Kings in Multipartite Hypertournaments

Jiangdong Ai* Stefanie Gerke ${ }^{\dagger}$ Gregory Gutin ${ }^{\ddagger}$

July 19, 2021

Abstract

In his paper "Kings in Bipartite Hypertournaments" (Graphs \& Combinatorics 35, 2019), Petrovic stated two conjectures on 4-kings in multipartite hypertournaments. We prove one of these conjectures and give counterexamples for the other.

1 Introduction

Given two integers n and $k, n \geq k>1$, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, $|V|=n$ and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A contains exactly one of the k ! tuples whose entries belong to S. For an arc $x_{1} x_{2} \ldots x_{k}$, we say that x_{i} precedes x_{j} if $i<j$. A 2-hypertournament is merely an (ordinary) tournament. Hypertournaments have been studied in a large number of papers, see e.g. [1, 2, 3, 4, 5, 8, 9, 11, 12 .

Recently, Petrovic [10] introduced multipartite hypertournaments in a similar way. Let n and k be integers such that $n>k \geq 2$. Let V be a set of n vertices and $V=V_{1} \uplus V_{2} \uplus \cdots \uplus V_{p}$ be a partition of V into $p \geq 2$ non-empty subsets. A p-partite k-hypertournament (or, multipartite hypertournament) H can be obtained from a k-hypertournament T on vertex set V by deleting all $\operatorname{arcs} x_{1} x_{2} \ldots x_{k}$ such that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V_{i}$ for some $i \in[p]$. We call V_{i} 's partite sets of H. The set of arcs of $H=(V, A)$ will be denoted by $A(H)$, i.e., $A(H)=A$. A p-partite 2-hypertournament is a p-partite tournament.

For $u \in V_{i}, w \in V_{j}$ with $i \neq j, A_{H}(u, w)$ is the set of arcs of H which contain u and w and where u precedes w. We will write $x e y$ if $e \in A_{H}(x, y)$. We let $A_{H}(x, y)=\emptyset$ if either x and y belong to the same partite set of H. A path in H is an alternating sequence $P=x_{1} a_{1} x_{2} a_{2} \ldots x_{q-1} a_{q-1} x_{q}$ of distinct vertices x_{i}

[^0]and distinct arcs a_{j} such that $x_{j} a_{j} x_{j+1}$ for every $j \in[q-1]$. We will call P an $\left(x_{1}, x_{q}\right)$-path of length $q-1$.

Let $q \geq 1$ be a natural number. A vertex x of H is a q-king if for every $y \in V, H$ has an (x, y)-path of length at most q. Generalizing a well-known theorem of Landau that every tournament has a 2-king (see e.g. [6]), Brcanov et al. [4] showed that every hypertournament has a 2-king. A vertex v of H is a transmitter if for every vertex u from a different partite set than $v, A_{H}(u, v)=\emptyset$.

Note that for every $u \in V_{i}, w \in V_{j}(i \neq j)$, we have $\left|A_{H}(u, w)\right|+\left|A_{H}(w, u)\right|=$ $\binom{n-2}{k-2}$. A majority multipartite tournament $M(H)$ of H has the same partite sets as H and for every $u \in V_{i}$ and $w \in V_{j}$ with $i \neq j, u w \in M(H)$ if $\left|A_{H}(u, w)\right|>$ $\frac{1}{2}\binom{n-2}{k-2}$. If $\left|A_{H}(u, w)\right|=\frac{1}{2}\binom{n-2}{k-2}$ then we can choose either $u w$ or $w u$ for $M(H)$.

For a graph $G=(V, E)$ and $U \subseteq V$, let $N_{G}(U)=\{v \in V \backslash U: u v \in E, u \in$ $U\}$.

Gutin [7] and independently Petrovic and Thomassen [11] proved the following:

Theorem 1. [7, 11] Every multipartite tournament with at most one transmitter contains a 4-king.

Petrovic [10] proved that the same result holds for bipartite k-hypertournaments:
Theorem 2. [10] Every bipartite k-hypertournaments ($k \geq 2$) with at most one transmitter contains a 4-king.

