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Abstract

A graph G is d-degenerate if every non-null subgraph of G has a vertex of
degree at most d. We prove that every n-vertex planar graph has a 3-degenerate
induced subgraph of order at least 3n/4.

Keywords: planar graph; graph degeneracy.

1 Introduction

Graphs in this paper are simple, having no loops and no parallel edges. For a graph
G = (V, E), the neighbourhood of # € V is denoted by N(x) = Ng(x), the degree of
x is denoted by d(x) = dg(z), and the minimum degree of G is denoted by §(G). Let
IT = TI(G) be the set of total orderings of V. For L € II, we orient each edge vw € E
as (v,w) if w < v to form a directed graph G. We denote the out-neighbourhood,
also called the back-neighbourhood, of x by NkL(x), the out-degree, or back-degree, of
by d&(x). We write 67(G) and AT(Gy) to denote the minimum out-degree and the
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maximum out-degree, respectively, of G. We define |G| := |V|, called the order of G,
and ||G]| := |E|.

An ordering L € II(G) is d-degenerate it AT(GL) < d. A graph G is d-degenerate if
some L € II(G) is d-degenerate. The degeneracy of G is minpen) AT(Gr). It is well
known that the degeneracy of G is equal to maxgcs (H).

Alon, Kahn, and Seymour [4] initiated the study of maximum d-degenerate induced
subgraphs in a general graph and proposed the problem on planar graphs. We study
maximum d-degenerate induced subgraphs of planar graphs. For a non-negative integer
d and a graph G, let

aq(G) = max{|S| : S C V(G), G[S] is d-degenerate} and
ag = inf{ay(G)/|V(G)] : G is a non-null planar graph}.

Let us review known bounds for ay. Suppose that G = (V| E) is a planar graph.
For d > 5, trivially we have ay = 1 because planar graphs are 5-degenerate.

For d = 0, a 0-degenerate graph has no edges and therefore ag(G) is the size of a
maximum independent set of G. By the Four Colour Theorem, G has an independent
set I with |I| > |[V(G)|/4. Both K, and C? witness that @y < 1/4, so ag = 1/4.
In 1968, Erdds (see [5]) asked whether this bound could be proved without the Four
Colour Theorem. This question still remains open. In 1976, Albertson [2] showed that
ap > 2/9 independently of the Four Colour Theorem. This bound was improved to
ap > 3/13 independently of the Four Colour Theorem by Cranston and Rabern in
2016 [8].

For d = 1, a 1-degenerate graph is a forest. Since K, has no induced forest of order
greater than 2, we have a; < 1/2. Albertson and Berman [3] and Akiyama and Watan-
abe [I] independently conjectured that &; = 1/2. In other words, every planar graph
has an induced forest containing at least half of its vertices. This conjecture received
much attention in the past 40 years; however, it remains largely open. Borodin [7]
proved that the vertex set of a planar graph can be partitioned into five classes such
that the subgraph induced by the union of any two classes is a forest. Taking the
two largest classes yields an induced forest of order at least 2|V(G)|/5. So a; > 2/5.
This remains the best known lower bound on a;. On the other hand, the conjecture
of Albertson and Berman, Akiyama and Watanabe was verified for some subfamilies
of planar graphs. For example, Cs-free, Cs-free, or Cs-free planar graphs were shown
in [20, 11] to be 3-degenerate, and a greedy algorithm shows that the vertex set of a
3-degenerate graph can be partitioned into two parts, each inducing a forest. Hence
Cs-free, Cs-free, or Cg-free planar graphs satisfy the conjecture. Moreover, Raspaud
and Wang [16] showed that Cy-free planar graphs can be partitioned into two induced
forests, thus satisfying the conjecture. In fact, many of these graphs have larger in-
duced forests. Le [14] showed that if a planar graph G is Cs-free, then it has an induced
forest with at least 5|V (G)|/9 vertices; Kelly and Liu [12] proved that if in addition G
is Cy-free, then G has an induced forest with at least 2|V (G)|/3 vertices.

Now let us move on to the case that d = 2. The octahedron has 6 vertices and is
4-regular, so a 2-degenerate induced subgraph has at most 4 vertices. Thus a, < 2/3.
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We conjecture that equality holds. Currently, we only have a more or less trivial lower
bound: &y > 1/2, which follows from the fact that G is 5-degenerate, and hence we can
greedily 2-colour GG in an ordering that witnesses its degeneracy so that no vertex has
three out-neighbours of the same colour, i.e., each colour class induces a 2-degenerate
subgraph. Dvofdk and Kelly [10] showed that if a planar graph G is Cs-free, then it
has a 2-degenerate induced subgraph containing at least 4|V (G)|/5 vertices.

For d = 4, the icosahedron has 12 vertices and is b-regular, so a 4-degenerate induced
subgraph has at most 11 vertices. Thus a4 < 11/12. Again we conjecture that equality
holds. The best known lower bound is a4 > 8/9, which was obtained by Lukotka,
Mazék and Zhu [15].

In this paper, we study 3-degenerate induced subgraphs of planar graphs. Both the
octahedron Cf and the icosahedron witness that a3 < 5/6. Here is our main theorem.

Theorem 1.1. Every n-vertex planar graph has a 3-degenerate induced subgraph of
order at least 3n/4.

We conjecture that the upper bounds for &y mentioned above are tight. We remark
that it is possible to obtain infinitely many 3-connected tight examples for each d by
gluing together many copies of the tight example discussed above.

Conjecture 1.1. as =2/3, a3 =5/6, and ay = 11/12.

The problem of colouring the vertices of a planar graph G so that colour classes
induce certain degenerate subgraphs has been studied in many papers. Borodin [7]
proved that every planar graph G is acyclically 5-colourable, meaning that V(G) can
be coloured in 5 colours so that a subgraph of G induced by each colour class is 0-
degenerate and a subgraph of G induced by the union of any two colour classes is 1-
degenerate. As a strengthening of this result, Borodin [6] conjectured that every planar
graph has degenerate chromatic number at most 5, which means that the vertices of
any planar graph G can be coloured in 5 colours so that for each i € {1,2,3,4}, a
subgraph of G induced by the union of any i colour classes is (i — 1)-degenerate. This
conjecture remains open, but it was proved in [13] that the list degenerate chromatic
number of a graph is bounded by its 2-colouring number, and it was proved in [9]
that the 2-colouring number of every planar graph is at most 8. As consequences of
the above conjecture, Borodin posed two other weaker conjectures: (1) Every planar
graph has a vertex partition into two sets such that one induces a 2-degenerate graph
and the other induces a forest. (2) Every planar graph has a vertex partition into an
independent set and a set inducing a 3-degenerate graph. Thomassen confirmed these
conjectures in [18] and [19].

This paper is organized as follows. In Section Plwe will present our notation. In Sec-
tion Bl we will formulate a stronger theorem that allows us to apply induction. This will
involve identifying numerous obstructions to a more direct proof. In Section Ml we will
organize our proof by contradiction around the notion of an extreme counterezample.
In Sections BH7l we will develop properties of extreme counterexamples that eventually
lead to a contradiction in Section [



2 Notation

For sets X and YV, define Z = X UY tomean Z = X UY and X NY = (. Let
G = (V,E) be a graph with v,z,y € V and X,Y C V. Then ||v, X|| is the number
of edges incident with v and a vertex in X and | X,Y| =3 .y [|v,Y]. When X and
Y are disjoint, || X, Y| is the number of edges zy with x € X and y € Y. In general,
edges in X N'Y are counted twice by || X, Y. Let N(X) = U,cx N(z) — X.

We write H C G to indicate that H is a subgraph of G. The subgraph of G induced
by a vertex set A is denoted by G[A]. The path P with V(P) = {vy,...,v,} and
E(P) = {vivy,...,v,_10,} is denoted by vy - - -v,. Similarly the cycle C' = P + v,v; is
denoted by vy - - - v, 0.

Now let G be a simple connected plane graph. The boundary of the infinite face is
denoted by B = B(G) and V(B(G)) is denoted by B = B(G). Then B is a subgraph
of the outerplanar graph G[B]. For a cycle C' in G, let ints[C] denote the subgraph of
G obtained by removing all exterior vertices and edges and let exts[C] be the subgraph
of G obtained by removing all interior vertices and edges. Usually the graph G is
clear from the text, and we write int[C] and ext[C] for intg[C] and extg[C]. Let
int(C) = int[C] — V(C) and ext(C) = ext[C] — V(C). Let N°(z) = N(xz) — B and
N°(X)=N(X) - B.

For L € 11, the up-set of x in L is defined as Up(z) = {y € V : y > =} and the
down-set of x in L is defined as Dy (z) = {y € V : y <y x}. Note that for each L € II,
y < = means that y <; z and y # x. For two sets X and Y, wesay X <, Yifzx <py
forallz € X, yeY.

3 Main result

In this section we phrase a stronger, more technical version of Theorem [T that is more
amenable to induction. This is roughly analogous to the proof of the 5-Choosability
Theorem by Thomassen [17].

If G =G, UGy and Gy NGy = G[A] for a set A of vertices, then we would like
to join two 3-degenerate subgraphs obtained from G and G5 by induction to form a
3-degenerate subgraph of G. The problem is that vertices from A may have neighbours
in both subgraphs. Dealing with this motivates the following definitions.

Let A C V(G). A subgraph H of G is (k,A)-degenerate if there exists an ordering
L € II(GQ) such that A <; V — A and d%(v) < k for every vertex v € V(H) — A.
Equivalently, every subgraph H' of H with V(H') — A # () has a vertex v € V(H') — A
such that dy/(v) < k. A subset Y of V is A-good if G[Y] is (3,A)-degenerate. We say a
subgraph H is A-good if V(H) is A-good. Thus if A = () then G is A-good if and only
if G is 3-degenerate. Let

f(G;A) =max{|Y|: Y CV(G) is A-good}.
Since () is A-good, f(G; A) is well defined.



