) of σ, v is not a leaf of σ∗ in He,
and therefore P is not a leaf of (τ 0)∗ in H0/S. Let e be an edge of (τ 0)∗ with P
as its head, and let the tail of e be denoted by t.
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Similarly to the discussion in the preceding cases, P is not discharged accord-
ing to any of the rules (D2), (D3) or (D4). We distinguish two cases.

If P /∈ V 43 , then it does not send any charge to its neighbours or incident
hyperedges. By Lemma 18, at most one of the four vertices in N∗(P ) has an
associated 3-hyperedge f such that the head of τ 0(f) is P . Each of the remaining
vertices sends either 1/3 or 1 unit of charge to P (according to rule (D4) or (D2),
respectively), which accounts for a resulting charge of at least −1 + 3 · 1/3 = 0.

If P ∈ V 43 , then P is discharged according to (D1), which decreases its charge
from −1 to −2. On the other hand, Lemma 18 implies that e is a 2-hyperedge, so
t sends one unit of charge to P according to rule (D2). Furthermore, as above, P
gets at least a charge of 1/3 from each of the three remaining vertices in N∗(P ).
Hence, the new charge is nonnegative again. This concludes the analysis. The
contradiction establishes Proposition 16.

8 Completing the proof of Theorem 2

In this section, we prove Theorem 2. Before doing so, we narrow down the set of
possible cases by proving that the size of the partition S is not greater than 2.

Recall from Section 5 the notation m̃0
i for |Ei(H

0/S)| (where i ∈ {2, 3}) and
inequality (6):

m̃0
2 + m̃0

3 ≤ 2n− 3 + ε/2,

where n = |S| and ε is the difference of the sum of vertex degrees in H0/S and
in He/S. Since ε ≤ 4 and, by Proposition 16, n ≤ 4, we have

H0/S has at most 7 hyperedges. (8)

Before stating the next proposition, we recall that nontrivial class of S is a
class X such that |X+| ≥ 1.

Proposition 19. If G0 has at least 6 vertices, then n ≤ 2. Moreover, if n = 2,
then the following hold:

(i) one of the classes of S is a trivial class {x},

(ii) the degree of x in H0 is 3,

(iii) x is incident with the hyperedges k(e1) and k(e2) of H0,

(iv) the size of k(e1) and k(e2) is 2.

Proof. The proof consists of a series of claims.

Claim 1. The partition S has at most one nontrivial class.
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By Observation 15, if S has two nontrivial classes X, Y , (8) implies that
∂G0(X+) is a 2-essential edge-cut in G0 of size at most 7.

Claim 2. If S has a nontrivial class, then H0/S contains no 3-hyperedge.

Let X ∈ S be nontrivial and let e/S be a 3-hyperedge of H0/S (where e is a
hyperedge of H0). We can choose two vertices of e/S (say Y1, Y2) distinct from
X. For i = 1, 2, let yi be the vertex of e in Yi, and let w be the vertex of G0 such
that e = h(w). Then the edge-cut ∂G0(X

+) of size at most 7 separates X+ from
the path y1wy2 in G0 and is therefore 2-essential, a contradiction.

Claim 3. The partition S has exactly one nontrivial class.

For contradiction, suppose that all the classes of S are trivial. Recall the
parameter m̃0

3, introduced above equation (5). Since we assume that G0 has at
least 6 vertices, we must have m̃0

3 ≥ 2. We let the vertices of H0 be denoted
by x, y, z or x, y, z, u depending on whether n equals 3 or 4. Furthermore, the
3-hyperedges of H0 are denoted by h(wi), where 1 ≤ i ≤ m̃0

3 and all the wi’s are
temporary vertices of G0.

If H0 contains two 3-hyperedges intersecting in exactly two vertices (say,
e = xyz and f = xyu), then the edge-cut ∂G0({x, z}+) is a 2-essential edge-cut
of size at most 7, a contradiction. Thus, all the 3-hyperedges of H0 contain the
same triple of vertices, say {x, y, z}.

Suppose now that m̃0
3 ≥ 3. By (8), we may assume that x is incident with only

at most three 2-hyperedges of H0. But then the size of the 2-essential edge-cut
∂G0({x,w1, w2}+) in G0 is at most 8, a contradiction.

We conclude that m̃0
3 = 2, which implies n = 4. If uz is a 2-hyperedge in

H0, then the edge-cut ∂G0({x,w1, y}+) in G0 separates the paths xw1y and uzw2

and is therefore 2-essential. In addition, its size is at most 8. This contradiction
concludes the proof of the claim.

Claim 4. The partition S has at most two classes.

Suppose that n > 2. By the above claims, S has a single nontrivial class P
and all the hyperedges of H0 are of size 2. Let the vertices of H0 comprising the
nontrivial parts of S be denoted by x, y or x, y, z depending on n.

Suppose first that n = 4. Since the degree of each of the vertices x, y, z in
H0 is at least 3, (8) implies that at least two 2-hyperedges have both endvertices
in the set {x, y, z}. Consequently, the edge-cut ∂G0(P+) of size at most 7 is
2-essential.

