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Abstract

Recently, Huang showed that every (2n−1+1)-vertex induced subgraph of the n-dimensional
hypercube has maximum degree at least

√
n in [Annals of Mathematics, 190 (2019), 949–955].

In this paper, we discuss the induced subgraphs of Cartesian product graphs and semi-strong
product graphs to generalize Huang’s result. Let Γ1 be a connected signed bipartite graph of
order n and Γ2 be a connected signed graph of order m. By defining two kinds of signed product
of Γ1 and Γ2, denoted by Γ1�̃Γ2 and Γ1⊲̃⊳Γ2, we show that if Γ1 and Γ2 have exactly two distinct
adjacency eigenvalues ±θ1 and ±θ2 respectively, then every (12mn+1)-vertex induced subgraph

of Γ1�̃Γ2 (resp. Γ1⊲̃⊳Γ2) has maximum degree at least
√

θ21 + θ22 (resp.
√

(θ21 + 1)θ22). Moreover,

we discuss the eigenvalues of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 and obtain a sufficient and necessary condition
such that the spectrum of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 are symmetric, from which we obtain more general
results on maximum degree of the induced subgraphs.

Keywords: Induced subgraph; Cartesian product; Semi-strong product; Signed graph;
Eigenvalue
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1 Introduction

Let Qn be the n-dimensional hypercube, whose vertex set consists of vectors in {0, 1}n, and two
vectors are adjacent if they differ in exactly one coordinate. For a simple and undirected graph
G = (V,E), we use ∆(G) to denote the maximum degree of G. The adjacency matrix of G is
defined to be a (0, 1)-matrix A(G) = (aij), where aij = 1 if vi and vj are adjacent, and aij = 0
otherwise.

Recently, Huang [13] constructed a signed adjacency matrix of Qn with exactly two distinct
eigenvalues ±√

n. Using eigenvalue interlacing, Huang proceeded to prove that the spectral
radius (and so, the maximum degree) of any (2n−1 + 1)-vertex induced subgraph of Qn, is at
least

√
n. Combing this with the combinatorial equivalent formulation discovered by Gotsman

and Linial [10], Huang confirmed the Sensitivity Conjecture [17] from theoretical computer
science. The main contribution of Huang is the following theorem.

∗Corresponding author. E-mail addresses: zmhong@mail.ustc.edu.cn (Z.-M. Hong), hjlai@math.wvu.edu (H.-
J. Lai), jl0068@mix.wvu.edu (J.-B. Liu).
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Theorem 1.1 (Huang [13]) For every integer n ≥ 1, let H be an arbitrary (2n−1 + 1)-vertex
induced subgraph of Qn, then ∆(H) ≥ √

n.

The bound
√
n (or more precisely, ⌈√n⌉) is sharp, as shown by Chung, Furedi, Graham, and

Seymour [5] in 1988. Tao [22] also gave a great expository of Huang’s work on his blog after
Huang announced the proof of the Sensitivity Conjecture.

Denote the Cartesian product of two graphs G and H by G�H. It is known that the
hypercube Qn can be constructed iteratively by Cartesian product, that is, Q1 = K2 and for
n ≥ 2, Qn = Q1�Qn−1. Motivated by this fact, in this paper, we generalize Huang’s theorem
to Cartesian product graphs and semi-strong product graphs. We introduce some necessary
notations in the following.

A signed graph Γ = (G,σ) is a graph G = (V,E), together with a sign function σ : E →
{+1,−1} assigning a positive or negative sign to each edge. An edge e is positive if σ(e) = 1
and negative if σ(e) = −1. The unsigned graph G is said to be the underlying graph of Γ, while
σ is called the signature of G. If each edge of Γ is positive (resp. negative), then Γ is denoted by
Γ = (G,+) (resp. Γ = (G,−)). A signed graph is connected if its underlying graph is connected.

The adjacency matrix of Γ = (G,σ) is denoted by A(Γ) = (aσij), where aσij = σ(vivj), if
vi and vj are adjacent, and aσij = 0 otherwise. As G is simple and undirected, the adjacency
matrix A(Γ) is a symmetric (−1, 0,+1)-matrix, and A(Γ) = A(G) if Γ = (G,+), A(Γ) = −A(G)
if Γ = (G,−). Let λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ) denote the eigenvalues of A(Γ), which are all
real since A(Γ) is real and symmetric. If Γ contains at least one edge, then λ1(Γ) > 0 > λn(Γ)
since the trace of A(Γ) is 0. In general, the largest eigenvalue λ1(Γ) may not be equal to the
spectral radius ρ(Γ) = max{|λi(Γ)| : 1 ≤ i ≤ n} = max{λ1(Γ),−λn(Γ)} because the Perron-
Frobenius Theorem is valid only for nonnegative matrices. The eigenvalues of the adjacency
matrix of signed graph Γ are called adjacency eigenvalues of Γ. The spectrum of A(Γ) is called
the (adjacency) spectrum of Γ and A(Γ) is also called a signed adjacency matrix of G. The
spectrum of Γ is symmetric if its adjacency eigenvalues are symmetric with respect to the origin.
In this paper, all eigenvalues considered are adjacency eigenvalues.

For basic results in the theory of signed graphs, the reader is referred to Zaslavsky [23].
Recently, the spectra of signed graphs have attracted much attention, as found in [1, 2, 4, 6,
8, 9, 14, 18, 19, 21, 24], among others. In [2], the authors surveyed some general results on
the adjacency spectra of signed graphs and proposed some spectral problems which are inspired
by the spectral theory of unsigned graphs. In particular, the signed graphs with exactly two
distinct eigenvalues have been greatly investigated in recent years, see [8, 14, 16, 18, 19, 21]. In
[14], Hou et al. characterized all simple connected signed graphs with maximum degree at most
4 and with just two distinct adjacency eigenvalues. In this paper, we construct signed graphs
with exactly two distinct eigenvalues by two kinds of graph products, which generalizes Huang’s
result on the induced subgraph of the hypercube.

The Kronecker product A ⊗ B of matrices A = (aij)m×n and B = (bij)p×q is the mp × nq
matrix obtained from A by replacing each element aij with the block aijB. Therefore the entries
of A ⊗ B consist of all the mnpq possible products of an entry of A with an entry of B. For
matrices A,B,C and D, we have (A⊗B) · (C⊗D) = AC⊗BD whenever the products AC and
BD exist. Note that, (A⊗B)T = AT ⊗BT .

The Cartesian product of two graphs G1 and G2 is a graph, denoted by G1�G2, whose
vertex set is V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2) being adjacent in G1�G2

if and only if either u1 = v1 and u2v2 ∈ E(G2), or u1v1 ∈ E(G1) and u2 = v2. The direct
product (or Kronecker product) of two graphs G1 and G2 is a graph, denoted by G1 ×G2, whose
vertex set is V (G1)× V (G2), and two vertices (u1, u2) and (v1, v2) being adjacent to each other
in G1 × G2 if and only if both u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The semi-strong product
(or strong tensor product [11]) of two graphs G1 and G2 is a graph, denoted by G1 ⊲⊳ G2,
whose vertex set is V (G1) × V (G2), and two vertices (u1, u2) and (v1, v2) being adjacent to

2



each other in G1 ⊲⊳ G2 if and only if either u1v1 ∈ E(G1) and u2v2 ∈ E(G2), or u1 = v1
and u2v2 ∈ E(G2). Then, by the definitions, the adjacency matrices of G1�G2, G1 × G2 and
G1 ⊲⊳ G2 are A(G1�G2) = A(G1) ⊗ Im + In ⊗ A(G2), A(G1 × G2) = A(G1) ⊗ A(G2) and
A(G1 ⊲⊳ G2) = A(G1)⊗A(G2)+ In⊗A(G2), respectively, where n = |V (G1)|, m = |V (G2)| and
In is the identity matrix of order n.

Let Γ1 = (G1, σ1) be a connected signed bipartite graph of order n with bipartition (V1, V2),
where |V1| = s and |V2| = n − s, and Γ2 = (G2, σ2) be a connected signed graph of order m.
With suitable labeling of vertices, the adjacency matrix of Γ1 can be represented as

A(Γ1) =

[
Os P
P T On−s

]
.

