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Balanced supersaturation for some degenerate
hypergraphs

Jan Corsten* Tuan Tran'

A classical theorem of Simonovits from the 1980s asserts that every graph G

2%k
satisfying e(G) > v(G)™ /% must contain > (sgg%) copies of Coi. Recently,

~

Morris and Saxton established a balanced version of Simonovits’ theorem, showing

that such G has 2 (2%23)% copies of Cyg, which are ‘uniformly distributed’ over
the edges of G. Moreover, they used this result to obtain a sharp bound on the
number of Coi-free graphs via the method of hypergraph containers. In this paper,
we generalise Morris—Saxton’s results for even cycles to ©-graphs. We also prove
analogous results for complete r-partite r-graphs.

Keywords: Erdés-Simonovits conjecture, balanced supersaturation, theta graph,
complete r-partite r-graph, hypergraph containers.

1. Introduction

1.1. Supersaturation theorems

The Turdn number ex,(n, H) of an r-graph H is the maximum number of edges in an n-vertex
r-graph which does not contain a copy of H. The Erdés-Stone-Simonovits theorem [15, 12]

asserts that
1 n
exatn ) = (1= 5777 <2> + o)

for every graph H and therefore asymptotically determines the Turdan number of every non-
bipartite graph H. For bipartite graphs, finding the Turdn number is usually very challenging
and even their order of magnitude is unknown for most of them. Erdds [10] further proved
that ex,(n, H) = o(n") if and only if H is an r-partite r-graph. Similarly as for graphs, not
much is known for the Turan number of r-partite r-graphs. It is natural to ask now how many
copies of H a graph on n vertices with more than exs(n, H) edges must contain. Erdds and
Simonovits [13] observed that for non-r-partite r-graphs a simple double-counting argument
shows that once we pass the extremal number, we can already find a constant fraction of all
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copies of H in the complete graph. This fails in general for r-partite r-graphs with r > 3 (see
[27]), but Erdés and Simonovits [14] conjectured that in the graph case (i.e. 7 = 2) one can
always find a constant fraction of the expected number of copies of H in the random graph
with the same number of edges.

Conjecture 1.1. For every bipartite graph H with v vertices and e edges, there is some C > 0
s0 that every graph G with n vertices and m > C -exa(n, H) edges contains Q(m®n?=2¢) copies

of H.

So far this conjecture has only been verified for very few graphs. In an unpublished
manuscript, Simonovits proved the conjecture for even cycles Co provided that exa(n, Cyp) =
O(n'*1/%), which is known to be true only for £ € {2,3,5} (see [21, 7, 28, 8, 30]). Recently,
two extensions of this theorem were obtained. One by Morris and Saxton [23] who proved
a balanced version of Simonovits’ theorem, which (roughly speaking) additionally guarantees
the copies of Cy to be uniformly distributed in the graph. Another one by Jiang and Yepre-
myan [18] who extended Simonovits’ theorem to linear cycles in hypergraphs. Erdds and
Simonovits further proved Conjecture 1.1 for all complete bipartite graphs K ; with s <t and
exa(n, Kgt) = ©(n?71/%), which is known to be true if ¢ is large enough in terms of s and
conjectured to be true for all ¢ > s (see [20, 1, 21]). Morris and Saxton obtained a balanced
strengthening of this result as well [23].

In this paper we shall extend the results of Morris and Saxton to theta graphs (6, is
the graph consisting of a internally vertex-disjoint paths of length b, each with the same
endpoints) and complete r-partite r-graphs. The following two supersaturation results are
trivial consequences of our main results (see Section 1.3 below).

Theorem 1.1. For all a,b > 2, there is some C' > 0 so that every graph G with n vertices
and m > C - n'"*t1/Y edges contains Q(m®n2=*O+D)) copies of 0.

Theorem 1.2. For all 2 < a1 < ... < a,, there is some C > 0 so that every r-graph G
with n vertices and m > C - n~1/@ %1 edges contains Q(merp@ittar—rai-ary copies of
K(T)

ai;...,ar -

Note that exa(n,0,) = ©(n'+1/?) if a is sufficiently large with respect to b (see [16, 9]), and

that exr(n,Kg?,,,,ar) = Q(nr— /a1y if g, is sufficiently large with respect to ay,...,a,_1

(c.f. [10, 22]). Hence we confirm Conjecture 1.1 for ‘most’ theta graphs and ‘most’ complete
r-partite r-graphs.

1.2. Counting H-free subgraphs

It is a central problem in extremal graph theory to determine the number, F,.(n, H), of H-free
r-graphs on n vertices for a given fixed r-graph H and a natural number n. We trivially have

ottt < puts () <ot (1)
1<ex,(n,H) L

and all existing results in the area seem to indicate that the lower bound in (1.1) is closer
to the truth. The problem of estimating F,.(n, H) is essentially solved for every non-r-partite
r-graph H. Indeed, in the graph case, Erdds, Frankl and Rodl [11] showed

Fy(n, H) = 2(+o() exz(n,1) (1.2)



using Szemerédi’s regularity lemma. The corresponding result for r-graphs was proved by
Nagle, Rodl and Schacht [25] via the hypergraph regularity lemma.

For r-partite r-graphs on the other hand, the problem seems to be more challenging and
much less is known. Morris and Saxton [23] showed that (1.2) does not hold for Cs. Even
the weaker bound F}(n, H) = 20 () ('3 conjecture usually attributed to Erdés) has been
proven in only a few special cases: for most complete bipartite graphs (see [5, 6]), for cycles of
length ¢ € {4,6,10} (see [19, 23]), and for r-uniform linear cycles (see [24, 4]). In this paper,
we confirm the weaker conjecture for most theta graphs and most complete r-partite r-graphs.
More precisely we prove the following results.

Theorem 1.3. For every a,b > 2, there are at most 20(n! 1Y)

and at most 2°0""") of them have o(n't1/%) edges.

0a,p-free graphs on n vertices

r—1/(aj--ap_1)
Theorem 1.4. For all 2 < a1 < ... < a,, there are at most 20(" e v) K(g:?___,aT—free

r=1/(aj--ap_1)
r-graphs on n vertices and at most 90(n ! v) of them have o (n“l/(al”'a“l)) edges.

In particular it follows for those r-graphs H that there is a positive constant ¢ = ¢(H) such
that asymptotically almost every H-free r-graph has at least ¢-ex,(n, H) edges. This confirms
a special case of a conjecture of Balogh, Bollobas and Simonovits [2] which states that this is
true for all bipartite graphs H containing a cycle.

1.3. Balanced supersaturation theorems

The hypergraph container method, developed independently by Balogh, Morris and Samotij [3],
and Saxton and Thomason [26], is one of the most successful recent developments in extremal
combinatorics. In order to apply the method, we have to find a family of copies of H in G that
are ‘evenly distributed’ in the following sense.

