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Abstract

A graph G is d-degenerate if every non-null subgraph of G has a vertex of
degree at most d. We prove that every n-vertex planar graph has a 3-degenerate
induced subgraph of order at least 3n/4.

Keywords: planar graph; graph degeneracy.

1 Introduction

Graphs in this paper are simple, having no loops and no parallel edges. For a graph
G = (V,E), the neighbourhood of x ∈ V is denoted by N(x) = NG(x), the degree of
x is denoted by d(x) = dG(x), and the minimum degree of G is denoted by δ(G). Let
Π = Π(G) be the set of total orderings of V . For L ∈ Π, we orient each edge vw ∈ E
as (v, w) if w <L v to form a directed graph GL. We denote the out-neighbourhood,
also called the back-neighbourhood, of x by NL

G(x), the out-degree, or back-degree, of x
by dLG(x). We write δ+(GL) and ∆+(GL) to denote the minimum out-degree and the
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maximum out-degree, respectively, of GL. We define |G| := |V |, called the order of G,
and ‖G‖ := |E|.

An ordering L ∈ Π(G) is d-degenerate if ∆+(GL) ≤ d. A graph G is d-degenerate if
some L ∈ Π(G) is d-degenerate. The degeneracy of G is minL∈Π(G) ∆

+(GL). It is well
known that the degeneracy of G is equal to maxH⊆G δ(H).

Alon, Kahn, and Seymour [4] initiated the study of maximum d-degenerate induced
subgraphs in a general graph and proposed the problem on planar graphs. We study
maximum d-degenerate induced subgraphs of planar graphs. For a non-negative integer
d and a graph G, let

αd(G) = max{|S| : S ⊆ V (G), G[S] is d-degenerate} and

ᾱd = inf{αd(G)/|V (G)| : G is a non-null planar graph}.

Let us review known bounds for ᾱd. Suppose that G = (V,E) is a planar graph.
For d ≥ 5, trivially we have ᾱd = 1 because planar graphs are 5-degenerate.

For d = 0, a 0-degenerate graph has no edges and therefore α0(G) is the size of a
maximum independent set of G. By the Four Colour Theorem, G has an independent
set I with |I| ≥ |V (G)|/4. Both K4 and C2

8 witness that ᾱ0 ≤ 1/4, so ᾱ0 = 1/4.
In 1968, Erdős (see [5]) asked whether this bound could be proved without the Four
Colour Theorem. This question still remains open. In 1976, Albertson [2] showed that
ᾱ0 ≥ 2/9 independently of the Four Colour Theorem. This bound was improved to
ᾱ0 ≥ 3/13 independently of the Four Colour Theorem by Cranston and Rabern in
2016 [8].

For d = 1, a 1-degenerate graph is a forest. Since K4 has no induced forest of order
greater than 2, we have ᾱ1 ≤ 1/2. Albertson and Berman [3] and Akiyama and Watan-
abe [1] independently conjectured that ᾱ1 = 1/2. In other words, every planar graph
has an induced forest containing at least half of its vertices. This conjecture received
much attention in the past 40 years; however, it remains largely open. Borodin [7]
proved that the vertex set of a planar graph can be partitioned into five classes such
that the subgraph induced by the union of any two classes is a forest. Taking the
two largest classes yields an induced forest of order at least 2|V (G)|/5. So ᾱ1 ≥ 2/5.
This remains the best known lower bound on ᾱ1. On the other hand, the conjecture
of Albertson and Berman, Akiyama and Watanabe was verified for some subfamilies
of planar graphs. For example, C3-free, C5-free, or C6-free planar graphs were shown
in [20, 11] to be 3-degenerate, and a greedy algorithm shows that the vertex set of a
3-degenerate graph can be partitioned into two parts, each inducing a forest. Hence
C3-free, C5-free, or C6-free planar graphs satisfy the conjecture. Moreover, Raspaud
and Wang [16] showed that C4-free planar graphs can be partitioned into two induced
forests, thus satisfying the conjecture. In fact, many of these graphs have larger in-
duced forests. Le [14] showed that if a planar graph G is C3-free, then it has an induced
forest with at least 5|V (G)|/9 vertices; Kelly and Liu [12] proved that if in addition G
is C4-free, then G has an induced forest with at least 2|V (G)|/3 vertices.

Now let us move on to the case that d = 2. The octahedron has 6 vertices and is
4-regular, so a 2-degenerate induced subgraph has at most 4 vertices. Thus ᾱ2 ≤ 2/3.
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We conjecture that equality holds. Currently, we only have a more or less trivial lower
bound: ᾱ2 ≥ 1/2, which follows from the fact that G is 5-degenerate, and hence we can
greedily 2-colour G in an ordering that witnesses its degeneracy so that no vertex has
three out-neighbours of the same colour, i.e., each colour class induces a 2-degenerate
subgraph. Dvořák and Kelly [10] showed that if a planar graph G is C3-free, then it
has a 2-degenerate induced subgraph containing at least 4|V (G)|/5 vertices.

For d = 4, the icosahedron has 12 vertices and is 5-regular, so a 4-degenerate induced
subgraph has at most 11 vertices. Thus ᾱ4 ≤ 11/12. Again we conjecture that equality
holds. The best known lower bound is ᾱ4 ≥ 8/9, which was obtained by Lukot̆ka,
Mazák and Zhu [15].

In this paper, we study 3-degenerate induced subgraphs of planar graphs. Both the
octahedron C2

6 and the icosahedron witness that ᾱ3 ≤ 5/6. Here is our main theorem.

Theorem 1.1. Every n-vertex planar graph has a 3-degenerate induced subgraph of
order at least 3n/4.

We conjecture that the upper bounds for ᾱd mentioned above are tight. We remark
that it is possible to obtain infinitely many 3-connected tight examples for each d by
gluing together many copies of the tight example discussed above.

Conjecture 1.1. ᾱ2 = 2/3, ᾱ3 = 5/6, and ᾱ4 = 11/12.

The problem of colouring the vertices of a planar graph G so that colour classes
induce certain degenerate subgraphs has been studied in many papers. Borodin [7]
proved that every planar graph G is acyclically 5-colourable, meaning that V (G) can
be coloured in 5 colours so that a subgraph of G induced by each colour class is 0-
degenerate and a subgraph of G induced by the union of any two colour classes is 1-
degenerate. As a strengthening of this result, Borodin [6] conjectured that every planar
graph has degenerate chromatic number at most 5, which means that the vertices of
any planar graph G can be coloured in 5 colours so that for each i ∈ {1, 2, 3, 4}, a
subgraph of G induced by the union of any i colour classes is (i− 1)-degenerate. This
conjecture remains open, but it was proved in [13] that the list degenerate chromatic
number of a graph is bounded by its 2-colouring number, and it was proved in [9]
that the 2-colouring number of every planar graph is at most 8. As consequences of
the above conjecture, Borodin posed two other weaker conjectures: (1) Every planar
graph has a vertex partition into two sets such that one induces a 2-degenerate graph
and the other induces a forest. (2) Every planar graph has a vertex partition into an
independent set and a set inducing a 3-degenerate graph. Thomassen confirmed these
conjectures in [18] and [19].

This paper is organized as follows. In Section 2 we will present our notation. In Sec-
tion 3 we will formulate a stronger theorem that allows us to apply induction. This will
involve identifying numerous obstructions to a more direct proof. In Section 4, we will
organize our proof by contradiction around the notion of an extreme counterexample.
In Sections 5–7, we will develop properties of extreme counterexamples that eventually
lead to a contradiction in Section 8.
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2 Notation

For sets X and Y , define Z = X ∪· Y to mean Z = X ∪ Y and X ∩ Y = ∅. Let
G = (V,E) be a graph with v, x, y ∈ V and X, Y ⊆ V . Then ‖v,X‖ is the number
of edges incident with v and a vertex in X and ‖X, Y ‖ =

∑

v∈X ‖v, Y ‖. When X and
Y are disjoint, ‖X, Y ‖ is the number of edges xy with x ∈ X and y ∈ Y . In general,
edges in X ∩ Y are counted twice by ‖X, Y ‖. Let N(X) =

⋃

x∈X N(x)−X .
We write H ⊆ G to indicate that H is a subgraph of G. The subgraph of G induced

by a vertex set A is denoted by G[A]. The path P with V (P ) = {v1, . . . , vn} and
E(P ) = {v1v2, . . . , vn−1vn} is denoted by v1 · · · vn. Similarly the cycle C = P + vnv1 is
denoted by v1 · · · vnv1.

Now let G be a simple connected plane graph. The boundary of the infinite face is
denoted by B = B(G) and V (B(G)) is denoted by B = B(G). Then B is a subgraph
of the outerplanar graph G[B]. For a cycle C in G, let intG[C] denote the subgraph of
G obtained by removing all exterior vertices and edges and let extG[C] be the subgraph
of G obtained by removing all interior vertices and edges. Usually the graph G is
clear from the text, and we write int[C] and ext[C] for intG[C] and extG[C]. Let
int(C) = int[C] − V (C) and ext(C) = ext[C] − V (C). Let N◦(x) = N(x) − B and
N◦(X) = N(X)−B.

For L ∈ Π, the up-set of x in L is defined as UL(x) = {y ∈ V : y >L x} and the
down-set of x in L is defined as DL(x) = {y ∈ V : y <L x}. Note that for each L ∈ Π,
y <L x means that y ≤L x and y 6= x. For two sets X and Y , we say X ≤L Y if x ≤L y
for all x ∈ X , y ∈ Y .

3 Main result

In this section we phrase a stronger, more technical version of Theorem 1.1 that is more
amenable to induction. This is roughly analogous to the proof of the 5-Choosability
Theorem by Thomassen [17].

If G = G1 ∪ G2 and G1 ∩ G2 = G[A] for a set A of vertices, then we would like
to join two 3-degenerate subgraphs obtained from G1 and G2 by induction to form a
3-degenerate subgraph of G. The problem is that vertices from A may have neighbours
in both subgraphs. Dealing with this motivates the following definitions.

Let A ⊆ V (G). A subgraph H of G is (k,A)-degenerate if there exists an ordering
L ∈ Π(G) such that A ≤L V − A and dLH(v) ≤ k for every vertex v ∈ V (H) − A.
Equivalently, every subgraph H ′ of H with V (H ′)−A 6= ∅ has a vertex v ∈ V (H ′)−A
such that dH′(v) ≤ k. A subset Y of V is A-good if G[Y ] is (3,A)-degenerate. We say a
subgraph H is A-good if V (H) is A-good. Thus if A = ∅ then G is A-good if and only
if G is 3-degenerate. Let

f(G;A) = max{|Y | : Y ⊆ V (G) is A-good}.