The signed Cartesian product of signed bipartite graph Γ1 and signed graph Γ2, denoted by
Γ1�̃Γ2, is the signed graph with adjacency matrix

A(Γ1�̃Γ2) = A(Γ1)⊗ Im +

[
Is O
O −In−s

]
⊗A(Γ2) =

[
Is ⊗A(Γ2) P ⊗ Im
P T ⊗ Im −In−s ⊗A(Γ2)

]
. (1.1)

The signed semi-strong product of signed bipartite graph Γ1 and signed graph Γ2, denoted
by Γ1⊲̃⊳Γ2, is the signed graph with adjacency matrix

A(Γ1⊲̃⊳Γ2) = A(Γ1)⊗A(Γ2) +

[
Is O
O −In−s

]
⊗A(Γ2) =

[
Is P
P T −In−s

]
⊗A(Γ2). (1.2)

As a generalization of Theorem 1.1, we have the following theorem.

Theorem 1.2 Let Γ1 = (G1, σ1) be a signed bipartite graph of order n with exactly two distinct
eigenvalues ±θ1 and Γ2 = (G2, σ2) be a signed graph of order m with exactly two distinct
eigenvalues ±θ2. If H and H ′ are arbitrary (mn

2 + 1)-vertex induced subgraphs of Γ1�̃Γ2 and
Γ1⊲̃⊳Γ2 respectively, then

∆(H) ≥
√

θ21 + θ22, ∆(H ′) ≥
√

(θ21 + 1)θ22.

A direct proof of Theorem 1.2 is presented in Section 2. In fact, from the proof we see that
Γ1 and Γ2 in Theorem 1.2 are regular. For more general graphs, we can obtain the following
theorem. A (signed) bipartite graph with bipartition (V1, V2) is called balanced if |V1| = |V2|.

Theorem 1.3 Let Γ1 = (G1, σ1) be a signed bipartite graph of order n and Γ2 = (G2, σ2) be a
signed graph of order m, and let λ2 and µ2 be the minimum eigenvalues of A(Γ1)

2 and A(Γ2)
2,

respectively. Let H and H ′ be any (⌊mn
2 ⌋ + 1)-vertex induced subgraph of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2,

respectively. If Γ1 is a balanced bipartite graph or the spectrum of Γ2 is symmetric, then

∆(H) ≥
√

λ2 + µ2, ∆(H ′) ≥
√

(λ2 + 1)µ2.

In Section 3, we display some preliminaries and examples. In Section 4, we give a character-
ization of the eigenvalues of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 and obtain a sufficient and necessary condition
such that the spectrum of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 are symmetric. In Section 5, we present the proof
of Theorem 1.3 and generalize the signed Cartesian product and signed semi-strong product
of two signed graphs to the products of n signed graphs. In the last section, we give some
concluding remarks.
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2 A direct proof of Theorem 1.2

Using the idea that Shalev Ben-David contributed on July 3, 2019 to Scott Aaronson’s blog,
Knuth [15] gave a direct and nice proof of Huang’s theorem in one page. Here, arising from
their ideas, we give a direct proof of Theorem 1.2.

Proof of Theorem 1.2. For simplicity, let A1 := A(Γ1) and A2 := A(Γ2). Since Γi has
exactly two distinct eigenvalues ±θi (6= 0) for i = 1, 2, we have each eigenvalue of A2

i equals to
θ2i and so there exist orthogonal matrices Q1 and Q2 such that A2

1 = Q1(θ
2
1In)Q

T
1 = θ21In and

A2
2 = Q2(θ

2
2Im)QT

2 = θ22Im. The diagonal entries of A2
i are the degrees of vertices in Γi, so Γi is

a θ2i -regular graph for i = 1, 2. Moreover, |V1| = s = n
2 and PP T = P TP = θ21In/2.

(a) Let A := A(Γ1�̃Γ2) and define

B =

[
P ⊗ (A2 +

√
θ21 + θ22Im)

θ21In/2 ⊗ Im

]

to be an mn× mn
2 matrix. Since θ1 6= 0, the rank of B is mn

2 , and we have

A · B =

[
In/2 ⊗A2 P ⊗ Im
P T ⊗ Im −In/2 ⊗A2

]
·
[
P ⊗ (A2 +

√
θ21 + θ22Im)

θ21In/2 ⊗ Im

]

=

[
P ⊗ (A2

2 +
√

θ21 + θ22A2 + θ21Im)

P TP ⊗ (A2 +
√

θ21 + θ22Im)− θ21In/2 ⊗A2

]

=

[
P ⊗ (θ22Im +

√
θ21 + θ22A2 + θ21Im)

θ21In/2 ⊗ (A2 +
√

θ21 + θ22Im)− θ21In/2 ⊗A2

]

=
√

θ21 + θ22

[
P ⊗ (A2 +

√
θ21 + θ22Im)

θ21In/2 ⊗ Im

]
=

√
θ21 + θ22B.

Let H be an arbitrary (mn
2 + 1)-vertex induced subgraph of Γ1�̃Γ2. Suppose B∗ is the

(mn
2 −1)× mn

2 submatrix of B whose rows corresponding to vertices not in H. Then there exists
a unit mn

2 × 1 vectors x such that B∗x = 0, since B∗x = 0 is a homogeneous system of mn
2 − 1

linear equations with mn
2 variables. As rank(B) = mn

2 , y = Bx is an mn× 1 nonzero vector such

that yv = 0 for any vertex v 6∈ H, and Ay =
√

θ21 + θ22y.
Let u be a vertex such that |yu| = max{|y1|, . . . , |ymn|}. Then |yu| > 0, u ∈ V (H) and

√
θ21 + θ22|yu| = |(Ay)u| =

∣∣∣∣∣

mn∑

v=1

Auvyv

∣∣∣∣∣ =
∣∣∣∣∣
∑

v∈H

Auvyv

∣∣∣∣∣ ≤
∑

v∈H

|Auv||yu| ≤ ∆(H)|yu|.

Therefore, ∆(H) ≥
√

θ21 + θ22.
(b) Let A := A(Γ1⊲̃⊳Γ2) and define

B =

[
P ⊗ (

√
θ21 + 1A2 + θ2Im)

θ21θ2In/2 ⊗ Im

]

to be an mn× mn
2 matrix. Since θ1 6= 0 and θ2 6= 0, the rank of B is mn

2 , and we have

A · B =

[
In/2 ⊗A2 P ⊗A2

P T ⊗A2 −In/2 ⊗A2

]
·
[
P ⊗ (

√
θ21 + 1A2 + θ2Im)

θ21θ2In/2 ⊗ Im

]

=

[
P ⊗ (

√
θ21 + 1A2

2 + θ2A2 + θ21θ2A2)

P TP ⊗ (
√

θ21 + 1A2
2 + θ2A2)− θ21θ2In/2 ⊗A2

]

=

[
P ⊗ (

√
θ21 + 1θ22Im + θ2(θ

2
1 + 1)A2)

θ21In/2 ⊗ (
√

θ21 + 1θ22Im + θ2A2)− θ21θ2In/2 ⊗A2

]

=
√

(θ21 + 1)θ22

[
P ⊗ (

√
θ21 + 1A2 + θ2Im)

θ21θ2In/2 ⊗ Im

]
=

√
(θ21 + 1)θ22B.
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Let H ′ be an arbitrary (mn
2 + 1)-vertex induced subgraph of Γ1⊲̃⊳Γ2. Suppose B∗ is the

(mn
2 −1)× mn

2 submatrix of B whose rows corresponding to vertices not in H ′. Then there exists
a unit mn

2 × 1 vector x such that B∗x = 0, since B∗x = 0 is a homogeneous system of mn
2 − 1

linear equations with mn
2 variables. As rank(B) = mn

2 , y = Bx is an mn× 1 nonzero vector such

that yv = 0 for any vertex v 6∈ H ′, and Ay =
√

(θ21 + 1)θ22y.
Let u be a vertex such that |yu| = max{|y1|, . . . , |ymn|}. Then |yu| > 0, u ∈ V (H ′) and

√
(θ21 + 1)θ22|yu| = |(Ay)u| =

∣∣∣∣∣

mn∑

v=1

Auvyv

∣∣∣∣∣ =
∣∣∣∣∣
∑

v∈H′

Auvyv

∣∣∣∣∣ ≤
∑

v∈H′

|Auv||yu| ≤ ∆(H ′)|yu|.

Therefore, ∆(H ′) ≥
√

(θ21 + 1)θ22 .

3 Preliminaries

In this section, we present some useful lemmas and examples.

Lemma 3.1 (Hammack et al. [12]) Let G1 and G2 be nontrivial graphs. Then
(i) G1�G2 is connected if and only if G1 and G2 are connected, and G1�G2 is bipartite if

and only if G1 and G2 are bipartite;
(ii) G1 ×G2 is connected if and only if G1 and G2 are connected and at most one of them

is bipartite, and G1 ×G2 is bipartite if and only if at least one of G1 and G2 is bipartite.