In the same paper he conjectured the following:
Conjecture 3. [10] Every multipartite k-hypertournament ($k \geq 2$) with at most one transmitter contains a 4-king.

In this short paper, we will solve this conjecture in the affirmative.
The next conjecture of Petrovic [10] is motivated by the fact that Petrovic and Thomassen [11] proved that the assertion of the conjecture holds for bipartite tournaments.

Theorem 4. [11] Every bipartite tournament B without transmitters has at least two 4-kings in each partite set of B.

Conjecture 5. [10] Every bipartite k-hypertournament $B(k \geq 2)$ without transmitters has at least two 4-kings in each partite set of B.

In this paper, we will first show a couterexample to Conjecture 5 and then exhibit a wide family of bipartite hypertournaments for which the conclusion of the conjecture holds.

The paper is organized as follows. In the next section, we prove a lemma (Lemma 7) which we call the Majority Lemma, and which is used to show the positive above-mentioned results. In Section 3, we provide the counterexample and positive results. The terminology not introduced in this paper can be found in (6).

2 The Majority Lemma

The Majority Lemma, Lemma 7 is the main technical result of this paper. To prove Lemma 7 we will use the following simple lemma.

Lemma 6. Let G be a bipartite graph with partite sets U and W and let every vertex in U have degree at least $p \geq 1$ and every vertex in W have degree at most p, except for one vertex which has degree at most $2 p-1$. Then G has a matching saturating U.

Proof. By Hall's theorem, if for every $S \subseteq U,|S| \leq\left|N_{G}(S)\right|$ then G has a matching saturating U. Suppose that there is a subset S of U such that $|S| \geq$ $\left|N_{G}(S)\right|+1$. Let e be the number of edges in the subgraph of G induced by $S \cup N_{G}(S)$ and observe that

$$
p|S| \leq e \leq(|N(S)|-1) p+(2 p-1) \leq(|S|-2) p+(2 p-1)=|S| p-1
$$

a contradiction.
Proposition 14 proved in the next section shows that Lemma 7 cannot be extended to $n=4$ and $p=2$.

Lemma 7. Let H be a p-partite k-hypertournament with $p \geq 2$. Let $n \geq 5$ and $n>k \geq 3$. If a majority p-partite tournament $M(H)$ has an (x, y)-path P of length at most 4, then H has such a path of length at most 4.

Proof. It suffices to prove this lemma for the case when P is of length 4 as the other cases are simpler and similar. Thus, assume that $P=x_{1} x_{2} x_{3} x_{4} x_{5}$. By definition of a path, for every $i \in[4], x_{i}$ and x_{i+1} belong to different partite sets of H. Now consider the following cases covering all possibilities.
Case 1: $n \geq 9$ and $3 \leq k<n$ or $n \geq 7$ and $4 \leq k<n-1$. Observe that if for every $i \in\{1,2,3,4\}$,

$$
\begin{equation*}
\left|A_{H}\left(x_{i}, x_{i+1}\right)\right|>3 \tag{1}
\end{equation*}
$$

then we can choose distinct $\operatorname{arcs} a_{i} \in A_{H}\left(x_{i}, x_{i+1}\right)$ such that $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} a_{4} x_{5}$ is the required path in H. In particular, inequalities (11) will hold if $\frac{1}{2}\binom{n-2}{k-2}>3$.

If $n \geq 9$ and $3 \leq k<n$, we have

$$
\frac{1}{2}\binom{n-2}{k-2} \geq \frac{n-2}{2}>3
$$

and hence inequalities (11) hold. If $n \geq 7$ and $4 \leq k<n-1$, we have

$$
\frac{1}{2}\binom{n-2}{k-2} \geq \frac{(n-2)(n-3)}{4}>3
$$

Case 2: $k=3$ and $5 \leq n \leq 8$. Then

$$
\begin{equation*}
\left|A_{H}\left(x_{i}, x_{i+1}\right)\right| \geq \frac{1}{2}\binom{n-2}{k-2} \geq \frac{1}{2}\binom{3}{1}=\frac{3}{2} \tag{2}
\end{equation*}
$$