Since ∅ is A-good, f(G;A) is well defined.
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For an induced subgraph H of G and a set Y of vertices of H , we say Y is col-
lectable in H if the vertices of Y can be ordered as y1, y2, . . . , yk such that for each i ∈
{1, 2, . . . , k}, either yi /∈ A and dH−{y1,y2,...,yi−1}(yi) ≤ 3 or V (H)−{y1, y2, . . . , yi−1} ⊆ A.

In order to build an A-good subset, we typically apply a sequence of operations
of deleting and collecting. Deleting X ⊂ V means replacing G with G − X . An
ordering witnessing that Y is collectable is called a collection order. For disjoint subsets
V1, . . . , Vs of V , if Vi is collectable in G−

⋃i−1
j=1 Vj for each i = 1, 2, . . . , s, then collecting

V1, . . . , Vs means first putting V1 at the end of L in a collection order for V1, then putting
V2 at the end of L − V1 in a collection order for V2 in G− V1, etc. Note that if Y is a
collectable set in G and V − Y is A-good, then V is A-good.

Definition 3.1. A path v1v2 . . . vℓ of a plane graph G is admissible if ℓ > 0 and it is a
path in B(G) such that for each 1 < i < ℓ, G− vi has no path from vi−1 to vi+1.

A path of length 0 has only 1 vertex in its vertex set.

Definition 3.2. A set A of vertices of a plane graph G is usable in G if for each
component G′ of G, A∩ V (G′) is the empty set or the vertex set of an admissible path
of G′.

Lemma 3.1. Let G be a plane graph and let A be a usable set in G. Then for each
vertex v of G, |NG(v) ∩A| ≤ 2.

Proof. This is clear from the definition of an admissible path.

Observation 3.1. If G is outerplanar and A is a usable set in G, then G is (2,A)-
degenerate.

Observation 3.1 motivates the expectation that plane graphs with large bound-
aries have large 3-degenerate induced subgraphs. Roughly, we intend to prove that
f(G;A) ≤ 3|V (G)|/4 + |B|/4. This formulation provides a potential function for mea-
suring progress as we collect and delete vertices. For example, deleting a boundary
vertex with at least four interior neighbours provides a smaller graph whose potential
is at least as large. Some of the bonus |B|/4 is needed for dealing with chords. But
this does not quite work; C2

6 is a counterexample, and there are infinitely many more.
The rest of this section is devoted to formulating a more refined potential function.

A set Z of vertices is said to be exposed if Z ⊆ B. We say that a vertex z is
exposed if {z} is exposed. We say that deleting Y and collecting X exposes Z if
Z ⊆ B(G− Y −X)− B.

Definition 3.3. Let Q = {Q1, Q2, Q
+
2 , Q3, Q4, Q

+
4 , Q

++
4 } be the set of plane graphs

shown in Figure 1. For a plane graph G, a cycle C of G is special if GC := intG[C] is
isomorphic to a plane graph in Q, where C corresponds to the boundary. In this case,
GC is also special.
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Figure 1: Plane graphs in Q defining special subgraphs GC where C corresponds to the
boundary cycle. Solid black vertices denote vertices in XC .

For a special cycle C of a plane graph G, we define

TC := intG(C), which is isomorphic to K3,

XC := {v ∈ V (C) : there is a facial cycle D such that

v ∈ V (C) ∩ V (D) and |V (TC) ∩ V (D)| = 2},

VC := V (GC), YC := XC ∪ V (TC), and Y C := VC − YC = V (C)−XC .

Then V (C) = XC ∪ Y C .

Observation 3.2. Let A be a usable set in a plane graph G. Let C = v1 . . . vkv1 be a
special cycle of G. If GC is (not only isomorphic but also equal to a plane graph) in Q,
then the following hold.
(a) TC = xyzx with NG(x) = {y, z, v2, v3} and NG(y) = {x, z, v1, v2}.
(b) XC = {v1, v2, v3} if GC 6= Q3 and XC = {v1, v2, v3, v4} if GC = Q3.
(c) Deleting any vertex in XC ∩B exposes two vertices of TC.
(d) For each vertex v ∈ XC, V (TC) is collectable in G− v, except that if GC = Q++

4

and v = v2 then only {x, y} is collectable in G− v.
(e) If Y C 6= ∅ then there is a facial cycle C∗ containing Y C∪{v} for some v ∈ V (TC).

Moreover, v = z is unique, and if |Y C | = 2, then C∗ is unique.
(f) TC has at least two vertices v such that dG(v) = 4.

Note that vertices on C may have neighbours in ext(C) or maybe contained in A.
Thus we may not be able to collect vertices of C.

A special cycle C is called exposed if XC ⊆ B(G). A special cycle packing of G is
a set of exposed special cycles {C1, . . . , Cm} such that YCi

∩ YCj
= ∅ for all i 6= j. Let
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τ(G) be the maximum cardinality of a special cycle packing and

∂(G) =
3

4
|V (G)|+

1

4
(|B| − τ(G)).

We say that a special cycle packing of G is optimal if its cardinality is equal to τ(G).

Theorem 3.2. For all plane graphs G and usable sets A ⊆ B(G),

f(G;A) ≥ ∂(G). (3.1)

Clearly |B|−τ(G) ≥ 2 for any plane graph G with at least 2 vertices. This is trivial
if τ(G) = 0. If τ(G) = k, then each of the k exposed cycles in the maximum cardinality
special cycle packing of G has at least 3 vertices in B and therefore |B|−τ(G) ≥ 2k ≥ 2.
The following consequence of Theorem 3.2 is the main result of this paper.

Corollary 3.3. Every n-vertex planar graph G (with n ≥ 2) has an induced 3-degenerate
subgraph H with |V (H)| ≥ (3n+ 2)/4.

4 Setup of the proof

Suppose Theorem 3.2 is not true. Among all counterexamples, choose (G;A) so that
(i) |V (G)| is minimum,
(ii) subject to (i), |A| is maximum, and
(iii) subject to (i) and (ii), |E(G)| is maximum.
We say that such a counterexample is extreme.

If A′ * V (G′), then we may abbreviate (G′;A′ ∩ V (G′)) by (G′;A′), but still (ii)
refers to |A′ ∩ V (G′)|. We shall derive a sequence of properties of (G;A) that leads to
a contradiction. Trivially |V (G)| > 2, G is connected (if G is the disjoint union of G1

and G2, then f(G;A) = f(G1;A) + f(G2;A) and ∂(G) = ∂(G1) + ∂(G2)).

Lemma 4.1. Let G be a plane graph and X be a subset of V (G). If A is usable in G,
then A−X is usable in G−X.

Proof. We may assume that G is connected and X = {v}. If v /∈ A, then it is trivial.
Let P = v0v1 · · · vk be the admissible path in G such that A = V (P ). If v = v0 or
v = vk, then again it is trivial. If v = vi for some 0 < i < k, then by the definition of
admissible paths, G− vi is disconnected, and vi−1 and vi+1 are in distinct components.
Thus again A− {v} is usable in G− v.

Suppose Y is a nonempty subset of V (G) and G[Y ] is connected. Let C be an
exposed special cycle of G′ = G− Y . Then C satisfies one of the following conditions.
(a) C is an exposed special cycle of G.
(b) C is a non-exposed special cycle of G; in this case XC ∩ (B(G′)− B) 6= ∅.
(c) C is not a special cycle of G; in this case Y ⊆ intG(C), and so Y ∩B = ∅.

7



A cycle C is type-a, -b, -c, respectively, if it satisfies condition (a), (b), (c), respectively.
Let

δ(Y ) =

{

1, if G′ has a type-c exposed special cycle,

0, otherwise.

Lemma 4.2. Let Y be a nonempty subset of V (G) such that G[Y ] is connected. Let
G′ = G−Y . If C,C ′ are distinct exposed type-c special cycles of G′, then YC ∩YC′ 6= ∅.

Proof. Let C, C ′ be distinct exposed type-c special cycles of G′. Since B ∩ Y = ∅ and
G[Y ] is connected, there exists a facial cycle D of G′ such that intG(D) = G[Y ]. Then
D is a facial cycle of both G′

C and G′
C′. Arguing by contradiction, suppose YC∩YC′ = ∅.

Since V (D) ⊆ V (G′
C) = YC ∪ Y C and V (D) ⊆ V (G′

C′) = YC′ ∪ Y C′ , we have

V (D) ⊆ V (G′
C) ∩ V (G′

C′) ⊆ Y C ∪ Y C′.

By symmetry we may assume that |Y C ∩V (D)| ≥ |Y C′ ∩V (D)|. Using |Y C |, |Y C′ | ≤ 2,
we deduce that

3 ≤ |V (D)| ≤ |V (G′
C) ∩ V (G′

C′)| ≤ 4, Y C ⊆ V (D), |Y C | = 2, and Y C′ ∩ V (D) 6= ∅.

We will show that H is isomorphic to H1 or H2 in Figure 2. Since |Y C | = 2,
by Observation 3.2(e), D is the unique facial cycle in G′

C such that there is a vertex
ż ∈ V (TC) with Y C ∪ {ż} ⊆ V (D). As ż ∈ V (D) and ż ∈ YC , we have ż ∈ Y C′ . Since
Y C′ 6= ∅, again by Observation 3.2(e), there is a unique vertex z̈ ∈ V (TC′) such that
Y C′ ∪ {z̈} is contained in a facial cycle of G′

C′. Then z̈ ∈ YC′ ∩ Y C ⊆ V (D).
First we show that |V (G′

C) ∩ V (G′
C′)| = 4. Assume to the contrary that |V (G′

C) ∩
V (G′

C′)| = 3. Since V (D) ⊆ V (G′
C)∩V (G′

C′), we conclude that |V (D)| = 3. Then żz̈ is
an edge, and the two inner faces of G′ incident with żz̈ are contained in V (G′

C)∩V (G′
C′).

Since the intersection of any two inner faces of G′
C has at most 2 vertices, we have

|V (G′
C) ∩ V (G′

C′)| ≥ 4, a contradiction.
As V (G′

C) ∩ V (G′
C′) = Y C ∪ Y C′ , we conclude that |Y C′ | = 2 and |V (C)| = 5 =

|V (C ′)|.
Let Q ∈ Q be the plane graph isomorphic to G′

C . By inspection of Figure 1, G′
C′

is isomorphic to Q. We may assume that G′
C = Q by relabelling vertices. Let u 7→ u′

be an isomorphism from G′
C to G′

C′ . Using uniqueness from Observation 3.2(e), z = ż,
z′ = z̈, Y C = {v4, v5} and Y C′ = {v′4, v

′
5}. To prove our claim let us divide our analysis

into two cases, resulting either in H1 or H2.

• If |V (D)| = 4, then Q = Q+
4 and V (G′

C) ∩ V (G′
C) = V (D) = {v4, v5, v1, z}. Since

v4, v5 ∈ Y C , we have v1, z ∈ Y C′. Then v′4 = v1, v
′
5 = z, and v5 = z′. As XC and

XC′ are exposed in G′, the cycle v1v2v3v
′
1v

′
2v

′
3v1 is in G′[B(G′)] and so H = H1 in

Figure 2(a).