Lemma 3.2 (Garman et al. [11]) Let G1 and G2 be nontrivial graphs. Then
(i) G1 ⊲⊳ G2 is connected if and only if G1 and G2 are connected;
(ii) G1 ⊲⊳ G2 is bipartite if and only if G2 is bipartite;
(iii) The semi-strong product operation is neither associative nor commutative;
(iv) If G1 is bipartite, then G1 ⊲⊳ K2

∼= G1�K2.

By Lemma 3.2 (iv), the following corollary can be obtained easily.

Corollary 3.3 (Garman et al. [11]) (i) Let G1 = K2, and for n ≥ 2, Gn = Gn−1 ⊲⊳ K2, then
Gn

∼= Qn.
(ii) Let G′

1 = K2, and for n ≥ 2, G′
n = K2 ⊲⊳ G′

n−1, then G′
n
∼= K2n−1,2n−1 .

Proof. By Lemma 3.2 (iv), Qn−1 ⊲⊳ K2
∼= Qn−1�K2 = Qn. By induction, Gn

∼= Qn. Let
V (K2) = {u, v} and (V1, V2) be the bipartition of K2n−2,2n−2 . Then there is an edge con-
necting any two vertices between {u, v} × V1 and {u, v} × V2 in K2 ⊲⊳ K2n−2,2n−2 . Hence,
K2 ⊲⊳ K2n−2,2n−2 = K2n−1,2n−1 . By induction, G′

n
∼= K2n−1,2n−1 .

By the definitions of Cartesian product, direct product and semi-strong product of graphs,
we can define the product of signed graphs Γ1 and Γ2 by their adjacency matrices. That is,
A(Γ1�Γ2) = A(Γ1) ⊗ Im + In ⊗ A(Γ2), where n = |V (Γ1)| and m = |V (Γ2)|, A(Γ1 × Γ2) =
A(Γ1) ⊗ A(Γ2), and A(Γ1 ⊲⊳ Γ2) = (A(Γ1) + In) ⊗ A(Γ2). If X and Y are eigenvectors of
A1 = A(Γ1) and A2 = A(Γ2) corresponding to eigenvalues λ and µ, respectively, then direct
computation yields the following.

A(Γ1�Γ2)(X ⊗ Y ) = (A1 ⊗ Im + In ⊗A2)(X ⊗ Y ) = (λ+ µ)X ⊗ Y,

A(Γ1 × Γ2)(X ⊗ Y ) = (A1 ⊗A2)(X ⊗ Y ) = A1X ⊗A2Y = λµX ⊗ Y,

A(Γ1 ⊲⊳ Γ2)(X ⊗ Y ) = [(A1 + In)⊗A2](X ⊗ Y ) = (A1 + In)X ⊗A2Y = (λ+ 1)µX ⊗ Y.

Thus, we can obtain the following theorem.
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Theorem 3.4 If λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µm are the adjacency eigenvalues of
the signed graphs Γ1 and Γ2, respectively, then, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

(i) (Germina et al. [9]) λi + µj are the adjacency eigenvalues of Γ1�Γ2;
(ii) (Germina et al. [9]) λiµj are the adjacency eigenvalues of Γ1 × Γ2;
(iii) (λi + 1)µj are the adjacency eigenvalues of Γ1 ⊲⊳ Γ2.

By Lemma 3.1 (ii) and Theorem 3.4 (ii), we have the following result immediately.

Corollary 3.5 For i = 1, 2, let Γi = (Gi, σi) be a connected signed graph with exactly two
distinct eigenvalues ±θi, respectively. If at least one of G1 and G2 is non-bipartite, then Γ1×Γ2

is a connected signed graph with exactly two distinct eigenvalues ±θ1θ2.

In the following, we introduce some known results and examples which can be used to
construct signed graphs with exactly two distinct eigenvalues. First we give some definitions. A
weighing matrix of order n and weight k is an n×n matrix W = W (n, k) with entries 0, +1 and
−1 such that WW T = W TW = kIn. A weighing matrix W (n, n) is a Hadamard matrix Hn of
order n. A conference matrix C of order n is an n × n matrix with 0’s on the diagonal, +1 or
−1 in all other positions and with the property CCT = (n− 1)In. Thus, a conference matrix of
order n is a weighing matrix of order n and weight n− 1, and a permutation matrix of order n
is a weighing matrix of order n and weight 1.

Lemma 3.6 For n ≥ 1, let

H2 =

[
1 1
1 −1

]
,H2n+1 = H2 ⊗H2n , An =

[
0 1
1 0

]
⊗H2n .

Then An is a signed adjacency matrix of K2n,2n and its eigenvalues are ±
√
2n, each with mul-

tiplicity 2n.

Proof. Since H2n is a symmetric matrix with entries ±1, An is a signed adjacency matrix
of K2n,2n . Note that H2n is a Hadamard matrix of order 2n with eigenvalues ±

√
2n. By the

property of Kronecker product, the eigenvalues of An are ±
√
2n, each with multiplicity 2n.

Lemma 3.7 (McKee and Smyth [16]) Let P be a permutation matrix of order n such that
P + P T is the adjacency matrix of the cycle Cn and

An =

[
P + P T P − P T

P T − P −(P + P T )

]
.

Then An is the adjacency matrix of the 2n-vertex toroidal tessellation T2n (see Figure 1), whose
eigenvalues are ±2, each with multiplicity n.

Lemma 3.8 (McKee and Smyth [16]) Let W (7, 4) = (wij) be the weighing matrix of order 7
and weight 4, where wij = w1,ℓ for ℓ ≡ j− i+1(mod 7) and (w11, w12, w13, w14, w15, w16, w17) =
(−1, 1, 1, 0, 1, 0, 0). Let

W (14, 4) =

[
0 1
1 0

]
⊗W (7, 4).

Then W (14, 4) is the adjacency matrix of the 14-vertex signed graph S14 (see Figure 1) and its
eigenvalues are ±2 with the same multiplicity 7.

Example 3.9 (Stinson [20]) For each n ∈ {2, 6, 10, 14, 18, 26, 30}, there exists a symmetric
conference matrices W (n, n− 1). Then, W (n, n− 1) is a signed adjacency matrix of Kn and its
eigenvalues are ±

√
n− 1, each with multiplicity n/2.
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Figure 1: The graphs T2n in Lemma 3.7 and S14 in Lemma 3.8.

By the property of Kronecker product of matrices, we have the following examples.

Example 3.10 Let W (k, k − 1) be a symmetric conference matrix of order k and Hn be a
symmetric Hadamard matrix of order n. Then W (k, k − 1) ⊗Hn is a signed adjacency matrix
of the complete k-partite graph Kn,n,...,n and its eigenvalues are ±

√
(k − 1)n with the same

multiplicity. In particular, W (6, 5) ⊗H2 is a signed adjacency matrix of the complete 6-partite
graph K2,2,2,2,2,2.

Example 3.11 Let Γ be a signed graph of order m and Hn be a symmetric Hadamard matrix
of order n. Then Hn ⊗ A(Γ) is an adjacency matrix of the signed graph Γ(n) of order mn
obtained from Γ. If Γ has exactly two distinct eigenvalues ±θ, then Γ(n) has exactly two distinct
eigenvalues ±θ

√
n.

4 Eigenvalues of signed Cartesian product and signed semi-

strong product graphs

In this section, we discuss the adjacency eigenvalues of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 and obtain a sufficient
and necessary condition such that the spectrums of Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 are symmetric.

Theorem 4.1 Let Γ1 = (G1, σ1) be a signed bipartite graph of order n with bipartition (V1, V2)
and Γ2 = (G2, σ2) be a signed graph of order m. If λ2 is an eigenvalue of A(Γ1)

2 with multiplicity
p and µ2 is an eigenvalue of A(Γ2)

2 with multiplicity q, then each of the following holds.
(i) λ2 + µ2 (resp. (λ2 + 1)µ2) is an eigenvalue of A(Γ1�̃Γ2)

2 (resp. A(Γ1⊲̃⊳Γ2)
2) with

multiplicity pq.
(ii) If λ = 0 and µ 6= 0, then ±µ are eigenvalues of Γ1�̃Γ2 (also Γ1⊲̃⊳Γ2) with multiplicities

1
2pq ± 1

2(n− 2|V1|)(q − 2t) respectively, where t is the multiplicity of eigenvalue µ of A(Γ2).