for $i=1,2,3,4$. Consider a bipartite graph G with partite sets $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and $A(H)$. We have an edge $z_{i} a_{j}$ if $a_{j} \in A_{H}\left(x_{i}, x_{i+1}\right)$. By (22), each vertex in Z has degree at least two. Since $k=3$, vertices z_{i} and z_{j} in G have no common neighbor unless $|i-j|=1$. Thus, every vertex of G in $A(H)$ has degree at most 2. Thus, by Lemma 6, G has a matching saturating Z. In other words, there are distinct $a_{1}, a_{2}, a_{3}, a_{4} \in A(H)$ such that $x_{1} a_{1} x_{2} a_{2} x_{3} a_{3} x_{4} a_{4} x_{5}$ is a path in H.
Case 3: $k=4$ and $5 \leq n \leq 6$. Consider the bipartite graph G constructed as in the previous case. Using the computations analogous to those in (2), we see that the minimum degree of a vertex in Z is at least 3 when $n=6$ and at least 2 when $n=5$. Since $k=4$, there is no common neighbor of all vertices in Z. Thus, every vertex of G in $A(H)$ has degree at most 3 . Now consider two subcases.
Subcase 1: $n=6$. Since every vertex of G in $A(H)$ has degree at most 3 and every vertex of G in Z has degree at least 3, by Lemma 6, G has a matching saturating Z and we are done as in Case 2 .
Subcase 2: $n=5$. Recall that the minimum degree of a vertex in Z is at least 2. Suppose that there are two vertices of G in $A(H)$ of degree 3 . This means that

$$
\begin{equation*}
N_{G}\left(z_{i}\right) \cap N_{G}\left(z_{i+1}\right) \cap N_{G}\left(z_{i+2}\right) \neq \emptyset \tag{3}
\end{equation*}
$$

for $i=1$ or 2 . Indeed, since $k=4, N_{G}\left(z_{1}\right) \cap N_{G}\left(z_{j}\right) \cap N_{G}\left(z_{4}\right)=\emptyset$ when either $j=2$ or 3 . Without loss of generality, we assume that (3) holds when $i=1$ and let $e_{1} \in N_{G}\left(z_{1}\right) \cap N_{G}\left(z_{2}\right) \cap N_{G}\left(z_{3}\right)$. Thus, $e_{1}=x_{1} x_{2} x_{3} x_{4}$.

If x_{1} and x_{4} are in different partite sets of H, then $x_{1} e_{1} x_{4}$. Since e_{1} does not contain x_{5}, we can choose an arc e_{2} of H which is different from e_{1} such that $x_{4} e_{2} x_{5}$. Then $x_{1} e_{1} x_{4} e_{2} x_{5}$ is a path in H. Now we assume that x_{1} and x_{4} are in the same partite set of H. Then there is an arc e_{1} of H such that $x_{1} e_{1} x_{3}$. Since the degree of z_{3} in G is at least 2 , we can choose an $\operatorname{arc} e_{2}$ of H which is different from e_{1} such that $x_{3} e_{2} x_{4}$. We can also choose an arc e_{3} of H which is different from e_{1} and e_{2} such that $x_{4} e_{3} x_{5}$. Indeed, $e_{3} \neq e_{1}$ since e_{1} does not contain x_{5} and $e_{3} \neq e_{2}$ since the degree of z_{4} in G is at least 2 . Then $x_{1} e_{1} x_{3} e_{2} x_{4} e_{3} x_{5}$ is a path in H. Thus, we may assume that every vertex of G in $A(H)$ has degree at most 2 , except for one vertex which has degree at most 3 . Then we can use Lemma 6 and thus we are done as above.
Case 4: $k \in\{5,6,7\}$ and $n=k+1$. Consider the bipartite graph G constructed as in Case 2.
Subcase 1: $k \in\{6,7\}$. Using the computations analogous to those in (22), we see that the minimum degree of a vertex in Z is at least 3 . If there is a vertex with degree 4 in $A(H)$, then it means $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is a subset of a vertex set of an arc e_{1} and the relative order is $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. If x_{1} and x_{5} are in different partite sets, then $x_{1} e_{1} x_{5}$ is a path in H. Otherwise x_{1} and x_{4} are in different partite sets, so $x_{1} e_{1} x_{4}$. There is an arc e_{2} different from e_{1} such that $x_{4} e_{2} x_{5}$ (since the degree of z_{4} is at least 3). Now $x_{1} e_{1} x_{4} e_{2} x_{5}$ is a path in H. Thus, we assume each vertex in $A(H)$ has degree at most 3 , and we are done by Lemma 6