For an induced subgraph H of G and a set Y of vertices of H, we say Y is col-
lectable in H if the vertices of Y can be ordered as y1,ys, ..., yx such that for each i €
{1, 2, cey ]{7}, either Y ¢ A and dH—{yl,yg,...,yi,l}(y» <3or V(H)—{yl, Ya, ... 7yi—1} - A.

In order to build an A-good subset, we typically apply a sequence of operations
of deleting and collecting. Deleting X C V means replacing G with G — X. An
ordering witnessing that Y is collectable is called a collection order. For disjoint subsets
Vi,...,Viof V if V; is collectable in G — U;_:ll Vj for each i = 1,2,..., s, then collecting
Vi, ..., Vi means first putting V; at the end of L in a collection order for V7, then putting
V5 at the end of L — Vj in a collection order for V5 in G — Vj, etc. Note that if YV is a
collectable set in G and V' — Y is A-good, then V is A-good.

Definition 3.1. A path vyvs ... v, of a plane graph G is admissible if £ > 0 and it is a
path in B(G) such that for each 1 < i < ¢, G — v; has no path from v;_; to v;;.

A path of length 0 has only 1 vertex in its vertex set.

Definition 3.2. A set A of vertices of a plane graph G is usable in G if for each
component G’ of G, ANV (G’) is the empty set or the vertex set of an admissible path
of G'.

Lemma 3.1. Let G be a plane graph and let A be a usable set in G. Then for each
verter v of G, |[Ng(v) N Al < 2.

Proof. This is clear from the definition of an admissible path. O

Observation 3.1. If G is outerplanar and A is a usable set in G, then G is (2,A)-
degenerate.

Observation [B.I] motivates the expectation that plane graphs with large bound-
aries have large 3-degenerate induced subgraphs. Roughly, we intend to prove that
f(G; A) < 3|V(G)|/4+ |B|/4. This formulation provides a potential function for mea-
suring progress as we collect and delete vertices. For example, deleting a boundary
vertex with at least four interior neighbours provides a smaller graph whose potential
is at least as large. Some of the bonus |B|/4 is needed for dealing with chords. But
this does not quite work; C? is a counterexample, and there are infinitely many more.
The rest of this section is devoted to formulating a more refined potential function.

A set Z of vertices is said to be exposed if Z C B. We say that a vertex z is
exposed if {z} is exposed. We say that deleting Y and collecting X ezposes Z if
ZCBG-Y—-X)-B.

Definition 3.3. Let Q = {Q1,Q2, Q3 ,Q3,Q4, Q1 , Q5 "} be the set of plane graphs
shown in Figure[Il For a plane graph G, a cycle C of G is special if G¢ = intg[C] is
isomorphic to a plane graph in Q, where C' corresponds to the boundary. In this case,
G is also special.
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Figure 1: Plane graphs in Q defining special subgraphs G where C' corresponds to the
boundary cycle. Solid black vertices denote vertices in X¢.

For a special cycle C' of a plane graph G, we define

Te := intg(C'), which is isomorphic to K3,

X¢ :={v € V(C) : there is a facial cycle D such that
veV(C)YNV(D) and |V (Te) N V(D)| = 2},

Vo =V (Ge), Yo := XcUV(Ty), and Y := Vo — Yo = V(O) — X

Then V(C) = XC U ?C-

Observation 3.2. Let A be a usable set in a plane graph G. Let C = vy ...vxv; be a
special cycle of G. If G¢ is (not only isomorphic but also equal to a plane graph) in Q,
then the following hold.
(a) Te = zyzx with Ng(x) = {y, z,v2,v3} and Ng(y) = {z, z,v1, v }.
(b) Xc = {’Ul,'Ug,Ug} ZfGC 7é Qg and XC = {'Ul,'Ug,'llg,U4} ZfGC = Qg.
(¢) Deleting any vertex in Xc N B exposes two vertices of Tc.
(d) For each vertex v € X¢, V(T¢) is collectable in G — v, except that if Go = Qf *
and v = vy then only {x,y} is collectable in G — v.
(e) IfY ¢ # 0 then there is a facial cycle C* containing Y cU{v} for some v € V(T¢).
Moreover, v = z is unique, and if |Y ¢| = 2, then C* is unique.
(f) Tc has at least two vertices v such that dg(v) = 4.

Note that vertices on C' may have neighbours in ext(C') or maybe contained in A.
Thus we may not be able to collect vertices of C'.

A special cycle C' is called ezposed it Xo C B(G). A special cycle packing of G is
a set of exposed special cycles {C1, ..., Cy,} such that Yo, NYe, = 0 for all i # j. Let
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7(G) be the maximum cardinality of a special cycle packing and
3 1
2(G) = V()| + (1Bl - 7(G)).

We say that a special cycle packing of G is optimal if its cardinality is equal to 7(G).

Theorem 3.2. For all plane graphs G and usable sets A C B(G),
f(G; A) =2 0(G). (3.1)

Clearly |B| —7(G) > 2 for any plane graph G with at least 2 vertices. This is trivial
if 7(G) = 0. If 7(G) = k, then each of the k exposed cycles in the maximum cardinality
special cycle packing of G has at least 3 vertices in B and therefore |B|—7(G) > 2k > 2.
The following consequence of Theorem [3.2]is the main result of this paper.

Corollary 3.3. Everyn-vertex planar graph G (withn > 2) has an induced 3-degenerate
subgraph H with |V(H)| > (3n+2)/4.

4 Setup of the proof

Suppose Theorem [3:2]is not true. Among all counterexamples, choose (G; A) so that
(i) |V(G)] is minimum,
(ii) subject to (i), |A| is maximum, and

(iii) subject to (i) and (ii), |E(G)| is maximum.

We say that such a counterexample is extreme.

If A ¢ V(G'), then we may abbreviate (G'; A’ N V(G')) by (G'; A), but still (ii)
refers to |A' N V(G’)|. We shall derive a sequence of properties of (G; A) that leads to
a contradiction. Trivially |V(G)| > 2, G is connected (if G is the disjoint union of G,
and Goq, then f(G;A) = f(G1; A) + f(Ga; A) and O(G) = 9(Gy) + 0(Ga)).

Lemma 4.1. Let G be a plane graph and X be a subset of V(G). If A is usable in G,
then A — X is usable in G — X.

Proof. We may assume that G is connected and X = {v}. If v ¢ A, then it is trivial.
Let P = vguy - - - v be the admissible path in G such that A = V(P). If v = vy or
v = vy, then again it is trivial. If v = v; for some 0 < ¢ < k, then by the definition of

admissible paths, G — v; is disconnected, and v;_; and v;y; are in distinct components.
Thus again A — {v} is usable in G — v. O

Suppose Y is a nonempty subset of V(G) and G[Y] is connected. Let C' be an
exposed special cycle of G' = G — Y. Then C satisfies one of the following conditions.
(a) C'is an exposed special cycle of G.
(b) C'is a non-exposed special cycle of G; in this case X N (B(G') — B) # 0.
(¢) C'is not a special cycle of G; in this case Y C intg(C), and so Y N B = ().



A cycle C'is type-a, -b, -c, respectively, if it satisfies condition (a), (b), (c), respectively.
Let
1, if G’ has a type-c exposed special cycle
5(y):{,1 ype-c exposed special cycle,

0, otherwise.

Lemma 4.2. Let Y be a nonempty subset of V(G) such that G[Y] is connected. Let
G'=G-Y. IfC,C" are distinct exposed type-c special cycles of G, then Yo NYeor # .

Proof. Let C, C" be distinct exposed type-c special cycles of G’. Since BNY = () and
G[Y] is connected, there exists a facial cycle D of G’ such that intg(D) = G[Y]. Then

D is a facial cycle of both G, and Gr. Arguing by contradiction, suppose Yo NYeor = 0.
Since V(D) CV(Gy) =Yoo UY ¢ and V(D) C V(Gp) = Yor UY v, we have

V(D) CV(G)NV(G) CYcUY .

By symmetry we may assume that |YcNV(D)| > [YoNV(D)|. Using |Y¢l, [Yer| < 2,
we deduce that

3< V(D) < V(Ge)NV(Ge)| <4, Yo CV(D), [Ye| =2, and Yo N V(D) # 0.

We will show that H is isomorphic to H; or Hy in Figure Bl Since Y| = 2,
by Observation , D is the unique facial cycle in G¢, such that there is a vertex
2 e V(Te) with Yo U {2} C V(D). As 2 € V(D) and 2 € Y, we have 2 € Y¢r. Since
Yo # 0, again by Observation there is a unique vertex Z € V(T¢) such that
Yo U {2} is contained in a facial cycle of G%,. Then 2 € Yor N Y C V(D).

First we show that |V (G,) NV (G,)| = 4. Assume to the contrary that |V (G) N
V(GL)| = 3. Since V(D) C V(G,)NV(GY,), we conclude that |[V(D)| = 3. Then 2% is
an edge, and the two inner faces of G’ incident with 2% are contained in V(G,)NV (G)).
Since the intersection of any two inner faces of Gy has at most 2 vertices, we have
|\V(Gy) NV(Ge)| > 4, a contradiction.