Definition 1.5 ([23, Definition 5.5]). Let o > 0. An r-graph H is called Erdds-Simonovits a-
good for a function m = m(n) if there exist positive constants C' and kg such that the following
holds. Let k > kg, and suppose that G is an r-graph with n vertices and k- m(n) edges. Then
there exists a non-empty collection H of copies of H in G, satisfying

C-|#|
drH(O-) S /{;(1+O‘)(‘U‘_1)6(G)

for every o C E(G) with 1 < |o| < e(H),

where dy (o) := [{H" € H : 0 C H'}| denotes the degree of o in H.

Morris and Saxton [23] conjectured that every bipartite graph H is Erdds-Simonovits a-
good for m(n) = exa(n, H) and some a = o(H) > 0 (the same statement is trivially true for
non-bipartite graphs). Furthermore, they expect that the family H can be chosen so that it
contains (up to a multiplicative factor) as many copies of H as the random graph G(n,m)
with m = k - exa(n, H), which leads to a stronger form of Conjecture 1.1. Their motivation in
making Definition 1.5 is the following proposition.

Proposition 1.6 ([23, Proposition 5.6]). Let H be an r-graph and let « > 0. If H is Erdds-
Simonovits a-good for m(n), then the following hold.

(1) There are at most 20(m(n)) [ _free r-graphs on n vertices,



(2) The number of H-free graphs with n vertices and o(m(n)) edges is 200m().

A proof-sketch for a similar result was given in [23]. For completeness, we provide a full
proof of Proposition 1.6 in Appendix A.

We will extend the ideas from [23] to prove the following balanced supersaturation theorems,
which are the main results of this paper.

Theorem 1.7. For all a,b > 2, there are positive constants C,§ and ko such that for all k > kg
and all graphs G with n vertices and kn'*/® edges, there exists a family H of copies of Oap in
G so that

(i) |H| > 6k®n? and

(it) dy (o) < Wfﬂ)e(c) for all 0 C E(G) with 1 < |o| < ab, where a = .

Theorem 1.8. Forall2 < ay < ... < a,, there are positive constants C,§ and kg such that for
all k > ko and all r-graphs G with n vertices and kn"~1/(@1% 1) edges, there exists a family

H of copies of Kg)ar in G so that

(i) |[H| > 0k@ orpattar—1 gng

C-|H]|

(i1) dy (o) < FOF (=D (@) for all 0 € BE(G) with 1 <|o| < ay---a,, where o = —

ai-ar—1°

We thus confirm Morris’ and Saxton’s conjecture for most theta graphs and the corre-
sponding statements for hypergraphs for most complete r-partite r-graphs. Theorem 1.3
and Theorem 1.4 follow immediately from Proposition 1.6 combined with Theorem 1.7 and
Theorem 1.8. The subsequent work of Ferber, McKinley and Samotji [17] establishes a weaker,
but significantly easier to prove, supersaturation result that is still sufficiently strong to derive
Fy(n, H) = 22(H) for a much larger class of r-graphs H. However, the result of [17] is not
strong enough to imply anything non-trivial for the Turdan problem in random hypergraphs.

We will prove Theorem 1.7 in Section 2, Theorem 1.8 in Section 3. We will use in these
sections the slightly informal notation € < € if € < ¢ - € for a sufficiently small constant ¢ > 0.

2. Theta graphs

For n,k,7 € Nand § > 0, let

Jab—1 nlfl/b

A8, k,m) o= ——
(SKb/(b=1))?

Definition 2.1. Let a,b,n,k € N with a,b > 2, let § > 0 and let G be an n-vertex graph with
kn't1/b edges. A collection H of copies of b4, in G is good for (a,b,k,n,d) (or simply good if
the parameters are understood) if dy (o) < AU7D (5, k,n) for every non-empty forest o € E(G).

The aim of this section is to prove the following theorem.

Theorem 2.2. For all a,b > 2, there are some positive constants kg and §, such that for all
k > ko and all graphs G with n vertices and kn*t1/% edges, there exists a family H of copies
of O0up in G of size |H| > 5k®n? which is good for (a,b,k,n,s).



Theorem 2.2 easily implies Theorem 1.7. Indeed, for every o C E(G) with 1 < |o| < ab and
dy (o) > 0, take a forest o’ C o of maximal size and note that

Jab—1 nlfl/b Leb—1 nlfl/b

d < dy(o') < AUD(§ k. n) < <
H(O-) — ,H(O-) — ( 9 ?n) (5kb/(b_1))|o'/|—l - (6]{:14,0{)‘0"—1 ’

where o = 1/(ab — 1). We remark that the worst case for the last inequality is when |o| = ab
and |¢'| = ab —a + 1. Theorem 2.2 in turn is an immediate consequence of the following
proposition.

Proposition 2.3. For all a,b > 2, there are some positive constants ko and 6 > 0 such that
for all k > ko and all graphs G with n vertices and kn*t/Y edges, the following is true. If H is
a collection of copies of 0, in G which is good for (a,b,k,n,d) and |H| < Sk®n?, then there
exists a copy H ¢ H of 04 such that HU{H} is good for (a,b,k,n,0).

The rest of this section is devoted to the proof of Proposition 2.3.

2.1. The setup

We define all constants here and fix the important parameters. Let a,b > 2 and set K = 5ab,
e(b) = 1/K3, e(t—1) = e(t)! for each 2 < t < b, § = £(1)2%*2 and kg = 1/6. Let n, k € N with
k > ko, and fix a graph G with n vertices and kn't1/? edges. Also fix a good collection H of
copies of 0, in G with [H| < §k%®n?2.

We will make the following further assumptions on G. Since § = £(1)2?*+2, there are at most

ab- |[H
6(1)2ab+1ka‘b—’1n1—1/b <ab-e(1) e(G) < e(G)

edges e € G with dy(e) > e(1)220+1ab—1p1-1/b By deleting all such edges we may assume
dy(e) < e(1)220H1 b= 1p1=1/b for every e € E(G) (2.1)
(at the cost of slightly weaker constants). In particular, we have
dy(e) < AV (5, k,n) for every e € E(G). (2.2)

Similarly, since there are at most Ke(b)kn'*1/® < e(G) edges incident to vertices of degree
at most Ke(b)kn'/®, we may assume that

5(G) > Ke(b)kn'/?. (2.3)
Finally, we define saturated sets of edges.

Definition 2.4 (Saturated sets of edges). Given a non-empty forest o C E(G), we say that o
is saturated if dy (o) > {A(V’D((S, k:,n)J Let

F ={o C E(G) : o is saturated }
denote the collection of all saturated sets of edges.

We emphasize that in all further results G, H, F and all parameters are fixed as above.



2.2. Preliminaries
For S C E(G) and j € N, define the j-link of S as
Lg)(S) ={c CE(G)\S:|o|=jand c Ut € F for some non-empty 7 C S},

and let Lx(S) = U;>; Lg{)(S). We have the following important bound on its size.