Subcase 2: $k=5$. Suppose that the lemma does not hold in this case. Using the computations analogous to those in (2), we see that the minimum degree of a vertex in Z is at least 2. To obtain a contradiction, it suffices to show that G has at most one vertex of degree at least 3 in $A(H)$. Suppose that G has at least two vertices of degree at least 3 in $A(H)$. This means that (3) holds for $i=1$ or 2 . Since H can have only one arc with vertex set $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, we have

$$
\begin{equation*}
\sum_{j=2}^{3}\left|N_{G}\left(z_{1}\right) \cap N_{G}\left(z_{j}\right) \cap N_{G}\left(z_{4}\right)\right| \leq 1 \tag{4}
\end{equation*}
$$

Without loss of generality, we assume that (3) holds when $i=1$ and let $e_{1} \in$ $N_{G}\left(z_{1}\right) \cap N_{G}\left(z_{2}\right) \cap N_{G}\left(z_{3}\right)$. If we restrict e_{1} to the vertices $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, we obtain $e_{3}^{\prime}=x_{1} x_{2} x_{3} x_{4}$.

If x_{1} and x_{4} are in the different partite sets, then $x_{1} e_{1} x_{4}$. Since the degree of z_{4} in G is at least 2 , we can choose an arc e_{2} of H which is different from e_{1} such that $x_{4} e_{2} x_{5}$. Then $x_{1} e_{1} x_{4} e_{2} x_{5}$ is a path in H, a contradiction. Now we assume x_{1} and x_{4} are in the same partite set. Then $x_{1} e_{1} x_{3}$. Since the degree of z_{3} in G is at least 2 , we can choose an arc e_{2} of H which is different from e_{1} such that $x_{3} e_{2} x_{4}$. Since the degree of z_{4} in G is at least 2 , we can choose an arc e_{3} of H such that $x_{4} e_{3} x_{5}$ and $e_{3} \neq e_{2}$. Suppose $e_{3}=e_{1}$. Then $e_{1}=x_{1} x_{2} x_{3} x_{4} x_{5}$ and $x_{1} e_{1} x_{5}$, a contradiction. Thus, $e_{3} \neq e_{1}$ and $x_{1} e_{1} x_{3} e_{2} x_{4} e_{3} x_{5}$ is a path in H, a contradiction.

3 Main Results

In Section 3.1 using the Majority Lemma and other results, we solve Conjecture 3 in affirmative. In Section 3.2, we describe a family of couterexamples to Conjecture 5 and prove a sufficient condition of when the statement of Conjecture 5 holds.

3.1 Results on Conjecture 3

Lemma 8. Let $H=(V, A)$ be a multipartite k-hypertournament with at most one transmitter and let $M(H)$ be a majority multipartite tournament of H. Let $n \geq 5$ and $n>k \geq 3$. If $M(H)$ has at least one transmitter, then H has a 2-king.

Proof. Let V_{1} be the partite vertex set containing all transmitters of $M(H)$. Let v be the transmitter of H, if H has a transmitter, and an arbitrary transmitter of $M(H)$, otherwise. Clearly, $v \in V_{1}$. Observe that for every $u \in V \backslash V_{1}$, there is an $\operatorname{arc} a \in A_{H}(v, u)$ implying that vau. Note that for every $w \in V_{1} \backslash\{v\}$, there are a vertex $u \in V \backslash V_{1}$ and an arc e of H such that uew. As in Lemma 7 it is easy to see that $\left|A_{H}(v, u)\right| \geq 2$. Thus, there is an $\operatorname{arc} a \in A_{H}(v, u)$ distinct from e implying that vauew is a path.