As V(GL)NV(Gy) = Yo UY e, we conclude that Y| = 2 and |V(C)| =5 =
V(eI

Let Q € Q be the plane graph isomorphic to Gi.. By inspection of Figure [, G,
is isomorphic to Q. We may assume that G, = @ by relabelling vertices. Let u — o/
be an isomorphism from G¢ to Gi.,. Using uniqueness from Observation z =2z,
=% Yo ={vs,vs} and Yo = {v}, vL}. To prove our claim let us divide our analysis
into two cases, resulting either in H; or Hs.

o If [V(D)| =4, then Q = Q and V(G{,) NV(Gr) = V(D) = {v4,v5,v1, 2}. Since
Vg, V5 € Y, we have vy, 2 € Y. Then v = vy, vf = z, and vs = /. As X and
X are exposed in G, the cycle vyvouzvivyvs; is in G'[B(G')] and so H = H; in

Figure .

o If [V(D)| =3, then Q = Qf ", V(D) = {z,v4,v5}. By symmetry, we may assume
that 2’ = v5. Then V(G,) NV(Gy/) = {2, v4,v5,v1}, as C' contains all common
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OF 257

U2 v =) v =)
(a) H, (b) H

Figure 2: The isomorphism types H; and Hy of H = G'[V(G)UV (GY,)] when |V (D)| =
4 or |[V(D)| = 3in the proof of Lemmald.2l Solid black vertices denote boundary vertices
of G and thick edges represent edges in D.

neighbors of z and 2’ in G’, which is a property of Q4+ Since v4,v5 € Y and
V(GL)NV(GL) CYeUY o, we deduce that vy, 2 € Y. By symmetry in G,
we may assume that z = v, and v; = v). As X¢ and X are exposed in G', the
cycle vivausvvhvhey is in G'[B(G')]. So H = H; + 22 = H, in Figure 2(b)]
Notice that in both cases, vy = v} € B(G’) and vy € V(D). Set Y’ = {vy, 2,9} and
G'"=G-Y' AsV(intg(D)) =Y, in G — vy, we can collect both 2’ and ' and at least
one vertex of Y is exposed. Thus B(G") — B contains z, 2z’ and (B(G") — B)NY # 0.
So |B(G") — B| > 3.
Let P be an optimal special cycle packing of G”, and put

={C”" € P: C* is a non-exposed special cycle of G}.

Consider C* € Py. As vy = v} € BNY’, there is no exposed type-c special cycle in
G". Thus C* is type-b, and so X¢- N (B(G") — B) # 0. Let w € X¢- N (B(G") — B).
Since Te+ is connected, has a neighbour of w, and has no vertex from B(G"), we have
V(Tc*) - Y and Xc* - (B(G”) — B) U {Ul}.
As Py is a packing, 3|Py| < |B(G")—B|+1. This implies that |Py| < |B(G")—B|—
because |B(G") — B| > 3. We now deduce that
[Po| < [B(G") = B| =2 =|B(G")| = (I1B| = 1) = 2= |B(G")| - |B| - 1.
Therefore
7(G) > 7(G") — |Po| > 7(G") — |B(G")| + | B| + 1.
Hence, using V(G) = V(G")UY’,

2(G) = 2V (G + (1Bl -7(G)) < S(V(@)+3)+ {(BG)] ~r(G")~1) = 8(C")+2

Now, as we have already collected 2/, vy’, we have

F(GyA) > F(G" A) +2 > (G") +2 > 3(G).
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This contradicts the assumption that G is a counterexample. O

Lemma 4.3. Let Y be a nonempty subset of V(G) such that G[Y] is connected and let
G'=G-Y. Then
Y|  |B—B(G")|+46(Y)

4 * 4 .

Moreover, if G has an exposed special cycle C such that Yo NY # 0 and Yo N Yo =0
for any other exposed special cycle C' of G, then

a(G) < 9(G) +

Y| |B—B(G")|+d(Y)—1
4 * 4 '

a(G) < 8(G") +

Proof. An optimal special cycle packing of G’ has at most |B(G’) — B| type-b cycles by
definition and has §(Y") type-c cycles by Lemma [421 We can remove such cycles from
the special cycle packing of G’ to obtain a special cycle packing of G. So

7(G) 2 7(G') = [B(G') = B| = 6(Y) = 7(G") = |B(G')| + |B| — |B = B(G")| = o(Y).
Plugging this into the definition of J(G), we obtain

3Y]| N |B — B(G")| +5(Y).

9(G) <G + = .

If G has an exposed special cycle C' such that C' is not a special cycle of G’ and Y
is disjoint from Y¢r for any other exposed special cycle C” of GG, then we can add cycle
C to the special cycle packing of G obtained above. So

7(G) > 7(G")—|B(G")—B|-6(Y)+1=7(G")—|B(G")|+|B|—|B— B(G")|—6(Y)+1.
Plugging this into the definition of 9(G), we obtain

Y| |B—B(G")|+d(Y)—1
4 * 4 '

Lemma 4.4. Every vertez v € V — A satisfies d(v) > 4.

a(G) < 8(G") +

Proof. Suppose that d(v) < 3. Apply Lemma 3 with Y = {v}. Let G’ = G—Y. Note
that if v is a boundary vertex, then 6(Y) = 0. So |[B — B(G")| + 6(Y') < 1. Therefore

3 1

<G+ 2+ =

8(G)_8(G)+4—|—4
By the minimality of (G; A), f(G'; A) > J(G"). Therefore f(G;A) = f(G';A) +1 >
J(G), a contradiction. O

Lemma 4.5. There are no disjoint nonempty subsets X, Y of V(G) such thatY is a
set of 4| X | interior vertices of G, G[X UY] is connected, and Y is collectable in G—X.
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Proof. Suppose that there exist disjoint nonempty sets X,Y C V(@) such that YV is a
subset of 4| X | interior vertices of G, G[XUY] is connected, and Y is collectable in G—X.
Let G' = G — (X UY). We apply Lemma 3l Since |B— B(G")|+6(XUY) < |X]|, we
have 9(G) < O(G") + 2(|X |+ |Y|) + 3| X| = 9(G") + 4] X|. As G is extreme, f(G'; A) >
O(C). Hence f(G;A) > F(G; A) + Y| = F(G' A) +41X| > A(G") + 4|X| > 9(G), a

U

contradiction.
Lemma 4.6. For any two distinct special cycles C1,Cy of G, Yo, N Yo, = 0.

Proof. Assume to the contrary that C7, Cy are two special cycles of G with Yo, MY, # 0.
Observe that for each i = 1,2, V(T¢,) has two vertices of degree 4 and one vertex of
degree 4, 5, or 6 in G.

If Te, and Tg, share an edge, say To, = xyz and T, = xyZz’, then one of z, y, say =,
has degree 4. Since G is simple, z # 2’. Let v be the other neighbor of 2. By inspecting
all graphs in Q, we deduce that each of z, 2’ is either adjacent to v or has degree at
most 5 in G. So in G — v, the set {x,y, z, 2’} is collectable, contrary to Lemma

Assume T¢, and T, have a common vertex, say 1o, = xyz and T, = xy'2’. If none
of y, z, v/, 2 have degree 6, then we can delete z and collect y, z, ¢/, 2/, contrary to
Lemma (4.5 So we may assume that dg(y) = 6 and hence dg(x) = dg(z) = 4 and all
the faces incident to z are triangles because G¢, is isomorphic to @Qf . Thus we may
assume yy’, 2z’ € E(G). By deleting y, we can collect x, z, 2/, and 3/, again contrary to
LemmalLhl (We collect iy ahead of 2’ if dg(2') = 6 and collect 2’ ahead of ¥ otherwise.)
Thus V(Tcl) N V(TCQ) = @

If Xg, NV(Tg,) # 0, then for a vertex v of maximum degree in V(Tg,), after
deleting v, we can collect the other two vertices of T¢, and two vertices of T¢,, contrary
to Lemma 8 So X¢, NV (Tg,) = 0 and by symmetry, X¢, NV (T¢,) = 0.

If X, NX¢, contains a vertex v, then by deleting v, we can collect two vertices from
each of T, and Tg,, again contrary to Lemma .5 because V (T, ) NV (Tg,) = 0. O

Lemma 4.7. If C is a special cycle of G, then there is a vertex uw € X¢ such that
V(T¢) is collectable in G —u and G' = G — (V(T¢) U {u}) has no type-c special cycle.

Proof. Suppose the lemma fails for some special cycle C' of G with |E(C)| = k. Then
G¢ is isomorphic to a graph @ € Q. We may assume Go = (. Then V(T¢) is
collectable in G —vy. Put Y = V(Tg) U {v1} and G' = G — Y. Since G’ has a type-c
special cycle C', G, has a facial cycle C” with Y = V(intg(C")).

Then C” consists of the subpath C' — v; from vy to v, of length k — 2 and a path P
from vy to vy in G'. As G, is special, 3 < |E(C")| < 5. So |E(P)| <5 —(k—2) <4.
Now Ng(v1) C V(P)U{y, 2z}, so dg(vy) < |E(P)|+3 < 10—k < 7. If dg(vy) < 6, then
after deleting vy we can collect Y: use the order z,y, vy, z if dg(vy) < 5; else dg(v1) =6
and k < 4, so use the order z,y, z,v;. This contradicts Lemma A5 Thus dg(v1) = 7.
So k=3, |E(P)| =4, |E(C")] =5, Ge = @1, and v; is adjacent to all vertices of P.

Setting u = v3, and using symmetry between v; and vz, we see that v is also an
interior vertex with dg(vs) = 7.
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Uy

Figure 3: The graph intg(C”) in the last part of the proof of Lemma .7 when 2" = us.
Note that dg(vs) = 7 and v3 is an interior vertex.

Let P = vsujugugvs. Now Gy, is isomorphic to @4 since C” is a facial 5-cycle.
Assume u — v’ is an isomorphism from @4 to Gi,. Then C" = Z'vivjviv 2.