Lemma 2.5. For every j € N and every S C E(G), we have
‘ng_‘)(s)’ < gab+|S|+1 (5kb/(b—1))j_
Proof. For each non-empty forest 7 C .5, set
J(r)={c CEG)\S:|o]=jand cUT € F}.

By the handshaking lemma and the definition of goodness, we obtain

1 T
2ab Z dy(cUT) <dy(r) < Al D((S,k,n),
oceJ(T)
as each edge of H is counted at most 2% times in the sum. Moreover,
Y dulour) > |T(r)]- (AT k,n)),
oceJ(T)
by the definition of J(7) and F. Hence
AUTD(6, k, n)
[AUTHD) (6, k)]

’j(T)‘ < 9ab < gab+1 (5kb/(b71))j.

Finally, since the sets J(7) cover ng)(S ), we find that

ILP(9)] < 3|7 (r)] < 20045+ (kY 0=Dy,

as desired. O

The following definition and theorem summarise a series of results of Morris and Saxton (see
[23, Section 3]) which we will use in a similar way to build copies of 6.

Definition 2.6. Let z € V(G) and 2 <t € N. A t-neighbourhood of x is a pair (A, P), in
which

o A=(Ap,A,...,Ay) is a collection of (not necessarily disjoint) sets of vertices of G with
Ay = {a},

o P is a collection of paths in G of the form (x,uq,...,u;), with u; € A; for each i € [t].

For any collection P of paths in G and any two vertices u,v € V(G), let
Plu — v] :=={(x1,...,25) : 1 = u, x5 = v}

denote the set of paths in P which begin at u and end at v.



Theorem 2.7 (Morris—Saxton [23]). Given G, H,F and all constants as in Section 2.1, there
exist t € {2,...,b} and some vertex x € V(G), for which there is a t-neighbourhood (B =
(Bo,...,Bt), Q) of x with the following seven properties:

(P1) |By| < kn'/® and |B;| < k®b-D/(0=1)pt/b,
(P2) For everyi € {0,1,...,t — 1} and every u € B,
|N(u) N Biy1| > e(t)knt/’.
(P3) For every v € By,
IN(v) N By_1| > e(t)2kY/ =D,

(P4) For every v € By,
|Q[x — v]| > e(t)" KU~V =D,

(P5) Q avoids F, i.e. o ¢ Q for every o € F and every Q € Q.

(P6) For every w € By and v € V(G) \ {z,w}, there are at most bk=2/0=1) paths Q €
Qlx — w] containing v.

(P7) For every o C E(G) with |o| < t—1 and everyw € By, there are at most t'-k(t=lo1=1)b/(b=1)
paths Q € Qlz — w] with o C E(P).

We shall call (B, Q) a refined t-neighbourhood of x. Property Item (P5) is slightly different
here but completely analogous (in the proof of Lemma 3.6 in [23], we need to use Lemma 2.5
instead of the corresponding lemma in [23]).

2.3. Finding 0, in refined t-neighbourhoods

Let G, H, F and all constants be as in Section 2.1 and let (B, Q) be the refined ¢-neighbourhood
for some x € V(G) and t € {2,...,b} guaranteed by Theorem 2.7.
For technical reasons fix

X;(u) € N(u) N Biy of size | X;(u)| = e(t)kn'/®
for each i € [t — 1] and u € B;, and
Xy (u) € N(u) N Bi_y of size | Xy(u)| = e(t)?kY -V
for each u € B;. Furthermore, fix a subset
Q(z) C Q(x — ) of size |Q(z)| = e(t)t KD/~

for every z € B;.
Using the following algorithm, we shall create many copies H of 6, in G such that HU{H}
is good and deduce that one of them must not be contained in H already.

Algorithm 1. Initially, let © := ). As long as possible generate new copies of 6,5 and add
them to © via the following process. To create a copy of 8, we shall add edges and denote
the subgraph of G induced by the currently selected edges by H = (V, E). (Note that H,V
and F are constantly changing.)



1. Generate a path P, = (z = p(l],p%, ...,p}) as follows. For i = 0,1,...,t — 1, choose p%ﬂ
from X;(p}) € N(p}) N Biy1 such that

pha ¢V and {pl,pia} ¢ I (E).

2. Create a path Zy = (p} = 2}, 21,..., 2, =t y) as follows. Define

r(i) =

t—1 if0<i<b—tandiiseven,
t if0<i<b-—tandiis odd.
For i =0,...,b—t—1, select z},; from Xr(i)(zil) CN(iEHN B,.(i+1) such that
1
¢V oand (ol 2la) ¢ LP(B).

3. For j =2,...,a, create a path Z; = (y = zg,z{, - ,zg_t =: z;) as follows. Let

(0) {t—l if0<i<b-—tandi+ (b—t)is even,
s(i) =

t if0<i<b—tandi+ (b—t)isodd.
Now, for i =0,...,b —t — 1, choose sz+1 from Xs(i)(zf) C N(zf) N By(i+1) with
da ¢V oand {4} ¢ LP(B).
4. For j = 2,...,a, pick a path P; € Q(z;) which uses no vertex of V'\ {z;} and avoids

Ly(E).
Join the paths Py, Z1,...,P,, Z, to form a copy of 0,3, and add this to ©.

Figure 1: A copy of 03 produced by Algorithm 1.

See Figure 1 for an illustration of Algorithm 1. We shall show later that |©| is quite large.



Claim 1. |©| > g(1)%%kan,
Before we proceed with the proof of Claim 1, we show how it implies Proposition 2.3.

Proof of Proposition 2.3. Since |B;| < kn'/? by property (P1) of Theorem 2.7, we have

(2.1)
©NH| < kn'’ max dy(e) < kn/t.e(1)200 L pabmlpl=1/b — o(q)2ab+1 paby,
e€E(G) H

Hence, by Claim 1, there exists some H € O \ H. By the construction of ©, the collection
‘H U{H} is good. This finishes our proof. O

The rest of this section is devoted to the proof of Claim 1. To make the counting of |O| easier
to follow, we introduce some notation here. For i € [a], let R; be the set of all possible choices
for the paths Py, Z1,...,Z,, P, ..., P; in Algorithm 1. For R; = (P, Z1,...,Z4,P5,...,P;) €
Ri, let Rip1(Ry) = {Piy1 € Q(ziy1) : (Ri, Piy1) € Riy1}. We call a vertex v € V(Ry) \ {z}
forward if either v € V(Py) or v € By, backward if v € V(ZyU...UZ,) N B;—;. Hence we
have partitioned V(Ry) \ {z} into forward and backward vertices. Let 7, and ry,, denote the
number of forward and backward vertices respectively of some Ry € Ry, and let 7 = 7, + pyp-
It is not difficult to see that r = ab — (a — 1)t, and

Trw =t+alb—1)/2, rpw =a(b—1)/2 if b—t is even, (2.4)
rfw=t+alb—t+1)/2—-1, rpy =a(b—t—-1)/24+1 if b—tis odd. '

To prove Claim 1, we first bound the number of graphs (P, Z1,...,Z,), chosen in Steps
1-3, in terms of ¢, and 7,,.