• If |V (D)| = 3, then Q = Q++
4 , V (D) = {z, v4, v5}. By symmetry, we may assume

that z′ = v5. Then V (G′
C) ∩ V (G′

C′) = {z, v4, v5, v1}, as C
′ contains all common

8



v2 v1 = v′4 v′3

v3 v4 = v′1 v′2

z
=
v
′

5
z
′ =

v 5

y′

x′

y

x

(a) H1

v2 v1 = v′4 v′3

v3 v4 = v′1 v′2

z
=
v
′

5
z
′ =

v 5

y′

x′

y

x

(b) H2

Figure 2: The isomorphism typesH1 andH2 ofH = G′[V (G′
C)∪V (G′

C′)] when |V (D)| =
4 or |V (D)| = 3 in the proof of Lemma 4.2. Solid black vertices denote boundary vertices
of G and thick edges represent edges in D.

neighbors of z and z′ in G′, which is a property of Q++
4 . Since v4, v5 ∈ Y C and

V (G′
C) ∩ V (G′

C′) ⊆ Y C ∪ Y C′ , we deduce that v1, z ∈ Y C′. By symmetry in G′
C′,

we may assume that z = v′5 and v1 = v′4. As XC and XC′ are exposed in G′, the
cycle v1v2v3v

′
1v

′
2v

′
3v1 is in G′[B(G′)]. So H = H1 + zz′ = H2 in Figure 2(b).

Notice that in both cases, v4 = v′1 ∈ B(G′) and v4 ∈ V (D). Set Y ′ = {v4, x
′, y′} and

G′′ = G−Y ′. As V (intG(D)) = Y , in G− v4, we can collect both x′ and y′ and at least
one vertex of Y is exposed. Thus B(G′′)− B contains z, z′ and (B(G′′)− B) ∩ Y 6= ∅.
So |B(G′′)− B| ≥ 3.

Let P be an optimal special cycle packing of G′′, and put

P0 = {C∗ ∈ P : C∗ is a non-exposed special cycle of G}.

Consider C∗ ∈ P0. As v4 = v′1 ∈ B ∩ Y ′, there is no exposed type-c special cycle in
G′′. Thus C∗ is type-b, and so XC∗ ∩ (B(G′′)− B) 6= ∅. Let w ∈ XC∗ ∩ (B(G′′)− B).
Since TC∗ is connected, has a neighbour of w, and has no vertex from B(G′′), we have
V (TC∗) ⊆ Y and XC∗ ⊆ (B(G′′)− B) ∪ {v1}.

As P0 is a packing, 3|P0| ≤ |B(G′′)−B|+1. This implies that |P0| ≤ |B(G′′)−B|−2,
because |B(G′′)−B| ≥ 3. We now deduce that

|P0| ≤ |B(G′′)−B| − 2 = |B(G′′)| − (|B| − 1)− 2 = |B(G′′)| − |B| − 1.

Therefore
τ(G) ≥ τ(G′′)− |P0| ≥ τ(G′′)− |B(G′′)|+ |B|+ 1.

Hence, using V (G) = V (G′′) ∪ Y ′,

∂(G) =
3

4
|V (G)|+

1

4
(|B|−τ(G)) ≤

3

4
(|V (G′′)|+3)+

1

4
(|B(G′′)|−τ(G′′)−1) = ∂(G′′)+2.

Now, as we have already collected x′, y′, we have

f(G;A) ≥ f(G′′;A) + 2 ≥ ∂(G′′) + 2 ≥ ∂(G).
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This contradicts the assumption that G is a counterexample.

Lemma 4.3. Let Y be a nonempty subset of V (G) such that G[Y ] is connected and let
G′ = G− Y . Then

∂(G) ≤ ∂(G′) +
3|Y |

4
+

|B − B(G′)|+ δ(Y )

4
.

Moreover, if G has an exposed special cycle C such that YC ∩ Y 6= ∅ and YC ∩ YC′ = ∅
for any other exposed special cycle C ′ of G, then

∂(G) ≤ ∂(G′) +
3|Y |

4
+

|B −B(G′)|+ δ(Y )− 1

4
.

Proof. An optimal special cycle packing of G′ has at most |B(G′)−B| type-b cycles by
definition and has δ(Y ) type-c cycles by Lemma 4.2. We can remove such cycles from
the special cycle packing of G′ to obtain a special cycle packing of G. So

τ(G) ≥ τ(G′)− |B(G′)−B| − δ(Y ) = τ(G′)− |B(G′)|+ |B| − |B − B(G′)| − δ(Y ).

Plugging this into the definition of ∂(G), we obtain

∂(G) ≤ ∂(G′) +
3|Y |

4
+

|B − B(G′)|+ δ(Y )

4
.

If G has an exposed special cycle C such that C is not a special cycle of G′ and YC

is disjoint from YC′ for any other exposed special cycle C ′ of G, then we can add cycle
C to the special cycle packing of G obtained above. So

τ(G) ≥ τ(G′)−|B(G′)−B|−δ(Y )+1 = τ(G′)−|B(G′)|+ |B|−|B−B(G′)|−δ(Y )+1.

Plugging this into the definition of ∂(G), we obtain

∂(G) ≤ ∂(G′) +
3|Y |

4
+

|B −B(G′)|+ δ(Y )− 1

4
.

Lemma 4.4. Every vertex v ∈ V −A satisfies d(v) ≥ 4.

Proof. Suppose that d(v) ≤ 3. Apply Lemma 4.3 with Y = {v}. Let G′ = G−Y . Note
that if v is a boundary vertex, then δ(Y ) = 0. So |B −B(G′)|+ δ(Y ) ≤ 1. Therefore

∂(G) ≤ ∂(G′) +
3

4
+

1

4
.

By the minimality of (G;A), f(G′;A) ≥ ∂(G′). Therefore f(G;A) = f(G′;A) + 1 ≥
∂(G), a contradiction.

Lemma 4.5. There are no disjoint nonempty subsets X, Y of V (G) such that Y is a
set of 4|X| interior vertices of G, G[X ∪Y ] is connected, and Y is collectable in G−X.
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Proof. Suppose that there exist disjoint nonempty sets X, Y ⊆ V (G) such that Y is a
subset of 4|X| interior vertices of G, G[X∪Y ] is connected, and Y is collectable inG−X .
Let G′ = G− (X ∪ Y ). We apply Lemma 4.3. Since |B−B(G′)|+ δ(X ∪ Y ) ≤ |X|, we
have ∂(G) ≤ ∂(G′) + 3

4
(|X|+ |Y |) + 1

4
|X| = ∂(G′) + 4|X|. As G is extreme, f(G′;A) ≥

∂(G′). Hence f(G;A) ≥ f(G′;A) + |Y | = f(G′;A) + 4|X| ≥ ∂(G′) + 4|X| ≥ ∂(G), a
contradiction.

Lemma 4.6. For any two distinct special cycles C1, C2 of G, YC1
∩ YC2

= ∅.

Proof. Assume to the contrary that C1, C2 are two special cycles ofG with YC1
∩YC2

6= ∅.
Observe that for each i = 1, 2, V (TCi

) has two vertices of degree 4 and one vertex of
degree 4, 5, or 6 in G.

If TC1
and TC2

share an edge, say TC1
= xyz and TC2

= xyz′, then one of x, y, say x,
has degree 4. Since G is simple, z 6= z′. Let v be the other neighbor of x. By inspecting
all graphs in Q, we deduce that each of z, z′ is either adjacent to v or has degree at
most 5 in G. So in G− v, the set {x, y, z, z′} is collectable, contrary to Lemma 4.5.

Assume TC1
and TC2

have a common vertex, say TC1
= xyz and TC2

= xy′z′. If none
of y, z, y′, z′ have degree 6, then we can delete x and collect y, z, y′, z′, contrary to
Lemma 4.5. So we may assume that dG(y) = 6 and hence dG(x) = dG(z) = 4 and all
the faces incident to x are triangles because GC1

is isomorphic to Q++
4 . Thus we may

assume yy′, zz′ ∈ E(G). By deleting y, we can collect x, z, z′, and y′, again contrary to
Lemma 4.5. (We collect y′ ahead of z′ if dG(z

′) = 6 and collect z′ ahead of y′ otherwise.)
Thus V (TC1

) ∩ V (TC2
) = ∅.

If XC1
∩ V (TC2

) 6= ∅, then for a vertex v of maximum degree in V (TC2
), after

deleting v, we can collect the other two vertices of TC2
and two vertices of TC1

, contrary
to Lemma 4.5. So XC1

∩ V (TC2
) = ∅ and by symmetry, XC2

∩ V (TC1
) = ∅.

If XC1
∩XC2

contains a vertex v, then by deleting v, we can collect two vertices from
each of TC1

and TC2
, again contrary to Lemma 4.5 because V (TC1

) ∩ V (TC2
) = ∅.

Lemma 4.7. If C is a special cycle of G, then there is a vertex u ∈ XC such that
V (TC) is collectable in G− u and G′ = G− (V (TC) ∪ {u}) has no type-c special cycle.

Proof. Suppose the lemma fails for some special cycle C of G with |E(C)| = k. Then
GC is isomorphic to a graph Q ∈ Q. We may assume GC = Q. Then V (TC) is
collectable in G − v1. Put Y = V (TC) ∪ {v1} and G′ = G− Y . Since G′ has a type-c
special cycle C ′, G′

C′ has a facial cycle C ′′ with Y = V (intG(C
′′)).

Then C ′′ consists of the subpath C − v1 from v2 to vk of length k− 2 and a path P
from vk to v2 in G′. As G′

C′ is special, 3 ≤ |E(C ′′)| ≤ 5. So |E(P )| ≤ 5 − (k − 2) ≤ 4.
Now NG(v1) ⊆ V (P )∪{y, z}, so dG(v1) ≤ |E(P )|+3 ≤ 10−k ≤ 7. If dG(v1) ≤ 6, then
after deleting v2 we can collect Y : use the order x, y, v1, z if dG(v1) ≤ 5; else dG(v1) = 6
and k ≤ 4, so use the order x, y, z, v1. This contradicts Lemma 4.5. Thus dG(v1) = 7.
So k = 3, |E(P )| = 4, |E(C ′′)| = 5, GC = Q1, and v1 is adjacent to all vertices of P .

Setting u = v3, and using symmetry between v1 and v3, we see that v3 is also an
interior vertex with dG(v3) = 7.
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u3 = v′3

v′2 u1 = v′1

v3 = v′5

v2 = v′4

x′

y′

u2 = z′
v1

y

xz

Figure 3: The graph intG(C
′′) in the last part of the proof of Lemma 4.7 when z′ = u2.

Note that dG(v3) = 7 and v3 is an interior vertex.

Let P = v3u1u2u3v2. Now G′
C′ is isomorphic to Q4 since C ′′ is a facial 5-cycle.