If there is w € {vq, v3}N{v], v5} then after deleting w we can collect {z,y, z, 2, ¢/, 2},
contrary to Lemma .5 Else {v],v5} = {u1,us} and therefore 2’ = uy, see Figure Bl
After deleting {vy,u;}, we can collect {x, vy, z,vs,v1, 2,2, y'}, contrary to Lemma 5]
as both v; and v3 are interior vertices. O

Lemma 4.8. GG has no special cycle.

Proof. Assume to the contrary that C' is a special cycle of G. By Lemma [£.7] there is
a vertex u € X¢ such that V(T¢) is collectable in G — w and G' = G — (V(T¢) U {u})
has no type-c special cycle. Observe that f(G; A) > f(G'; A)+ 3. So it suffices to show
that 0(G) < 9(G’) + 3. Since G’ has no type-c special cycles, every exposed special
cycle of G’ is a special cycle of G.

If u ¢ B, then B(G') = Bandso B—B(G") = 0. As 0(V(T¢)U{u}) = 0, we deduce
from Lemma 3 that 9(G) < 9(G') + 2 - 4.

Thus we may assume that © € B and so |B — B(G')| = 1. If C is exposed in G,
then by Lemmas B3 and €6, (G) < 9(G") + 3 -4 + 1.

If C is not exposed in GG, then X has some interior vertex v. Since v is adjacent to
a vertex of Te, v is exposed in G'. By Lemma [0l v ¢ X for every exposed special
cycle C" of G', because C' is a special cycle of G. Therefore, in an optimal special cycle
packing of G'; at most |B(G’) — B| — 1 of the cycles are not exposed in G. So,

7(G) 2 7(G") = (1B(G') ~ B~ 1) = (&) ~ (1B(G)] - 1Bl +1) + 1.
Thus
2(G) = 2 \V(@)] + 7(1B - 7(@))

<

= o] W

(V&) +4) + i(\BI +(=7(G) + |B(G)| - [B])) =0(G) +3. O
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Lemma 4.9. Let s be an integer. Let X and Y be disjoint subsets of V(G) such that
Y is collectable in G — X. If |B(G — (X UY))| > |B(G)| + s, GIX UY] is connected,
and (X UY)NB(G) # 0, then s + Y| < 3| X].

Proof. Let G' =G — (X UY). Since (X UY) N B(G) # 0 and G[X UY] is connected,
any special cycle of G’ is also a special cycle of G. So 7(G') = 0 and 9(G) < I(G") +
SIXUY|) =2 As XUY #0 and (G; A) is extreme, f(G’; A) > 9(G"). Thus

F(G )+ V] < F(G: A) < 0(G) < (@) + 51X UY| = < F(C; )+ 5|X U] = 5.

This implies that s + [Y] < 3].X]. O
Lemma 4.10. G is 2-connected and |A| = 2.

Proof. Suppose G is not 2-connected. If |V (G)| < 3, then G is (3, A)-degenerate, so
f(G;A) = 9(G) and we are done. Else |V(G)| > 3. As G is connected, it has a cut-
vertex x. Let G1, Gy be subgraphs of G such that G = G UG,, V(G1) NV (Gs) = {z},
and |V(G1) N A| < |V(Gy) N Al. Observe that if z ¢ A, then ANV(G,) = 0 by the
choice of G because A is usable in G.

Let Ay =V (Gy)NAif z € Aand A; = {x} otherwise. Let Ay = V(G3) N A. Note
that for each ¢ = 1,2, A; is usable in G;. For ¢ = 1,2, let X; be a maximum A;-good
set in Gj.

Let X = (X3 UXy —{z})U (X1 N X;y). We claim that X is A-good in G. If x € A,
then collect X7 — A, Xo — A, ANX. If x ¢ A and z € X; N Xy, then collect X7 — {z},
Xo. If x ¢ Aand o ¢ X; N Xs, then collect Xy — {z}, Xo — {z}. This proves the claim
that X is A-good in G.

As (G; A) is extreme, f(Gy; A;) > 0(G) fori=1,2.

If x € B then B(G;) = B(G) NV (G;) for i = 1,2. Note that any special cycle
of G; is a special cycle of G and so 7(G;) = 0 for i = 1,2 by Lemma [£.8 and hence
0(G) = 0(Gy) +0(G2) — 1.

If x ¢ B, then we may assume V(G1) N B(G) = 0. Hence B(G) = B(G2). Since
only one inner face of Gy contains vertices of G, 7(G2) < 1 by Lemma 4.8 Note that

3 1 1

8(G) = 8(G1) + 8(G2) - Z -+ ET(G2> — 1

Since 7(G1) < |B(G1)| — 2, we have 9(G) < 9(G1) + 9(Gs) — 1.
In both cases, we have the contradiction:

(|B(G1)| = 7(Gy)).

f(GA) = | Xa| + | Xa| = 1= f(Gi; A1) + [(G2;A2) — 1 > O(Gh) +0(G2) — 1 > 9(G).
Thus G is 2-connected, and hence |A| < 2. As (G; A) is extreme, we have |A| =2. O
In the following, set A = {a,a’}.

Lemma 4.11. The boundary cycle B has no chord.
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Proof. Assume B has a chord e := zy. Let P;, P, be the two paths from z to y in B
such that A C V(P;). Since e is a chord, both P; and P, have length at least two.

Set Gy = int[P; + €] and Gy = int[Py + e]. As 7(G) = 0 by Lemma L8 we know
that 7(G1) = 7(G2) = 0. Hence 0(G) = 9(G1) + 0(G2) — 2. We may assume that
ACV(Gy). Let Ay ={z,y} and Ay = A.

Fori =1,2, let X; be a maximum A;-good set in G;. Then X = (X;UX,—{z,y})U
(X1 N Xy)is an A-good set in G: collect Xy — {z,y}, (X2 — {z,y}) U (X1 N X3). Thus

f(G;A) > f(Gr; Ar) + f(Ga; Az) — 2 > O(Gh) + 0(Gz) — 2 = 0(G),
contrary to the choice of G. O

Lemma 4.12. G is a near plane triangulation.

Proof. By Lemmald.10, every face boundary of G is a cycle of G. Assume to the contrary
that G has an interior face F' which is not a triangle. Then V' (F') has a pair of vertices
non-adjacent in G' because G is a plane graph. Let e ¢ E(G) be an edge drawn on F
joining them. Then G’ = G+-e¢ is a plane graph with B(G’) = B(G). As G is extreme, G’
is not a counterexample. As f(G’; A) < f(G; A), we conclude 7(G’) > 7(G), and hence
G’ has an exposed special cycle C' and e is an edge of Gf,. By [(d)] of Observation B2,
there is a vertex v € X such that after deleting v, we can collect all the three vertices
of Te. In G — (V(T¢e) U{v}), all vertices in (Vo UV (F)) — (V(T¢) U{v}) are exposed.
By Lemma [4.9] none of these vertices can be an interior vertex of (G, because otherwise
|B(G — (V(T¢) U{v})| > |B(G)]|. So all these vertices are boundary vertices of G. By
Lemmas A.T0l and I T1], G is 2-connected, |A| = 2, and B(G) has no chord, so G has no
other vertices and int(B(G)) = T, as v € X¢ is also a boundary vertex of G. By the
definition of usable sets, the two vertices in A are adjacent.

By Lemma 1.4 ||u, V(T¢)|| > 2 for every vertex u € B(G) — A, and ||w, B(G)|| > 2
for every vertex w € V(T). On the other hand, the number of vertices u € B(G) with
|lu, V(T¢)|| > 2 is at most 3. So |B(G)| < 3+ |A| = 5.

If |B(G)| = 3, then G is triangulated. Suppose |B(G)| = 4. If ||u, V(T¢)|| > 2
for three vertices u € B(G), then G is isomorphic to QQ; else G is isomorphic to Q3.
Both are contradictions. If |B(G)| = 5, then G is isomorphic to Q4 or @, again a
contradiction. 0

5 Properties of separating cycles

In a plane graph G, a cycle C'is called separating if both V (int(C')) and V' (ext(C)) are
nonempty. In this section we will discuss properties of separating cycles in G.

Lemma 5.1. Suppose T is a separating triangle of G and let I = int(T). Then
(a) [[V(T), V()| =6,
(b) 1| =3,
(c) ||z, V(I)|| > 1 for all z € V(T), and
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(d) for all distinct z, y in V(T), |IN({z,y}) N V(I)| > 2.

Proof. 1f |I| < 2, then I contains a vertex v with dg(v) < 3, contrary to Lemma 4
Thus |I| > 3 and (b) holds. Moreover, IT := int[T] is triangulated and therefore
|IIT]| =3|I"| —6 and ||I]| < 3|I| — 6. Thus

VD), VDIl = [l = Tl = 11l = 33 + []) = 6 = 3 — (3|1 = 6) = 6.
Thus (a) holds. As I'" is triangulated and T is separating, every edge of T' is contained
in a triangle of It other than T’; so (c) holds.

If [(N(x)UN(y)) NV (I)] <1, then |I| = 1 because G is a near plane triangulation.
This contradicts (b). So (d) holds. O

Lemma 5.2. Let C be a separating cycle in G such that V(C)NA=0. Assume X, Y
are disjoint subsets of G such that X UY # (), Y is collectable in G — X, and G[X UY]
is connected. Let G; = int[C] — (X UY), Gy = ext(C) — (X UY), By = B(Gy),
By = B(G3), G = ext[C] — (X UY), A =V(C)— (XUY). If A" is usable in Gy and
collectable in GY, then

Y|+ |Bi| 4+ | Bz| < 3|X|+ |B| + 7(Gs) < 3|X|+|B| + 1.
In particular,
3| X| + 7(Gs) — | By otherwise.

