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Balanced supersaturation for some degenerate

hypergraphs

Jan Corsten∗ Tuan Tran†

A classical theorem of Simonovits from the 1980s asserts that every graph G

satisfying e(G) ≫ v(G)1+1/k must contain &
(

e(G)
v(G)

)2k
copies of C2k. Recently,

Morris and Saxton established a balanced version of Simonovits’ theorem, showing

that such G has &
(

e(G)
v(G)

)2k
copies of C2k, which are ‘uniformly distributed’ over

the edges of G. Moreover, they used this result to obtain a sharp bound on the
number of C2k-free graphs via the method of hypergraph containers. In this paper,
we generalise Morris–Saxton’s results for even cycles to Θ-graphs. We also prove
analogous results for complete r-partite r-graphs.
Keywords: Erdős-Simonovits conjecture, balanced supersaturation, theta graph,
complete r-partite r-graph, hypergraph containers.

1. Introduction

1.1. Supersaturation theorems

The Turán number exr(n, H) of an r-graph H is the maximum number of edges in an n-vertex
r-graph which does not contain a copy of H. The Erdős-Stone-Simonovits theorem [15, 12]
asserts that

ex2(n, H) =

(

1 −
1

χ(H) − 1

)

(

n

2

)

+ o(n2)

for every graph H and therefore asymptotically determines the Turán number of every non-
bipartite graph H. For bipartite graphs, finding the Turán number is usually very challenging
and even their order of magnitude is unknown for most of them. Erdős [10] further proved
that exr(n, H) = o(nr) if and only if H is an r-partite r-graph. Similarly as for graphs, not
much is known for the Turán number of r-partite r-graphs. It is natural to ask now how many
copies of H a graph on n vertices with more than ex2(n, H) edges must contain. Erdős and
Simonovits [13] observed that for non-r-partite r-graphs a simple double-counting argument
shows that once we pass the extremal number, we can already find a constant fraction of all
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copies of H in the complete graph. This fails in general for r-partite r-graphs with r ≥ 3 (see
[27]), but Erdős and Simonovits [14] conjectured that in the graph case (i.e. r = 2) one can
always find a constant fraction of the expected number of copies of H in the random graph
with the same number of edges.

Conjecture 1.1. For every bipartite graph H with v vertices and e edges, there is some C > 0
so that every graph G with n vertices and m ≥ C · ex2(n, H) edges contains Ω(menv−2e) copies
of H.

So far this conjecture has only been verified for very few graphs. In an unpublished
manuscript, Simonovits proved the conjecture for even cycles C2ℓ provided that ex2(n, C2ℓ) =
Θ(n1+1/ℓ), which is known to be true only for ℓ ∈ {2, 3, 5} (see [21, 7, 28, 8, 30]). Recently,
two extensions of this theorem were obtained. One by Morris and Saxton [23] who proved
a balanced version of Simonovits’ theorem, which (roughly speaking) additionally guarantees
the copies of C2ℓ to be uniformly distributed in the graph. Another one by Jiang and Yepre-
myan [18] who extended Simonovits’ theorem to linear cycles in hypergraphs. Erdős and
Simonovits further proved Conjecture 1.1 for all complete bipartite graphs Ks,t with s ≤ t and
ex2(n, Ks,t) = Θ(n2−1/s), which is known to be true if t is large enough in terms of s and
conjectured to be true for all t ≥ s (see [20, 1, 21]). Morris and Saxton obtained a balanced
strengthening of this result as well [23].

In this paper we shall extend the results of Morris and Saxton to theta graphs (θa,b is
the graph consisting of a internally vertex-disjoint paths of length b, each with the same
endpoints) and complete r-partite r-graphs. The following two supersaturation results are
trivial consequences of our main results (see Section 1.3 below).

Theorem 1.1. For all a, b ≥ 2, there is some C > 0 so that every graph G with n vertices
and m ≥ C · n1+1/b edges contains Ω(mabn2−a(b+1)) copies of θa,b.

Theorem 1.2. For all 2 ≤ a1 ≤ . . . ≤ ar, there is some C > 0 so that every r-graph G
with n vertices and m ≥ C · nr−1/a1···ar−1 edges contains Ω(ma1···ar na1+...+ar−r·a1···ar ) copies of

K
(r)
a1,...,ar .

Note that ex2(n, θa,b) = Θ(n1+1/b) if a is sufficiently large with respect to b (see [16, 9]), and

that exr(n, K
(r)
a1,...,ar ) = Θ(nr−1/a1···ar−1) if ar is sufficiently large with respect to a1, . . . , ar−1

(c.f. [10, 22]). Hence we confirm Conjecture 1.1 for ‘most’ theta graphs and ‘most’ complete
r-partite r-graphs.

1.2. Counting H-free subgraphs

It is a central problem in extremal graph theory to determine the number, Fr(n, H), of H-free
r-graphs on n vertices for a given fixed r-graph H and a natural number n. We trivially have

2exr(n,H) ≤ Fr(n, H) ≤
∑

i≤exr(n,H)

(

(n
r

)

i

)

= nO(exr(n,H)). (1.1)

and all existing results in the area seem to indicate that the lower bound in (1.1) is closer
to the truth. The problem of estimating Fr(n, H) is essentially solved for every non-r-partite
r-graph H. Indeed, in the graph case, Erdős, Frankl and Rödl [11] showed

F2(n, H) = 2(1+o(1)) ex2(n,H), (1.2)
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using Szemerédi’s regularity lemma. The corresponding result for r-graphs was proved by
Nagle, Rödl and Schacht [25] via the hypergraph regularity lemma.

For r-partite r-graphs on the other hand, the problem seems to be more challenging and
much less is known. Morris and Saxton [23] showed that (1.2) does not hold for C6. Even
the weaker bound Fr(n, H) = 2O(exr(n,H)) ( a conjecture usually attributed to Erdős) has been
proven in only a few special cases: for most complete bipartite graphs (see [5, 6]), for cycles of
length ℓ ∈ {4, 6, 10} (see [19, 23]), and for r-uniform linear cycles (see [24, 4]). In this paper,
we confirm the weaker conjecture for most theta graphs and most complete r-partite r-graphs.
More precisely we prove the following results.

Theorem 1.3. For every a, b ≥ 2, there are at most 2O(n1+1/b) θa,b-free graphs on n vertices

and at most 2o(n1+1/b) of them have o(n1+1/b) edges.

Theorem 1.4. For all 2 ≤ a1 ≤ . . . ≤ ar, there are at most 2O(nr−1/(a1···ar−1)) K
(r)
a1,...,ar-free

r-graphs on n vertices and at most 2o(nr−1/(a1···ar−1)) of them have o
(

nr−1/(a1···ar−1)
)

edges.

In particular it follows for those r-graphs H that there is a positive constant c = c(H) such
that asymptotically almost every H-free r-graph has at least c · exr(n, H) edges. This confirms
a special case of a conjecture of Balogh, Bollobás and Simonovits [2] which states that this is
true for all bipartite graphs H containing a cycle.

1.3. Balanced supersaturation theorems

The hypergraph container method, developed independently by Balogh, Morris and Samotij [3],
and Saxton and Thomason [26], is one of the most successful recent developments in extremal
combinatorics. In order to apply the method, we have to find a family of copies of H in G that
are ‘evenly distributed’ in the following sense.

Definition 1.5 ([23, Definition 5.5]). Let α > 0. An r-graph H is called Erdős-Simonovits α-
good for a function m = m(n) if there exist positive constants C and k0 such that the following
holds. Let k ≥ k0, and suppose that G is an r-graph with n vertices and k · m(n) edges. Then
there exists a non-empty collection H of copies of H in G, satisfying

dH(σ) ≤
C · |H|

k(1+α)(|σ|−1)e(G)
for every σ ⊂ E(G) with 1 ≤ |σ| ≤ e(H),

where dH(σ) := |{H ′ ∈ H : σ ⊂ H ′}| denotes the degree of σ in H.