Assume u 7→ u′ is an isomorphism from Q4 to G′
C′ . Then C ′′ = z′v′3v

′
4v

′
5v

′
1z

′.
If there is w ∈ {v2, v3}∩{v

′
1, v

′
3} then after deleting w we can collect {x, y, z, x′, y′, z′},

contrary to Lemma 4.5. Else {v′1, v
′
3} = {u1, u3} and therefore z′ = u2, see Figure 3.

After deleting {v2, u1}, we can collect {x, y, z, v3, v1, z
′, x′, y′}, contrary to Lemma 4.5,

as both v1 and v3 are interior vertices.

Lemma 4.8. G has no special cycle.

Proof. Assume to the contrary that C is a special cycle of G. By Lemma 4.7, there is
a vertex u ∈ XC such that V (TC) is collectable in G− u and G′ = G− (V (TC) ∪ {u})
has no type-c special cycle. Observe that f(G;A) ≥ f(G′;A)+3. So it suffices to show
that ∂(G) ≤ ∂(G′) + 3. Since G′ has no type-c special cycles, every exposed special
cycle of G′ is a special cycle of G.

If u /∈ B, then B(G′) = B and so B−B(G′) = ∅. As δ(V (TC)∪{u}) = 0, we deduce
from Lemma 4.3 that ∂(G) ≤ ∂(G′) + 3

4
· 4.

Thus we may assume that u ∈ B and so |B − B(G′)| = 1. If C is exposed in G,
then by Lemmas 4.3 and 4.6, ∂(G) ≤ ∂(G′) + 3

4
· 4 + 1−1

4
.

If C is not exposed in G, then XC has some interior vertex v. Since v is adjacent to
a vertex of TC , v is exposed in G′. By Lemma 4.6, v /∈ XC′ for every exposed special
cycle C ′ of G′, because C ′ is a special cycle of G. Therefore, in an optimal special cycle
packing of G′, at most |B(G′)−B| − 1 of the cycles are not exposed in G. So,

τ(G) ≥ τ(G′)− (|B(G′)− B| − 1) = τ(G′)− (|B(G′)| − |B|+ 1) + 1.

Thus

∂(G) =
3

4
|V (G)|+

1

4
(|B| − τ(G))

≤
3

4
(|V (G′)|+ 4) +

1

4
(|B|+ (−τ(G′) + |B(G′)| − |B|)) = ∂(G′) + 3.
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Lemma 4.9. Let s be an integer. Let X and Y be disjoint subsets of V (G) such that
Y is collectable in G−X. If |B(G− (X ∪ Y ))| ≥ |B(G)|+ s, G[X ∪ Y ] is connected,
and (X ∪ Y ) ∩B(G) 6= ∅, then s+ |Y | < 3|X|.

Proof. Let G′ = G− (X ∪ Y ). Since (X ∪ Y ) ∩ B(G) 6= ∅ and G[X ∪ Y ] is connected,
any special cycle of G′ is also a special cycle of G. So τ(G′) = 0 and ∂(G) ≤ ∂(G′) +
3
4
(|X ∪ Y |)− s

4
. As X ∪ Y 6= ∅ and (G;A) is extreme, f(G′;A) ≥ ∂(G′). Thus

f(G′;A) + |Y | ≤ f(G;A) < ∂(G) ≤ ∂(G′) +
3

4
|X ∪ Y | −

s

4
≤ f(G′;A) +

3

4
|X ∪ Y | −

s

4
.

This implies that s+ |Y | < 3|X|.

Lemma 4.10. G is 2-connected and |A| = 2.

Proof. Suppose G is not 2-connected. If |V (G)| ≤ 3, then G is (3, A)-degenerate, so
f(G;A) = ∂(G) and we are done. Else |V (G)| > 3. As G is connected, it has a cut-
vertex x. Let G1, G2 be subgraphs of G such that G = G1∪G2, V (G1)∩V (G2) = {x},
and |V (G1) ∩ A| ≤ |V (G2) ∩ A|. Observe that if x /∈ A, then A ∩ V (G1) = ∅ by the
choice of G1 because A is usable in G.

Let A1 = V (G1) ∩ A if x ∈ A and A1 = {x} otherwise. Let A2 = V (G2) ∩ A. Note
that for each i = 1, 2, Ai is usable in Gi. For i = 1, 2, let Xi be a maximum Ai-good
set in Gi.

Let X := (X1 ∪X2 − {x})∪ (X1 ∩X2). We claim that X is A-good in G. If x ∈ A,
then collect X1 −A, X2 −A, A∩X . If x /∈ A and x ∈ X1 ∩X2, then collect X1 −{x},
X2. If x /∈ A and x /∈ X1 ∩X2, then collect X1 − {x}, X2 − {x}. This proves the claim
that X is A-good in G.

As (G;A) is extreme, f(Gi;Ai) ≥ ∂(Gi) for i = 1, 2.
If x ∈ B then B(Gi) = B(G) ∩ V (Gi) for i = 1, 2. Note that any special cycle

of Gi is a special cycle of G and so τ(Gi) = 0 for i = 1, 2 by Lemma 4.8 and hence
∂(G) = ∂(G1) + ∂(G2)− 1.

If x /∈ B, then we may assume V (G1) ∩ B(G) = ∅. Hence B(G) = B(G2). Since
only one inner face of G2 contains vertices of G1, τ(G2) ≤ 1 by Lemma 4.8. Note that

∂(G) = ∂(G1) + ∂(G2)−
3

4
+

1

4
τ(G2)−

1

4
(|B(G1)| − τ(G1)).

Since τ(G1) ≤ |B(G1)| − 2, we have ∂(G) ≤ ∂(G1) + ∂(G2)− 1.
In both cases, we have the contradiction:

f(G;A) ≥ |X1|+ |X2| − 1 = f(G1;A1) + f(G2;A2)− 1 ≥ ∂(G1) + ∂(G2)− 1 ≥ ∂(G).

Thus G is 2-connected, and hence |A| ≤ 2. As (G;A) is extreme, we have |A| = 2.

In the following, set A = {a, a′}.

Lemma 4.11. The boundary cycle B has no chord.
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Proof. Assume B has a chord e := xy. Let P1, P2 be the two paths from x to y in B

such that A ⊆ V (P1). Since e is a chord, both P1 and P2 have length at least two.
Set G1 = int[P1 + e] and G2 = int[P2 + e]. As τ(G) = 0 by Lemma 4.8, we know

that τ(G1) = τ(G2) = 0. Hence ∂(G) = ∂(G1) + ∂(G2) − 2. We may assume that
A ⊆ V (G2). Let A1 = {x, y} and A2 = A.

For i = 1, 2, let Xi be a maximum Ai-good set in Gi. Then X = (X1∪X2−{x, y})∪
(X1 ∩X2) is an A-good set in G: collect X1 − {x, y}, (X2 − {x, y}) ∪ (X1 ∩X2). Thus

f(G;A) ≥ f(G1;A1) + f(G2;A2)− 2 ≥ ∂(G1) + ∂(G2)− 2 = ∂(G),

contrary to the choice of G.

Lemma 4.12. G is a near plane triangulation.

Proof. By Lemma 4.10, every face boundary ofG is a cycle ofG. Assume to the contrary
that G has an interior face F which is not a triangle. Then V (F ) has a pair of vertices
non-adjacent in G because G is a plane graph. Let e /∈ E(G) be an edge drawn on F
joining them. Then G′ = G+e is a plane graph with B(G′) = B(G). AsG is extreme, G′

is not a counterexample. As f(G′;A) ≤ f(G;A), we conclude τ(G′) > τ(G), and hence
G′ has an exposed special cycle C and e is an edge of G′

C . By (d) of Observation 3.2,
there is a vertex v ∈ XC such that after deleting v, we can collect all the three vertices
of TC . In G− (V (TC) ∪ {v}), all vertices in (VC ∪ V (F ))− (V (TC) ∪ {v}) are exposed.
By Lemma 4.9, none of these vertices can be an interior vertex of G, because otherwise
|B(G− (V (TC) ∪ {v})| ≥ |B(G)|. So all these vertices are boundary vertices of G. By
Lemmas 4.10 and 4.11, G is 2-connected, |A| = 2, and B(G) has no chord, so G has no
other vertices and int(B(G)) = TC , as v ∈ XC is also a boundary vertex of G. By the
definition of usable sets, the two vertices in A are adjacent.

By Lemma 4.4, ‖u, V (TC)‖ ≥ 2 for every vertex u ∈ B(G)−A, and ‖w,B(G)‖ ≥ 2
for every vertex w ∈ V (TC). On the other hand, the number of vertices u ∈ B(G) with
‖u, V (TC)‖ ≥ 2 is at most 3. So |B(G)| ≤ 3 + |A| = 5.

If |B(G)| = 3, then G is triangulated. Suppose |B(G)| = 4. If ‖u, V (TC)‖ ≥ 2
for three vertices u ∈ B(G), then G is isomorphic to Q2; else G is isomorphic to Q3.
Both are contradictions. If |B(G)| = 5, then G is isomorphic to Q4 or Q+

4 , again a
contradiction.

5 Properties of separating cycles

In a plane graph G, a cycle C is called separating if both V (int(C)) and V (ext(C)) are
nonempty. In this section we will discuss properties of separating cycles in G.

Lemma 5.1. Suppose T is a separating triangle of G and let I = int(T ). Then
(a) ‖V (T ), V (I)‖ ≥ 6,
(b) |I| ≥ 3,
(c) ‖x, V (I)‖ ≥ 1 for all x ∈ V (T ), and
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(d) for all distinct x, y in V (T ), |N({x, y}) ∩ V (I)| ≥ 2.

Proof. If |I| ≤ 2, then I contains a vertex v with dG(v) ≤ 3, contrary to Lemma 4.4.
Thus |I| ≥ 3 and (b) holds. Moreover, I+ := int[T ] is triangulated and therefore
‖I+‖ = 3|I+| − 6 and ‖I‖ ≤ 3|I| − 6. Thus

‖V (T ), V (I)‖ = ‖I+‖ − ‖T‖ − ‖I‖ ≥ 3(3 + |I|)− 6− 3− (3|I| − 6) = 6.

Thus (a) holds. As I+ is triangulated and T is separating, every edge of T is contained
in a triangle of I+ other than T ; so (c) holds.

If |(N(x)∪N(y))∩ V (I)| ≤ 1, then |I| = 1 because G is a near plane triangulation.
This contradicts (b). So (d) holds.

Lemma 5.2. Let C be a separating cycle in G such that V (C)∩A = ∅. Assume X, Y
are disjoint subsets of G such that X ∪Y 6= ∅, Y is collectable in G−X, and G[X ∪Y ]
is connected. Let G1 = int[C] − (X ∪ Y ), G2 = ext(C) − (X ∪ Y ), B1 = B(G1),
B2 = B(G2), G

′
2 = ext[C]− (X ∪ Y ), A′ = V (C)− (X ∪ Y ). If A′ is usable in G1 and

collectable in G′
2, then

|Y |+ |B1|+ |B2| < 3|X|+ |B|+ τ(G2) ≤ 3|X|+ |B|+ 1.