Proof. Since A’ is usable, (X UY)NV(C) # 0 and so X UY lies in the infinite face
of G;. Thus any special cycle of GG7 is also a special cycle of G. Thus by Lemma [4.8]
7(G) = 7(G1) = 0. By Lemma [£2] in an optimal special cycle packing of G, at most
one cycle is type-c and there are no type-a or type-b cycles. Therefore 7(G3) < 1.

As A’ is collectable in G, we have

f(G3A) > f(Gr; A) 4 f(Ga; A) + Y.
On the other hand,

0(G) = B(Gh) +8(G2) + JIX| + VD)~ L(IBi] +1Bs| — 1B~ 7(G)).

1
4
As f(Gy; A') > 0(Gy) and f(Ga; A) > 0(G2), we have
O(C) (X I+ IV )43 (Bal 1Bl ~1 BI~7(G) < F(Grs 4)+1(Gos A) < F(G; A=Y .
As f(G; A) < 0(G), it follows that
Y|+ |Bi| + | Ba| < 3|X]| +|B| 4+ 7(G2) < 3|X|+ |B| +1.
Note that if (X UY) N B # (), then 7(G2) = 0. In this case, we have
Y|+ |Bi| + | Bs| < 3[X|+|B].
If (XUY)NB =0, then B, = B. In this case, we have |Y|+ |B;| < 3| X|+7(Gy). O
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Lemma 5.3. Let C be a separating triangle of G. If C' has no vertex in B(G), then
either ||v, V(ext(C))|| > 3 for all vertices v € V(C) or ||v,V(ext(C))|| > 4 for two
vertices v € V(C).

Proof. Suppose not. Let C' = zyzx be a counterexample with the minimal area. We
may assume that ||z, V(ext(C))|| < 2 and ||y, V(ext(C))|| < 3. By Lemma B.1f(c),
z has a neighbour w in I := int(C). If w is the only neighbour of z in I, then by
Lemma B.1(b), C" := zwyx is a separating triangle. However, w has only 1 neighbour
in ext(C’) and  has at most 3 neighbours in ext(C"), contradicting the choice of C.

Thus ||z, V(I)]| > 2.

We apply Lemma (.2 with C'; X = {2z} and Y = (). Then A" := {x,y} is usable in
G := int[C]—z, A’ is collectable in G := ext[C]—z and By := B(G1) 2 {z,y} UN(z).
So |Bi| > 4, and this contradicts Lemma [5.2] O

Lemma 5.4. Let C be a separating induced cycle of length 4 in G having no vertex in
B(G). Then ezactly one of the following holds.

(a) |B(nt(C))] > 4.

(b) |V(int(C))| < 2 and every vertex in int(C') has degree 4 in G.

Proof. Suppose that |B(int(C))| < 3. By Euler’s formula, we have
| int[C]|| = 3|V (int[C])| — 7 = 3|V (int(C))| + 5

as GG is a near plane triangulation. Then since C' is induced, by Lemma [£4]

0< Y (d(v)-4)

veV (int(C))
= [[int[C[] = |C]| + [[int(C)]| — 4V (int(C))] (5.1)
— BIV(t(C))] +5) — 4 + || mt(C) | — 4]V (in(C))
=1—|V(int(C))| + || int(C)]|.

Suppose that int(C') has a cycle. Since |B(int(C))| < 3, we deduce that B(int(C)) =
xyzx is a triangle. By Euler’s formula applied on G[V (C) U B(int(C'))], we have

IV(C),B@int(C))||=(3-7T—7) -3 —-4=T1,

hence B(int(C)) is a facial triangle by Lemma [5.3] Therefore, x,y, z have degree 4, 4,
5in G by (B.1) and Lemma 4. Let w,w’ € V(C) be consecutive neighbours of z in
V(C). From G, we can delete w and collect z,y,z. Let G' = G — {w,z,y,z}. If G
has an exposed special cycle, then the face of G’ containing w has length at most 5,
implying that ||w, V(ext(C))|| < 2 because C' — w is a subpath of an exposed special
cycle of G/, as C' is induced. Then we can delete w’ and collect x, vy, z, w, contradicting
Lemma L5l Therefore G’ has no exposed special cycles. Then 0(G) = 0(G’) + 3 and
f(G;A) > f(G";A)+3 > 0(G") + 3 = 0(G), a contradiction.
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Therefore int(C') has no cycles. Then ||int(C)| < |V (int(C))| — 1, and so in (&1
the equality must hold. This means int(C') is a tree and every vertex in int(C') has
degree 4 in G by Lemma [£4l If int(C') has at least 3 vertices, then let w be a vertex in
V(C) adjacent to some vertex in int(C'). By deleting w, we can collect all the vertices
in int(C'). Similarly we can choose w so that G’ = G — w — V(int(C')) contains no
special cycle, and that leads to the same contradiction. Thus we deduce (b). O

6 Degrees of boundary vertices

Lemma 6.1. Fach vertex in B has degree at most 5.

Proof. Assume to the contrary that x € B has d(z) > 6. Then deleting x exposes at
least 4 interior vertices. Apply Lemma with X = {2},Y = () and s = 3, we obtain
a contradiction. O

Recall that A = {a,d'}.
Lemma 6.2. Fach vertex in B — A has degree 5.

Proof. Suppose that there is a vertex x € B — A with d(x) < 5. By Lemma [£4]
d(z) = 4. By Lemma [A.I1] exactly two of the neighbors of = are in B. Consider two
cases.

Case 1: x has a neighbour y € B — A. As |A| = 2, we have |B| > 4. As G is a
near plane triangulation, there is a vertex z € N(z) N N(y) such that zyzz is a facial
triangle. As B has no chords by Lemma 11}, (N(x) N N(y)) N B(G) = 0.

Suppose there is 2/ € N(x) N N(y) — {z}. Since d(x) = 4 and G is a near plane
triangulation, zzz'x is a facial triangle. Since d(z) > 4 by Lemma 44 T := yzz'y
is a separating triangle. As d(y) < 5 by Lemma 6.1 y has a unique neighbour y’ €
V(int(7')) and therefore both yy'zy and yy'z'y are facial triangles. By Lemma BE.1i(b),
int(7") contains at least three vertices and so 1" := 22'y’z is a separating triangle with
|z, V(ext(T"))|| = 2 and ||/, V(ext(T"))|] = 1, contrary to Lemma B3 So N(x) N
Niy) = {2}

If d(y) = 5, then deleting z and collecting  and y exposes three vertices in (N°(z)U
N°(y)) — {z}, the resulting graph G' = G — {z,y, 2} has |B(G’)| > |B| + 1. Apply
Lemma L9 with X = {z},Y = {z,y}, and s = 1, we obtain a contradiction.

Hence d(y) = 4. By repeating the same argument, we deduce that for all edges
v’ € B — A, we have (i) d(v) =4 =d(v') and (ii) |[N(v) N N(v')| = 1.

Let 2’, /' be vertices such that N°(x) = {2/,z} and N°(y) = {¢/,2}. As G is a
near plane triangulation and B is chordless, G — B is connected. Let J = {2/, z,y'}.
If V.— B # J, then there exist b € J and t € (V — B) — J such that b and t are
adjacent. Then deleting b and collecting x, y exposes all vertices in (J —{b})U{t}. Let
G' =G —A{z,y,b}. Then |B(G")| > |B|+ 1. With X = {b}, Y = {z,y}, and s = 1,
this contradicts Lemma Hence V — B = J.
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Figure 4: Case 1 in the proof of Lemma The dashed line may have other vertices
and the gray region has other edges but no interior vertices.

X

a € Ae °oq' € A

Figure 5: Case 2 in the proof of Lemma The gray region may have other vertices.

Let u, v be vertices in B so that uzyv is a path in B. Since G is a near plane
triangulation, 2’ is adjacent to u and z, and ¥’ is adjacent to v and z, see Figuredl Then
ux'zy, xzy'v are paths in G. If A = {u,v}, then B is a 4-cycle and as d(2'),d(y’) > 4,
we must have 2'y’ € E(G), which implies that G is isomorphic to Q5 and B is a special
cycle, contrary to Lemma [£.8 Therefore A # {u,v} and since y ¢ A, we deduce
that v ¢ A. This implies d(v) = 4. Then v has another neighbour in J, and by the
observation that y and v have only one common neighbour y’, we deduce that v is
non-adjacent to z. Thus v is adjacent to 2/, and 2’ is adjacent to y/'.

Furthermore every vertex in B — {u, z,y,v} has degree at most 3, because B has
no chords and 2’ is the only possible interior neighbor. By Lemma [£.4] every vertex in
B —{u,z,y,v} isin A. Then G is isomorphic to Q™ and B is a special cycle, contrary
to Lemma (4.8

Case 2: Ng(x) N B C A. Then B = zad’x. Since G is a near plane triangulation and
d(x) = 4, the neighbours of x form a path of length 3 from a to @, say ayza’ where a,
Yy, 2z, @’ are the neighbours of z. (See Figure [3l)

If IN°(y)| > 3, then deleting y and collecting = exposes at least three vertices in
N°(y). Let G' = G — {z,y}. Then |B(G")| > |B|+ 2. With X = {y},Y = {z}, and
s = 2, this contradicts Lemma .9

Thus |N°(y)| < 2 and so d(y) < 5. (Note that y may be adjacent to a’.) By
symmetry, |[N°(z)| <2 and d(z) <5.

If y is adjacent to o/, then z is non-adjacent to a and so d(z) = 4 by Lemma [1.4]
Then T := yzad'y is a separating triangle, as int(7") contains a neighbour of z. Since
d(y) <5 and d(z) =4, we have |[N({y, z}) NV (int(T"))| = 1, contrary to Lemma[.T(d).