Morris and Saxton [23] conjectured that every bipartite graph H is Erdős-Simonovits α-
good for m(n) = ex2(n, H) and some α = α(H) > 0 (the same statement is trivially true for
non-bipartite graphs). Furthermore, they expect that the family H can be chosen so that it
contains (up to a multiplicative factor) as many copies of H as the random graph G(n, m)
with m = k · ex2(n, H), which leads to a stronger form of Conjecture 1.1. Their motivation in
making Definition 1.5 is the following proposition.

Proposition 1.6 ([23, Proposition 5.6]). Let H be an r-graph and let α > 0. If H is Erdős-
Simonovits α-good for m(n), then the following hold.

(1) There are at most 2O(m(n)) H-free r-graphs on n vertices,
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(2) The number of H-free graphs with n vertices and o(m(n)) edges is 2o(m(n)).

A proof-sketch for a similar result was given in [23]. For completeness, we provide a full
proof of Proposition 1.6 in Appendix A.

We will extend the ideas from [23] to prove the following balanced supersaturation theorems,
which are the main results of this paper.

Theorem 1.7. For all a, b ≥ 2, there are positive constants C, δ and k0 such that for all k ≥ k0

and all graphs G with n vertices and kn1+1/b edges, there exists a family H of copies of θa,b in
G so that

(i) |H| ≥ δkabn2 and

(ii) dH(σ) ≤ C·|H|

k(1+α)(|σ|−1)e(G)
for all σ ⊂ E(G) with 1 ≤ |σ| ≤ ab, where α = 1

ab−1 .

Theorem 1.8. For all 2 ≤ a1 ≤ . . . ≤ ar, there are positive constants C, δ and k0 such that for
all k ≥ k0 and all r-graphs G with n vertices and knr−1/(a1···ar−1) edges, there exists a family

H of copies of K
(r)
a1,...,ar in G so that

(i) |H| ≥ δka1···ar na1+...+ar−1 and

(ii) dH(σ) ≤ C·|H|

k(1+α)(|σ|−1)e(G)
for all σ ⊂ E(G) with 1 ≤ |σ| ≤ a1 · · · ar, where α = 1

a1···ar−1 .

We thus confirm Morris’ and Saxton’s conjecture for most theta graphs and the corre-
sponding statements for hypergraphs for most complete r-partite r-graphs. Theorem 1.3
and Theorem 1.4 follow immediately from Proposition 1.6 combined with Theorem 1.7 and
Theorem 1.8. The subsequent work of Ferber, McKinley and Samotji [17] establishes a weaker,
but significantly easier to prove, supersaturation result that is still sufficiently strong to derive
Fr(n, H) = 2exr(n,H) for a much larger class of r-graphs H. However, the result of [17] is not
strong enough to imply anything non-trivial for the Turán problem in random hypergraphs.

We will prove Theorem 1.7 in Section 2, Theorem 1.8 in Section 3. We will use in these
sections the slightly informal notation ε ≪ ε̃ if ε ≤ c · ε̃ for a sufficiently small constant c > 0.

2. Theta graphs

For n, k, j ∈ N and δ > 0, let

∆(j)(δ, k, n) :=
kab−1 · n1−1/b

(

δkb/(b−1)
)j−1 .

Definition 2.1. Let a, b, n, k ∈ N with a, b ≥ 2, let δ > 0 and let G be an n-vertex graph with
kn1+1/b edges. A collection H of copies of θa,b in G is good for (a, b, k, n, δ) (or simply good if
the parameters are understood) if dH(σ) ≤ ∆(|σ|)(δ, k, n) for every non-empty forest σ ⊂ E(G).

The aim of this section is to prove the following theorem.

Theorem 2.2. For all a, b ≥ 2, there are some positive constants k0 and δ, such that for all
k ≥ k0 and all graphs G with n vertices and kn1+1/b edges, there exists a family H of copies
of θa,b in G of size |H| ≥ δkabn2 which is good for (a, b, k, n, δ).
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Theorem 2.2 easily implies Theorem 1.7. Indeed, for every σ ⊂ E(G) with 1 ≤ |σ| ≤ ab and
dH(σ) > 0, take a forest σ′ ⊂ σ of maximal size and note that

dH(σ) ≤ dH(σ′) ≤ ∆(|σ′|)(δ, k, n) ≤
kab−1 · n1−1/b

(

δkb/(b−1)
)|σ′|−1

≤
kab−1 · n1−1/b

(δk1+α)|σ|−1
,

where α = 1/(ab − 1). We remark that the worst case for the last inequality is when |σ| = ab
and |σ′| = ab − a + 1. Theorem 2.2 in turn is an immediate consequence of the following
proposition.

Proposition 2.3. For all a, b ≥ 2, there are some positive constants k0 and δ > 0 such that
for all k ≥ k0 and all graphs G with n vertices and kn1+1/b edges, the following is true. If H is
a collection of copies of θa,b in G which is good for (a, b, k, n, δ) and |H| ≤ δkabn2, then there
exists a copy H 6∈ H of θa,b such that H ∪ {H} is good for (a, b, k, n, δ).

The rest of this section is devoted to the proof of Proposition 2.3.

2.1. The setup

We define all constants here and fix the important parameters. Let a, b ≥ 2 and set K = 5ab,
ε(b) = 1/K3, ε(t − 1) = ε(t)t for each 2 ≤ t ≤ b, δ = ε(1)2ab+2 and k0 = 1/δ. Let n, k ∈ N with
k ≥ k0, and fix a graph G with n vertices and kn1+1/b edges. Also fix a good collection H of
copies of θa,b in G with |H| ≤ δkabn2.

We will make the following further assumptions on G. Since δ = ε(1)2ab+2, there are at most

ab · |H|

ε(1)2ab+1kab−1n1−1/b
≤ ab · ε(1) · e(G) ≪ e(G)

edges e ∈ G with dH(e) ≥ ε(1)2ab+1kab−1n1−1/b. By deleting all such edges we may assume

dH(e) < ε(1)2ab+1kab−1n1−1/b for every e ∈ E(G) (2.1)

(at the cost of slightly weaker constants). In particular, we have

dH(e) < ∆(1)(δ, k, n) for every e ∈ E(G). (2.2)

Similarly, since there are at most Kε(b)kn1+1/b ≪ e(G) edges incident to vertices of degree
at most Kε(b)kn1/b, we may assume that

δ(G) ≥ Kε(b)kn1/b. (2.3)

Finally, we define saturated sets of edges.

Definition 2.4 (Saturated sets of edges). Given a non-empty forest σ ⊂ E(G), we say that σ

is saturated if dH(σ) ≥
⌊

∆(|σ|)(δ, k, n)
⌋

. Let

F = {σ ⊂ E(G) : σ is saturated}

denote the collection of all saturated sets of edges.

We emphasize that in all further results G, H, F and all parameters are fixed as above.
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2.2. Preliminaries

For S ⊂ E(G) and j ∈ N, define the j-link of S as

L
(j)
F (S) := {σ ⊂ E(G) \ S : |σ| = j and σ ∪ τ ∈ F for some non-empty τ ⊂ S} ,

and let LF (S) =
⋃

j≥1 L
(j)
F (S). We have the following important bound on its size.

Lemma 2.5. For every j ∈ N and every S ⊂ E(G), we have

|L
(j)
F (S)| ≤ 2ab+|S|+1 ·

(

δkb/(b−1)
)j

.

Proof. For each non-empty forest τ ⊂ S, set

J (τ) = {σ ⊂ E(G) \ S : |σ| = j and σ ∪ τ ∈ F}.

By the handshaking lemma and the definition of goodness, we obtain

1

2ab
·
∑

σ∈J (τ)

dH(σ ∪ τ) ≤ dH(τ) ≤ ∆(|τ |)(δ, k, n),

as each edge of H is counted at most 2ab times in the sum. Moreover,
∑

σ∈J (τ)

dH(σ ∪ τ) ≥ |J (τ)| · ⌊∆(|τ |+j)(δ, k, n)⌋,

by the definition of J (τ) and F . Hence

|J (τ)| ≤ 2ab ·
∆(|τ |)(δ, k, n)

⌊∆(|τ |+j)(δ, k, n)⌋
≤ 2ab+1 · (δkb/(b−1))j .