In particular,

|Y | <

{

3|X|+ |B| − |B1| − |B2| if (X ∪ Y ) ∩ B 6= ∅,

3|X|+ τ(G2)− |B1| otherwise.

Proof. Since A′ is usable, (X ∪ Y ) ∩ V (C) 6= ∅ and so X ∪ Y lies in the infinite face
of G1. Thus any special cycle of G1 is also a special cycle of G. Thus by Lemma 4.8,
τ(G) = τ(G1) = 0. By Lemma 4.2, in an optimal special cycle packing of G2, at most
one cycle is type-c and there are no type-a or type-b cycles. Therefore τ(G2) ≤ 1.

As A′ is collectable in G′
2, we have

f(G;A) ≥ f(G1;A
′) + f(G2;A) + |Y |.

On the other hand,

∂(G) = ∂(G1) + ∂(G2) +
3

4
(|X|+ |Y |)−

1

4
(|B1|+ |B2| − |B| − τ(G2)).

As f(G1;A
′) ≥ ∂(G1) and f(G2;A) ≥ ∂(G2), we have

∂(G)−
3

4
(|X|+|Y |)+

1

4
(|B1|+|B2|−|B|−τ(G2)) ≤ f(G1;A

′)+f(G2;A) ≤ f(G;A)−|Y |.

As f(G;A) < ∂(G), it follows that

|Y |+ |B1|+ |B2| < 3|X|+ |B|+ τ(G2) ≤ 3|X|+ |B|+ 1.

Note that if (X ∪ Y ) ∩ B 6= ∅, then τ(G2) = 0. In this case, we have

|Y |+ |B1|+ |B2| < 3|X|+ |B|.

If (X ∪ Y )∩B = ∅, then B2 = B. In this case, we have |Y |+ |B1| < 3|X|+ τ(G2).
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Lemma 5.3. Let C be a separating triangle of G. If C has no vertex in B(G), then
either ‖v, V (ext(C))‖ ≥ 3 for all vertices v ∈ V (C) or ‖v, V (ext(C))‖ ≥ 4 for two
vertices v ∈ V (C).

Proof. Suppose not. Let C = xyzx be a counterexample with the minimal area. We
may assume that ‖x, V (ext(C))‖ ≤ 2 and ‖y, V (ext(C))‖ ≤ 3. By Lemma 5.1(c),
z has a neighbour w in I := int(C). If w is the only neighbour of z in I, then by
Lemma 5.1(b), C ′ := xwyx is a separating triangle. However, w has only 1 neighbour
in ext(C ′) and x has at most 3 neighbours in ext(C ′), contradicting the choice of C.

Thus ‖z, V (I)‖ ≥ 2.
We apply Lemma 5.2 with C, X = {z} and Y = ∅. Then A′ := {x, y} is usable in

G1 := int[C]−z, A′ is collectable in G′
2 := ext[C]−z and B1 := B(G1) ⊇ {x, y}∪· NI(z).

So |B1| ≥ 4, and this contradicts Lemma 5.2.

Lemma 5.4. Let C be a separating induced cycle of length 4 in G having no vertex in
B(G). Then exactly one of the following holds.
(a) |B(int(C))| ≥ 4.
(b) |V (int(C))| ≤ 2 and every vertex in int(C) has degree 4 in G.

Proof. Suppose that |B(int(C))| ≤ 3. By Euler’s formula, we have

‖ int[C]‖ = 3|V (int[C])| − 7 = 3|V (int(C))|+ 5

as G is a near plane triangulation. Then since C is induced, by Lemma 4.4,

0 ≤
∑

v∈V (int(C))

(d(v)− 4)

= ‖ int[C]‖ − ‖C‖+ ‖ int(C)‖ − 4|V (int(C))|

= (3|V (int(C))|+ 5)− 4 + ‖ int(C)‖ − 4|V (int(C))|

= 1− |V (int(C))|+ ‖ int(C)‖.

(5.1)

Suppose that int(C) has a cycle. Since |B(int(C))| ≤ 3, we deduce that B(int(C)) =
xyzx is a triangle. By Euler’s formula applied on G[V (C) ∪ B(int(C))], we have

‖V (C), B(int(C))‖ = (3 · 7− 7)− 3− 4 = 7,

hence B(int(C)) is a facial triangle by Lemma 5.3. Therefore, x, y, z have degree 4, 4,
5 in G by (5.1) and Lemma 4.4. Let w,w′ ∈ V (C) be consecutive neighbours of x in
V (C). From G, we can delete w and collect x, y, z. Let G′ = G − {w, x, y, z}. If G′

has an exposed special cycle, then the face of G′ containing w has length at most 5,
implying that ‖w, V (ext(C))‖ ≤ 2 because C − w is a subpath of an exposed special
cycle of G′, as C is induced. Then we can delete w′ and collect x, y, z, w, contradicting
Lemma 4.5. Therefore G′ has no exposed special cycles. Then ∂(G) = ∂(G′) + 3 and
f(G;A) ≥ f(G′;A) + 3 ≥ ∂(G′) + 3 = ∂(G), a contradiction.
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Therefore int(C) has no cycles. Then ‖ int(C)‖ ≤ |V (int(C))| − 1, and so in (5.1)
the equality must hold. This means int(C) is a tree and every vertex in int(C) has
degree 4 in G by Lemma 4.4. If int(C) has at least 3 vertices, then let w be a vertex in
V (C) adjacent to some vertex in int(C). By deleting w, we can collect all the vertices
in int(C). Similarly we can choose w so that G′ = G − w − V (int(C)) contains no
special cycle, and that leads to the same contradiction. Thus we deduce (b).

6 Degrees of boundary vertices

Lemma 6.1. Each vertex in B has degree at most 5.

Proof. Assume to the contrary that x ∈ B has d(x) ≥ 6. Then deleting x exposes at
least 4 interior vertices. Apply Lemma 4.9 with X = {x}, Y = ∅ and s = 3, we obtain
a contradiction.

Recall that A = {a, a′}.

Lemma 6.2. Each vertex in B −A has degree 5.

Proof. Suppose that there is a vertex x ∈ B − A with d(x) < 5. By Lemma 4.4,
d(x) = 4. By Lemma 4.11, exactly two of the neighbors of x are in B. Consider two
cases.

Case 1: x has a neighbour y ∈ B − A. As |A| = 2, we have |B| ≥ 4. As G is a
near plane triangulation, there is a vertex z ∈ N(x) ∩ N(y) such that xyzx is a facial
triangle. As B has no chords by Lemma 4.11, (N(x) ∩N(y)) ∩B(G) = ∅.

Suppose there is z′ ∈ N(x) ∩ N(y) − {z}. Since d(x) = 4 and G is a near plane
triangulation, xzz′x is a facial triangle. Since d(z) ≥ 4 by Lemma 4.4, T := yzz′y
is a separating triangle. As d(y) ≤ 5 by Lemma 6.1, y has a unique neighbour y′ ∈
V (int(T )) and therefore both yy′zy and yy′z′y are facial triangles. By Lemma 5.1(b),
int(T ) contains at least three vertices and so T ′ := zz′y′z is a separating triangle with
‖z, V (ext(T ′))‖ = 2 and ‖y′, V (ext(T ′))‖ = 1, contrary to Lemma 5.3. So N(x) ∩
N(y) = {z}.

If d(y) = 5, then deleting z and collecting x and y exposes three vertices in (N◦(x)∪
N◦(y)) − {z}, the resulting graph G′ = G − {x, y, z} has |B(G′)| ≥ |B| + 1. Apply
Lemma 4.9 with X = {z}, Y = {x, y}, and s = 1, we obtain a contradiction.

Hence d(y) = 4. By repeating the same argument, we deduce that for all edges
vv′ ∈ B− A, we have (i) d(v) = 4 = d(v′) and (ii) |N(v) ∩N(v′)| = 1.

Let x′, y′ be vertices such that N◦(x) = {x′, z} and N◦(y) = {y′, z}. As G is a
near plane triangulation and B is chordless, G − B is connected. Let J = {x′, z, y′}.
If V − B 6= J , then there exist b ∈ J and t ∈ (V − B) − J such that b and t are
adjacent. Then deleting b and collecting x, y exposes all vertices in (J−{b})∪{t}. Let
G′ = G − {x, y, b}. Then |B(G′)| ≥ |B| + 1. With X = {b}, Y = {x, y}, and s = 1,
this contradicts Lemma 4.9. Hence V −B = J .
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Figure 4: Case 1 in the proof of Lemma 6.2. The dashed line may have other vertices
and the gray region has other edges but no interior vertices.
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Figure 5: Case 2 in the proof of Lemma 6.2. The gray region may have other vertices.

Let u, v be vertices in B so that uxyv is a path in B. Since G is a near plane
triangulation, x′ is adjacent to u and z, and y′ is adjacent to v and z, see Figure 4. Then
ux′zy, xzy′v are paths in G. If A = {u, v}, then B is a 4-cycle and as d(x′), d(y′) ≥ 4,
we must have x′y′ ∈ E(G), which implies that G is isomorphic to Q+

2 and B is a special
cycle, contrary to Lemma 4.8. Therefore A 6= {u, v} and since y /∈ A, we deduce
that v /∈ A. This implies d(v) = 4. Then v has another neighbour in J , and by the
observation that y and v have only one common neighbour y′, we deduce that v is
non-adjacent to z. Thus v is adjacent to x′, and x′ is adjacent to y′.

Furthermore every vertex in B − {u, x, y, v} has degree at most 3, because B has
no chords and x′ is the only possible interior neighbor. By Lemma 4.4, every vertex in
B−{u, x, y, v} is in A. Then G is isomorphic to Q++

4 and B is a special cycle, contrary
to Lemma 4.8.

Case 2: NG(x) ∩ B ⊆ A. Then B = xaa′x. Since G is a near plane triangulation and
d(x) = 4, the neighbours of x form a path of length 3 from a to a′, say ayza′ where a,
y, z, a′ are the neighbours of x. (See Figure 5.)

If |N◦(y)| ≥ 3, then deleting y and collecting x exposes at least three vertices in
N◦(y). Let G′ = G − {x, y}. Then |B(G′)| ≥ |B| + 2. With X = {y}, Y = {x}, and
s = 2, this contradicts Lemma 4.9.

Thus |N◦(y)| ≤ 2 and so d(y) ≤ 5. (Note that y may be adjacent to a′.) By
symmetry, |N◦(z)| ≤ 2 and d(z) ≤ 5.

If y is adjacent to a′, then z is non-adjacent to a and so d(z) = 4 by Lemma 4.4.
Then T := yza′y is a separating triangle, as int(T ) contains a neighbour of z. Since
d(y) ≤ 5 and d(z) = 4, we have |N({y, z})∩V (int(T ))| = 1, contrary to Lemma 5.1(d).