So y is non-adjacent to a’. By symmetry, z is non-adjacent to a. As |N°(y)|, |N°(z)| <
2 and d(y),d(z) > 4, y and z have a unique common neighbour w and d(y) = d(z) = 4.
Since G is a near plane triangulation, w is adjacent to both a and a'.
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Figure 6: The situation in the proof of Lemma [7.T}(b)|

If d(w) > 4, then deleting w and collecting y, z, x exposes at least one vertex
and so |B(G — {z,y,z,w})| > |B|]. With X = {w},Y = {z,y,2}, and s = 0, this
contradicts Lemma [£.9l This implies d(w) = 4, hence B(G) is a special cycle, contrary
to Lemma (4.8 O

7 The boundary is a triangle

In this section we prove that |B| = 3.

Lemma 7.1. Ifzy € E(B — A), then the following hold:
(a) There are S := {x1,z2,u,y1,y2} CV — B and z*,y* € B such that x*x1xouy is a
path in GIN(x)] and xuy,y2y* is a path in G[N(y)].
(b) d(x2),d(u),d(y) = 5.
(c) The vertices xy, o, u,y1, Yo are all distinct.
(d) |N°({xz,u}) — S| <2 and [N°({y1,u}) — S| < 2.
(e) Tay1, ToY2, T1y1, ur1, uy> ¢ E.
(f) There is wy € (N({z2,u,y1}) N B) —{z,y}; in particular G[S] is an induced path.
(9) w2,u & N(z*) and y1,u & N(y").
(h) Neither x* nor y* is equal to the vertex wy from|[(f)

Proof. [(a)] By Lemma 62, d(z) = 5 = d(y). By Lemmas and [A.11], there are
z*,y* € B with N(x) N B = {z*,y} and N(y) N B = {z,y*}. As G is a near plane
triangulation, there is u € N(x) N N(y). So|(a)| holds.

[(b)] (See Figure ) As d(u) > 4 by Lemma @4, x5 # y;. Assume d(z2) = 4. If x5 is
adjacent to y, then xy = 1o, implying that d(z) > 4, contradicting the assumption.
Thus x5 is non-adjacent to y and deleting v and collecting xs, x, y exposes y1, y2 (note
that it is possible that x; € {y;,y2}, so we do not count it as exposed). We have
|B(G —{u,xo,z,y})| > |B|. With X = {u},Y = {xs,z,y}, and s = 0, this contradicts
Lemma 9l Thus d(z2) > 5 by Lemma 4l By symmetry, d(y,) > 5. If d(u) = 4, then
we can delete x5, collect u, x,y, and expose 1, y». This contradicts Lemma applied
with X = {z,},Y = {u,z,y}, and s = 0. So[(b)| holds.

Since d(u) > 5, we deduce z5 # y1, and if x1 = y, then T := xyzouz; is a separating
triangle (see Figure [7), since d(zy) > 5. As ||, V(ext(T'))|| = 1 and [ju, V(ext(T))| =
2, this contradicts Lemma B3l So x1 # y;. By symmetry, x5 # ys.

19



Figure 7: When z; = y; in the proof of Lemma [[I|(c)} Gray regions may have other
vertices.

4
T1=Y2 -

Figure 8: When z; = 9 in Lemma [[I|(c)} Gray regions may have other vertices.

It remains to show that x; # y3. Suppose not. By @, d(x9) > 5,50 C' = 212Uy 21
is a separating 4-cycle (see Figure B). We first prove the following.

For all ' € V(C) — {u}, [IN({u,«'}) N V(int(C))| < 3. (7.1)

Suppose not. Then deleting u, v" and collecting z, y exposes two vertices in V(C') —
{u, '} and at least 4 vertices in int(C'). So |B(G —{u, v, z,y})| > |B| —2+42+4. This
contradicts Lemma .9 with X = {u,u'}, Y = {z,y}, and s = 4. This proves (.1]).

If w is adjacent to x1, then C] := x1x9ux; and Cy := xyuy;x, are both separating tri-
angles by [(b)} Then |N({u,z1}) NV (int(C;))| > 2 for each i € {1,2} by LemmalE.I(d).
Thus |N({u,z1}) NV (int(C))| > 4, contrary to (). So w is non-adjacent to x;.

If 25 is adjacent to y;, then C5 := uxoyiu is a separating triangle by @ Then
IN({u, z2}) NV (int(C3))| > 2 by Lemma B.I(d). As [ju, V(ext(C3))|| = 2, Lemma [5.3]
implies that ||zo, V(ext(C3))|| > 4, hence |N({u,z2}) NV (int(z122y121))| > 2. Thus
IN({u, xz2}) NV (int(C))| > 4, contrary to (7). So C' has no chord.

By @ C' is a separating induced cycle of length 4 in G. By Lemma [5.4] either
|B(int(C))| > 4 or |V (int(C))| < 2 and every vertex in int(C') has degree 4 in G.

By (1), d(x2),d(y1) < 6. If |B(int(C))| > 4, then deleting u, x; and collecting =,
Yy, T, Y1 exposes at least 4 vertices and therefore |B(G — {u, x1,2,y, 2, y1})| > |B| + 2.
This contradicts Lemma applied with X = {u,z1}, Y = {z,y, 22,41}, and s = 2.

Therefore we may assume 1 < |V (int(C))| < 2 and every vertex in int(C') has degree
4in G. As x5 is non-adjacent to y1, x1 has at least one neighbour in int(C') and therefore
after deleting x;, we can collect all vertices in V (int(C')) and then collect x9, y; and u,
this contradicts Lemma So holds.
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Figure 9: The situation in the proof of Lemma [Id); x1,x2, u,y1, yo are all distinct.
The gray region has other vertices.

[(d)] (See Figure @) If [N°({z2,u}) — S| > 3, then deleting x>, u and collecting z, y
exposes T1, Y1, Yo, and three other vertices and so |B(G — {z2,u, x,y})| > |B| — 2 + 6.
By applying Lemma with X = {x9,u}, Y = {x,y}, and s = 4, we obtain a
contradiction. So we deduce that |[N°({za,u}) — S| < 2. By symmetry, |N°({y1,u}) —
S| <2.

@ Suppose x; is adjacent to u. By @ and @, d(zg) = 5. Thus T := uzizou is a
separating triangle. Let wq, ws be the two neighbours of x5 other than xq, z, u so that
Tiwiwou is a path in G. Such a choice exists because G is a near plane triangulation. As
d(wy) > 4 by Lemma 4] and u has no neighbours in int(uzywjwyu) by @, x1 is adja-
cent to wy. As d(wy) > 4, T' := zywiwexy is a separating triangle. Note that xox;w; s,
ToWiWaTe, TowaUTs, and urqweu are facial triangles. Thus [|wy, V(ext(T"))|| = 1 and
||wa, V (ext(T"))]| = 2, contrary to Lemmal5.3l So z is non-adjacent to u. By symmetry,
Yo is non-adjacent to u.

Suppose that z» is adjacent to yi. Let T := uxsyru. By D)} d(u) > 5, s0 T" is a
separating triangle. By [(d)} ||z, V (int(7”))|| < 2 for all z € V(T"). By Lemma E.1]

Y = V(T = [V(T"), V(int(I7))] = 6
zeV(T")

and therefore ||z, V (int(7”))|| = 2 for all z € V(T"). By [(d)] N(u) NV (int(T")) =
N(zo) NV (int(T")) = N(y1) N V(int(7")). Then u, x9, y;, and their neighbours in
int(7") induce a K5 subgraph, contradicting our assumption on G. Thus x5 is non-
adjacent to .

Suppose that x5 is adjacent to y,. Since x5 is non-adjacent to yq, @ and @ imply
that d(y;) = 5. Let wy, wy be the two neighbours of y; other than u, y, y» such that
uwiwoys is a path in G. By@ N°(u) — S C {wy,wy}. If uis adjacent to both w; and
we, then wwiwsu, uy wiu, yrwiwey, are facial triangles, implying that w; has degree
3, contradicting Lemma L4l Thus, as d(u) > 5 by [(b)] we deduce that d(u) = 5. Since
G is a near plane triangulation, x5 is adjacent to w; and uzswiu, uwiy;u are facial
triangles. If xow woysxs is a separating cycle, then deleting wy, wy and collecting y;,
u, y, © exposes at least 4 vertices and so |B(G — {wy, w2, y1,u,y,z})| > |B| — 2 + 4.
By applying Lemma with X = {wy,ws}, Y = {y1,u,y,z}, and s = 2, we obtain a
contradiction. So xewiwaysx is Not a separating cycle. By Lemma 4] d(ws) > 4 and
therefore wy is adjacent to x5 and d(w;) = 4 = d(wy). Then, deleting y; and collecting
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wy, Wy, u, Y, x exposes 3 vertices and |B(G — {y1, w1, we,u,y,x})| = |B| — 2+ 3. By
applying Lemma with X = {y1}, Y = {wy,ws,u,y,z}, and s = 1, we obtain a
contradiction. So 9 is non-adjacent to y». By symmetry, x; is non-adjacent to y.

Suppose that none of x5, u, y; has neighbours in B — {z,y}. By [(D)] [([d)} and [(e)]

d(zy) =5 =d(yy). If
IN°({z2, y1}) — {u}[ =5

then deleting u, x5 and collecting x, y, y; exposes all vertices in N°({xs,y1}) — {u} and
so |B(G —A{u, 2, z,y,11})| > |B| — 2 + 5. By applying Lemma .9 with X = {u, x5},
Y = {z,y,y1}, and s = 3, we obtain a contradiction. Thus |N°({z2,y1}) — {u}| < 4
and therefore x5, y; have the same set of neighbours in V(@) — (BU S) by [(c)| and [(e)]
Let w, w’ be the neighbours of x5 (and also of y;) such that w € V(int(uy,w'zou)).
Then w is the unique common neighbour of x5, u, and y;. By @ and Lemma [4.4] w
is adjacent to w’. Thus d(w) = 4. Deleting u and collecting w, z3, y1, z, y exposes
at least 3 vertices including w’ and so |B(G — {u, w, 2, y1,2,y})| > |B] — 2+ 3. This
contradicts Lemma applied with X = {u}, Y = {w, 29,41, 2,y}, and s = 1.