Finally, since the sets J (τ) cover L
(j)
F (S), we find that

|L
(j)
F (S)| ≤

∑

τ

|J (τ)| ≤ 2ab+S+1 · (δkb/(b−1))j,

as desired.

The following definition and theorem summarise a series of results of Morris and Saxton (see
[23, Section 3]) which we will use in a similar way to build copies of θa,b.

Definition 2.6. Let x ∈ V (G) and 2 ≤ t ∈ N. A t-neighbourhood of x is a pair (A, P), in
which

• A = (A0, A1, . . . , At) is a collection of (not necessarily disjoint) sets of vertices of G with
A0 = {x},

• P is a collection of paths in G of the form (x, u1, . . . , ut), with ui ∈ Ai for each i ∈ [t].

For any collection P of paths in G and any two vertices u, v ∈ V (G), let

P[u → v] := {(x1, . . . , xs) : x1 = u, xs = v}

denote the set of paths in P which begin at u and end at v.
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Theorem 2.7 (Morris–Saxton [23]). Given G, H, F and all constants as in Section 2.1, there
exist t ∈ {2, . . . , b} and some vertex x ∈ V (G), for which there is a t-neighbourhood (B =
(B0, . . . , Bt), Q) of x with the following seven properties:

(P1) |B1| ≤ kn1/b and |Bt| ≤ k(b−t)/(b−1)nt/b.

(P2) For every i ∈ {0, 1, . . . , t − 1} and every u ∈ Bi,

|N(u) ∩ Bi+1| ≥ ε(t)kn1/b.

(P3) For every v ∈ Bt,
|N(v) ∩ Bt−1| ≥ ε(t)2kb/(b−1).

(P4) For every v ∈ Bt,
|Q[x → v]| ≥ ε(t)tk(t−1)b/(b−1) .

(P5) Q avoids F , i.e. σ 6⊂ Q for every σ ∈ F and every Q ∈ Q.

(P6) For every w ∈ Bt and v ∈ V (G) \ {x, w}, there are at most bk(t−2)b/(b−1) paths Q ∈
Q[x → w] containing v.

(P7) For every σ ⊂ E(G) with |σ| ≤ t−1 and every w ∈ Bt, there are at most tt·k(t−|σ|−1)b/(b−1)

paths Q ∈ Q[x → w] with σ ⊂ E(P ).

We shall call (B, Q) a refined t-neighbourhood of x. Property Item (P5) is slightly different
here but completely analogous (in the proof of Lemma 3.6 in [23], we need to use Lemma 2.5
instead of the corresponding lemma in [23]).

2.3. Finding θa,b in refined t-neighbourhoods

Let G, H, F and all constants be as in Section 2.1 and let (B, Q) be the refined t-neighbourhood
for some x ∈ V (G) and t ∈ {2, . . . , b} guaranteed by Theorem 2.7.

For technical reasons fix

Xi(u) ⊂ N(u) ∩ Bi+1 of size |Xi(u)| = ε(t)kn1/b

for each i ∈ [t − 1] and u ∈ Bi, and

Xt(u) ⊂ N(u) ∩ Bt−1 of size |Xt(u)| = ε(t)2kb/(b−1)

for each u ∈ Bt. Furthermore, fix a subset

Q(z) ⊂ Q(x → z) of size |Q(z)| = ε(t)tk(t−1)b/(b−1)

for every z ∈ Bt.
Using the following algorithm, we shall create many copies H of θa,b in G such that H ∪{H}

is good and deduce that one of them must not be contained in H already.

Algorithm 1. Initially, let Θ := ∅. As long as possible generate new copies of θa,b and add
them to Θ via the following process. To create a copy of θa,b we shall add edges and denote
the subgraph of G induced by the currently selected edges by H = (V, E). (Note that H, V
and E are constantly changing.)
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1. Generate a path P1 = (x = p1
0, p1

1, . . . , p1
t ) as follows. For i = 0, 1, . . . , t − 1, choose p1

i+1

from Xi(p
1
i ) ⊂ N(p1

i ) ∩ Bi+1 such that

p1
i+1 /∈ V and {p1

i , p1
i+1} 6∈ L

(1)
F (E).

2. Create a path Z1 = (p1
t = z1

0 , z1
1 , . . . , z1

b−t =: y) as follows. Define

r(i) =

{

t − 1 if 0 ≤ i ≤ b − t and i is even,

t if 0 ≤ i ≤ b − t and i is odd.

For i = 0, . . . , b − t − 1, select z1
i+1 from Xr(i)(z

1
i ) ⊂ N(z1

i ) ∩ Br(i+1) such that

z1
i+1 /∈ V and {z1

i , z1
i+1} 6∈ L

(1)
F (E).

3. For j = 2, . . . , a, create a path Zj = (y = zj
0, zj

1, . . . , zj
b−t =: zj) as follows. Let

s(i) =

{

t − 1 if 0 ≤ i ≤ b − t and i + (b − t) is even,

t if 0 ≤ i ≤ b − t and i + (b − t) is odd.

Now, for i = 0, . . . , b − t − 1, choose zj
i+1 from Xs(i)(z

j
i ) ⊂ N(zj

i ) ∩ Bs(i+1) with

zj
i+1 /∈ V and {zj

i , zj
i+1} /∈ L

(1)
F (E).

4. For j = 2, . . . , a, pick a path Pj ∈ Q(zj) which uses no vertex of V \ {zj} and avoids
LF (E).
Join the paths P1, Z1, . . . , Pa, Za to form a copy of θa,b, and add this to Θ.

x y

B1

B2

Bt−1

Bt

P1 Z1

P2 Z2

P3 Z3

Figure 1: A copy of θ3,b produced by Algorithm 1.

See Figure 1 for an illustration of Algorithm 1. We shall show later that |Θ| is quite large.
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Claim 1. |Θ| ≥ ε(1)2abkabn.

Before we proceed with the proof of Claim 1, we show how it implies Proposition 2.3.

Proof of Proposition 2.3. Since |B1| ≤ kn1/b by property (P1) of Theorem 2.7, we have

|Θ ∩ H| ≤ kn1/b · max
e∈E(G)

dH(e)
(2.1)

≤ kn1/b · ε(1)2ab+1kab−1n1−1/b = ε(1)2ab+1kabn.

Hence, by Claim 1, there exists some H ∈ Θ \ H. By the construction of Θ, the collection
H ∪ {H} is good. This finishes our proof.

The rest of this section is devoted to the proof of Claim 1. To make the counting of |Θ| easier
to follow, we introduce some notation here. For i ∈ [a], let Ri be the set of all possible choices
for the paths P1, Z1, . . . , Za, P2, . . . , Pi in Algorithm 1. For Ri = (P1, Z1, . . . , Za, P2, . . . , Pi) ∈
Ri, let Ri+1(Ri) := {Pi+1 ∈ Q(zi+1) : (Ri, Pi+1) ∈ Ri+1}. We call a vertex v ∈ V (R1) \ {x}
forward if either v ∈ V (P1) or v ∈ Bt, backward if v ∈ V (Z2 ∪ . . . ∪ Za) ∩ Bt−1. Hence we
have partitioned V (R1) \ {x} into forward and backward vertices. Let rfw and rbw denote the
number of forward and backward vertices respectively of some R1 ∈ R1, and let r = rfw +rbw.
It is not difficult to see that r = ab − (a − 1)t, and

{

rfw = t + a(b − t)/2, rbw = a(b − t)/2 if b − t is even,

rfw = t + a(b − t + 1)/2 − 1, rbw = a(b − t − 1)/2 + 1 if b − t is odd.
(2.4)

To prove Claim 1, we first bound the number of graphs (P1, Z1, . . . , Za), chosen in Steps
1–3, in terms of rfw and rbw.

Claim 2. |R1| ≥ 1
2

(

ε(t)kn1/b
)rfw

·
(

ε(t)2kb/(b−1)
)rbw

.