Claim 2. |R;| > % (E(t)knl/b)rfw . (E(t)%b/(bﬂ))mw.

Proof. We first show that at most ab+ 229§kt (=1) choices are excluded for each vertex. Recall
that H = (V, E) is the graph induced by the currently selected edges. Note that at most ab
choices are excluded by the condition that the new vertex is not in V. Moreover, by Lemma 2.5

we have
ILSTI)(E)I < QabHEIHL | 5pb/(b=1) < 92abgpb/(b=1)

as required. Therefore, there are at least
e(t)kn!/? — (ab+ 226k =1} > 971 (1) !/

choices for each forward vertex, where the last inequality holds since k < n=1/? and § <« e(t)%.
Similarly, using the fact that § < (t)2, we find that there are at most

8(t)2kb/(b—1) . (ab—i— 22ab5kb/(b—1)) > 2—1/r€(t)2kb/(b—1)

choices for each backward vertex. The claim now follows, as we choose 7y, forward vertices
and ry,, backward vertices. O



For each i € [a — 1], define D; to be the set of all R; € R; for which there are at least

ie(t)tk(t—l)b/(b—l)

paths P € Q(z11) with E(P) € Lg?(E(Ri)). (Here we view R; as a graph.) We now deduce
Claim 1 from the following two claims. The first shows that if the graph R; € R; satisfies
R; ¢ D;, then we have many choices for the path P, in Step 4.

Claim 3. IfR; € R; \ D; for some i € [a — 1], then

Riv1(Ry)| > = - e(t) kDD,

DO | —

The second states that |D;| is not too large.
Claim 4. |D;| < 3 |R;| for every i € [a — 1].
Proof of Claim 1. From Claims 3 and 4, we find
Rit1] > 4 e()t DY O R\ Dy > y e (t) DY O Ry
for every i € [a — 1]. Combined with Claim 2, we obtain
a—1
IRa| > (%g(t)tk(t_l)b/(b_l)) . %(a(t)knl/b)T’fw ) (g(t)ka/(b—l))T‘bw
_ 272a+1€(t)(a71)t+rfw+2rbw . k(afl)(tfl)b/(bfl)Jrrfw+brbw/(b71)nrfw/b’
By (2.4), one has

(@ — 1)t + 7 fo + 2rp < (@ — Dt + {t + alb— £)/2} + 2a(b — )2
= 2ab—at —a(b—t)/2 < 2ab — at.

Again from (2.4) we find rp, >t +a(b—1t)/2 =0+ (a —2)(b—1t)/2 > b. Together with the
fact that n > k=1 this yields

Jo(@=D)(E=1b/ (b= 1)+ b7/ (0=1) 7 /b 5 o (a= 1) (E= 1)/ (b=1)Fr sy +briny | (b=1)+ (1 /b=1)b/ (b=1)

_ k{(afl)(tfl)Jrrfw+rbw71}b/(b71)n _ kabn7
where the last equality follows from the formula rf,, + 7, = ab — (a — 1)t. Therefore, we get
’Ra’ > 2—2a+1€(t)2ab—atkabn.
As each copy of 6, appears at most a! times in R,, we conclude
1 1 —2a+1 2ab—at 7.ab 2ab 1.ab
O] 2 = [Ra| =2 =2 e(t) E%n > e(1)“k*n
a! al

for e(1) < e(t) < 1, as required. O

We end this section with the proofs of Claims 3 and 4.
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Proof of Claim 3. As |Q(zi41)| = e(t)'k¢=DY/ =1 “in order to prove the claim, it suffices
to show [Q(zi4+1) \ Rit1(Ri)| < 2e(t)tkt=D¥/ =D In other words, we wish to bound the
number of paths in Q(z; 1) which either contain a vertex of V/(R;) \ {z, z;11}, or fail to avoid
Lr(E(Ry)).

By property Item (P6) of Theorem 2.7, the number of paths in Q(z;y1) which contain a
vertex of V(R;) \ {z, zit1} is at most

ab - bk(t—Z)b/(b—l) S €(t)t+1]€(t_1)b/(b_1)7

as k > ko > e(t)~ (D,

Now, let 0 € Lr(E(R;)), and consider the paths in Q(z;11) that contain o. We first deal
with the case 1 < |o| < ¢t — 1. According to Item (P7), the number of paths in Q(z11)
containing o is at most

#t . (t—lo]=1)b/(b—1)
Moreover, by Lemma 2.5, we have
‘L.(;I-OI)(E(RZ))‘ < 22ab(5kb/(b71))\o\.

Therefore, the number of paths in Q(z;41) which contain some o € Lr(FE(R;)) with 1 < |o| <
t — 1 is at most

(2b)2ab . 5k(t—1)b/(b—1) < g(t)t+1kj(t_1)b/(b_1),
as 0 < e(t)+L.
On the other hand, since R; ¢ D;, there are at most

1

Ze()t =10/ (0-1)

0

paths in Q(z;41) that contain some o € Lx(FE(R;)) with |o| = t¢.
Summing these estimates gives the desired inequality

1

2

Proof of Claim 4. We proceed by induction on i. Let i € [a — 1] and assume that the claim

holds up to i — 1 (no assumption is needed in case i = 1). Thus, we have

19(2i11) \ Rig1(Ry)| < = - e(t) kD071 O

Claim 3 1

\Rj\ > 1 .E(t)tk(t—l)b/(b—l) . !Rj_1 \Dj_1! > % .E(t)tk(t—l)b/(b—l) . !Rj_ﬂ

for every 2 < j <. Combined with Claim 2, this gives
’Rz’ > (%g(t)tk(tfl)b/(bfl)) % (g(t)knl/b)rfw . (g(t)2kb/(b*1))rbw . (2.5)

We proceed in three steps. We first give an upper bound for the number of members of D;
containing a given set of edges. This will be used in conjunction with (2.5).
Step 1. Let z € By, and let J C E(QG) be a forest of size |J| = j € [r+ (i —1)(t — 1) — 1] which
does not contain an x-z-path. Then there are at most

i—1

Tfyw—1 Tpw+(i—1)(t—1)—j
o) (ab)e (knt/0) " (pl0-1)" VDT e G < (= 1) — 1)
m\J) = r4(i-1)(t—1)—j—1
(ab)?ab (knl/b) DD otherwise

R; € R; with zi41 = z and J C E(R;).
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Remark: The key property about m(j) is that it satisfies

m(j) - (k0D < 1]

< i for every je[r+ (i —1)(t—1)—1], (2.6)
n

due to (2.5) and & < (t)3%.