Thus at least one vertex of xs, u, and y; is adjacent to a vertex in B — {z,y}. Then
27 is non-adjacent to y5. By @, G[S] is an induced path and holds.

Suppose that z* is adjacent to z3. As d(x1) > 4 by Lemma 44 T := x*xixox*
is a separating triangle. Since d(z*) < 5 by Lemma [61] z* has a unique neighbour
w € V(int(T')). So w is adjacent to both z; and z5. As d(w) > 4 by Lemma @4 7" :=
wr1Tow is a separating triangle with ||w, V(ext(7"))|| = 1 and ||z1, V(ext(T"))|| = 2,
contrary to Lemma So x* is non-adjacent to xo. By symmetry, y* is non-adjacent
to Y.

Suppose u is adjacent to x*. As d(x;) > 4 and d(z*) < 5 by Lemmas 4] and
6.1, z* has a unique neighbour w € V(int(z*x;zoux*)) adjacent to both x; and w.
By @ and @, w is adjacent to wzo. If wwxou is a separating triangle, then by
Lemmal[5.Il(d), |V ({xe, u}) NV (int(vwzou))| > 2, hence |N°({xo,u})—S| > 3, contrary
to[(d)} So wwwou is facial. As d(z*) < 5, wr*zw and wr*uw are facial triangles. As
d(z2) > 5 by [(d)] 7" := wzizow is a separating triangle. So ||z, V(ext(T"))| = 2
and ||z2, V(ext(T"))|| = 2, contrary to Lemma 5.3l Thus u is non-adjacent to z*. By
symmetry, u is non-adjacent to y*. So holds.

Suppose that w; = y*. By , y* is adjacent to z9. Let C' := y*wouyyoy™ and
C’ be the cycle formed by the path from z* to y* in B(G) — z — y together with the

path y*zox1x*. Since G is a near plane triangulation and d(y2) > 4, by there is
w € N(y*)NN(y2) NV (int(C)). By Lemmal6.I], d(y*) = 5, and therefore x5 is adjacent
to w and xowy*zy is a facial triangle. Let y*™* € B be the neighbour of y* other than
y. Then xoy™y*xs is also a facial triangle in G. Because x5 is non-adjacent to x* by
(g)l, y** # z*. By applied to yy*, we have y* € A because uy;yswzs is not an
induced path in G. Thus z* ¢ A because |A| = 2. By Lemma [Z11] B(G) is chordless.
Therefore by Lemma [6.2, d(z*) = 5 and so ||z*, V(int(C"))|| = 2. By [(b)] [(d)}, and [(e)]
we have |[N°(y;) — S| = 2. Deleting x1, u and collecting z, x*, y, y; exposes at least 6
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Figure 10: The situation of Lemma Rl

vertices, including two neighbours of z* in int(C”) and two neighbours of y; in int(C).
So |B(G—{x1,u,z,x*,y,11})| > |B|—3+6. By applying LemmalL9 with X = {1, u},
Y ={z,2%,y,y1}, and s = 3, we obtain a contradiction. So w; # y*. By symmetry,

wy # x*. Thus holds. O
Lemma 7.2. |B| = 3.

Proof. For an edge e = xy € E(B — A), let x*, x1, x2,u, y1, Y2, y* be as in Lemma [7.1]
Suppose that |B| > 4. Then z* # y*. Lemma implies that B has a vertex other
than x, y, z*, and y*. So, |B| > 5.

We claim that N°(u) = {x2,y1}. Suppose not. By Lemma .10, |A| = 2, so at least
one vertex of {z* y*}, say, y* is not in A. By Lemma applied to yy*, we deduce
that u is non-adjacent to vertices in N°(y*). Thus deleting u, y, and collecting y, x, y*
exposes at least 6 vertices and so |B(G — {u,ys2,y,z,y*})| > |B| — 3+ 6. By applying
Lemma with X = {u,y.}, Y = {y,z,y*}, and s = 3, we obtain a contradiction. So
NO(U) = {ZL’Q, yl}

Since d(u) > 5 by Lemma u has at least one boundary neighbour z # z,y.
Let B(z, z) be the boundary path from x to z not containing y, and B(y, z) be the
boundary path from y to z not containing x. So B(z,z) and B(y, z) have only one
vertex in common, namely z. One of B(z, z), B(y, z) has no internal vertex in A. We
denote this path by P(e, z). We choose e = xy and z so that P(e, z) is shortest. Assume
P(e,z) = B(y, z). Let ¢ = yy*. Then ¢’ € E(B— A). Let y be the common neighbour
of y and y* and let 2z’ # y, y* be a boundary neighbour of y,. Then P(¢’, 2) is a proper
subpath of P(e, z), and hence is shorter. This contradicts our choice of e and z. O

8 The final contradiction

In this section we complete the proof of Theorem First we prove a lemma.

Lemma 8.1. If B = {a,d',v} and axyzd' is a path in G[N(v)] (see Figure[1), then
the following hold.

(a) = is non-adjacent to z.

(b) y is adjacent to neither a nor a'.

(¢) z is non-adjacent to a and x is non-adjacent to a'.
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Figure 11: An illustration of the proof of Lemma

(d) d(x),d(y),d(z) > 5.

(e) IN°({z,y, 2})] < 4.

(f) x and z have a common neighbour w ¢ {y,v}.
(9) N(z) NN(z) = {v,w,y}.

Proof. Suppose x is adjacent to z. As K5 € G, x is non-adjacent to a’ or z is non-
adjacent to a; by symmetry, assume x is non-adjacent to a’. Since d(y) > 4, T := xyzz
is a separating triangle. By Lemma B} |V (int(7))| > 3. Since |y, V(ext(T))| = 1,
Lemma 5.3 implies ||z, V(ext(T"))|| > 4, and so |[N°(z) NV (ext(T))| > 2.

If d(y) < 6, then deleting x, z and collecting v, y exposes at least 5 vertices from
B(int(T")) and N°(z) N V(ext(T)) and so |B(G — {x,z,v,y})] > |B| —1+ 5. By
applying Lemma[@9with X = {z, 2z}, Y = {v,y}, and s = 4, we obtain a contradiction.
Therefore, d(y) > 7. Then |[N°(y)NV (int(7"))| > 4 and so deleting z, y and collecting v
exposes at least 7 vertices, and |B(G—{z,y,v})| > |B|—1+7. By applying Lemma L9
with X = {z,y}, Y = {v}, and s = 6, we obtain a contradiction. So [(a)] holds.

@ Suppose y is adjacent to a. Then T := azya is a separating triangle, because
d(xz) > 4 and the other triangles incident with x are facial. As d(a) <5 by Lemma [6.1]
a has a unique neighbour w in int(7"). As d(w) > 4, T" := zwyz is a separating triangle.
Now ||w, V(ext(T"))|| = 1, and ||z, V(ext(T"))|| = 2, contrary to Lemma 5.3 Thus y is
non-adjacent to a. By symmetry, y is non-adjacent to a’. So @ holds.

Suppose that z is adjacent to a. By @ z is non-adjacent to x. As d(z) > 4 and
d(a) <5 by Lemmas [4.4] and [6.1] there is w € (N(a) N N(x) N N(2)) — {v}, and zawz,
wazw, aza'a are all facial triangles. (See Figure [[Il) By [(b)} y # w. Since d(y) > 4
by Lemmal[1.4] C' := zyzwz is a separating cycle of length 4. Let I = int(C'). Then V =
BUV(C)WV (), (i) ||z, V(ext(C))] =2, (ii) ly, V(ext(C))[| = 1, (ili) ||z, V(ext(C))[| = 3,
and (iv) |lw, V(ext(C))|| = 1.

If w is adjacent to y, then we apply Lemma with C, X = {w}, and Y = 0. As
y is adjacent to w, A" := {z,y, 2} is usable in G := int[C] — w, and by (i-ii), A’ is
collectable in G, := ext[C] —w. As |V(G;y)| = |B| = 3, 7(G2) = 0. This contradicts
Lemma 5.2

So using [(a)} C is chordless and z has at least one neighbour in int(C).

By Lemma[5.4] either |B(I)| > 4 or |[V(I)| < 2 and every vertex in I has degree 4 in
G. If [V(I)| <2 and every vertex in I has degree 4 in G, then V — {x} is A-good as we
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can collect V(I),y,w, z,v,ad’,a. Then f(G;A) > |V(G)| — 1 > 9(G), a contradiction.
Therefore |B(I)| > 4.

If there is an edge v’ € E(C) with |N({u,u'})NV (I)| > 4, then we apply Lemmal[5.2]
with C, X = {u,v'} and Y = 0. Now A" := V(C) — {u,u'} is usable in G; :=
int[C] — {u,u'}, A" is collectable in G = ext[C] — {u,u'}, |Bi| > 6, and By = B.
As G5 = B, 7(Gy) = 0. This contradicts Lemma [5.2l So |N({u,u'}) NV (I)| < 3 for
all edges uu’ € E(C) and in particular, ||u, V(I)|| < 3 for all v € V(C'). This implies
d(y) <6.