(iii) If λ 6= 0, then ±
√

λ2 + µ2 are eigenvalues of Γ1�̃Γ2, each with multiplicity pq/2.
(iv) If λµ 6= 0, then ±

√
(λ2 + 1)µ2 are eigenvalues of Γ1⊲̃⊳Γ2, each with multiplicity pq/2.

Corollary 4.2 For i = 1, 2, let Γi be a signed graph with exactly two distinct eigenvalues ±θi,
where Γ1 is bipartite. Then Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 have exactly two distinct eigenvalues ±

√
θ21 + θ22

and ±
√

(θ21 + 1)θ22, respectively.

The following theorem gives a sufficient and necessary condition such that the spectrums of
Γ1�̃Γ2 and Γ1⊲̃⊳Γ2 are symmetric.

Theorem 4.3 Let Γ1 be a signed bipartite graph and Γ2 be a signed graph. The spectrum
of Γ1�̃Γ2 (resp. Γ1⊲̃⊳Γ2) is symmetric if and only if Γ1 is balanced or the spectrum of Γ2 is
symmetric.
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In the following proofs of Theorem 4.1 and Theorem 4.3, we always assume that A1 :=

A(Γ1) =

[
Os P
P T On−s

]
and A2 := A(Γ2), where |V1| = s and P is an s× (n− s) matrix.

Proof of Theorem 4.1 (i). By (1.1), we have

A(Γ1�̃Γ2)
2 =

(
A1 ⊗ Im +

[
Is O
O −In−s

]
⊗A2

)2

=A2
1 ⊗ Im +

[
Is O
O In−s

]
⊗A2

2

+

([
O P
P T O

]
⊗ Im

)([
Is O
O −In−s

]
⊗A2

)

+

([
Is O
O −In−s

]
⊗A2

)([
O P
P T O

]
⊗ Im

)

=A2
1 ⊗ Im + In ⊗A2

2 +

[
O −P
P T O

]
⊗A2 +

[
O P

−P T O

]
⊗A2

=A2
1 ⊗ Im + In ⊗A2

2. (4.1)

For each i = 1, . . . , p and j = 1, . . . , q, let Xi and Yj be eigenvectors of A2
1 and A2

2 with respect
to eigenvalues λ2 and µ2, respectively. Thus, by (4.1), we have

A(Γ1�̃Γ2)
2(Xi ⊗ Yj) = (A2

1 ⊗ Im + In ⊗A2
2)(Xi ⊗ Yj) = (λ2 + µ2)(Xi ⊗ Yj).

Therefore, λ2 + µ2 is an eigenvalue of A(Γ1�̃Γ2)
2 with multiplicity pq.

By (1.2), we have

A(Γ1⊲̃⊳Γ2)
2 =

([
Is P
P T −In−s

]
⊗A2

)2

=

([
Os P
P T On−s

]
+

[
Is O
O −In−s

])2

⊗A2
2

=(A2
1 + In)⊗A2

2 +

[
Os −P + P

P T − P T On−s

]
⊗A2

2

=(A2
1 + In)⊗A2

2. (4.2)

For each i = 1, . . . , p and j = 1, . . . , q, let Xi and Yj be eigenvectors of A2
1 and A2

2 with respect
to eigenvalues λ2 and µ2, respectively. Thus, by (4.2), we have

A(Γ1⊲̃⊳Γ2)
2(Xi ⊗ Yj) = [(A2

1 + In)⊗A2
2](Xi ⊗ Yj) = (λ2 + 1)µ2(Xi ⊗ Yj).

Therefore, (λ2 + 1)µ2 is an eigenvalue of A(Γ1⊲̃⊳Γ2)
2 with multiplicity pq.

Lemma 4.4 Let Γ be a signed bipartite graph of order n with bipartition (V1, V2), where |V1| = s,

and A =

[
Os P
P T On−s

]
be the adjacency matrix of Γ. Let {w1, . . . ,wa} be a basis of null space

of P T and {z1, . . . , zb} be a basis of null space of P . The following a+ b vectors of length n

{[
w1

0

]
, . . . ,

[
wa

0

]
,

[
0
z1

]
, . . . ,

[
0
zb

]}
,

is a basis of null space of A.
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Proof. Since rank(A) = rank(P ) + rank(P T ), by Rank-Nullity Theorem

n− rank(A) = (n − s− rank(P )) + (s− rank(P T )) = a+ b.

The result follows.

Proof of Theorem 4.1 (ii). Since the multiplicity of eigenvalue µ of A2 is t, the multiplicity
of eigenvalue −µ of A2 is q − t. Assume that A2Yj = µYj for each 1 ≤ j ≤ t and A2Y

′
k = −µY ′

k

for each 1 ≤ k ≤ q − t. In particular, if t = 0, then 1 ≤ k ≤ q and there exists no such Yj; if
t = q, then 1 ≤ j ≤ q and there exists no such Y ′

k.
By the assumption, λ = 0 is an eigenvalue of A2

1 (and so A1) with multiplicity p. Hence, the
rank of A1 is rank(A1) = n− p and rank(P ) = rank(P T ) = (n− p)/2. Thus, the nullity of P T is

r := s− rank(P T ) = p/2− (n − 2s)/2

and the nullity of P is p− r = p/2 + (n− 2s)/2. Suppose that {X11, . . . ,Xr1} is a basis of null
space of P T and {X12, . . . ,X(p−r)2} is a basis of null space of P . Let

Zi :=

[
Xi1

0

]
, Z ′

ℓ :=

[
0

Xℓ2

]

be column vectors of length n for each 1 ≤ i ≤ r and 1 ≤ ℓ ≤ p− r. In particular, if r = 0, then
1 ≤ ℓ ≤ p = n − 2s and there is no such Zi; if r = p, then 1 ≤ i ≤ p = 2s − n and there is no
such Z ′

ℓ. By Lemma 4.4, {Z1, . . . , Zr}∪ {Z ′
1, . . . , Z

′
p−r} is a basis of null space of A1. Therefore,

A1Zi = A1Z
′
ℓ = 0 and for every 1 ≤ i ≤ r, 1 ≤ j ≤ t and 1 ≤ k ≤ q − t,

A(Γ1�̃Γ2)(Zi ⊗ Yj) = µ(Zi ⊗ Yj) = A(Γ1⊲̃⊳Γ2)(Zi ⊗ Yj),

A(Γ1�̃Γ2)(Zi ⊗ Y ′
k) = −µ(Zi ⊗ Y ′

k) = A(Γ1⊲̃⊳Γ2)(Zi ⊗ Y ′
k).

For every 1 ≤ ℓ ≤ p− r, 1 ≤ j ≤ t and 1 ≤ k ≤ q − t,

A(Γ1�̃Γ2)(Z
′
ℓ ⊗ Y ′

k) = µ(Z ′
ℓ ⊗ Y ′

k) = A(Γ1⊲̃⊳Γ2)(Z
′
ℓ ⊗ Y ′

k),

A(Γ1�̃Γ2)(Z
′
ℓ ⊗ Yj) = −µ(Z ′

ℓ ⊗ Yj) = A(Γ1⊲̃⊳Γ2)(Z
′
ℓ ⊗ Yj).

Note that all of Zi, Z
′
ℓ, Yj and Y ′

k are nonzero vectors for each 1 ≤ i ≤ r, 1 ≤ ℓ ≤ p − r,
1 ≤ j ≤ t and 1 ≤ k ≤ q − t. Hence, the Kronecker products of them are also nonzero vectors.
By (Zi ⊗ Yj)

T (Z ′
ℓ ⊗ Y ′

k) = 0, we have Zi ⊗ Yj and Z ′
ℓ ⊗ Y ′

k are

rt+ (p− r)(q − t) = pq/2 + (n− 2s)(q − 2t)/2

eigenvectors of A(Γ1�̃Γ2) (resp. A(Γ1⊲̃⊳Γ2)) with respect to eigenvalue µ. By (Zi ⊗ Y ′
k)

T (Z ′
ℓ ⊗

Yj) = 0, we know that Zi ⊗ Y ′
k and Z ′

ℓ ⊗ Yj are

r(q − t) + (p− r)t = pq/2− (n− 2s)(q − 2t)/2

eigenvectors of A(Γ1�̃Γ2) (resp. A(Γ1⊲̃⊳Γ2)) with respect to eigenvalue −µ. Thus, ±µ are
eigenvalues of Γ1�̃Γ2 (resp. Γ1⊲̃⊳Γ2) with multiplicities 1

2pq ± 1
2(n− 2s)(q − 2t), respectively.