Lemma 9. Let $H=(V, A)$ be a multipartite k-hypertournament and let $n \geq 5$ and $n>k \geq 3$. If H has at most one transmitter then H has a 4 -king.

Proof. Let $M(H)$ be a majority multipartite tournament of H. If $M(H)$ has no transmitters, then by Theorem 1, $M(H)$ has a 4-king x. By Lemma $7, x$ is a 4-king of H. If $M(H)$ has transmitters, then we apply Lemma 8 ,

Lemma 10. Let $H=(V, A)$ be a p-partite k-hypertournament with $k=3$, $n=4$ and $p \geq 2$. If H has at most one transmitter then H has a 4-king.

Proof. By Theorem 2, this lemma holds for $p=2$ and so we may assume that $p \geq 3$. It is well known that every k-hypertournament with more than k vertices has a Hamilton path [8]. Observe that for $p=4$ the first vertex of a Hamilton path in H is a 3-king. Now we may assume that $p=3$. Let $V=V_{1} \cup V_{2} \cup V_{3}$ be a partition of vertices of H. Without loss of generality, we may assume that $V_{1}=\left\{x_{1}, x_{2}\right\}, V_{2}=\left\{x_{3}\right\}$ and $V_{3}=\left\{x_{4}\right\}$.

First assume that H has the unique transmitter v. If $v=x_{3}$ or $v=x_{4}$, then v is a 1 -king of H. Thus, we assume without loss of generality that $v=x_{1}$. Since v is a transmitter, $v a_{1} x_{3}$ and $v a_{2} x_{4}$ for some arcs a_{1} and a_{2} of H. Since x_{2} is not a transmitter, there is an arc e_{1} such that $y e_{1} x_{2}$, where $y \in V_{2} \cup V_{3}$. By the definition of a transmitter, v precedes y in every arc containing v and y. Consequently, there is an arc e_{2} different from e_{1} such that $v e_{2} y$. Hence $v e_{2} y e_{1} x_{2}$ is a path from v to x_{2}. So v is a 2-king.

Now assume that T has no transmitter. Consider the arc e_{1} containing x_{1}, x_{3}, and x_{4}. If x_{1} is in the first position of e_{1}, since x_{2} is not a transmitter, there is an arc e_{2} different from e_{1} such that $x_{3} e_{2} x_{2}$ or $x_{4} e_{2} x_{2}$. Hence $x_{1} e_{1} x_{3} e_{2} x_{2}$ or $x_{1} e_{1} x_{4} e_{2} x_{2}$ is a path from x_{1} to x_{2}, implying that x_{1} is a 2 -king. Without loss of generality, we now assume that x_{3} is in the first position of e_{1}. Since x_{2} is not a transmitter, there is an arc e_{2}, where x_{3} or x_{4} preceds x_{2}. Hence x_{3} is a 2-king.

Lemmas 9 and 10 imply the following result solving Conjecture 3 in affirmative.

Theorem 11. Every multipartite hypertournament with at most one transmitter has a 4-king.

3.2 Results on Conjecture 5

The next result describes a family of counterexamples to Conjecture 5
Proposition 12. For every $k \geq 3$, there is a bipartite k-hypertournament B without transmitters which has at most one 4-king in each of its partite sets.

Proof. Let U and W be partite sets of B. Choose a vertex u in U and a vertex w in W. Let every arc of B with both u and w have both of them in the first and second position such that in at least one such arc u is the first and in at least one such arc w is the first. Let every arc of B containing u but not w have u in the

Figure 1: $M(H)$
first position and let every arc of B containing w but not u have w in the first position. Clearly, B has no transmitters, but no vertex v in $(U \cup W) \backslash\{u, w\}$ can be a 4-king as there is no path from v to either u or w.

The next result is a sufficient condition of when the conclusion of Conjecture 5 holds. It follows directly from Theorem 4 and the Majority Lemma.

Theorem 13. Let B be a bipartite hypertournament with partite sets U and W and with at least 5 vertices. If a majority bipartite tournament $M(B)$ has no transmitters, then B has at least two 4-kings in each U and W.