We infer that n = 3. By a similar argument, the vertices x and y must be
adjacent vertices of degree 3 in G0. Since they are permanent and there is no
temporary vertex, they must be protected. However, if x is adjacent to a transient
vertex, then it is easy to show that ∂G0(P+) is a 2-essential 4-edge-cut in G0.
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To finish the proof of the proposition, it remains to establish properties (ii)–
(iv). Let us write S = {P, {x}}, where P is the nontrivial class. By inequality (6)
and the fact that G0 is 3-edge-connected, x has degree 3 in H0 and ε = 4. The
latter fact means that k(e1) and k(e2) are 2-hyperedges of H0 incident with x.
The proof is complete.

Having established Proposition 19, we can now prove the main result of this
paper.

Proof of Theorem 2. If the graphG0 has at most 5 vertices, then L(G) is Hamilton-
connected by Lemma 10. Assume thus that |V (G0)| ≥ 6. By Proposition 19, we
have n ≤ 2.

If n = 1, then by the choice of S, σ is an acyclic quasigraph in He that is
both connected and anticonnected on V (He). Proposition 14 implies that G(He)
admits an a1a2-trail spanning V (He). By Lemma 12, it follows that G admits
an internally dominating (e1, e2)-trail. Since the choice of e1 and e2 is arbitrary,
L(G) is Hamilton-connected by Theorem 11.

The discussion in the case that n = 2 is only slightly more complicated.
By Proposition 19, S contains a trivial class {x}, x has degree 3 in H0 and is
incident in H0 with the 2-hyperedges k(e1) and k(e2). Let P denote the other
class of S and let y1 and y2 be the endvertex of k(e1) and k(e2), respectively, in
P . Furthermore, let f be the third 2-hyperedge of H0 incident with x, and let y3
be its endvertex in P .

By the definition of the temporary vertices a1 and a2, we may assume without
loss of generality that a1 = x and a2 = y2. To find an xy2-trail in G(He) spanning
V (He), we proceed as follows.

Denoting the hypergraph obtained from He by removing x by H1, we observe
that σ determines an acyclic quasigraph in H1 that is both connected and an-
ticonnected on V (H1) = P . By Proposition 14, G(H1) admits an y3y2-trail T1
spanning P . Adding the edge f to the beginning of T1, we obtain an xy2-trail in
G(He) spanning V (He) as desired.

9 Claw-free graphs

As with Theorem 1, Theorem 2 can be extended to claw-free graphs. The proce-
dure is the same as that used in [2, Section 11]. We use the M-closure introduced
in [9], namely the following result [9, Theorem 9]:

Theorem 20. If G is a connected claw-free graph, then there is a well-defined
graph clM(G) with the following properties:

(i) G is a spanning subgraph of clM(G),

(ii) clM(G) is the line graph of a multigraph,
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(iii) clM(G) is Hamilton-connected if and only if G is Hamilton-connected.

In the context of the present paper, the reference to multigraphs in Theo-
rem 20 is not necessary, since parallel edges in graphs are allowed by default.

By condition (i) in Theorem 20, the connectivity of clM(G) is greater than or
equal to that of G. As shown by the following observation, the closure operation
does not decrease the essential connectivity either.

Lemma 21. If G is essentially k-connected, then clM(G) is also essentially k-
connected.

Proof. Clearly,
∣∣V (clM(G))

∣∣ > k. For contradiction, let X be a minimal essential
vertex-cut in clM(G) of size less than k. Since X is not essential in G, there is a
component K of clM(G)−X such that K contains some edges, but G[V (K)] is
edgeless.

The operation clM , as defined in [9, Section 4], consists of a sequence of local
completions at suitable vertices x1, . . . , x`. Here, the local completion at xi is
the addition of all possible edges joining the neighbours of xi. Let e be an edge
of K and let Y = X ∩ {x1, . . . , x`}. In G, all the vertices with a neighbour in
V (K) are contained in X. The fact that K contains at least one edge implies
that Y 6= ∅. Let us say that xi ∈ Y , where 1 ≤ i ≤ `. By the minimality of
X, xi has a neighbour (in clM(G)) in some component L of clM(G) − X other
than K. Although the edge between them could be added by a local completion
at some vertex xj (1 ≤ j ≤ `), this can only happen if some vertex of Y has a
neighbour in V (L) prior to the local completion. We conclude that some vertex
of Y , say xk, has a neighbour in V (L) in G. But then the local completion at
xk adds an edge between a neighbour of xk in V (K) and a neighbour of xk in
V (L), contradicting the assumption that K and L are different components of
clM(G)−X.

Using Lemma 21, we find that clM(G) is a 3-connected, essentially 9-connected
line graph. Thus, clM(G) is Hamilton-connected by Theorem 2. Condition (iii)
of Theorem 20 implies that G is Hamilton-connected.

10 Conclusion

We have shown that every 3-connected, essentially 9-connected claw-free graph
is Hamilton-connected, and that this assertion is false with 9 replaced by 4. The
obvious question is left unresolved: what is the least value of k such that 3-
connected, essentially k-connected claw-free graphs are Hamilton-connected (or
hamiltonian)? This remains an interesting problem for further investigation.
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