Proof of Theorem 4.1 (iii). Suppose that λ 6= 0. Since Γ1 is bipartite, λ and −λ are
eigenvalues of Γ1, each with multiplicity p/2. Without loss of generality, assume that µ ≥ 0,
A2Yj = µYj for each j = 1, . . . , t and A2Y

′
k = −µY ′

k for each k = 1, . . . , q − t. In particular, if
t = 0, then 1 ≤ k ≤ q and there exists no such Yj ; if t = q, then 1 ≤ j ≤ q and there exists no

such Y ′
k. Note that if µ = 0, then t = q. Now, for i = 1, . . . , p/2, suppose that Xi =

[
Xi1

Xi2

]
is the
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unit vector such that A1Xi = λXi, where Xi1 and Xi2 are column vectors of length s and n− s

respectively. Then PXi2 = λXi1 and P TXi1 = λXi2. For each i = 1, . . . , p/2, let X ′
i =

[
Xi1

−Xi2

]
,

then A1X
′
i = −λX ′

i. Since λ 6= 0, we have XT
i X

′
i = 0 and soXT

i1Xi1 = XT
i2Xi2 =

1
2 , which implies

that Xi1 and Xi2 are nonzero vectors. Based on eigenvalues ±λ,±µ and the corresponding
eigenvectors, we construct pq/2 vectors as follows

Zi ⊗ Yj =

[
(
√

λ2 + µ2 + µ)Xi1

λXi2

]
⊗ Yj , Wi ⊗ Y ′

k =

[
λXi1

(
√

λ2 + µ2 + µ)Xi2

]
⊗ Y ′

k,

for each i = 1, . . . , p/2, j = 1, . . . , t and k = 1, . . . , q − t, and construct pq/2 vectors as follows

Z ′
i ⊗ Yj =

[ −λXi1

(
√

λ2 + µ2 + µ)Xi2

]
⊗ Yj , W ′

i ⊗ Y ′
k =

[
(
√

λ2 + µ2 + µ)Xi1

−λXi2

]
⊗ Y ′

k,

for i = 1, . . . , p/2, j = 1, . . . , t and k = 1, . . . , q − t. Then, we have

A(Γ1�̃Γ2) · (Zi ⊗ Yj) =

[
Is ⊗A2 P ⊗ Im
P T ⊗ Im −In−s ⊗A2

]
·
[
(
√

λ2 + µ2 + µ)Xi1 ⊗ Yj

λXi2 ⊗ Yj

]

=

[
(
√

λ2 + µ2 + µ)Xi1 ⊗ µYj + λ2Xi1 ⊗ Yj

(
√

λ2 + µ2 + µ)λXi2 ⊗ Yj − λXi2 ⊗ µYj

]

=
√

λ2 + µ2 ·
[
(
√

λ2 + µ2 + µ)Xi1 ⊗ Yj

λXi2 ⊗ Yj

]

=
√

λ2 + µ2 · (Zi ⊗ Yj), (4.3)

A(Γ1�̃Γ2) · (Wi ⊗ Y ′
k) =

[
Is ⊗A2 P ⊗ Im
P T ⊗ Im −In−s ⊗A2

]
·
[

λXi1 ⊗ Y ′
k

(
√

λ2 + µ2 + µ)Xi2 ⊗ Y ′
k

]

=

[
−λXi1 ⊗ µY ′

k + (
√

λ2 + µ2 + µ)λXi1 ⊗ Y ′
k

λ2Xi2 ⊗ Y ′
k + (

√
λ2 + µ2 + µ)Xi2 ⊗ µY ′

k

]

=
√

λ2 + µ2 ·
[

λXi1 ⊗ Y ′
k

(
√

λ2 + µ2 + µ)Xi2 ⊗ Y ′
k

]

=
√

λ2 + µ2 · (Wi ⊗ Y ′
k), (4.4)

A(Γ1�̃Γ2) · (Z ′
i ⊗ Yj) =

[
Is ⊗A2 P ⊗ Im
P T ⊗ Im −In−s ⊗A2

]
·
[ −λXi1 ⊗ Yj

(
√

λ2 + µ2 + µ)Xi2 ⊗ Yj

]

=

[
−λXi1 ⊗ µYj + (

√
λ2 + µ2 + µ)λXi1 ⊗ Yj

−λ2Xi2 ⊗ Yj − (
√

λ2 + µ2 + µ)Xi2 ⊗ µYj

]

=−
√

λ2 + µ2 ·
[ −λXi1 ⊗ Yj

(
√

λ2 + µ2 + µ)Xi2 ⊗ Yj

]

=−
√

λ2 + µ2 · (Z ′
i ⊗ Yj), (4.5)

10



A(Γ1�̃Γ2) · (W ′
i ⊗ Y ′

k) =

[
Is ⊗A2 P ⊗ Im
P T ⊗ Im −In−s ⊗A2

]
·
[
(
√

λ2 + µ2 + µ)Xi1 ⊗ Y ′
k

−λXi2 ⊗ Y ′
k

]

=

[
−(

√
λ2 + µ2 + µ)Xi1 ⊗ µY ′

k − λ2Xi1 ⊗ Y ′
k

(
√

λ2 + µ2 + µ)λXi2 ⊗ Y ′
k − λXi2 ⊗ µY ′

k

]

=−
√

λ2 + µ2 ·
[
(
√

λ2 + µ2 + µ)Xi1 ⊗ Y ′
k

−λXi2 ⊗ Y ′
k

]

=−
√

λ2 + µ2 · (W ′
i ⊗ Y ′

k). (4.6)

Since λ 6= 0, and Xi1 and Xi2 are nonzero, we know that all of Zi,Wi, Z
′
i,W

′
i , Yj , Y

′
k are nonzero

vectors for each i ∈ {1, . . . , p/2}, j ∈ {1, . . . , t} and k ∈ {1, . . . , q − t}, and the Kronecker
products of them are also nonzero vectors. As (Zi ⊗ Yj)

T (Wi ⊗ Y ′
k) = 0, by (4.3) and (4.4),

we have Zi ⊗ Yj and Wi ⊗ Y ′
k are pq/2 eigenvectors of A(Γ1�̃Γ2) with respect to eigenvalue√

λ2 + µ2. As (Z ′
i ⊗ Yj)

T (W ′
i ⊗ Y ′

k) = 0, by (4.5) and (4.6), we have Z ′
i ⊗ Yj and W ′

i ⊗ Y ′
k are

pq/2 eigenvectors of A(Γ1�̃Γ2) with respect to eigenvalue −
√

λ2 + µ2. Therefore, ±
√

λ2 + µ2

are adjacency eigenvalues of Γ1�̃Γ2, each with multiplicity pq/2.

Proof of Theorem 4.1 (iv). Suppose that λµ 6= 0. Since Γ1 is bipartite, λ and −λ are
eigenvalues of Γ1, each with multiplicity p/2. Without loss of generality, assume that A2Yj = µYj

for each j = 1, . . . , t and A2Y
′
k = −µY ′

k for each k = 1, . . . , q − t. In particular, if t = 0,
then 1 ≤ k ≤ q and there exists no such Yj ; if t = q, then 1 ≤ j ≤ q and there exists no

such Y ′
k. Now, for each i = 1, . . . , p/2, suppose that Xi =

[
Xi1

Xi2

]
is the unit vector such that

A1Xi = λXi, where Xi1 and Xi2 are column vectors of length s and n − s respectively. Then

PXi2 = λXi1 and P TXi1 = λXi2. Let X ′
i =

[
Xi1

−Xi2

]
, then A1X

′
i = −λX ′

i and so XT
i X

′
i = 0.