Proof of Step 1. Note that we have at most (ab)® choices for the positions of the edges of .J in
R,;. Let’s fix such a choice and count the corresponding R;. More precisely, given a partition
J = JyU...UJ;, we shall bound from above the number of R; = (Rq, P»,..., P;) € R; such
that J1 C Ry, Jy C Py for all 2 < /¢ <4, and Zit1 = Z.

We may assume |Jy| <t for every 2 < ¢ <t (otherwise there is no such R;). Let I denote
the set of all £ € {2,...,i} with |J;| =¢t. Note that P, = Jy for all £ € I, and so {z,: £ € I} is
fixed. As J contains neither an z-z-path nor a cycle, we may assume further that the subgraph
induced by J; together with the fixed vertices {z,z} U {zy : £ € I} is a forest, in which these
|I| + 2 fixed vertices are in different components. It follows that at least |J;| 4 |I| 4+ 2 vertices
of Ry are fixed, and hence there are at most r — |.J;| — |I| — 1 not-yet-chosen vertices in Ry (z
is excluded). This shows

ritre <=L = [I] -1,

where 1 and ro denote the number of free forward vertices and free backward vertices respec-
tively. In addition, as z € By is fixed, we must have

1 < Ty — L

Note that we have at most (t)kn'/® < kn'/® choices for each forward vertex and at most
e(t)zkzb/ (b=1) < Eb/(=1) choices for each backward vertex. Moreover, P, = Jp for all £ € I, and
for each ¢ € {2,...,i} \ I, there are at most t'k(=17el=Db/(b=1) choices for P, by Item (P7).
Hence the number of R; = (Rq, P»,..., F;) such that (Ji, Jo,...,J;) C R; is at most

1/byr1 . (1.b/(b=1)\r2 | t.(t—|Je|=1)b/(b=1) < pab 1/byrr | (1.b/(b=1)\r3
(kn'/2y . (k9@ Dy2 Ttk < b (knV/Y) . (B OV,
eef{2,....i\I

where 3 := 12 + 3 yeqo, a1t = [Je| — 1). To estimate the above expression, we note that

ri+ry=(r1+re)+ Z (t—1Je| = 1)
Le{2,....i\I
<@=lAl=1 =D+ (+ X ¢-1al-1)
0e{2,...,i}
=r+@@—-1)t—-1)—j—1,

where the second line follows from the estimate 71 + 7o <7 —|J;| — |[I| — 1 and the definition
of I, and the last equality holds since |Ji|+ ...+ |Jy| = |J| = j. Together with the inequalities
r1 <7rpp — 1 and knt/t > kb/(0-1) this implies that the number of R; = (R, Py, ..., P) with
(J1,Jo,...,J;) C Ry is bounded from above by 6% - (kn'/0)rsrw=1 . (kb/(b=1)mw+(G=1D{=1)=j i
case 7y — 1 <7+ (i —1)(t — 1) — j — 1, and by b2 - (kn!/0)r+=DED=i=1 otherwise.
Putting everything together, we conclude that there are at most m(j) choices for R; € R;41
with z;41 = z and J C E(R;). O

We shall use the inequality (2.6) in the proof of Step 3 below.

12



Step 2. There exist j € [r 4+ (i — 1)(t — 1) — 1] for which there are at least
2—ab€(t)tk(t—1)b/(b—1) . ’DZ’
ab - m(j)

distinct pairs (J, P) with the following properties:
(a) P € Q(z) for some z € By,
(b) J is a set of j edges of G disjoint from E(P),
(¢c) JUE(P) € F.
Proof. Recall that for each R; € D;, there are at least ia(t)tk(tfl)b/(bfl) paths P in Q(z;4+1)

with E(P) € LEP (E(R;)). By the pigeonhole principle, it follows that for each R; € D;, there
exists a set 0 # f(R;) C E(R;) such that there are at least

2—ab€(t)tk(t—1)b/(b—1) (2.7)

paths P € Q(z;y1), each of which is disjoint from f(R;) and with f(R;)UE(P) € F. Note that
f(R;) is a forest and does not contain an z-z;;1-path (otherwise for every path P € Q(z;11),
f(R;) U E(P) contains a cycle and thus f(R;) U E(P) ¢ F). In particular, it follows that
If(R;)| € [r+ (i —1)(t — 1) — 1]. By another application of the pigeonhole principle, there
exists some j € [r + (i — 1)(t — 1) — 1] such that |f(R;)| = j for at least |D;| /ab choices of
R; € D;.

Now, define J to be the set of all pairs (J, z) with z € By, |J| = j and J = f(R;) for some
R; € D; with z;+1 = z. We claim that |J| > ab'_%'(‘j). Indeed, there is such a pair (f(R;), zit1)
for each R; € D; with |f(R;)| = j, and we may have counted each pair m(j) times, by the
above discussion and Step 1.

Finally, for each (J,z) € J choose some R; € D; with f(R;) = J and z;4; = z. Recall
that there are at least (2.7) paths P € Q(z;+1) with J U E(P) € F, each of which is disjoint
from J. Since P determines z, all such generated pairs (J, P) are distinct, and hence the claim
follows. O

We are now ready to show that |D;| is not too large.
Step 3. |D;| < 1Ryl
Proof. Let N be the number of copies of 6, in G which contain an edge between x and B;.

For each pair (J, P) as in Step 2, we have |JU E(P)| =j +t and JU E(P) € F, giving

i 1 A(l)(5 k,n)
(J+1) Z. L
de(JUE(P)) > LA (5, k:,n)J > 5 (5kb/(b 1))j 1

Thus, noting that each member of H contains .J U E(P) for at most 229 pairs (.J, P), it follows
from Step 2 that

Dl ADGER)
ab-m(j) 92ab+1 (5kb/(b—1))j+t*1
e(t)t |D;| - A (6, k,n)
= Qdabgt—1 m(j) - (5kb/(b—1))j
Dl - A (5, k,m)
Rl ’

> 2knl/b.
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where the last inequality follows from (2.6), and since t > 2 and § < (¢)!. Now, as |By| <
kn'/®, there exists an edge e € E(G) with

|Di| - AM (6, k,n)

dy(e) > 2
IRil

Combined with (2.2), we get the desired inequality.

This finishes the proof of Claim 4.

3. Complete degenerate hypergraphs

In this section we will prove Theorem 1.8. We shall record the vertex partition of each copy

)

'...a, in an r-graph G will be understood
as a collection of ordered r-tuples (Ay,...,A,) with A; € (V(EZG)) for every i € [r], and with
GlA1, . A = K

Given a tuple (S1,...,S,) of vertex sets such that 1 < |S;| < a; for every ¢ € [r] and
G[S1,...,S;] is a complete r-partite r-graph, we define dy(Si,...,S;) to be the number of
members of H containing (S1,...,S,), that is,

of Kg?___,ar. Therefore, a collection H of copies of K(g:

dy(St, .., 8) = |{(A1,...,A) € H : (S1,...,5) C (A1,..., 4)}.