Proof. We first show that at most ab+22abδkb/(b−1) choices are excluded for each vertex. Recall
that H = (V, E) is the graph induced by the currently selected edges. Note that at most ab
choices are excluded by the condition that the new vertex is not in V . Moreover, by Lemma 2.5
we have

|L
(1)
F (E)| ≤ 2ab+|E|+1 · δkb/(b−1) ≤ 22abδkb/(b−1),

as required. Therefore, there are at least

ε(t)kn1/b −
(

ab + 22abδkb/(b−1)
)

≥ 2−1/rε(t)kn1/b

choices for each forward vertex, where the last inequality holds since k ≤ n(b−1)/b and δ ≪ ε(t)2.
Similarly, using the fact that δ ≪ ε(t)2, we find that there are at most

ε(t)2kb/(b−1) −
(

ab + 22abδkb/(b−1)
)

≥ 2−1/rε(t)2kb/(b−1)

choices for each backward vertex. The claim now follows, as we choose rfw forward vertices
and rbw backward vertices.
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For each i ∈ [a − 1], define Di to be the set of all Ri ∈ Ri for which there are at least

1

4
ε(t)tk(t−1)b/(b−1)

paths P ∈ Q(zi+1) with E(P ) ∈ L
(t)
F (E(Ri)). (Here we view Ri as a graph.) We now deduce

Claim 1 from the following two claims. The first shows that if the graph Ri ∈ Ri satisfies
Ri /∈ Di, then we have many choices for the path Pi+1 in Step 4.

Claim 3. If Ri ∈ Ri \ Di for some i ∈ [a − 1], then

|Ri+1(Ri)| ≥
1

2
· ε(t)tk(t−1)b/(b−1) .

The second states that |Di| is not too large.

Claim 4. |Di| ≤ 1
2 |Ri| for every i ∈ [a − 1].

Proof of Claim 1. From Claims 3 and 4, we find

|Ri+1| ≥ 1
2 · ε(t)tk(t−1)b/(b−1) · |Ri \ Di| ≥ 1

4 · ε(t)tk(t−1)b/(b−1) · |Ri|

for every i ∈ [a − 1]. Combined with Claim 2, we obtain

|Ra| ≥
(

1
4ε(t)tk(t−1)b/(b−1)

)a−1
· 1

2(ε(t)kn1/b)rfw · (ε(t)2kb/(b−1))rbw

= 2−2a+1ε(t)(a−1)t+rfw +2rbw · k(a−1)(t−1)b/(b−1)+rfw +brbw/(b−1)nrfw/b,

By (2.4), one has

(a − 1)t + rfw + 2rbw ≤ (a − 1)t + {t + a(b − t)/2} + 2a(b − t)/2

= 2ab − at − a(b − t)/2 ≤ 2ab − at.

Again from (2.4) we find rfw ≥ t + a(b − t)/2 = b + (a − 2)(b − t)/2 ≥ b. Together with the
fact that n ≥ kb/(b−1), this yields

k(a−1)(t−1)b/(b−1)+rfw +brbw/(b−1)nrfw/b ≥ k(a−1)(t−1)b/(b−1)+rfw +brbw/(b−1)+(rfw/b−1)·b/(b−1)n

= k{(a−1)(t−1)+rfw+rbw−1}b/(b−1)n = kabn,

where the last equality follows from the formula rfw + rbw = ab − (a − 1)t. Therefore, we get

|Ra| ≥ 2−2a+1ε(t)2ab−atkabn.

As each copy of θa,b appears at most a! times in Ra, we conclude

|Θ| ≥
1

a!
|Ra| ≥

1

a!
2−2a+1ε(t)2ab−atkabn ≥ ε(1)2abkabn

for ε(1) < ε(t) ≪ 1, as required.

We end this section with the proofs of Claims 3 and 4.
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Proof of Claim 3. As |Q(zi+1)| = ε(t)tk(t−1)b/(b−1) , in order to prove the claim, it suffices
to show |Q(zi+1) \ Ri+1(Ri)| ≤ 1

2ε(t)tk(t−1)b/(b−1) . In other words, we wish to bound the
number of paths in Q(zi+1) which either contain a vertex of V (Ri) \ {x, zi+1}, or fail to avoid
LF (E(Ri)).

By property Item (P6) of Theorem 2.7, the number of paths in Q(zi+1) which contain a
vertex of V (Ri) \ {x, zi+1} is at most

ab · bk(t−2)b/(b−1) ≤ ε(t)t+1k(t−1)b/(b−1) ,

as k ≥ k0 ≫ ε(t)−(t+1).
Now, let σ ∈ LF (E(Ri)), and consider the paths in Q(zi+1) that contain σ. We first deal

with the case 1 ≤ |σ| ≤ t − 1. According to Item (P7), the number of paths in Q(zi+1)
containing σ is at most

ttk(t−|σ|−1)b/(b−1).

Moreover, by Lemma 2.5, we have

|L
(|σ|)
F (E(Ri))| ≤ 22ab(δkb/(b−1))|σ|.

Therefore, the number of paths in Q(zi+1) which contain some σ ∈ LF (E(Ri)) with 1 ≤ |σ| ≤
t − 1 is at most

(2b)2ab · δk(t−1)b/(b−1) ≤ ε(t)t+1k(t−1)b/(b−1) ,

as δ ≪ ε(t)t+1.
On the other hand, since Ri /∈ Di, there are at most

1

4
ε(t)tk(t−1)b/(b−1)

paths in Q(zi+1) that contain some σ ∈ LF (E(Ri)) with |σ| = t.
Summing these estimates gives the desired inequality

|Q(zi+1) \ Ri+1(Ri)| ≤
1

2
· ε(t)tk(t−1)b/(b−1) .

Proof of Claim 4. We proceed by induction on i. Let i ∈ [a − 1] and assume that the claim
holds up to i − 1 (no assumption is needed in case i = 1). Thus, we have

|Rj|
Claim 3

≥ 1
2 · ε(t)tk(t−1)b/(b−1) · |Rj−1 \ Dj−1| ≥ 1

4 · ε(t)tk(t−1)b/(b−1) · |Rj−1|

for every 2 ≤ j ≤ i. Combined with Claim 2, this gives

|Ri| ≥
(

1
4ε(t)tk(t−1)b/(b−1)

)i−1
· 1

2

(

ε(t)kn1/b
)rfw

·
(

ε(t)2kb/(b−1)
)rbw

. (2.5)

We proceed in three steps. We first give an upper bound for the number of members of Di

containing a given set of edges. This will be used in conjunction with (2.5).

Step 1. Let z ∈ Bt, and let J ⊂ E(G) be a forest of size |J | = j ∈ [r + (i − 1)(t − 1) − 1] which
does not contain an x-z-path. Then there are at most

m(j) :=











(ab)2ab
(

kn1/b
)rfw−1 (

kb/(b−1)
)rbw+(i−1)(t−1)−j

if 1 ≤ j ≤ rbw + (i − 1)(t − 1)

(ab)2ab
(

kn1/b
)r+(i−1)(t−1)−j−1

otherwise

Ri ∈ Ri with zi+1 = z and J ⊂ E(Ri).
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Remark: The key property about m(j) is that it satisfies

m(j) · (δkb/(b−1))j ≤
|Ri|

kn1/b
for every j ∈ [r + (i − 1)(t − 1) − 1], (2.6)

due to (2.5) and δ ≪ ε(t)3ab.

Proof of Step 1. Note that we have at most (ab)ab choices for the positions of the edges of J in
Ri. Let’s fix such a choice and count the corresponding Ri. More precisely, given a partition
J = J1 ∪ . . . ∪ Ji, we shall bound from above the number of Ri = (R1, P2, . . . , Pi) ∈ Ri such
that J1 ⊂ R1, Jℓ ⊂ Pℓ for all 2 ≤ ℓ ≤ i, and zi+1 = z.