Thus (Xi1)
TXi1 = (Xi2)

TXi2 =
1
2 , and so Xi1 and Xi2 are nonzero vectors. Based on eigenvalues

±λ,±µ and the corresponding eigenvectors, we construct pq/2 vectors as follows

Zi ⊗ Yj =

[
(
√
λ2 + 1 + 1)Xi1

λXi2

]
⊗ Yj, Z ′

i ⊗ Y ′
k =

[
−λXi1

(
√
λ2 + 1 + 1)Xi2

]
⊗ Y ′

k,

for each i = 1, . . . , p/2, j = 1, . . . , t and k = 1, . . . , q − t, and construct pq/2 vectors as follows

Z ′
i ⊗ Yj =

[
−λXi1

(
√
λ2 + 1 + 1)Xi2

]
⊗ Yj, Zi ⊗ Y ′

k =

[
(
√
λ2 + 1 + 1)Xi1

λXi2

]
⊗ Y ′

k,

for each i = 1, . . . , p/2, j = 1, . . . , t and k = 1, . . . , q − t. Since

[
Is P
P T −In−s

]
Zi =

[
Is P
P T −In−s

] [
(
√
λ2 + 1 + 1)Xi1

λXi2

]

=

[
(
√
λ2 + 1 + 1)Xi1 + λ2Xi1

(
√
λ2 + 1 + 1)λXi2 − λXi2

]

=
√
λ2 + 1Zi,[

Is P
P T −In−s

]
Z ′
i =

[
Is P
P T −In−s

] [
−λXi1

(
√
λ2 + 1 + 1)Xi2

]

=

[
−λXi1 + (

√
λ2 + 1 + 1)λXi1

−λ2Xi2 − (
√
λ2 + 1 + 1)Xi2

]

=−
√

λ2 + 1Z ′
i,
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we can obtain the following equations

A(Γ1⊲̃⊳Γ2) · (Zi ⊗ Yj) =
√

λ2 + 1Zi ⊗A2Yj = µ
√
λ2 + 1 · (Zi ⊗ Yj), (4.7)

A(Γ1⊲̃⊳Γ2) · (Z ′
i ⊗ Y ′

k) = −
√

λ2 + 1Z ′
i ⊗A2Y

′
k = µ

√
λ2 + 1 · (Z ′

i ⊗ Y ′
k), (4.8)

A(Γ1⊲̃⊳Γ2) · (Z ′
i ⊗ Yj) = −

√
λ2 + 1Z ′

i ⊗A2Yj = −µ
√
λ2 + 1 · (Z ′

i ⊗ Yj), (4.9)

A(Γ1⊲̃⊳Γ2) · (Zi ⊗ Y ′
k) =

√
λ2 + 1Zi ⊗A2Y

′
k = −µ

√
λ2 + 1 · (Zi ⊗ Y ′

k). (4.10)

Since λµ 6= 0, Xi1 and Xi2 are nonzero, we know that all of Zi, Z
′
i, Yj , Y

′
k are nonzero vectors for

each i ∈ {1, . . . , p/2}, j ∈ {1, . . . , t} and k ∈ {1, . . . , q − t}, and the Kronecker products of them
are also nonzero. As (Zi⊗Yj)

T (Z ′
i⊗Y ′

k) = 0, by (4.7) and (4.8), we have Zi⊗Yj and Z ′
i⊗Y ′

k are
pq/2 eigenvectors of A(Γ1⊲̃⊳Γ2) with respect to eigenvalue µ

√
λ2 + 1. As (Z ′

i⊗Yj)
T (Zi⊗Y ′

k) = 0,
by (4.9) and (4.10), we have Z ′

i⊗Yj and Zi⊗Y ′
k are pq/2 eigenvectors of A(Γ1⊲̃⊳Γ2) with respect

to eigenvalue −µ
√
λ2 + 1. Therefore, ±µ

√
λ2 + 1 are adjacency eigenvalues of Γ1⊲̃⊳Γ2, each with

multiplicity pq/2.

Proof of Theorem 4.3. Let λ2 be any eigenvalue of A(Γ1)
2 with multiplicity p and µ2 be any

eigenvalue of A(Γ2)
2 with multiplicity q, where µ is the eigenvalue of Γ2 with multiplicity t.

(a) Consider Γ1�̃Γ2. By Theorem 4.1 (i), λ2 + µ2 is an eigenvalue of A(Γ1�̃Γ2)
2 with

multiplicity pq.
Assume that Γ1 is balanced or the spectrum of Γ2 is symmetric. Then the bipartition (V1, V2)

of Γ1 satisfies |V1| = n
2 or the multiplicity of eigenvalue µ(6= 0) of Γ2 is equal to t = q

2 , and so

(n − 2|V1|)(q − 2t) = 0. It suffices to prove that the multiplicities of eigenvalues ±
√
λ2 + µ2 of

Γ1�̃Γ2 are equal to 1
2pq when λ2+µ2 6= 0. If λ 6= 0, then by Theorem 4.1 (iii), the multiplicities

of eigenvalues ±
√

λ2 + µ2 of Γ1�̃Γ2 are equal to 1
2pq. If λ = 0 and µ 6= 0, then by Theorem

4.1 (ii), the multiplicities of eigenvalues ±µ of Γ1�̃Γ2 are equal to 1
2pq. Thus, the spectrum of

Γ1�̃Γ2 is symmetric.
Conversely, assume that the spectrum of Γ1�̃Γ2 is symmetric. If all the eigenvalues of Γ1 are

nonzero, then the rank of A(Γ1) is n and so rank(P ) = rank(P T ) = n
2 . This implies |V1| = |V2|

and so Γ1 is balanced. If λ = 0 and µ 6= 0, then the multiplicities of eigenvalues ±µ of Γ1�̃Γ2

must be equal. By Theorem 4.1 (ii), we have

pq + (n− 2|V1|)(q − 2t) = pq − (n− 2|V1|)(q − 2t),

that is (n− 2|V1|)(q − 2t) = 0 and so Γ1 is balanced or the spectrum of Γ2 is symmetric.
(b) Consider Γ1⊲̃⊳Γ2. By Theorem 4.1 (i), (λ2 + 1)µ2 is an eigenvalue of A(Γ1⊲̃⊳Γ2)

2 with
multiplicity pq.

Assume that Γ1 is balanced or the spectrum of Γ2 is symmetric. Then the bipartition (V1, V2)
of Γ1 satisfies |V1| = n

2 or the multiplicity of eigenvalue µ(6= 0) of Γ2 is equal to t = q
2 , and so

(n − 2|V1|)(q − 2t) = 0. It suffices to prove that the multiplicities of eigenvalues ±
√
(λ2 + 1)µ2

of Γ1⊲̃⊳Γ2 are equal to 1
2pq when µ2 6= 0. If λ 6= 0 and µ 6= 0, then by Theorem 4.1 (iv), the

multiplicities of eigenvalues ±
√

(λ2 + 1)µ2 of Γ1⊲̃⊳Γ2 are equal to 1
2pq. If λ = 0 and µ 6= 0, then

by Theorem 4.1 (ii), the multiplicities of eigenvalues ±µ of Γ1⊲̃⊳Γ2 are equal to 1
2pq. Thus, the

spectrum of Γ1⊲̃⊳Γ2 is symmetric.
Conversely, assume that the spectrum of Γ1⊲̃⊳Γ2 is symmetric. If all the eigenvalues of Γ1 are

nonzero, then the rank of A(Γ1) is n and so rank(P ) = rank(P T ) = n
2 . This implies |V1| = |V2|

and so Γ1 is balanced. If λ = 0 and µ 6= 0, then the multiplicities of eigenvalues ±µ of Γ1⊲̃⊳Γ2

must be equal. By Theorem 4.1 (ii), we have

pq + (n− 2|V1|)(q − 2t) = pq − (n− 2|V1|)(q − 2t),

that is (n− 2|V1|)(q − 2t) = 0 and so Γ1 is balanced or the spectrum of Γ2 is symmetric.
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5 Induced subgraphs of the signed product graphs

In this section, we mainly give the proof of Theorem 1.3 and generalize it to signed product of
n (n ≥ 3) graphs. To establish Theorem 1.3, we need the following lemmas.

Lemma 5.1 (Cauchy’s Interlacing Theorem [3]) Let A be an n×n symmetric matrix, and B be
an m×m principle submatrix of A, where m < n. If the eigenvalues of A are λ1 ≥ λ2 ≥ · · · ≥ λn,
and the eigenvalues of B are µ1 ≥ µ2 ≥ · · · ≥ µm, then for all 1 ≤ i ≤ m,

λi ≥ µi ≥ λn−m+i.

Lemma 5.2 Suppose Γ = (G,σ) is a signed graph of order n, and A = (aσij) is the adjacency

matrix of Γ. Let Ã = (ãij) be an n× n symmetric matrix with |ãij | ≤ |aσij | for any 1 ≤ i, j ≤ n.
Then

∆(Γ) ≥ λ1(Ã).

In particular, ∆(Γ) ≥ λ1(Γ) when Ã = A.