So y is non-adjacent to a′. By symmetry, z is non-adjacent to a. As |N◦(y)|, |N◦(z)| ≤
2 and d(y), d(z) ≥ 4, y and z have a unique common neighbour w and d(y) = d(z) = 4.
Since G is a near plane triangulation, w is adjacent to both a and a′.
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Figure 6: The situation in the proof of Lemma 7.1(b).

If d(w) > 4, then deleting w and collecting y, z, x exposes at least one vertex
and so |B(G − {x, y, z, w})| ≥ |B|. With X = {w}, Y = {x, y, z}, and s = 0, this
contradicts Lemma 4.9. This implies d(w) = 4, hence B(G) is a special cycle, contrary
to Lemma 4.8.

7 The boundary is a triangle

In this section we prove that |B| = 3.

Lemma 7.1. If xy ∈ E(B− A), then the following hold:
(a) There are S := {x1, x2, u, y1, y2} ⊆ V −B and x∗, y∗ ∈ B such that x∗x1x2uy is a

path in G[N(x)] and xuy1y2y
∗ is a path in G[N(y)].

(b) d(x2), d(u), d(y1) ≥ 5.
(c) The vertices x1, x2, u, y1, y2 are all distinct.
(d) |N◦({x2, u})− S| ≤ 2 and |N◦({y1, u})− S| ≤ 2.
(e) x2y1, x2y2, x1y1, ux1, uy2 /∈ E.
(f) There is w1 ∈ (N({x2, u, y1})∩B)−{x, y}; in particular G[S] is an induced path.
(g) x2, u /∈ N(x∗) and y1, u /∈ N(y∗).
(h) Neither x∗ nor y∗ is equal to the vertex w1 from (f).

Proof. (a) By Lemma 6.2, d(x) = 5 = d(y). By Lemmas 4.10 and 4.11, there are
x∗, y∗ ∈ B with N(x) ∩ B = {x∗, y} and N(y) ∩ B = {x, y∗}. As G is a near plane
triangulation, there is u ∈ N(x) ∩N(y). So (a) holds.

(b) (See Figure 6.) As d(u) ≥ 4 by Lemma 4.4, x2 6= y1. Assume d(x2) = 4. If x2 is
adjacent to y, then x2 = y2, implying that d(x2) > 4, contradicting the assumption.
Thus x2 is non-adjacent to y and deleting u and collecting x2, x, y exposes y1, y2 (note
that it is possible that x1 ∈ {y1, y2}, so we do not count it as exposed). We have
|B(G−{u, x2, x, y})| ≥ |B|. With X = {u}, Y = {x2, x, y}, and s = 0, this contradicts
Lemma 4.9. Thus d(x2) ≥ 5 by Lemma 4.4. By symmetry, d(y1) ≥ 5. If d(u) = 4, then
we can delete x2, collect u, x, y, and expose y1, y2. This contradicts Lemma 4.9 applied
with X = {x2}, Y = {u, x, y}, and s = 0. So (b) holds.

(c) Since d(u) ≥ 5, we deduce x2 6= y1, and if x1 = y1, then T := x1x2ux1 is a separating
triangle (see Figure 7), since d(x2) ≥ 5. As ‖x2, V (ext(T ))‖ = 1 and ‖u, V (ext(T ))‖ =
2, this contradicts Lemma 5.3. So x1 6= y1. By symmetry, x2 6= y2.
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Figure 7: When x1 = y1 in the proof of Lemma 7.1(c). Gray regions may have other
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Figure 8: When x1 = y2 in Lemma 7.1(c). Gray regions may have other vertices.

It remains to show that x1 6= y2. Suppose not. By (b), d(x2) ≥ 5, so C := x1x2uy1x1

is a separating 4-cycle (see Figure 8). We first prove the following.

For all u′ ∈ V (C)− {u}, |N({u, u′}) ∩ V (int(C))| ≤ 3. (7.1)

Suppose not. Then deleting u, u′ and collecting x, y exposes two vertices in V (C) −
{u, u′} and at least 4 vertices in int(C). So |B(G−{u, u′, x, y})| ≥ |B|−2+2+4. This
contradicts Lemma 4.9 with X = {u, u′}, Y = {x, y}, and s = 4. This proves (7.1).

If u is adjacent to x1, then C1 := x1x2ux1 and C2 := x1uy1x1 are both separating tri-
angles by (b). Then |N({u, x1})∩V (int(Ci))| ≥ 2 for each i ∈ {1, 2} by Lemma 5.1(d).
Thus |N({u, x1}) ∩ V (int(C))| ≥ 4, contrary to (7.1). So u is non-adjacent to x1.

If x2 is adjacent to y1, then C3 := ux2y1u is a separating triangle by (b). Then
|N({u, x2}) ∩ V (int(C3))| ≥ 2 by Lemma 5.1(d). As ‖u, V (ext(C3))‖ = 2, Lemma 5.3
implies that ‖x2, V (ext(C3))‖ ≥ 4, hence |N({u, x2}) ∩ V (int(x1x2y1x1))| ≥ 2. Thus
|N({u, x2}) ∩ V (int(C))| ≥ 4, contrary to (7.1). So C has no chord.

By (b), C is a separating induced cycle of length 4 in G. By Lemma 5.4, either
|B(int(C))| ≥ 4 or |V (int(C))| ≤ 2 and every vertex in int(C) has degree 4 in G.

By (7.1), d(x2), d(y1) ≤ 6. If |B(int(C))| ≥ 4, then deleting u, x1 and collecting x,
y, x2, y1 exposes at least 4 vertices and therefore |B(G−{u, x1, x, y, x2, y1})| ≥ |B|+2.
This contradicts Lemma 4.9 applied with X = {u, x1}, Y = {x, y, x2, y1}, and s = 2.

Therefore we may assume 1 ≤ |V (int(C))| ≤ 2 and every vertex in int(C) has degree
4 in G. As x2 is non-adjacent to y1, x1 has at least one neighbour in int(C) and therefore
after deleting x1, we can collect all vertices in V (int(C)) and then collect x2, y1 and u,
this contradicts Lemma 4.5. So (c) holds.
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Figure 9: The situation in the proof of Lemma 7.1(d); x1, x2, u, y1, y2 are all distinct.
The gray region has other vertices.

(d) (See Figure 9.) If |N◦({x2, u}) − S| ≥ 3, then deleting x2, u and collecting x, y
exposes x1, y1, y2, and three other vertices and so |B(G− {x2, u, x, y})| ≥ |B| − 2 + 6.
By applying Lemma 4.9 with X = {x2, u}, Y = {x, y}, and s = 4, we obtain a
contradiction. So we deduce that |N◦({x2, u})− S| ≤ 2. By symmetry, |N◦({y1, u})−
S| ≤ 2.

(e) Suppose x1 is adjacent to u. By (b) and (d), d(x2) = 5. Thus T := ux1x2u is a
separating triangle. Let w1, w2 be the two neighbours of x2 other than x1, x, u so that
x1w1w2u is a path in G. Such a choice exists because G is a near plane triangulation. As
d(w2) ≥ 4 by Lemma 4.4, and u has no neighbours in int(ux1w1w2u) by (d), x1 is adja-
cent to w2. As d(w1) ≥ 4, T ′ := x1w1w2x1 is a separating triangle. Note that x2x1w1x2,
x2w1w2x2, x2w2ux2, and ux1w2u are facial triangles. Thus ‖w1, V (ext(T ′))‖ = 1 and
‖w2, V (ext(T ′))‖ = 2, contrary to Lemma 5.3. So x1 is non-adjacent to u. By symmetry,
y2 is non-adjacent to u.

Suppose that x2 is adjacent to y1. Let T ′′ := ux2y1u. By (b), d(u) ≥ 5, so T ′′ is a
separating triangle. By (d), ‖z, V (int(T ′′))‖ ≤ 2 for all z ∈ V (T ′′). By Lemma 5.1,

∑

z∈V (T ′′)

‖z, V (int(T ′′))‖ = ‖V (T ′′), V (int(T ′′))‖ ≥ 6

and therefore ‖z, V (int(T ′′))‖ = 2 for all z ∈ V (T ′′). By (d), N(u) ∩ V (int(T ′′)) =
N(x2) ∩ V (int(T ′′)) = N(y1) ∩ V (int(T ′′)). Then u, x2, y1, and their neighbours in
int(T ′′) induce a K5 subgraph, contradicting our assumption on G. Thus x2 is non-
adjacent to y1.

Suppose that x2 is adjacent to y2. Since x2 is non-adjacent to y1, (b) and (d) imply
that d(y1) = 5. Let w1, w2 be the two neighbours of y1 other than u, y, y2 such that
uw1w2y2 is a path in G. By (d), N◦(u)−S ⊆ {w1, w2}. If u is adjacent to both w1 and
w2, then uw1w2u, uy1w1u, y1w1w2y1 are facial triangles, implying that w1 has degree
3, contradicting Lemma 4.4. Thus, as d(u) ≥ 5 by (b), we deduce that d(u) = 5. Since
G is a near plane triangulation, x2 is adjacent to w1 and ux2w1u, uw1y1u are facial
triangles. If x2w1w2y2x2 is a separating cycle, then deleting w1, w2 and collecting y1,
u, y, x exposes at least 4 vertices and so |B(G − {w1, w2, y1, u, y, x})| ≥ |B| − 2 + 4.
By applying Lemma 4.9 with X = {w1, w2}, Y = {y1, u, y, x}, and s = 2, we obtain a
contradiction. So x2w1w2y2x2 is not a separating cycle. By Lemma 4.4, d(w2) ≥ 4 and
therefore w2 is adjacent to x2 and d(w1) = 4 = d(w2). Then, deleting y1 and collecting
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w1, w2, u, y, x exposes 3 vertices and |B(G − {y1, w1, w2, u, y, x})| = |B| − 2 + 3. By
applying Lemma 4.9 with X = {y1}, Y = {w1, w2, u, y, x}, and s = 1, we obtain a
contradiction. So x2 is non-adjacent to y2. By symmetry, x1 is non-adjacent to y1.

(f) Suppose that none of x2, u, y1 has neighbours in B − {x, y}. By (b), (d), and (e),
d(x2) = 5 = d(y1). If

|N◦({x2, y1})− {u}| ≥ 5

then deleting u, x2 and collecting x, y, y1 exposes all vertices in N◦({x2, y1})−{u} and
so |B(G − {u, x2, x, y, y1})| ≥ |B| − 2 + 5. By applying Lemma 4.9 with X = {u, x2},
Y = {x, y, y1}, and s = 3, we obtain a contradiction. Thus |N◦({x2, y1}) − {u}| ≤ 4
and therefore x2, y1 have the same set of neighbours in V (G)− (B ∪ S) by (c) and (e).
Let w, w′ be the neighbours of x2 (and also of y1) such that w ∈ V (int(uy1w

′x2u)).
Then w is the unique common neighbour of x2, u, and y1. By (d) and Lemma 4.4, w
is adjacent to w′. Thus d(w) = 4. Deleting u and collecting w, x2, y1, x, y exposes
at least 3 vertices including w′ and so |B(G− {u, w, x2, y1, x, y})| ≥ |B| − 2 + 3. This
contradicts Lemma 4.9 applied with X = {u}, Y = {w, x2, y1, x, y}, and s = 1.