We may assume |Jℓ| ≤ t for every 2 ≤ ℓ ≤ t (otherwise there is no such Ri). Let I denote
the set of all ℓ ∈ {2, . . . , i} with |Jℓ| = t. Note that Pℓ = Jℓ for all ℓ ∈ I, and so {zℓ : ℓ ∈ I} is
fixed. As J contains neither an x-z-path nor a cycle, we may assume further that the subgraph
induced by J1 together with the fixed vertices {x, z} ∪ {zℓ : ℓ ∈ I} is a forest, in which these
|I| + 2 fixed vertices are in different components. It follows that at least |J1| + |I| + 2 vertices
of R1 are fixed, and hence there are at most r − |J1| − |I| − 1 not-yet-chosen vertices in R1 (x
is excluded). This shows

r1 + r2 ≤ r − |J1| − |I| − 1,

where r1 and r2 denote the number of free forward vertices and free backward vertices respec-
tively. In addition, as z ∈ Bt is fixed, we must have

r1 ≤ rfw − 1.

Note that we have at most ε(t)kn1/b ≤ kn1/b choices for each forward vertex and at most
ε(t)2kb/(b−1) ≤ kb/(b−1) choices for each backward vertex. Moreover, Pℓ = Jℓ for all ℓ ∈ I, and
for each ℓ ∈ {2, . . . , i} \ I, there are at most ttk(t−|Jℓ|−1)b/(b−1) choices for Pℓ by Item (P7).
Hence the number of Ri = (R1, P2, . . . , Pi) such that (J1, J2, . . . , Ji) ⊂ Ri is at most

(kn1/b)r1 · (kb/(b−1))r2 ·
∏

ℓ∈{2,...,i}\I

ttk(t−|Jℓ|−1)b/(b−1) ≤ bab · (kn1/b)r1 · (kb/(b−1))r3 ,

where r3 := r2 +
∑

ℓ∈{2,...,i}\I(t − |Jℓ| − 1). To estimate the above expression, we note that

r1 + r3 = (r1 + r2) +
∑

ℓ∈{2,...,i}\I

(t − |Jℓ| − 1)

≤ (r − |J1| − |I| − 1) +
(

|I| +
∑

ℓ∈{2,...,i}

(t − |Jℓ| − 1)
)

= r + (i − 1)(t − 1) − j − 1,

where the second line follows from the estimate r1 + r2 ≤ r − |J1| − |I| − 1 and the definition
of I, and the last equality holds since |J1| + . . . + |Jℓ| = |J | = j. Together with the inequalities
r1 ≤ rfw − 1 and kn1/b ≥ kb/(b−1), this implies that the number of Ri = (R1, P2, . . . , Pi) with
(J1, J2, . . . , Ji) ⊂ Ri is bounded from above by bab · (kn1/b)rfw−1 · (kb/(b−1))rbw+(i−1)(t−1)−j in
case rfw − 1 ≤ r + (i − 1)(t − 1) − j − 1, and by bab · (kn1/b)r+(i−1)(t−1)−j−1 otherwise.

Putting everything together, we conclude that there are at most m(j) choices for Ri ∈ Ri+1

with zi+1 = z and J ⊂ E(Ri).

We shall use the inequality (2.6) in the proof of Step 3 below.
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Step 2. There exist j ∈ [r + (i − 1)(t − 1) − 1] for which there are at least

2−abε(t)tk(t−1)b/(b−1) ·
|Di|

ab · m(j)

distinct pairs (J, P ) with the following properties:

(a) P ∈ Q(z) for some z ∈ Bt,

(b) J is a set of j edges of G disjoint from E(P ),

(c) J ∪ E(P ) ∈ F .

Proof. Recall that for each Ri ∈ Di, there are at least 1
4ε(t)tk(t−1)b/(b−1) paths P in Q(zi+1)

with E(P ) ∈ L
(t)
F (E(Ri)). By the pigeonhole principle, it follows that for each Ri ∈ Di, there

exists a set ∅ 6= f(Ri) ⊂ E(Ri) such that there are at least

2−abε(t)tk(t−1)b/(b−1) (2.7)

paths P ∈ Q(zi+1), each of which is disjoint from f(Ri) and with f(Ri)∪E(P ) ∈ F . Note that
f(Ri) is a forest and does not contain an x-zi+1-path (otherwise for every path P ∈ Q(zi+1),
f(Ri) ∪ E(P ) contains a cycle and thus f(Ri) ∪ E(P ) 6∈ F). In particular, it follows that
|f(Ri)| ∈ [r + (i − 1)(t − 1) − 1]. By another application of the pigeonhole principle, there
exists some j ∈ [r + (i − 1)(t − 1) − 1] such that |f(Ri)| = j for at least |Di| /ab choices of
Ri ∈ Di.

Now, define J to be the set of all pairs (J, z) with z ∈ Bt, |J | = j and J = f(Ri) for some

Ri ∈ Di with zi+1 = z. We claim that |J | ≥ |Di|
ab·m(j) . Indeed, there is such a pair (f(Ri), zi+1)

for each Ri ∈ Di with |f(Ri)| = j, and we may have counted each pair m(j) times, by the
above discussion and Step 1.

Finally, for each (J, z) ∈ J choose some Ri ∈ Di with f(Ri) = J and zi+1 = z. Recall
that there are at least (2.7) paths P ∈ Q(zi+1) with J ∪ E(P ) ∈ F , each of which is disjoint
from J . Since P determines z, all such generated pairs (J, P ) are distinct, and hence the claim
follows.

We are now ready to show that |Di| is not too large.

Step 3. |Di| ≤ 1
2 |Ri|.

Proof. Let N be the number of copies of θa,b in G which contain an edge between x and B1.
For each pair (J, P ) as in Step 2, we have |J ∪ E(P )| = j + t and J ∪ E(P ) ∈ F , giving

dH(J ∪ E(P )) ≥ ⌊∆(j+t)(δ, k, n)⌋ ≥
1

2
·

∆(1)(δ, k, n)
(

δkb/(b−1)
)j+t−1 .

Thus, noting that each member of H contains J ∪ E(P ) for at most 22ab pairs (J, P ), it follows
from Step 2 that

N ≥ 2−abε(t)tk(t−1)b/(b−1) ·
|Di|

ab · m(j)
·

∆(1)(δ, k, n)

22ab+1
(

δkb/(b−1)
)j+t−1

≥
ε(t)t

24abδt−1
·

|Di| · ∆(1)(δ, k, n)

m(j) ·
(

δkb/(b−1)
)j

≥ 2kn1/b ·
|Di| · ∆(1)(δ, k, n)

|Ri|
,
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where the last inequality follows from (2.6), and since t ≥ 2 and δ ≪ ε(t)t. Now, as |B1| ≤
kn1/b, there exists an edge e ∈ E(G) with

dH(e) ≥ 2 ·
|Di| · ∆(1)(δ, k, n)

|Ri|
.

Combined with (2.2), we get the desired inequality.

This finishes the proof of Claim 4.

3. Complete degenerate hypergraphs

In this section we will prove Theorem 1.8. We shall record the vertex partition of each copy

of K
(r)
a1,...,ar . Therefore, a collection H of copies of K

(r)
a1,...,ar in an r-graph G will be understood

as a collection of ordered r-tuples (A1, . . . , Ar) with Ai ∈
(V (G)

ai

)

for every i ∈ [r], and with

G[A1, . . . , Ar] = K
(r)
a1,...,ar .

Given a tuple (S1, . . . , Sr) of vertex sets such that 1 ≤ |Si| ≤ ai for every i ∈ [r] and
G[S1, . . . , Sr] is a complete r-partite r-graph, we define dH(S1, . . . , Sr) to be the number of
members of H containing (S1, . . . , Sr), that is,

dH(S1, . . . , Sr) = |{(A1, . . . , Ar) ∈ H : (S1, . . . , Sr) ⊂ (A1, . . . , Ar)}| .

Let δ > 0. For each (b1, . . . , br) ∈ N
r with 1 ≤ bi ≤ ai for all i ∈ [r], define

D(b1,...,br)(δ, k, n) =
r
∏

i=1

(

δka1 ···ai−1n1−1/ai···ar−1

)ai−bi
, (3.1)

where a1 · · · ai−1 := 1 if i = 1 and ai · · · ar−1 := 1 if i = r. In particular, we have

D(1,...,1)(δ, k, n) = δa1+...+ar−rka1···ar−1na1+...+ar−1−r+1/a1···ar−1 . (3.2)

One can show that (see Appendix B) Theorem 1.8 is a consequence of the following result.