Proof. It suffices to consider that Ã is not an all zero matrix. Thus, λ1(Ã) > 0. Suppose
X = (x1, x2, . . . , xn)

T is an eigenvector corresponding to λ1(Ã). Then λ1(Ã)X = ÃX. Assume
that |xu| = max{|x1|, |x2|, . . . , |xn|}. Then |xu| > 0 and

|λ1(Ã)xu| =

∣∣∣∣∣∣

n∑

j=1

ãujxj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

j∼u

ãujxj

∣∣∣∣∣∣
≤

∑

j∼u

|ãuj | |xu| ≤
∑

j∼u

∣∣aσuj
∣∣ |xu| ≤ ∆(Γ)|xu|.

Hence, ∆(Γ) ≥ λ1(Ã).

Lemma 5.3 Let Γ be a connected signed graph of order n with k nonnegative adjacency eigen-
values λ1(Γ) ≥ · · · ≥ λk(Γ) ≥ 0. If H is an (n− k + 1)-vertex induced subgraph of Γ, then

∆(H) ≥ ⌈λk(Γ)⌉.

Proof. Note that A(H) is an (n − k + 1) × (n − k + 1) submatrix of A(Γ). By Lemma 5.1,
λ1(H) ≥ λk(Γ). By Lemma 5.2, ∆(H) ≥ λ1(H) ≥ λk(Γ). Hence, ∆(H) ≥ ⌈λk(Γ)⌉.

Example 5.4 The Petersen graph (PG,+) has spectrum 3(1), 1(5),−2(4). If H is a 5-vertex
induced subgraph of (PG,+), then by Lemma 5.3, ∆(H) ≥ 1 and there exists a subgraph such
that the bound is tight.

The signed Petersen graph (PG,−) has spectrum 2(4),−1(5),−3(1). IfH is a 7-vertex induced
subgraph of (PG,−), then by Lemma 5.3, ∆(H) ≥ 2 and there exists a subgraph such that the
bound is tight.

Proof of Theorem 1.3. Denote N = mn. Let Γ = Γ1�̃Γ2 and Γ′ = Γ1⊲̃⊳Γ2. Then H (resp.
H ′) is a (⌊N2 ⌋+ 1)-vertex induced subgraph of Γ (resp. Γ′). By Lemma 5.3,

∆(H) ≥ λ⌈N

2
⌉(Γ) and ∆(H ′) ≥ λ⌈N

2
⌉(Γ

′).

By Theorem 4.1 (i), λ2+µ2 is the minimum eigenvalue of A(Γ)2 and (λ2+1)µ2 is the minimum
eigenvalue of A(Γ′)2. Thus, by Theorem 4.3, the adjacency spectrums of Γ and Γ′ are symmetric
and so

λ⌈N

2
⌉(Γ) =

√
λ2 + µ2 and λ⌈N

2
⌉(Γ

′) =
√

(λ2 + 1)µ2.

Combining these (in)equalities, the results follow.

Now, we generalize the signed Cartesian product and signed semi-strong product of two
signed graphs to the product of n signed graphs.
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Definition 5.5 For i = 1, 2, . . . , n − 1, let Γi be a signed bipartite graph and Γn be a signed
graph. Let Γ1

�̃,R
= Γ1

⊲̃⊳,R = Γ1 and Γ1
�̃,L

= Γ1
⊲̃⊳,L = Γn. For 2 ≤ k ≤ n, we define

(i) Γk
�̃,R

= Γk−1

�̃,R
�̃Γk and Γk

⊲̃⊳,R = Γk−1
⊲̃⊳,R

⊲̃⊳Γk;

(ii) Γk
�̃,L

= Γn−k+1�̃Γk−1

�̃,L
and Γk

⊲̃⊳,L = Γn−k+1⊲̃⊳Γ
k−1
⊲̃⊳,L.

To illustrate Definition 5.5, one can consider n = 3, that is

Γ3
�̃,R

= ((Γ1�̃Γ2)�̃Γ3) and Γ3
⊲̃⊳,R = ((Γ1⊲̃⊳Γ2)⊲̃⊳Γ3),

Γ3
�̃,L

= (Γ1�̃(Γ2�̃Γ3)) and Γ3
⊲̃⊳,L = (Γ1⊲̃⊳(Γ2⊲̃⊳Γ3)).

By Lemma 3.1 and Lemma 3.2, the Cartesian product and semi-strong product of two bipartite
graphs are still bipartite. Therefore, Definition 5.5 (i) is well-defined. Since the Kronecker
product of matrices is an associative operation, the underling graphs of Γn

�̃,R
and Γn

�̃,L
are

isomorphic. However, by Lemma 3.2 (iii) and Corollary 3.3, the underling graphs of Γn
⊲̃⊳,R and

Γn
⊲̃⊳,L are not isomorphic.

By Definition 5.5, Theorem 4.1 (i) can be easily generalized to the following theorem.

Theorem 5.6 For i = 1, 2, . . . , n, let Γi = (Gi, σi) be a signed graph and θ2i be an eigen-
value of A(Γi)

2 with multiplicity pi, where Γ1, . . . ,Γn−1 are bipartite. Then
∑n

i=1 θ
2
i ,

∑n
i=1 θ

2
i ,

θ2n
∏n−1

i=1 (θ
2
i + 1) and

∑n
k=1

∏n
i=k θ

2
i are eigenvalues of Γn

�̃,L
, Γn

�̃,R
, Γn

⊲̃⊳,L and Γn
⊲̃⊳,R with multi-

plicity p1p2 · · · pn, respectively.

By Theorem 5.6, we have the following corollary immediately.

Corollary 5.7 For i = 1, 2, . . . , n, let Γi be a signed graph with exactly two distinct eigenvalues
±θi, where Γ1, . . . ,Γn−1 are bipartite. Then Γn

�̃,L
, Γn

�̃,R
, Γn

⊲̃⊳,L and Γn
⊲̃⊳,R have exactly two distinct

eigenvalues ±
√∑n

i=1 θ
2
i , ±

√∑n
i=1 θ

2
i , ±

√
θ2n

∏n−1
i=1 (θ

2
i + 1) and ±

√∑n
k=1

∏n
i=k θ

2
i , respectively.

Example 5.8 Let Γi = (K2,+) for each i = 1, 2, . . . , n. Then
(i) each of Γn

�̃,R
, Γn

�̃,L
and Γn

⊲̃⊳,R is a signed graph of Qn whose eigenvalues are ±√
n;

(ii) Γn
⊲̃⊳,L is a signed graph of K2n−1,2n−1 and its eigenvalues are ±

√
2n−1.

Figure 2: The signed graph Γ4

�̃,L
of Q4 in Example 5.8.
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Example 5.9 For each i = 1, 2, . . . , n, let Γi = (K2,2, σ) be the signed graph of K2,2 with
exactly one negative edge. Then

(i) Γn
�̃,R

and Γn
�̃,L

are signed graphs of Q2n whose eigenvalues are ±
√
2n;

(ii) the eigenvalues of Γn
⊲̃⊳,L are ±

√
2 · 3n−1;

(iii) the eigenvalues of Γn
⊲̃⊳,R are ±

√∑n
k=1 2

k = ±
√
2n+1 − 2.

By Definition 5.5, Theorem 4.3 can be generalized to Theorem 5.10.

Theorem 5.10 For n ≥ 2 and i = 1, 2, . . . , n − 1, let Γi be a signed bipartite graph and Γn be
a signed graph.

(i) The spectrum of Γn
⊲̃⊳,R is symmetric if and only if Γn−1 is balanced or the spectrum of Γn

is symmetric.
(ii) The spectrum of every graph in {Γn

�̃,R
,Γn

�̃,L
,Γn

⊲̃⊳,L} is symmetric if and only if there exists

an integer i ∈ {1, . . . , n− 1} such that Γi is balanced or the spectrum of Γn is symmetric.

Proof. We only need to consider n ≥ 3.
(i) By Theorem 4.3, the spectrum of Γn

⊲̃⊳,R = Γn−1
⊲̃⊳,R

⊲̃⊳Γn is symmetric if and only if Γn−1
⊲̃⊳,R

is
balanced or the spectrum of Γn is symmetric. Since the semi-strong product of a graph G and
a bipartite graph H is balanced if and only if H is balanced, we have Γn−1

⊲̃⊳,R
= Γn−2

⊲̃⊳,R
⊲̃⊳Γn−1 is

balanced if and only if Γn−1 is balanced. Thus, (i) is proved.
(ii) By Theorem 4.3, the spectrum of Γn

�̃,R
= Γn−1

�̃,R
�̃Γn is symmetric if and only if Γn−1

�̃,R
is

balanced or the spectrum of Γn is symmetric. Since Γn−1

�̃,R
is balanced if and only if there exists

an integer i ∈ {1, . . . , n− 1} such that Γi is balanced. So the conclusion for Γn
�̃,R

is proved.