If IN{z,y,2})NV(I)| > 4, then we apply Lemma B2 with C, X = {z,z} and Y =
{v,y}. Then Y is collectable in G— X, A" := {w} is usable in G, := int[C]|—{z,y, 2}, A’
is collectable in G, := ext[C]—{x,y, 2}, |B1| > 5, and By = B—{v}. As (XUY)NB # 0,
this contradicts Lemma

Therefore |N({z,y,2}) NV (I)] < 3. Since |B(I)| > 4, there exists a vertex u in
B(I) — N({z,y, z}). Then w is the only neighbour of u in C.

Because G is a plane triangulation and d(u) > 4, w is adjacent to u. Since u
is non-adjacent to x, y, z, we deduce that B(I) N N(w) contains u and at least two
of the neighbours of u. Since ||w,V(I)|| < 3, we deduce that ||w,V(I)|| = 3. Since
IN({z,w}) N V(I)] < 3, all neighbours of z in I are adjacent to w. Similarly all
neighbours of z in I are adjacent to w. Since |B(I)| > 4, there is a vertex ¢ in B([)
non-adjacent to w. Then ¢ is non-adjacent to x and z. Therefore ¢ is adjacent to y. By
the same argument, ||y, V(I)|| = 3 and every neighbour of x or z in [ is adjacent to y.
Thus, every vertex in N({z,z}) NV (I) is adjacent to both y and w.

If ||z, V(I)|| > 2, then z, y, w, and their common neighbours in / together with a
are the branch vertices of a K3 s-subdivision, using the path avy. So G is nonplanar,
a contradiction. Thus, ||z, V(I)|| < 1 and similarly ||z, V([)|] < 1. This means that
d(x) <5 and B(int[C] — {z,y,w}) = B(I) U {z}.

We apply Lemma with C, X = {w,y} and Y = {z}. Then Y is collectable
in G — X and A" = {z} is usable in G; := int[C] — {w,z,y}, A’ is collectable in
G, = ext[C] — {w,z,y}, |Bi| = |B(I)U{z}| > 5, By = B, and G5 = B. Thus
7(G3) = 0 and this contradicts Lemma[5.2l Hence z is non-adjacent to a. By symmetry,
x is non-adjacent to a’. Thus holds.

[(d)] Suppose d(u) < 4 for some u € {x,y,z}. By Lemma L4} d(u) = 4. Let v’ :=y
if u # y, v := x otherwise. Then, deleting u' and collecting u, v exposes at least 2
vertices in N°({u,u'}) by [(a)] and and so |B(G — {u,u/,v})| > |B| — 1+ 2. By
applying Lemma 9 with X = {u'}, Y = {u, v}, and s = 1, we obtain a contradiction.
So @ holds.

[(e)] Suppose |N°({z,y,2})| > 5. If d(y) < 6, then deleting x, z and collecting v, y
exposes at least 5 vertices and so |B(G — {z,z,v,y})| > |B] — 1+ 5. By applying
Lemma L9 with X = {z,z2}, Y = {v,y}, and s = 4, we obtain a contradiction. Thus
d(y) > 7. Then either |[N°({z,y})—{z}| > bor |[N°({z,y})—{x}| > 5. We may assume
by symmetry that |[N°({z,y}) — {z}| > 5. Then deleting =, y and collecting v exposes
at least 6 vertices and so |B(G — {x,y,v})| > |B|—1+6. By applying Lemma [£.9] with
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Figure 12: Proof of Lemma RI|(f)] There are no vertices in int(C*).

X ={z,y}, Y = {v}, and s = 5, we obtain a contradiction. So [(e)] holds.
[(©)]Suppose N (z)NN(z) = {y,v}. By[(d)] d(z),d(z) > 5. By[(e)} IN°({z,z})—{y}| < 4.

By , z is non-adjacent to a and x is non-adjacent to a’ and by , x is non-adjacent to
z. So each of  and z have exactly two neighbours in int(axyza'a) and d(z) = d(z) = 5.
Let x1, x5 be those neighbours of x and 21, 25 be those two neighbours of z. We may
assume that x,x9y2125 is a path in G by swapping labels of x; and x5 and swapping
labels of z; and 2 if necessary. By [(e)| we have N°(y) — {z,z} C {1, 22,21, 22}. As
d(z3) > 4, y is not adjacent to x; because otherwise zyzoyx; is a separating triangle,
that will make a new interior neighbour of y by Lemma E1l(c), contrary to [(e)] By
symmetry, y is not adjacent to z. So x5 is adjacent to z; as G is a plane triangulation.
Therefore d(y) = 5.

Let C* := awx1w92122a’a. Suppose that w € N({x1,xs, 21, 22}) NV (int(C*)). Then
by symmetry, we may assume w is adjacent to x; or xs. Deleting x1, x5 and collecting
T, Yy, v, zZ exposes w, z1, z and so |B(G —{x1, o, x,y, v, 2})| > |B| — 14 3. By applying
Lemma with X = {x1,22}, Y = {x,y,v, 2z}, and s = 2, we obtain a contradiction.
Thus N({x1,xa, 21, 22}) NV (int(C*)) = O and therefore |G| = 10. See Figure

By Observation B.1] applied to int[C*|, there is a vertex w € {x,z2,y1,y2} having
degree at most 2 in int[C*]. By symmetry, we may assume that w = x; for some i €
{1,2}. Since d(x;) < 4, after deleting x3_;, we can collect z;, x, y, v, z, resulting in an
outerplanar graph, which can be collected by Observation Bl So, f(G; A) > 9 > 9(G),
a contradiction. So holds.

Suppose there is w’ € N(z) N N(z) — {v,w,y}. Let C := zyzwzx. We may assume
that w is chosen to maximize |V (int(C))|. So w’ is in V(int(C)) and together with [(a)]
we deduce that C' is an induced cycle.

We claim that y is non-adjacent to w’. Suppose not. As d(y) > 5 by [(d)] zw'yz
or zw'yz is a separating triangle. By symmetry, we may assume zw'yz is a separating
triangle. Thus |N({z,y}) N V(int(zw'yzx))| > 2 by Lemma [(.Il(d). Because G is a
plane triangulation, by [(e)] w is adjacent to w' and zww'z, zww'z, and yzw'y are facial
triangles. Thus ||y, V(ext(zw'yx))|| = ||w’, V (ext(zw'yz))|| = 2, contrary to Lemmal[5.3l
This proves the claim that y is non-adjacent to w’.
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Therefore |y, V(int(zyzw'z))|| = 2 by [(d)] and [(e)] Let y1, y2 be two neighbours of
y in int(zyzw'z) such that xy;ysz is a path in G. Because G is a plane triangulation,
by , w' is adjacent to both y; and y, and int(xw'zwz) has no vertex. Then C is a
separating induced cycle of length 4 and |B(int(C'))| = 3, contrary to Lemma 5.4l So

holds. O

Proof of Theorem[3.4. Let (G; A) be an extreme counterexample. Then G is a near
plane triangulation. Let B = B(G) and B = B(G). By Lemmas and [[2, |B| =3
and |A] = 2. Let A = {a,d'} and v € B— A. By Lemma 6.2 d(v) =5. As G is a
plane triangulation, the neighbours of v form a path azyza’. By Lemma x and
z have exactly one common neighbour w in G — v —y. Then C' := zyzwx is a cycle of
length 4. By symmetry and Lemma we may assume that d(x) > d(z) > 5. By

Lemma ,
(d(z) =3) + (d(z) =3) =1 < [N*({z,y,2})| < 4.

Therefore d(z) =5 and d(z) =5 or 6.

We claim that y is non-adjacent to w. Suppose that y is adjacent to w. By
Lemma , d(y) > 5 and therefore at least one of xywx and yzwy is a separating
triangle. If both of them are separating triangles, then |N({z,y}) NV (int(xywx))| > 2
and |N({y, z}) N V(int(yzwy))| > 2, by Lemma B.I(d). Therefore |N°({z,y,z})| >
242+ 1 =5, contrary to Lemma This means that exactly one of zywx and
yzwy is a separating triangle.

Suppose yzwy is a separating triangle. Then zywzx is a facial triangle, and z has
a neighbour in int(yzwy). As d(z) = 5, z has no neighbour in int(azwza'a). There-
fore, w is adjacent to o', and wza'w is a facial triangle. Thus ||y, V(ext(yzwy))| =
||z, V(ext(yzwy))|| = 2, contrary to Lemma 5.3l So yzwy is not a separating triangle.

Therefore zywz is a separating triangle. By Lemma [5.1(d), int(zxywx) has at least
two vertices in N°({z,y,2}). By Lemma BI(d)] 2 has a neighbour in int(azwza'a).
Then already we found four vertices in N°({z,y, z}). This means that z has no neigh-
bours in int(azwza'a) by LemmaBIf) Hence ||y, V(ext(zywz))|| = ||z, V (ext(zywz))||
2, contrary to Lemma [5.3l This completes the proof of the claim that y is non-adjacent
to w.

Therefore C' is chordless by Lemma R.fa)] By Lemma d(y) > 5. Thus C' is
a separating induced cycle of length 4. By Lemma [5.4] either |B(int(C))| > 4 or both
|V (int(C))| < 2 and every vertex in int(C') has degree 4 in G.

If |B(int(C))| > 4, then deleting w, y and collecting z, v, x exposes at least 4
vertices and so |B(G — {w,y, z,v,2})| = |B] — 1+ 4. By applying Lemma with
X =A{w,y}, Y ={z,v,2}, and s = 3, we obtain a contradiction.

Therefore 1 < |[V(int(C))| < 2 and every vertex in int(C') has degree 4 in G.
Deleting y and collecting all vertices in int(C') and z, v, x exposes w and so B(G —
({y,z,v,2} U V(int(C)))) > |B| — 1+ 1. By applying Lemma with X = {y},
Y = V(int(C)) U{z,v, 2}, and s = 0, we obtain a contradiction. O
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