Theorem 3.1. For every 2 ≤ a1 ≤ . . . ≤ ar, there exist constants δ > 0 and k0 ∈ N such that
the following holds for every k ≥ k0 and every n ∈ N. Given an r-graph G with n vertices and

knr−1/a1···ar−1 edges, there exists a collection H of copies of K
(r)
a1,...,ar in G, satisfying:

(a) |H| ≥ δa1+...+ar ka1···ar na1+...+ar−1 , and

(b) dH(S1, . . . , Sr) ≤ D(|S1|,...,|Sr |)(δ, k, n) for every S1, . . . , Sr ⊂ V (G).

Fix now 2 ≤ a1 ≤ . . . ≤ ar. We shall need various constants in the proof of Proposition 3.2
below, which we will define here for convenience. Informally, they will satisfy

k0 ≫ K ≫ 1 ≫ ε(1) ≫ ε(2) ≫ . . . ≫ ε(r) ≫ ε(r + 1) = δ > 0.

More precisely, we can set ε(1) = 1/2, ε(i + 1) = ε(i)ai/(22ai+a1···aiai!) for each 1 ≤ i ≤ r,
δ = ε(r + 1), K = a1 · · · ar2a1+...+ar+1 and k0 = 1/δ.

14



Let G be an n-vertex r-graph with knr−1/a1···ar−1 edges, where k ≥ k0. Let (S1, . . . , Sr)
be an ordered r-tuple of vertex sets that satisfies 1 ≤ |Si| ≤ ai for every i ∈ [r], and with

G[S1, . . . , Sr] = K
(r)
|S1|,...,|Sr |. We say that (S1, . . . , Sr) is saturated if

dH(S1, . . . , Sr) ≥ ⌊D(|S1|,...,|Sr|)(δ, k, n)⌋,

and that (S1, . . . , Sr) is good if it contains no saturated r-tuple. We say that H is good if every
(A1, . . . , Ar) ∈ H is good.

Proposition 3.2. Suppose that H is a good collection of copies of K
(r)
a1,...,ar in G of size

|H| ≤ δa1+...+ar ka1···ar na1+...+ar−1 . Then, there exists a copy (A1, . . . , Ar) /∈ H of K
(r)
a1,...,ar in

G such that H ∪ {(A1, . . . , Ar)} is good.

Proof. Let F denote the collection of saturated sets, i.e.

F = {(S1, . . . , Sr) : ∅ 6= S1, . . . , Sr ⊂ V (G) and dH(S1, . . . , Sr) = ⌊D(|S1|,...,|Sr|)(δ, k, n)⌋}.

A simple double-counting argument shows that there are at most

a1 · · · ar · |H|

⌊D(1,...,1)(δ, k, n)⌋
≪ knr−1/a1···ar−1 = e(G)

saturated edges of G. Here we use the assumption that |H| ≤ δa1+...+ar ka1···ar na1+...+ar−1 and
(3.2). Thus by choosing a non-empty subhypergraph of G if necessary (and weakening the
bound on e(G) slightly), we may assume that

({v1}, . . . , {vr}) /∈ F for every {v1, . . . , vr} ∈ E(G). (3.3)

For S1, . . . , Sr ⊂ V (G) and i ∈ [r], define Xi(S1, . . . , Sr) to be the set consisting of all vertices
v ∈ V (G) \ (S1 ∪ . . . ∪ Sr) so that (S′

1, . . . , S′
i−1, S′

i ∪ {v}, S′
i+1, . . . , S′

r) ∈ F for some non-empty
S′

1 ⊂ S1, . . . , S′
r ⊂ Sr.

Claim 5. Provided that |Si| ≤ ai for each i ∈ [r], we have

|Xi(S1, . . . , Sr)| ≤ Kδka1···ai−1n1−1/ai···ar−1 .

Proof. For each tuple (S′
1, . . . , S′

r) with ∅ 6= S′
i ⊂ Si for every i ∈ [r], set

J (S′
1, . . . , S′

r) = {v ∈ V (G) \ (S1 ∪ . . . ∪ Sr) : (S′
1, . . . , S′

i ∪ {v}, . . . , S′
r) ∈ F}.

By the handshaking lemma and the definition of goodness, we obtain

1

a1 · · · ar
·

∑

v∈J (S′
1,...,S′

r)

dH(S′
1, . . . , S′

i ∪ {v}, . . . , S′
r) ≤ dH(S′

1, . . . , S′
r) ≤ D(|S′

1|,...,|S′
r|)(δ, k, n),

as each edge of H is counted at most a1 · · · ar times in the sum. Moreover,

∑

v∈J (S′
1,...,S′

r)

dH(S′
1, . . . , S′

i ∪ {v}, . . . , S′
r) ≥

∣

∣J (S′
1, . . . , S′

r)
∣

∣ · ⌊D(|S′
1|,...,|S′

i|+1,...,|S′
r |)(δ, k, n)⌋,
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by the definition of J and F . Hence |J (S′
1, . . . , S′

r)| is bounded from above by

(a1 · · · ar) ·
D(|S′

1|,...,|S′
r|)(δ, k, n)

⌊D(|S′
1|,...,|S′

i|+1,...,|S′
r|)(δ, k, n)⌋

≤ (2a1 · · · ar) · δka1···ai−1n1−1/ai···ar−1 .

Finally, since the sets J (S′
1, . . . , S′

r) cover Xi(S1, . . . , Sr), we find that

|Xi(S1, . . . , Sr)| ≤
∑

∣

∣J (S′
1, . . . , S′

r)
∣

∣ ≤ a1 · · · ar2|S1|+...+|Sr |+1 · δka1···ai−1n1−1/ai···ar−1 ,

as desired.

We now show that there are at least δka1···ar na1+···+ar−1 good r-tuples (A1, . . . , Ar) with
|A1| = a1, . . . , |Ar| = ar. From this, the proposition follows immediately, since at least one of
these is not in H.

Claim 6. There are at least ε(r + 1)ka1···ar na1+···+ar−1 good r-tuples (A1, . . . , Ar) with |A1| =
a1, . . . , |Ar| = ar.

Proof. Let i ∈ [r + 1], and let vi, vi+1, . . . , vr be r + 1 − i vertices of G such that

dG(vi, . . . , vr) ≥ 2i−r−1 · kni−1−1/a1···ar−1 .

We prove by induction on i that there are at least

ε(i)na1+...+ai−1−(i−1)a1···ai−1 · dG(vi, . . . , vr)a1···ai−1

good r-tuples (A1, . . . , Ai−1, {vi}, . . . , {vr}) with |A1| = a1, . . . , |Ai−1| = ai−1. Here we set
a1 + . . . + ai−1 := 0 when i = 1, and dG(vi, . . . , vr) := knr−1/a1···ar−1 if i = r + 1. It is easy to
see that Claim 6 follows from the case i = r + 1.

The base case i = 1 is an immediate consequence of (3.3). Suppose, then, that the result
holds for some i ∈ [r + 1]. Fix vi+1, . . . , vr ∈ V (G) with

dG(vi+1, . . . , vr) ≥ 2i−r · kni−1/a1···ar−1 . (3.4)

Let M denote the collection consisting of all i-tuples (A1, . . . , Ai−1, {v}) with v ∈ V (G),
|A1| = a1, . . . , |Ai−1| = ai−1, and such that (A1, . . . , Ai−1, {v}, {vi+1}, . . . , {vr}) is good.

Subclaim 1: |M| ≥ 2−a1···ai−1ε(i) · n1+a1+...+ai−1−ia1···ai−1 · dG(vi+1, . . . , vr)a1···ai−1 .

Proof of Subclaim 1. Set X = {v ∈ V (G) : dG(v, vi+1, . . . , vr) ≥ 1
2n · dG(vi+1, . . . , vr)}. Then

∑

v∈X

dG(v, vi+1, . . . , vr) ≥
1

2
dG(vi+1, . . . , vr).