By Theorem 4.3, the conclusion holds for Γ2
�̃,L

= Γn−1�̃Γn (resp. Γ2
⊲̃⊳,L = Γn−1⊲̃⊳Γn). By

induction on n, assume that the spectrum of Γn−1

�̃,L
(resp. Γn−1

⊲̃⊳,L
) is symmetric if and only if there

exists an integer i ∈ {2, . . . , n− 1} such that Γi is balanced or the spectrum of Γn is symmetric.
By Theorem 4.3, the spectrum of Γn

�̃,L
= Γ1�̃Γn−1

�̃,L
(resp. Γn

⊲̃⊳,L = Γ1⊲̃⊳Γ
n−1
⊲̃⊳,L

) is symmetric if and

only if Γ1 is balanced or the spectrum of Γn−1

�̃,L
(resp. Γn−1

⊲̃⊳,L) is symmetric. By induction, the

conclusion for Γn
�̃,L

(resp. Γn
⊲̃⊳,L) is proved.

Now, Theorem 1.3 is generalized to the following theorem.

Theorem 5.11 For i = 1, 2, . . . , n, let Γi = (Gi, σi) be a signed graph of order Ni and θ2i be the
minimum eigenvalue of A(Γi)

2, where G1, . . . , Gn−1 are bipartite. Let H�, H⊲⊳,L and H⊲⊳,R be
any (⌊12

∏n
i=1 Ni⌋+ 1)-vertex induced subgraph of Γn

�̃,L
, Γn

⊲̃⊳,L and Γn
⊲̃⊳,R, respectively.

(i) If there exists an integer i ∈ {1, 2, . . . , n− 1} such that Γi is balanced or the spectrum of

Γn is symmetric, then ∆(H�) ≥
√∑n

i=1 θ
2
i and ∆(H⊲⊳,L) ≥

√
θ2n

∏n−1
i=1 (θ

2
i + 1);

(ii) If Γn−1 is balanced or the spectrum of Γn is symmetric, then ∆(H⊲⊳,R) ≥
√∑n

k=1

∏n
i=k θ

2
i .

Proof. For simplicity, let N =
∏n

i=1Ni. SinceH�, H⊲⊳,L and H⊲⊳,R are (⌊N2 ⌋+1)-vertex induced
subgraphs of Γn

�̃,L
, Γn

⊲̃⊳,L and Γn
⊲̃⊳,R, respectively. By Lemma 5.3,

∆(H�) ≥ λ⌈ 1

2
N⌉(Γ

n
�̃,L

), ∆(H⊲⊳,L) ≥ λ⌈ 1

2
N⌉(Γ

n
⊲̃⊳,L) and ∆(H⊲⊳,R) ≥ λ⌈ 1

2
N⌉(Γ

n
⊲̃⊳,R).

By Theorem 5.6, the minimum eigenvalues of A(Γn
�̃,L

)2, A(Γn
⊲̃⊳,L)

2 and A(Γn
⊲̃⊳,R)

2 are obtained.

Thus, by Theorem 5.10, the spectrums of Γn
�̃,L

, Γn
⊲̃⊳,L and Γn

⊲̃⊳,R are symmetric and so λ⌈ 1

2
N⌉(Γ

n
�̃,L

)

=
√∑n

i=1 θ
2
i , λ⌈ 1

2
N⌉(Γ

n
⊲̃⊳,L) =

√
θ2n

∏n−1
i=1 (θ

2
i + 1) and λ⌈ 1

2
N⌉(Γ

n
⊲̃⊳,R) =

√∑n
k=1

∏n
i=k θ

2
i . Combin-

ing these (in)equalities, the results follow.
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Corollary 5.12 For i = 1, 2, . . . , n, let Γi = (Gi, σi) be a signed graph of order Ni with exactly
two distinct eigenvalues ±θi, where G1, . . . , Gn−1 are bipartite. Let H�, H⊲⊳,L and H⊲⊳,R be
any (⌊12

∏n
i=1Ni⌋ + 1)-vertex induced subgraph of Γn

�̃,L
, Γn

⊲̃⊳,L and Γn
⊲̃⊳,R, respectively. Then

∆(H�) ≥
√∑n

i=1 θ
2
i , ∆(H⊲⊳,L) ≥

√
θ2n

∏n−1
i=1 (θ

2
i + 1) and ∆(H⊲⊳,R) ≥

√∑n
k=1

∏n
i=k θ

2
i .

When Γi = (K2,+) for each i = 1, 2, . . . , n in Corollary 5.12, Γn
�̃,L

is the signed graph of

hypercube Qn. Therefore, Corollary 5.12 implies Huang’s theorem.

Example 5.13 For i = 1, 2, . . . , n, let Γi = (K2t,2t , σ) be the signed graph K2t,2t with exactly

two distinct eigenvalues ±
√
2t. For any integer n ≥ 1 and t ≥ 0, let H�, H⊲⊳,L and H⊲⊳,R

be any (2n(t+1)−1 + 1)-vertex induced subgraph of Γn
�̃,L

, Γn
⊲̃⊳,L and Γn

⊲̃⊳,R respectively. Then

∆(H�) ≥
√
2t · n, ∆(H⊲⊳,L) ≥

√
2t(2t + 1)n−1 and ∆(H⊲⊳,R) ≥

√∑n
k=1 2

kt.

6 Concluding remarks

I. Corollary 3.5, Corollary 4.2 and Corollary 5.7 provide product methods to construct signed
graphs with exactly two distinct eigenvalues of opposite signatures from factor graph Γ1 and
Γ2. There are many options for the factor graph, such as the signed graphs of Qn and K2n,2n

in Example 5.8, T2n in Lemma 3.7, S14 in Lemma 3.8, the signed graph of Kn in Example 3.9,
signed graphs in Examples 3.10, 3.11, 5.9 and so on.

II. If the following conjecture is true, it would provide a way to construct an infinite family
of d-regular Ramanujan graphs by 2-lift of graphs.

Conjecture 6.1 (Bilu-Linial [4]) Every connected d-regular graph G has a signature σ such
that ρ(G,σ) ≤ 2

√
d− 1.

Gregory considered the following Conjecture 6.2 without the regularity assumption on G.

Conjecture 6.2 (Gregory [7]) If G is a nontrivial graph with maximum degree ∆ > 1, then
there exists a signed graph Γ = (G,σ) such that ρ(Γ) ≤ 2

√
∆− 1.

By Theorem 4.1 (i), we have the following theorem.

Theorem 6.3 For i = 1, 2, let Gi be a graph with maximum degree ∆i and Γi = (Gi, σi) be a
signed graph such that ρ(Γi) ≤ 2

√
∆i − 1. If G1 is bipartite, then

ρ(Γ1�̃Γ2) ≤ 2
√

∆1 +∆2 − 2.

Since ρ(Γ1�̃Γ2) =
√

ρ(Γ1)2 + ρ(Γ2)2 and ∆(Γ1�Γ2) = ∆(Γ1) + ∆(Γ2), Theorem 6.3 shows
that if Conjecture 6.2 holds for Γ1 and Γ2, then Conjecture 6.2 also holds for the signed Cartesian
product of them.

III. The method which is utilized to construct a larger weighing matrix can construct a
larger signed graph with exactly two distinct eigenvalues ±θ from small graphs. Conversely, the
ideas of signed Cartesian product and semi-strong product in our paper can also be applied to
construct a weighing matrix. If for i = 1, 2, Wi is a weighing matrix of order ni and weight ki,
then we can construct weighing matrices as follows

W (4n1n2, k1 + k2) =

[
On1

W1

W T
1 On1

]
⊗ I2n2

+

[
In1

On1

On1
−In1

]
⊗

[
On2

W2

W T
2 On2

]
,
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W (4n1n2, (k1 + 1)k2) =

[
In1

W1

W T
1 −In1

]
⊗

[
On2

W2

W T
2 On2

]
,

W (2n1n2, (k1 + 1)k2) =

[
In1

W1

W T
1 −In1

]
⊗W2.

Furthermore, if W2 is symmetric, then we can construct weighing matrix

W (2n1n2, k1 + k2) =

[
In1

⊗W2 W1 ⊗ In2

W T
1 ⊗ In2

−In1
⊗W2

]
.
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