Our final result shows that the Majority Lemma cannot be extended to $n=4$ and $p=2$. The proof provides another counterexample to Conjecture 5

Proposition 14. For $k=3$ and $n=4$, there is a bipartite hypertournament H with partite sets U and W such that (i) $|U|=|W|=2$, (ii) a majority bipartite tournament $M(H)$ has no transmitters, (iii) $M(H)$ has an (x, y)-path of length 3, but H has no (x, y)-path, (iv) H has only one 4-king in U.

Proof. Let H be a bipartite hypertournament with partite sets $U=\left\{x_{1}, x_{3}\right\}$ and $W=\left\{x_{2}, x_{4}\right\}$, arc set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ where

$$
a_{1}=x_{4} x_{1} x_{2}, a_{2}=x_{2} x_{3} x_{4}, a_{3}=x_{3} x_{2} x_{1}, a_{4}=x_{4} x_{3} x_{1}
$$

Let the arcs of $M(H)$ be $x_{4} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}$ (see Fig. (1). Clearly, (i) and (ii) hold and $x_{1} x_{2} x_{3} x_{4}$ is an $\left(x_{1}, x_{4}\right)$-path in $M(H)$.

Now consider H. Suppose that H has an $\left(x_{1}, x_{4}\right)$-path P. Since $A_{B}\left(x_{1}, x_{4}\right)=$ $\emptyset, P=x_{1} b_{1} x_{2} b_{2} x_{3} b_{3} x_{4}$ for some distinct arcs b_{1}, b_{2}, b_{3} of H. By inspection of the arcs of H, we conclude that $b_{1}=a_{1}, b_{2}=a_{2}, b_{3}=a_{2}$, which is impossible since b_{1}, b_{2}, b_{3} must be distinct. So H has no $\left(x_{1}, x_{4}\right)$-path and (iii) holds. Observe that x_{3} is a 4 -king of H since $x_{3} a_{3} x_{2}, x_{3} a_{2} x_{4}$ and $x_{3} a_{2} x_{4} a_{1} x_{1}$ is an (x_{3}, x_{1})-path of length 2. Moreover, x_{1} cannot be a 4 -king by the discussion in (iii), so (iv) holds.

References

[1] Assous, R.: Enchainbilite et seuil de monomorphie des tournois n-aires, Discrete Math. 62, 119-125 (1986)
[2] Barbut, E. and Bialostocki, A.: On regular r-tournaments, Combinatorica, 34, 97-106 (1992)
[3] Bialostocki, A.: An application of the Ramsey theorem to ordered r-tournaments, Discrete Math. 61, 325-328 (1986)
[4] Brcanov, D., Petrovic, V. and Treml, M.: Kings in hypertournaments. Graphs \& Comb. 29, 349-357 (2013)
[5] Frankl, P.: What must be contained in every oriented k-uniform hypergraph. Discrete Math. 62, 311-313 (1986)
[6] Bang-Jensen, J. and Gutin, G.: Digraphs: Theory, Algorithms and Applications, 1st ed., Springer, London, (2000)
[7] Gutin, G.: The radii of n-partite tournaments. Math. Notes 40(3), 743-744 (1986)
[8] Gutin, G. and Yeo, A.: Hamiltonian path and cycles in hypertournaments. J. Graph Theory 25, 277-286 (1997)
[9] Li, H., Li, S., Guo, Y. and Surmacs, M.: On the vertex-pancyclicity of hypertournaments. Discrete Appl. Math. 161, 2749-2752 (2013)
[10] Petrovic, V.: Kings in bipartite hypertournaments. Graphs \& Comb. 35, 913-919 (2019)
[11] Petrovic, V. and Thomassen, C.: Kings in k-partite tournaments. Discrete Math. 98, 237-238 (1991)
[12] Yang, J.: Vertex-pancyclicity of hypertournaments. J. Graph Theory 63, 338-348 (2010)

[^0]: *Department of Computer Science. Royal Holloway University of London. Jiangdong.Ai.2018@live.rhul.ac.uk.
 ${ }^{\dagger}$ Department of Mathematics. Royal Holloway University of London. stefanie.gerke@rhul.ac.uk.
 \ddagger Department of Computer Science. Royal Holloway University of London. g.gutin@rhul.ac.uk.