Thus at least one vertex of x2, u, and y1 is adjacent to a vertex in B−{x, y}. Then
x1 is non-adjacent to y2. By (e), G[S] is an induced path and (f) holds.

(g) Suppose that x∗ is adjacent to x2. As d(x1) ≥ 4 by Lemma 4.4, T := x∗x1x2x
∗

is a separating triangle. Since d(x∗) ≤ 5 by Lemma 6.1, x∗ has a unique neighbour
w ∈ V (int(T )). So w is adjacent to both x1 and x2. As d(w) ≥ 4 by Lemma 4.4, T ′ :=
wx1x2w is a separating triangle with ‖w, V (ext(T ′))‖ = 1 and ‖x1, V (ext(T ′))‖ = 2,
contrary to Lemma 5.3. So x∗ is non-adjacent to x2. By symmetry, y∗ is non-adjacent
to y1.

Suppose u is adjacent to x∗. As d(x1) ≥ 4 and d(x∗) ≤ 5 by Lemmas 4.4 and
6.1, x∗ has a unique neighbour w ∈ V (int(x∗x1x2ux

∗)) adjacent to both x1 and u.
By (b) and (d), w is adjacent to x2. If uwx2u is a separating triangle, then by
Lemma 5.1(d), |N({x2, u})∩V (int(uwx2u))| ≥ 2, hence |N◦({x2, u})−S| ≥ 3, contrary
to (d). So uwx2u is facial. As d(x∗) ≤ 5, wx∗x1w and wx∗uw are facial triangles. As
d(x2) ≥ 5 by (d), T ′ := wx1x2w is a separating triangle. So ‖x1, V (ext(T ′))‖ = 2
and ‖x2, V (ext(T ′))‖ = 2, contrary to Lemma 5.3. Thus u is non-adjacent to x∗. By
symmetry, u is non-adjacent to y∗. So (g) holds.

(h) Suppose that w1 = y∗. By (g), y∗ is adjacent to x2. Let C := y∗x2uy1y2y
∗ and

C ′ be the cycle formed by the path from x∗ to y∗ in B(G) − x − y together with the
path y∗x2x1x

∗. Since G is a near plane triangulation and d(y2) ≥ 4, by (f) there is
w ∈ N(y∗)∩N(y2)∩V (int(C)). By Lemma 6.1, d(y∗) = 5, and therefore x2 is adjacent
to w and x2wy

∗x2 is a facial triangle. Let y∗∗ ∈ B be the neighbour of y∗ other than
y. Then x2y

∗∗y∗x2 is also a facial triangle in G. Because x2 is non-adjacent to x∗ by
(g), y∗∗ 6= x∗. By (f) applied to yy∗, we have y∗ ∈ A because uy1y2wx2 is not an
induced path in G. Thus x∗ /∈ A because |A| = 2. By Lemma 4.11, B(G) is chordless.
Therefore by Lemma 6.2, d(x∗) = 5 and so ‖x∗, V (int(C ′))‖ = 2. By (b), (d), and (e),
we have |N◦(y1)− S| = 2. Deleting x1, u and collecting x, x∗, y, y1 exposes at least 6
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Figure 10: The situation of Lemma 8.1.

vertices, including two neighbours of x∗ in int(C ′) and two neighbours of y1 in int(C).
So |B(G−{x1, u, x, x

∗, y, y1})| ≥ |B|−3+6. By applying Lemma 4.9 with X = {x1, u},
Y = {x, x∗, y, y1}, and s = 3, we obtain a contradiction. So w1 6= y∗. By symmetry,
w1 6= x∗. Thus (h) holds.

Lemma 7.2. |B| = 3.

Proof. For an edge e = xy ∈ E(B − A), let x∗, x1, x2, u, y1, y2, y
∗ be as in Lemma 7.1.

Suppose that |B| ≥ 4. Then x∗ 6= y∗. Lemma 7.1(h) implies that B has a vertex other
than x, y, x∗, and y∗. So, |B| ≥ 5.

We claim that N◦(u) = {x2, y1}. Suppose not. By Lemma 4.10, |A| = 2, so at least
one vertex of {x∗, y∗}, say, y∗ is not in A. By Lemma 7.1(f) applied to yy∗, we deduce
that u is non-adjacent to vertices in N◦(y∗). Thus deleting u, y2 and collecting y, x, y∗

exposes at least 6 vertices and so |B(G− {u, y2, y, x, y
∗})| ≥ |B| − 3 + 6. By applying

Lemma 4.9 with X = {u, y2}, Y = {y, x, y∗}, and s = 3, we obtain a contradiction. So
N◦(u) = {x2, y1}.

Since d(u) ≥ 5 by Lemma 7.1(b), u has at least one boundary neighbour z 6= x, y.
Let B(x, z) be the boundary path from x to z not containing y, and B(y, z) be the
boundary path from y to z not containing x. So B(x, z) and B(y, z) have only one
vertex in common, namely z. One of B(x, z), B(y, z) has no internal vertex in A. We
denote this path by P (e, z). We choose e = xy and z so that P (e, z) is shortest. Assume
P (e, z) = B(y, z). Let e′ = yy∗. Then e′ ∈ E(B−A). Let y2 be the common neighbour
of y and y∗ and let z′ 6= y, y∗ be a boundary neighbour of y2. Then P (e′, z′) is a proper
subpath of P (e, z), and hence is shorter. This contradicts our choice of e and z.

8 The final contradiction

In this section we complete the proof of Theorem 3.2. First we prove a lemma.

Lemma 8.1. If B = {a, a′, v} and axyza′ is a path in G[N(v)] (see Figure 10), then
the following hold.
(a) x is non-adjacent to z.
(b) y is adjacent to neither a nor a′.
(c) z is non-adjacent to a and x is non-adjacent to a′.
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Figure 11: An illustration of the proof of Lemma 8.1(c).

(d) d(x), d(y), d(z) ≥ 5.
(e) |N◦({x, y, z})| ≤ 4.
(f) x and z have a common neighbour w /∈ {y, v}.
(g) N(x) ∩N(z) = {v, w, y}.

Proof. (a) Suppose x is adjacent to z. As K5 * G, x is non-adjacent to a′ or z is non-
adjacent to a; by symmetry, assume x is non-adjacent to a′. Since d(y) ≥ 4, T := xyzx
is a separating triangle. By Lemma 5.1, |V (int(T ))| ≥ 3. Since ‖y, V (ext(T ))‖ = 1,
Lemma 5.3 implies ‖x, V (ext(T ))‖ ≥ 4, and so |N◦(x) ∩ V (ext(T ))| ≥ 2.

If d(y) ≤ 6, then deleting x, z and collecting v, y exposes at least 5 vertices from
B(int(T )) and N◦(x) ∩ V (ext(T )) and so |B(G − {x, z, v, y})| ≥ |B| − 1 + 5. By
applying Lemma 4.9 with X = {x, z}, Y = {v, y}, and s = 4, we obtain a contradiction.
Therefore, d(y) ≥ 7. Then |N◦(y)∩V (int(T ))| ≥ 4 and so deleting x, y and collecting v
exposes at least 7 vertices, and |B(G−{x, y, v})| ≥ |B|−1+7. By applying Lemma 4.9
with X = {x, y}, Y = {v}, and s = 6, we obtain a contradiction. So (a) holds.

(b) Suppose y is adjacent to a. Then T := axya is a separating triangle, because
d(x) ≥ 4 and the other triangles incident with x are facial. As d(a) ≤ 5 by Lemma 6.1,
a has a unique neighbour w in int(T ). As d(w) ≥ 4, T ′ := xwyx is a separating triangle.
Now ‖w, V (ext(T ′))‖ = 1, and ‖x, V (ext(T ′))‖ = 2, contrary to Lemma 5.3. Thus y is
non-adjacent to a. By symmetry, y is non-adjacent to a′. So (b) holds.

(c) Suppose that z is adjacent to a. By (a), z is non-adjacent to x. As d(x) ≥ 4 and
d(a) ≤ 5 by Lemmas 4.4 and 6.1, there is w ∈ (N(a) ∩N(x) ∩N(z))− {v}, and xawx,
wazw, aza′a are all facial triangles. (See Figure 11.) By (b), y 6= w. Since d(y) ≥ 4
by Lemma 4.4, C := xyzwx is a separating cycle of length 4. Let I = int(C). Then V =
B∪· V (C)∪· V (I), (i) ‖x, V (ext(C))‖ = 2, (ii) ‖y, V (ext(C))‖ = 1, (iii) ‖z, V (ext(C))‖ = 3,
and (iv) ‖w, V (ext(C))‖ = 1.

If w is adjacent to y, then we apply Lemma 5.2 with C, X = {w}, and Y = ∅. As
y is adjacent to w, A′ := {x, y, z} is usable in G1 := int[C] − w, and by (i–iii), A′ is
collectable in G′

2 := ext[C] − w. As |V (G2)| = |B| = 3, τ(G2) = 0. This contradicts
Lemma 5.2.

So using (a), C is chordless and x has at least one neighbour in int(C).
By Lemma 5.4, either |B(I)| ≥ 4 or |V (I)| ≤ 2 and every vertex in I has degree 4 in

G. If |V (I)| ≤ 2 and every vertex in I has degree 4 in G, then V −{x} is A-good as we
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can collect V (I), y, w, z, v, a′, a. Then f(G;A) ≥ |V (G)| − 1 ≥ ∂(G), a contradiction.
Therefore |B(I)| ≥ 4.

If there is an edge uu′ ∈ E(C) with |N({u, u′})∩V (I)| ≥ 4, then we apply Lemma 5.2
with C, X = {u, u′} and Y = ∅. Now A′ := V (C) − {u, u′} is usable in G1 :=
int[C] − {u, u′}, A′ is collectable in G′

2 := ext[C] − {u, u′}, |B1| ≥ 6, and B2 = B.
As G2 = B, τ(G2) = 0. This contradicts Lemma 5.2. So |N({u, u′}) ∩ V (I)| ≤ 3 for
all edges uu′ ∈ E(C) and in particular, ‖u, V (I)‖ ≤ 3 for all u ∈ V (C). This implies
d(y) ≤ 6.