Fix a vertex v ∈ X. It follows from the definition of X and the assumption (3.4) that
dG(v, vi+1, . . . , vr) ≥ 2i−r−1 · kni−1−1/a1···ar−1. Hence, by the induction hypothesis, M
contains at least ε(i)na1+...+ai−1−(i−1)a1···ai−1dG(v, vi+1, . . . , vr)a1···ai−1 i-tuples of the form
(A1, . . . , Ai−1, {v}).
Summing over all v ∈ X, and using Jensen’s inequality give

|M| ≥ ε(i)na1+...+ai−1−(i−1)a1···ai−1
∑

v∈X

dG(v, vi+1, . . . , vr)a1···ai−1

≥ ε(i)na1+...+ai−1−(i−1)a1···ai−1 · |X|1−a1···ai−1

(

∑

v∈X

dG(vi+1, . . . , vr)
)a1···ai−1

≥ 2−a1···ai−1ε(i) · n1+a1+...+ai−1−ia1···ai−1 · dG(vi+1, . . . , vr)a1···ai−1 .
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We now use Subclaim 1 to bound the number of good tuples (A1, . . . , Ai, {vi+1}, . . . , {vr})
with |A1| = a1, . . . , |Ai| = ai. For each (i − 1)-tuple A = (A1, . . . , Ai−1), define

M(A) := {v ∈ V (G) : (A, {v}) ∈ M}.

Consider (i − 1)-tuples A for which

|M(A)| ≥
1

2
n−(a1+...+ai−1) |M| . (3.5)

Subclaim 2: Suppose A satisfies (3.5). Then there are 1
2aiai! |M(A)|ai sets Ai ∈

(M(A)
ai

)

so
that (A, Ai, {vi+1}, . . . , {vr}) is good.

Proof of Subclaim 2. From (3.5) and Subclaim 1, we see that

|M(A)| ≥ 2(i−r−1)a1···ai−1−1ε(i) · ka1···ai−1n1−1/ai···ar−1 . (3.6)

For j = 1, . . . , ai, we can pick an arbitrary vertex

uj ∈ M(A) \ ({u1, . . . , ui−1} ∪ Xi(A, {u1, . . . , uj−1}, {vi}, . . . , {vr})) ,

and let Ai = {u1, . . . , uai}. By choice of uj , the tuple (A, {u1, . . . , uj}, {vi+1}, . . . , {vr}) is good
for every j ∈ [ai], and hence the r-tuple (A, Ai, {vi+1}, . . . , {vr}) is good. From Claim 5, we
deduce that the number of choices for each uj is at least

|M(A)| −
(

ai + Kδka1···ai−1n1−1/ai···ar−1

) (3.6)

≥ |M(A)| /2.

Thus the total number of choices for Ai is at least 1
2aiai! |M(A)|ai .

Finally, observe that
∑

A satisfies (3.5)

|M(A)| ≥ |M| /2

and that there are at most na1+...+ai−1 choices for A = (A1, . . . , Ai−1). Hence, by Subclaim 2
and convexity, the number of good r-tuples (A, Ai, {vi+1}, . . . , {vr}) is at least

1

2aiai!

∑

A satisfies (3.5)

|M(A)|ai ≥
1

2aiai!
·
(

na1+...+ai−1

)1−ai
(|M| /2)ai

Subclaim 1
≥ ε(i + 1)na1+...+ai−ia1···ai · dG(vi+1, . . . , vr)a1···ai ,

completing the proof of Claim 6.

This finishes our proof of Proposition 3.2.
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4. The Turán problem in random hypergraphs

Balanced supersaturation theorems can be used to obtain results for the corresponding random
hypergraph Turán problem. This was done by Morris and Saxton in [23] for even cycles and
complete bipartite graphs. For theta graphs and complete r-partite r-graphs, certain difficulties
arise which we shall explain in this section.

Let G(r)(n, p) denote the random r-graph on n vertices where each edge is present indepen-

dently with probability p. For some fixed r-graph H, we denote by exr

(

G(r)(n, p), H
)

the

maximum number of edges of an H-free subgraph of G(r)(n, p). If r = 2, we will drop the
subscripts and superscripts. The following result provides lower bounds for all p.

Proposition 4.1.

(a) Suppose that ex(n, {C3, C4, . . . , C2b}) = Θ(n1+1/b). Then there is some positive constant
c = c(b) such that w.h.p. ex(G(n, p), C2b) ≥ cp1/bn1+1/b. In particular, w.h.p. we have
ex(G(n, p), θa,b) ≥ cp1/bn1+1/b for every a ≥ 2.

(b) Let r ≥ 2 and 2 ≤ a1 ≤ . . . ≤ ar, and suppose that exr(n, K
(r)
a1,...,ar) = Θ

(

nr−1/a1···ar−1

)

.

Then, there is some positive constant c = c(a1, . . . , ar) such that w.h.p.

exr(G(r)(n, p), K(r)
a1,...,ar

) ≥ cp1−1/(a1 ···ar−1)nr−1/a1···ar−1 .

Morris and Saxton established Part (a) in [23, Section 2.3], while Part (b) can be obtained
by adapting their construction. In order to get good upper bound on the Turán number

exr

(

G(r)(n, p), H
)

, it is necessary to find the largest α > 0 for which H is Erdős–Simonovits

α-good. To do so, one usually has to restrict the range of k in Definition 1.5. Say that H
is Erdős–Simonovits α-good for m(n) up to f(n), if the condition in Definition 1.5 holds for
every 1 ≪ k ≤ f(n). Considering integers a, b ≥ 2, one can easily deduce from Theorem 2.2
that θa,b is α-Erdős–Simonovits good for m(n) = n1+1/b and α = 1/((a − 1)b − 1) up to
n(b−1)((a−1)b−1)/b(ab−1) . A standard application of the hypergraph container method (see [23,
Section 6]) then shows that, for every p ≥ n−((a−1)(b−1)/(ab−1))(log n)2(a−1)b, we have w.h.p.
ex(G(n, p), θa,b) = O(p1/(a−1)bn1+1/b). This matches the lower bound from Proposition 4.1 (a)
only when a = 2. Note that, in the case a = 2, this recovers a result of Morris and Saxton [23,
Theorem 1.8].

For complete r-partite r-graphs, the situation is very different. It is likely that Theorem 3.1
is best possible and provides a matching upper bound for Proposition 4.1 (b) for large enough

p. However, for r > 2, finding the largest α so that K
(r)
a1,...,ar is α-Erdős–Simonovits good up

to some f(n) from Theorem 3.1 turns into a difficult optimisation problem we could not solve.
Remark. Recently, we have learned that Spiro and Verstraëte [29, Theorem 1.3] used our

Theorem 3.1 to essentially determine exr(G(r)(n, p), K
(r)
a1,...,ar) in the regime p ≥ n−r/2 log n.
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A. Proof of Proposition 1.6

The following proof is very similar to that of comparable statements given in [23, 4]. We
will make use of the hypergraph container method, developed in [3, 26]. For an s-uniform
hypergraph H, we define the maximum j-degree ∆j(H) of H by

∆j(H) = max{dH(σ) : σ ⊂ V (H) and |σ| = j}
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and the average degree d(H) of H by d(H) = s |E(H)| / |V (H)|. Furthermore, for τ ∈ (0, 1),
the co-degree function δ(H, τ) of H is given by

δ(H, τ) =
1

d(H)

s
∑

j=2

∆j(H)

τ j−1
.

Theorem A.1 (see [3, 26]). For each s ∈ N, there exist positive constants c1 = c1(s) and
c2 = c2(s) such that the following holds for all N ∈ N. For each 0 < ε < c1 and each N -vertex
s-graph H, if τ ∈ (0, c2) is such that δ(H, τ) ≤ ε, then there exists a family C of at most

exp

(

τ log(1/τ)N

ε

)

(A.1)

subsets of V (H) such that:

(1) for each independent set I ⊂ V (H), there exists some U ∈ C with I ⊂ U ,

(2) e(H[U ]) ≤ εe(H) for each container U ∈ C.

We shall establish Proposition 1.6 through iterated applications of the following consequence
of Theorem A.1.