Let 6 > 0. For each (b1,...,b,) € N" with 1 < b; < a; for all ¢ € [r], define

D(bl,...,br)((;, k,n) = H <6kal"-aiflnlfl/ai“'ar—l)ai—bi ’ (3.1)
i=1

where a1 ---a;_1:=1ifi=1and a;---a,_1 := 1 if i = r. In particular, we have

D(L""l)(é, k‘, ’I’L) _ 5a1+...+ar77’kja1..-arflna1+...+a7«_177’+1/a1---ar—1‘ (3‘2)

One can show that (see Appendix B) Theorem 1.8 is a consequence of the following result.

Theorem 3.1. For every 2 <aj <...< a,, there exist constants 6 > 0 and kg € N such that

the following holds for every k > ko and every n € N. Given an r-graph G with n vertices and
)

knr—Yavar—1 edges, there exists a collection H of copies of KC(J;W in G, satisfying:
(a) |’H| > 5a1+---+arkal...arnal—k...-i—ar,l’ and
(b) d’H(Sl, ce 7ST) S D(‘Sl|77|sr‘)(6, k,n) fOT every Sl, o ,Sr C V(G)

Fix now 2 < a7 < ... < a,. We shall need various constants in the proof of Proposition 3.2
below, which we will define here for convenience. Informally, they will satisfy

ko>K>1>e1)>e2)>...>c(r)>e(r+1)=0>0.

More precisely, we can set £(1) = 1/2, e(i + 1) = g(i)% /(2291 %ig,l) for each 1 < i < 7,
S=e(r+1), K=ay---a.2"" T+ and kg = 1/6.

14



Let G be an n-vertex r-graph with kn"~1/@@r—1 odges, where k > ko. Let (S1,...,5r)
be an ordered r-tuple of vertex sets that satisfies 1 < |S;| < a; for every i € [r], and with
G[S1,..., S = ng‘ 15~ We say that (S1,...,5Sy) is saturated if

d’H(Sl’ s ’ST) > LD(|SI|,M7|ST|)(6? k’ TL)J,

and that (Sy,...,S,) is good if it contains no saturated r-tuple. We say that H is good if every
(A1,...,A;) € H is good.

Proposition 3.2. Suppose that H is a good collection of copies of Kg)ar in G of size
|H| < §urt-tarfar-arpartetar—1 - Then there exists a copy (A1,...,A;) & H of Ké:?___,ar in
G such that HU{(A1,...,A)} is good.

Proof. Let F denote the collection of saturated sets, i.e.
F={(S1,....8):0#S51,....,8. C V(G) and dy(S1,...,S,) = | DUSl-15D (5 k. n)|}.
A simple double-counting argument shows that there are at most

ar---ap - [H|

r—1/a1-ar—1 __
(DD k)] <" — 9

saturated edges of G. Here we use the assumption that |H| < §%1+-Farfo1arpart..tar—1 apnq
(3.2). Thus by choosing a non-empty subhypergraph of G if necessary (and weakening the
bound on e(G) slightly), we may assume that

({v1}, ..., {v.}) ¢ F for every {v1,...,v.} € E(G). (3.3)

For S1,...,S, C V(G) and i € [r], define X;(S1,...,Sy) to be the set consisting of all vertices
veV(G)\(S1U...US,) so that (Sy,...,S;_1,S;jU{v},Si,4,...,S;) € F for some non-empty
St cSy,..., S CS,.

Claim 5. Provided that |S;| < a; for each i € [r], we have
1 Xi(S1,...,5,)| < Kok@a-ipl-t/aiar—,
Proof. For each tuple (S1,...,S)) with @ # S] C S, for every i € [r], set
TSy, S ={veV(G)\(S1U...US,): (5],...,S U{v},...,S.) € F}.
By the handshaking lemma and the definition of goodness, we obtain

1

—— Y du(Sh S{Uvh S S di(Sh oS < DS (6 k),

veJ (51--57)

as each edge of H is counted at most a; -- - a, times in the sum. Moreover,

S du(Sh . SIU{v) 8 = |T(ST S| [DUSH SIS (6 k) |
veJ (S],....51)
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by the definition of J and F. Hence |J(S7,...,S.)| is bounded from above by

(|S7.-157D)
(a2 O o g, gt
LD(|51|7"'7|S¢|+17"'7‘Sr‘)(57 k, n)J
Finally, since the sets J(S57,...,S.) cover X;(S1,...,S;), we find that

[Xi(S1, -, SIS YT (S, 8] < ay - @ 2B HS L gty =t faiarmy

as desired. 0
We now show that there are at least §k® drpdit +ar—1 o50d r-tuples (Ay,...,A,) with
|Ai| = a1,...,|A,| = a,. From this, the proposition follows immediately, since at least one of

these is not in H.

Claim 6. There are at least e(r 4+ 1)k™ 9 n@++ar=1 good r-tuples (A1, ..., A,) with |A] =
@t |Ar = ar.

Proof. Let i € [r + 1], and let v;,vi41,...,v, be r + 1 — i vertices of G such that
da(v, ..., v) > 207771, kni—1-1/a1ar—1
We prove by induction on ¢ that there are at least
6(,L')na1+...+ai_1—(i—l)al...ai_l g (vi, ... 0p)0

good r-tuples (Aq,...,A;—1,{v;},...,{v.}) with |A1| = a1,...,|Ai—1| = a;—1. Here we set
ai + ...+ aj—1:=0 when i =1, and dg(v;,...,v) := knr—1/aiar—if j — p 4 1. Tt is easy to
see that Claim 6 follows from the case i = r + 1.

The base case i = 1 is an immediate consequence of (3.3). Suppose, then, that the result
holds for some ¢ € [r + 1]. Fix vi11,...,v, € V(G) with

dg(Vig1,...,vp) > 277 kTt arar—y, (3.4)

Let M denote the collection consisting of all i-tuples (Ai,...,A4;-1,{v}) with v € V(G),
|Ai| =aq,...,|4;—1] = aj—1, and such that (Aq,..., A;—1,{v},{vit1},...,{v.}) is good.