If |N({x, y, z})∩V (I)| ≥ 4, then we apply Lemma 5.2 with C, X = {x, z} and Y =
{v, y}. Then Y is collectable in G−X , A′ := {w} is usable in G1 := int[C]−{x, y, z}, A′

is collectable inG′
2 := ext[C]−{x, y, z}, |B1| ≥ 5, andB2 = B−{v}. As (X∪Y )∩B 6= ∅,

this contradicts Lemma 5.2.
Therefore |N({x, y, z}) ∩ V (I)| ≤ 3. Since |B(I)| ≥ 4, there exists a vertex u in

B(I)−N({x, y, z}). Then w is the only neighbour of u in C.
Because G is a plane triangulation and d(u) ≥ 4, w is adjacent to u. Since u

is non-adjacent to x, y, z, we deduce that B(I) ∩ N(w) contains u and at least two
of the neighbours of u. Since ‖w, V (I)‖ ≤ 3, we deduce that ‖w, V (I)‖ = 3. Since
|N({x, w}) ∩ V (I)| ≤ 3, all neighbours of x in I are adjacent to w. Similarly all
neighbours of z in I are adjacent to w. Since |B(I)| ≥ 4, there is a vertex t in B(I)
non-adjacent to w. Then t is non-adjacent to x and z. Therefore t is adjacent to y. By
the same argument, ‖y, V (I)‖ = 3 and every neighbour of x or z in I is adjacent to y.
Thus, every vertex in N({x, z}) ∩ V (I) is adjacent to both y and w.

If ‖x, V (I)‖ ≥ 2, then x, y, w, and their common neighbours in I together with a
are the branch vertices of a K3,3-subdivision, using the path avy. So G is nonplanar,
a contradiction. Thus, ‖x, V (I)‖ ≤ 1 and similarly ‖z, V (I)‖ ≤ 1. This means that
d(x) ≤ 5 and B(int[C]− {x, y, w}) = B(I) ∪ {z}.

We apply Lemma 5.2 with C, X = {w, y} and Y = {x}. Then Y is collectable
in G − X and A′ = {z} is usable in G1 := int[C] − {w, x, y}, A′ is collectable in
G′

2 := ext[C] − {w, x, y}, |B1| = |B(I) ∪ {z}| ≥ 5, B2 = B, and G2 = B. Thus
τ(G2) = 0 and this contradicts Lemma 5.2. Hence z is non-adjacent to a. By symmetry,
x is non-adjacent to a′. Thus (c) holds.

(d) Suppose d(u) ≤ 4 for some u ∈ {x, y, z}. By Lemma 4.4, d(u) = 4. Let u′ := y
if u 6= y, u′ := x otherwise. Then, deleting u′ and collecting u, v exposes at least 2
vertices in N◦({u, u′}) by (a) and (c) and so |B(G − {u, u′, v})| ≥ |B| − 1 + 2. By
applying Lemma 4.9 with X = {u′}, Y = {u, v}, and s = 1, we obtain a contradiction.
So (d) holds.

(e) Suppose |N◦({x, y, z})| ≥ 5. If d(y) ≤ 6, then deleting x, z and collecting v, y
exposes at least 5 vertices and so |B(G − {x, z, v, y})| ≥ |B| − 1 + 5. By applying
Lemma 4.9 with X = {x, z}, Y = {v, y}, and s = 4, we obtain a contradiction. Thus
d(y) ≥ 7. Then either |N◦({x, y})−{z}| ≥ 5 or |N◦({z, y})−{x}| ≥ 5. We may assume
by symmetry that |N◦({x, y})− {z}| ≥ 5. Then deleting x, y and collecting v exposes
at least 6 vertices and so |B(G−{x, y, v})| ≥ |B|−1+6. By applying Lemma 4.9 with
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Figure 12: Proof of Lemma 8.1(f). There are no vertices in int(C∗).

X = {x, y}, Y = {v}, and s = 5, we obtain a contradiction. So (e) holds.

(f) SupposeN(x)∩N(z) = {y, v}. By (d), d(x), d(z) ≥ 5. By (e), |N◦({x, z})−{y}| ≤ 4.
By (c), z is non-adjacent to a and x is non-adjacent to a′ and by (a), x is non-adjacent to
z. So each of x and z have exactly two neighbours in int(axyza′a) and d(x) = d(z) = 5.
Let x1, x2 be those neighbours of x and z1, z2 be those two neighbours of z. We may
assume that x1x2yz1z2 is a path in G by swapping labels of x1 and x2 and swapping
labels of z1 and z2 if necessary. By (e), we have N◦(y) − {x, z} ⊆ {x1, x2, z1, z2}. As
d(x2) ≥ 4, y is not adjacent to x1 because otherwise x1x2yx1 is a separating triangle,
that will make a new interior neighbour of y by Lemma 5.1(c), contrary to (e). By
symmetry, y is not adjacent to z2. So x2 is adjacent to z1 as G is a plane triangulation.
Therefore d(y) = 5.

Let C∗ := ax1x2z1z2a
′a. Suppose that w ∈ N({x1, x2, z1, z2}) ∩ V (int(C∗)). Then

by symmetry, we may assume w is adjacent to x1 or x2. Deleting x1, x2 and collecting
x, y, v, z exposes w, z1, z2 and so |B(G−{x1, x2, x, y, v, z})| ≥ |B|−1+3. By applying
Lemma 4.9 with X = {x1, x2}, Y = {x, y, v, z}, and s = 2, we obtain a contradiction.
Thus N({x1, x2, z1, z2}) ∩ V (int(C∗)) = ∅ and therefore |G| = 10. See Figure 12.

By Observation 3.1 applied to int[C∗], there is a vertex w ∈ {x1, x2, y1, y2} having
degree at most 2 in int[C∗]. By symmetry, we may assume that w = xi for some i ∈
{1, 2}. Since d(xi) ≤ 4, after deleting x3−i, we can collect xi, x, y, v, z, resulting in an
outerplanar graph, which can be collected by Observation 3.1. So, f(G;A) ≥ 9 ≥ ∂(G),
a contradiction. So (f) holds.

(g) Suppose there is w′ ∈ N(x) ∩ N(z) − {v, w, y}. Let C := xyzwx. We may assume
that w is chosen to maximize |V (int(C))|. So w′ is in V (int(C)) and together with (a),
we deduce that C is an induced cycle.

We claim that y is non-adjacent to w′. Suppose not. As d(y) ≥ 5 by (d), xw′yx
or zw′yz is a separating triangle. By symmetry, we may assume xw′yx is a separating
triangle. Thus |N({x, y}) ∩ V (int(xw′yx))| ≥ 2 by Lemma 5.1(d). Because G is a
plane triangulation, by (e), w is adjacent to w′ and xww′x, zww′z, and yzw′y are facial
triangles. Thus ‖y, V (ext(xw′yx))‖ = ‖w′, V (ext(xw′yx))‖ = 2, contrary to Lemma 5.3.
This proves the claim that y is non-adjacent to w′.
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Therefore ‖y, V (int(xyzw′x))‖ = 2 by (d) and (e). Let y1, y2 be two neighbours of
y in int(xyzw′x) such that xy1y2z is a path in G. Because G is a plane triangulation,
by (e), w′ is adjacent to both y1 and y2 and int(xw′zwx) has no vertex. Then C is a
separating induced cycle of length 4 and |B(int(C))| = 3, contrary to Lemma 5.4. So
(g) holds.

Proof of Theorem 3.2. Let (G;A) be an extreme counterexample. Then G is a near
plane triangulation. Let B = B(G) and B = B(G). By Lemmas 4.10 and 7.2, |B| = 3
and |A| = 2. Let A = {a, a′} and v ∈ B − A. By Lemma 6.2, d(v) = 5. As G is a
plane triangulation, the neighbours of v form a path axyza′. By Lemma 8.1(g), x and
z have exactly one common neighbour w in G− v − y. Then C := xyzwx is a cycle of
length 4. By symmetry and Lemma 8.1(d), we may assume that d(x) ≥ d(z) ≥ 5. By
Lemma 8.1(e),

(d(x)− 3) + (d(z)− 3)− 1 ≤ |N◦({x, y, z})| ≤ 4.

Therefore d(z) = 5 and d(x) = 5 or 6.
We claim that y is non-adjacent to w. Suppose that y is adjacent to w. By

Lemma 8.1(d), d(y) ≥ 5 and therefore at least one of xywx and yzwy is a separating
triangle. If both of them are separating triangles, then |N({x, y})∩ V (int(xywx))| ≥ 2
and |N({y, z}) ∩ V (int(yzwy))| ≥ 2, by Lemma 5.1(d). Therefore |N◦({x, y, z})| ≥
2 + 2 + 1 = 5, contrary to Lemma 8.1(e). This means that exactly one of xywx and
yzwy is a separating triangle.

Suppose yzwy is a separating triangle. Then xywx is a facial triangle, and z has
a neighbour in int(yzwy). As d(z) = 5, z has no neighbour in int(axwza′a). There-
fore, w is adjacent to a′, and wza′w is a facial triangle. Thus ‖y, V (ext(yzwy))‖ =
‖z, V (ext(yzwy))‖ = 2, contrary to Lemma 5.3. So yzwy is not a separating triangle.

Therefore xywx is a separating triangle. By Lemma 5.1(d), int(xywx) has at least
two vertices in N◦({x, y, z}). By Lemma 8.1(d), z has a neighbour in int(axwza′a).
Then already we found four vertices in N◦({x, y, z}). This means that x has no neigh-
bours in int(axwza′a) by Lemma 8.1(f). Hence ‖y, V (ext(xywx))‖ = ‖x, V (ext(xywx))‖ =
2, contrary to Lemma 5.3. This completes the proof of the claim that y is non-adjacent
to w.

Therefore C is chordless by Lemma 8.1(a). By Lemma 8.1(d), d(y) ≥ 5. Thus C is
a separating induced cycle of length 4. By Lemma 5.4, either |B(int(C))| ≥ 4 or both
|V (int(C))| ≤ 2 and every vertex in int(C) has degree 4 in G.

If |B(int(C))| ≥ 4, then deleting w, y and collecting z, v, x exposes at least 4
vertices and so |B(G − {w, y, z, v, x})| = |B| − 1 + 4. By applying Lemma 4.9 with
X = {w, y}, Y = {z, v, x}, and s = 3, we obtain a contradiction.

Therefore 1 ≤ |V (int(C))| ≤ 2 and every vertex in int(C) has degree 4 in G.
Deleting y and collecting all vertices in int(C) and z, v, x exposes w and so B(G −
({y, z, v, x} ∪ V (int(C)))) ≥ |B| − 1 + 1. By applying Lemma 4.9 with X = {y},
Y = V (int(C)) ∪ {z, v, x}, and s = 0, we obtain a contradiction.
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without cycles of specific lengths, European J. Combin. 23 (2002), no. 4, 377–388.
MR 1914478

[12] Tom Kelly and Chun-Hung Liu, Minimum size of feedback vertex sets of planar
graphs of girth at least five, European J. Combin. 61 (2017), 138–150. MR 3588714
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