Proposition A.2. Suppose that an r-graph H is Erdős-Simonovits α-good for m = m(n).
Then there exist positive constants ε and k0 such that the following holds for all n, k ∈ N with
k ≥ k0. Given an r-graph G on [n] with e(G) = k · m(n), there exists a collection C(G) of at
most

exp
(

O(k−α log k · m(n))
)

subgraphs of G satisfying:

(1) Every H-free subgraph of G is a subgraph of some U ∈ C,

(2) e(U) ≤ (1 − ε)e(G) for every U ∈ C.

Proof. Since H is Erdős-Simonovits α-good for m = m(n), there exists a constant C > 0 and
a (non-empty) collection H of copies of H in G such that

dH(σ) ≤
C · |H|

k(1+α)(|σ|−1)e(G)
for every σ ⊂ E(G) with 1 ≤ |σ| ≤ e(H). (A.2)

We will now think of H as a hypergraph whose vertex set is E(G) and whose edges are the
copies of H in H. Set 1/τ = ε2k1+α and observe that, if ε is sufficiently small,

δ(H, τ) =
1

d(H)

e(H)
∑

j=2

∆j(H)

τ j−1

(A.2)
≤

1

d(H)

e(H)
∑

j=2

ε2(j−1)k(1+α)(j−1) ·
C · |H|

k(1+α)(j−1)e(G)

=
C

e(H)

e(H)
∑

j=2

ε2(j−1) ≤ 2Cε2/e(H) ≤ ε.

Using Theorem A.1, we thus obtain a collection C(G) of at most

exp

(

τ log(1/τ)e(G)

ε

)

≤ exp
(

O(k−α log k · m(n))
)

subsets of V (H) = E(G) such that:
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(1’) Every H-free subgraph of G is a subgraph of some U ∈ C(G), and

(2’) e(H[U ]) ≤ εe(H) for all U ∈ C(G).

The only thing that remains to prove is that e(U) ≤ (1 − ε)e(G) for every U ∈ C. Consider an
arbitrary container U ∈ C. From (A.2) we find

|E(H) \ E(H[U ])| ≤ |V (H) \ U | ·
C · e(H)

e(G)
.

On the other hand, it follows from condition (2’) that |E(H) \ E(H[U ])| ≥ (1 − ε)e(H). Hence
|V (H) \ U | ≥ (1 − ε)e(G)/C ≥ εe(G), as desired.

We are now ready to prove Proposition 1.6.

Proof of Proposition 1.6. We wish to estimate the number of H-free subgraphs of K
(r)
n . We

define a sequence {k(i)}t
i=1 of positive reals, and a sequence {Ci}

t
i=1 of families of r-graphs as

follows. Let ε and k0 be positive constants given by Proposition A.2. We set k(1) =
(n

r

)

/m(n)
and define k(i) = (1 − ε)k(i − 1), with k(t) being the first term of this sequence to satisfy

k(t) ≤ k0. We take C0 = {K
(r)
n }, and for 1 ≤ i ≤ t, we obtain Fi from Ci−1 by replacing

each r-graph G ∈ Ci−1 for which e(G) ≥ k(i) · m(n) by the collection C(G) of its subgraphs
guaranteed by Proposition A.2.

Let C = Ct. Clearly, every H-free r-graph on [n] is contained in some G ∈ C. Moreover,
e(G) ≤ k0 · m(n) for every G ∈ C. Finally, from (A.1) we see that

|F| ≤ exp

(

t
∑

i=1

O(1) · k(i)−α log k(i) · m(n)

)

≤ exp
(

O(1) · k−α
0 log k0 · m(n)

)

.

Therefore, the number of H-free r-graphs on [n] is at most

∑

G∈C

2e(G) ≤ |C| 2k0·m(n) ≤ exp
(

O(1) · k−α
0 log k0 · m(n) + k0 · m(n)

)

= 2O(m(n)).

Finally, given any δ > 0, the number of H-free r-graphs with n vertices and less than m(n)/k3
0

edges is bounded from above by

∑

G∈C

m(n)/k3
0

∑

i=1

(

e(G)

i

)

≤ |C| 2m(n)/k0 ≤ exp
(

k
−α/2
0 m(n) + m(n)/k0

)

≤ 2δ·m(n)

if k0 is large enough.

B. Deriving Theorem 1.8 from Theorem 3.1

In this section we will deduce Theorem 1.8 from Theorem 3.1. Obviously, property (i) in
Theorem 1.8 follows from property (a) in Theorem 3.1. It remains to verify property (ii) in
Theorem 3.1. Without loss of generality we can assume that σ is a complete r-partite r-graph.
In light of property (b), our task becomes to justify that

D(b1,...,br)(δ, k, n) ≤
C · |H|

k(1+α)(b1 ···br−1)e(G)
(B.1)
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for every (b1, . . . , br) ∈ N
r satisfying b1 ≤ a1, . . . , br ≤ ar. From (3.1), we see that

D(b1,...,br)(δ, k, n) = O(1) · kβnγ ,

where β =
r
∑

i=1
(ai − bi)a1 · · · ai−1 and γ =

r−1
∑

i=1
(ai − bi)(1 − 1/ai · · · ar−1). On the other hand, by

the assumptions on G and H, we obtain

|H|

k(1+α)(b1 ···br−1)e(G)
= Ω(1) · kβ′

nγ′

where β′ = a1 · · · ar − (1 + α)(b1 · · · br − 1) − 1 and γ′ = a1 + . . . + ar−1 − r + 1/a1 · · · ar−1. As

γ′ =
r−1
∑

i=1
(ai − 1)(1 − 1/ai · · · ar−1), we get

γ′ − γ =
r−1
∑

i=1

(bi − 1)(1 − 1/ai · · · ar−1) ≥ 0. (B.2)

We next show that
(β′ − β) + a1 · · · ar−1 · (γ′ − γ) ≥ 0. (B.3)

From (B.2), (B.3) and the fact that n ≥ ka1···ar−1, we find

kβ′
nγ′

= kβnγ · (k−a1···ar−1n)γ′−γ · k(β′−β)+a1···ar−1·(γ′−γ) ≥ kβnγ ,

implying (B.1) for C sufficiently large.
In the remainder of this section, we shall justify (B.3). Observe that

β′ = (a1 · · · ar − 1) − (b1 · · · br − 1) − (b1 · · · br − 1)α

=
r
∑

i=1

(ai − 1)a1 · · · ai−1 −
r
∑

i=1

(bi − 1)b1 · · · bi−1 − (b1 · · · br − 1)α.

From this it follows that

β′ − β =
r
∑

i=1

(bi − 1)(a1 · · · ai−1 − b1 · · · bi−1) − (b1 · · · br − 1)α.

Combined with (B.2), this yields

(β′ − β) + a1 · · · ar−1 · (γ′ − γ) =
r
∑

i=1

(bi − 1)(a1 · · · ai−1 − b1 · · · bi−1) − (b1 · · · br − 1)α

+ a1 · · · ar−1 ·
r−1
∑

i=1

(bi − 1)(1 − 1/ai · · · ar−1). (B.4)

If b1 = . . . = br−1 = 1, then the RHS of (B.4) is at least (br −1)(a1 · · · ar−1 −1)−(br −1)α ≥ 0.
So (B.3) is valid in this case.

Now suppose (b1, . . . , br−1) 6= (1, . . . , 1). Since 1 ≤ bi ≤ ai for every i ∈ [r], we can bound
the RHS of (B.4) from below by

−(b1 · · · br − 1)α + a1 · · · ar−1 ·
r−1
∑

i=1

(bi − 1)(1 − 1/ai · · · ar−1) ≥ −(b1 · · · br − 1)α + 1

≥ 0,
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where in the second inequality we used the fact that a1 · · · ar−1 ·
r−1
∑

i=1
(bi − 1)(1 − 1/ai · · · ar−1)

is a positive integer when (b1, . . . , br−1) 6= (1, . . . , 1), and in the last inequality we estimated
α = 1

a1···ar−1 ≤ 1
b1·br−1 . Hence (B.3) is true in this case as well. This completes our proof.
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