Subclaim 1: |[M| > 2701 i-1g(j) . pltartedaii=iar-aiot o (y; g 000 0,)00 %1,

Proof of Subclaim 1. Set X = {v € V(G) : d(v,vit1,-..,v;) > 5 dg(vit1,...,vr)}. Then

1
Z da(V,Vig1y .oy Up) > §dg(vi+1, ce s Up).

veX
Fix a vertex v € X. It follows from the definition of X and the assumption (3.4) that
da(v,vig1, ... vp) > 207771 kni—1-1/aiar—1  Hence, by the induction hypothesis, M
contains at least e(i)n® T-Fo-1=(=Darti1go(y v, 4, ... v,)" %1 jtuples of the form
(Al, ‘e 7Ai—17 {?}})

Summing over all v € X, and using Jensen’s inequality give

M| > (i ttami=haas $™ gy, vy, L) 0%
veX
; a1-ai—1
> g(i)na1+...+ai—1—(z—l)m---ai—l . ‘X’l—al"'ai—l ( Z dG(Ui-i-la L 7%”))
veX
> 2—a1~~~ai_1€(i) . pltartetaii—iarai-1 dG(Uz‘—f—h o ’vr)a1~~~ai_1_ O
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We now use Subclaim 1 to bound the number of good tuples (Ay,..., 4;,{vit1},...,{v,})
with |A1] = aq,...,|A;| = a;. For each (i — 1)-tuple A = (A4y,...,A;_1), define

M(A) ={veV(G): (A, {v}) e M}
Consider (i — 1)-tuples A for which
1
(M(A)] > Sn7l@rteta) m]. (3.5)

Subclaim 2: Suppose A satisfies (3.5). Then there are 2“+az' IM(A)|" sets A; € (Ma(zA)) SO
that (A, A;,{vit1},...,{v.}) is good.
Proof of Subclaim 2. From (3.5) and Subclaim 1, we see that

|M(A)| 2 2(i—r—1)a1---ai_1—16(i) . kal---ai_lnl—l/ai~~~aT,1. (36)
For j =1,...,a;, we can pick an arbitrary vertex

uj; € M(A) \ ({ul, - ,ui_l} @] XZ(A, {ul, - ,u]‘_l}, {Ui}7 Cey {UT})) ,

and let A; = {uq,...,uq,}. By choice of uj, the tuple (4, {u1,...,u;},{vit1}, ..., {v,}) is good
for every j € [a;], and hence the r-tuple (A, A;,{vit1},...,{v:}) is good. From Claim 5, we
deduce that the number of choices for each u; is at least

(3.6)
’M(A)‘ . (ai + K(Skcu...ai—lnl—l/ai...arfl) > ’M(A)‘ /2_

Thus the total number of choices for A; is at least 2“+az' |IM(A)|". O

Finally, observe that
Yoo M) = M| /2

A satisfies (3.5)

and that there are at most n® ™ T%-1 choices for A = (Ay,...,4;_1). Hence, by Subclaim 2
and convexity, the number of good r-tuples (A, A;, {vit1},...,{v.}) is at least

1
;.
28iq,! A

, 1 - \1-a .
S IMA)" =z g (am e ) (M) /2)
satisfies (3.5) v
Subclaim 1 ) a1 —iay-a; P
> 6(2 + 1)” e e dG(viJrl’ I >v7’) ’
completing the proof of Claim 6.

This finishes our proof of Proposition 3.2.
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4. The Turan problem in random hypergraphs

Balanced supersaturation theorems can be used to obtain results for the corresponding random
hypergraph Turdn problem. This was done by Morris and Saxton in [23] for even cycles and
complete bipartite graphs. For theta graphs and complete r-partite r-graphs, certain difficulties
arise which we shall explain in this section.

Let G() (n,p) denote the random r-graph on n vertices where each edge is present indepen-

dently with probability p. For some fixed r-graph H, we denote by ex, (G(T) (n,p), H ) the

maximum number of edges of an H-free subgraph of G(") (n,p). If r = 2, we will drop the
subscripts and superscripts. The following result provides lower bounds for all p.

Proposition 4.1.

(a) Suppose that ex(n,{C3,Cy,...,Cop}) = O(n'*1/?). Then there is some positive constant
¢ = ¢(b) such that w.h.p. ex(G(n,p),Cqp) > ept XtV In particular, w.h.p. we have
ex(G(n,p),0ap) > ep' /PP for every a > 2.

(b) Let r > 2 and 2 < ay < ... < a,, and suppose that exr(n,Kg?m,ar) =0 (nr—l/al..,m,l),
Then, there is some positive constant ¢ = c(aq,...,a,) such that w.h.p.

eXT(G(T)(nap)’Kc(zq),...,ar) > Cplfl/(al---ar_1)nr71/a1---ar_1‘

Morris and Saxton established Part (a) in [23, Section 2.3], while Part (b) can be obtained
by adapting their construction. In order to get good upper bound on the Turdn number
ex, (G(T) (n,p), H ), it is necessary to find the largest o > 0 for which H is Erd6s—Simonovits
a-good. To do so, one usually has to restrict the range of k in Definition 1.5. Say that H
is Erdés—Simonovits a-good for m(n) up to f(n), if the condition in Definition 1.5 holds for
every 1 < k < f(n). Considering integers a,b > 2, one can easily deduce from Theorem 2.2
that 0,4 is a-Erdés-Simonovits good for m(n) = n'*1/% and a = 1/((a — 1)b — 1) up to
p=D((@=1b=1)/b(ab=1) = A gtandard application of the hypergraph container method (see [23,
Section 6]) then shows that, for every p > n~((a=Db=1/(@b=1)(Jog p)2(@=1b e have w.h.p.
ex(G(n,p),0,p) = O(p*/ (@ Dbp1+1/b)  This matches the lower bound from Proposition 4.1 (a)
only when a = 2. Note that, in the case a = 2, this recovers a result of Morris and Saxton [23,
Theorem 1.8].

For complete r-partite r-graphs, the situation is very different. It is likely that Theorem 3.1
is best possible and provides a matching upper bound for Proposition 4.1 (b) for large enough
p. However, for r > 2, finding the largest « so that Ka(/{)ar is a-Erdés—Simonovits good up
to some f(n) from Theorem 3.1 turns into a difficult optimisation problem we could not solve.
Remark. Recently, we have learned that Spiro and Verstraéte [29, Theorem 1.3] used our

Theorem 3.1 to essentially determine ex, (G (n,p), KO(L?,,,,QT) in the regime p > n="/2logn.
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Proof of Proposition 1.6

The following proof is very similar to that of comparable statements given in [23, 4]. We
will make use of the hypergraph container method, developed in [3, 26]. For an s-uniform
hypergraph #, we define the mazimum j-degree Aj(H) of H by

Aj(H) = max{dy(c) : 0 C V(H) and |o| = j}
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and the average degree d(H) of H by d(H) = s|E(H)|/|V(#H)|. Furthermore, for 7 € (0,1),
the co-degree function 6(H,7) of H is given by

1 S A
5(H,T)zd(H)jZQ Tfj(l).

Theorem A.1 (see [3, 26]). For each s € N, there exist positive constants ¢y = c1(s) and
co = co(8) such that the following holds for all N € N. For each 0 < € < ¢1 and each N -vertex
s-graph H, if 7 € (0,¢2) is such that 6(H,T) < e, then there exists a family C of at most

p (M) (A1)

€
subsets of V(H) such that:
(1) for each independent set I C V(H), there exists some U € C with I C U,

(2) e(H[U]) < ee(H) for each container U € C.

We shall establish Proposition 1.6 through iterated applications of the following consequence
of Theorem A.1.

Proposition A.2. Suppose that an r-graph H is Erdds-Simonovits a-good for m = m(n).
Then there exist positive constants € and ko such that the following holds for all n,k € N with
k > ko. Given an r-graph G on [n] with e(G) = k - m(n), there exists a collection C(G) of at
most
exp (O(k~*log k - m(n)))

subgraphs of G satisfying:

(1) Every H-free subgraph of G is a subgraph of some U € C,

(2) e(U) < (1 —¢)e(G) for every U € C.

Proof. Since H is Erdds-Simonovits a-good for m = m(n), there exists a constant C' > 0 and
a (non-empty) collection H of copies of H in G such that

C-|H|
dy (o) < k(+a)(ol-1e(@)

for every 0 C E(G) with 1 < |o| < e(H). (A.2)

We will now think of H as a hypergraph whose vertex set is E(G) and whose edges are the
copies of H in H. Set 1/7 = e2k'* and observe that, if ¢ is sufficiently small,

e(H) e(H)
1 Aj(H) A2 1 . — C-|H
5 — E: J < 20-1D (A+a)(G=1) :
) =G0 & 1 = i) 25° OG- e(G)
e(H)
c 2(j-1) 2
3 Je(H)

Using Theorem A.1, we thus obtain a collection C(G) of at most

> (Tlog(l/T)e(G)

€ ) <exp (O(k™“logk - m(n)))

subsets of V(H) = E(G) such that:
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(1) Every H-free subgraph of G is a subgraph of some U € C(G), and
(2’) e(H[U]) < ee(H) for all U € C(G).

The only thing that remains to prove is that e(U) < (1 —¢)e(G) for every U € C. Consider an
arbitrary container U € C. From (A.2) we find

EG0\ B < v\ vl C .
On the other hand, it follows from condition (2’) that |[E(H) \ E(H[U])| > (1 —¢)e(H). Hence
[V(H)\U| > (1 —¢€)e(G)/C > ce(G), as desired. O

We are now ready to prove Proposition 1.6.

Proof of Proposition 1.6. We wish to estimate the number of H-free subgraphs of K,(f). We
define a sequence {k(i)}!_, of positive reals, and a sequence {C;}!_, of families of r-graphs as
follows. Let € and ko be positive constants given by Proposition A.2. We set k(1) = () /m(n)
and define k(i) = (1 — e)k(i — 1), with k(¢) being the first term of this sequence to satisfy
k(t) < ko. We take Cy = {KT(LT)}, and for 1 < ¢ < t, we obtain F; from C;_; by replacing
each r-graph G € C;_; for which e(G) > k(i) - m(n) by the collection C(G) of its subgraphs
guaranteed by Proposition A.2.

Let C = C;. Clearly, every H-free r-graph on [n] is contained in some G € C. Moreover,
e(G) < ko - m(n) for every G € C. Finally, from (A.1) we see that

t
| F| < exp (Z O(1) - k(i) log k(3) -m(n)> < exp (O(1) - kg™ log ko - m(n)) .
i=1
Therefore, the number of H-free r-graphs on [n] is at most
Z 2¢(G) < || 2kom() < exp (O(l) - ky “log ko - m(n) + ko - m(n)) = 90(m(n)),
GeC

Finally, given any § > 0, the number of H-free r-graphs with n vertices and less than m(n)/k3
edges is bounded from above by

>3 (o

GeC i=1

7

) <c| om(n)/ko < exp (k‘aaﬂm(n) + m(n)/k:o) < 9d-m(n)
if kg is large enough. O

B. Deriving Theorem 1.8 from Theorem 3.1

In this section we will deduce Theorem 1.8 from Theorem 3.1. Obviously, property (i) in
Theorem 1.8 follows from property (a) in Theorem 3.1. It remains to verify property (ii) in
Theorem 3.1. Without loss of generality we can assume that o is a complete r-partite r-graph.
In light of property (b), our task becomes to justify that

C-H|
KA1 (@)

D) (5 | ) < (B.1)
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for every (by,...,b,) € N" satisfying by < ay,...,b. < a,. From (3.1), we see that
D(bl,...,br)((;’ k,n) =O(1) - kﬁn'y,

T r—1
where 8 = > (a; —b;)ay ---a;—1 and v = Y (a; —b;)(1 —1/a; - - a,—1). On the other hand, by
=1 i=1

1=
the assumptions on G and H, we obtain

|#]

o . B/ ,y/
LT b0 —De(Q) = Q1) -k n

where ' =a;---a, —(1+a)(by---b,—1)—landy =a1+...+ a1 —r+1/ay---a,_1. As

r—1
v =3 (a; — 1)1 —1/a;---ar—1), we get
i=1
r—1
fy'—fy:Z(bi—l)(l—l/ai-"ar—l) > 0. (B.2)
=1
We next show that
(B =B +ar-a1-(f —7) >0 (B.3)

From (B.2), (B.3) and the fact that n > k%% -1 we find
K = kP . (kmovar-in)Y L B B e a1 (=) > By

implying (B.1) for C sufficiently large.
In the remainder of this section, we shall justify (B.3). Observe that

B =(arar—1)—(by-- by —1) — (b1 ---by — Da

= Z(al — 1)@1 et Qi1 — Z(bl — 1)[)1 e bi—l — (bl e br — 1)04.
=1

=1

From this it follows that
,3/—,8:2(132‘ — 1)(@1---0,2‘_1 _bl"'bi—l) — (bl---br— 1)0&.
i=1

Combined with (B.2), this yields

T

(B =B)+ar-ar—1- (¥ =)= (b —1)(ar---ai_y —by---bi_1) — (b1--- b — 1)

i=1
r—1
_|_a1...ar71.Z(bi—l)(l—l/ai---arfl). (B4)
i=1
Ifby =...=b,—1 =1, then the RHS of (B.4) is at least (b, —1)(a; ---ar—1—1)— (b, —1)ae > 0.

So (B.3) is valid in this case.
Now suppose (b1,...,b—1) # (1,...,1). Since 1 < b; < a; for every i € [r], we can bound
the RHS of (B.4) from below by
r—1
—(bl---br — 1)a+a1---ar_1 Z(bl — 1)(1 —1/ai---ar_1) > —(bl---br — 1)a+1
i=1
>0,
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r—1

where in the second inequality we used the fact that aj---a,—1- > (b; — 1)(1 — 1/a; - a,—1)
i=1

is a positive integer when (by,...,b,—1) # (1,...,1), and in the last inequality we estimated

a1~~~¢111~—1 < bl-bly—l' Hence (B.3) is true in this case as well. This completes our proof.

o =
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