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Abstract

Let G = (V (G), E(G)) be a multigraph with maximum degree ∆(G), chromatic
index χ′(G) and total chromatic number χ′′(G). The Total Coloring conjecture pro-
posed by Behzad and Vizing, independently, states that χ′′(G) ≤ ∆(G) + µ(G) + 1
for a multigraph G, where µ(G) is the multiplicity of G. Moreover, Goldberg con-
jectured that χ′′(G) = χ′(G) if χ′(G) ≥ ∆(G) + 3 and noticed the conjecture holds
when G is an edge-chromatic critical graph. By assuming the Goldberg-Seymour
conjecture, we show that χ′′(G) = χ′(G) if χ′(G) ≥ max{∆(G) + 2, |V (G)| + 1} in
this note. Consequently, χ′′(G) = χ′(G) if χ′(G) ≥ ∆(G) + 2 and G has a spanning
edge-chromatic critical subgraph.

Keywords. chromatic number, chromatic index, and total chromatic number.

1 Introduction

Graphs in this paper may contain multiple edges but no loops. We will generally follow
Stiebits et al. in [7] for notation and terminology. Let G = (V (G), E(G)) be a graph
with vertex set V (G) and edge set E(G). Denote by ∆(G) the maximum degree of G.
A vertex k-coloring of G is an assignment of k colors to the vertices of G such that no
two adjacent vertices receive the same color. The chromatic number of G, denoted by
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χ(G), is the minimum k ≥ 0 such that G admits a vertex k-coloring. A k-edge-coloring
of G is an assignment of k colors to the edges of G such that no two incident edges
receive the same color. The chromatic index of G, denoted by χ′(G), is the minimum
k ≥ 0 such that G admits a k-edge-coloring. A total k-coloring is an assignment of k
colors to the vertices and edges of G such that no two adjacent or incident elements of
V (G) ∪ E(G) receive the same color. The total chromatic number, denoted by χ′′(G), is
the minimum k ≥ 0 such that G admits a total k-coloring. Behzad (1965) [1] and Vizing
(1968) [8], independently, conjectured that χ′′(G) ≤ ∆(G) + µ(G) + 1 for any graph
G. Note that χ′(G) ≤ ∆(G) + µ(G). Thus a stronger version of the conjecture states
that χ′′(G) ≤ χ′(G) + 1 for any graph G. Clearly, χ′(G) ≥ ∆(G) and χ′′(G) ≥ χ′(G).
There are a huge number of graphs with χ′′(G) > χ′(G). For example, all simple graphs
with χ′(G) = ∆(G) have χ′′(G) > χ′(G). A graph G is called edge-chromatic critical if
χ′(H) < χ′(G) for every proper subgraph H . There are edge-chromatic critical graphs
with χ′′(G) > χ′(G). On the other hand, Goldberg [4] observed that if the Goldberg-
Seymour conjecture is true, then χ′(G) = χ′′(G) for every edge-chromatic critical graph
with χ′(G) ≥ ∆(G) + 2. Furthermore, he made the following conjecture.

Conjecture 1.1 (Goldberg, 1984). If χ′(G) ≥ ∆(G) + 3, then χ′′(G) = χ′(G).

It is worth mentioning that the above conjecture does not hold for all edge-chromatic
critical graphs. In fact all odd cycles with length not a multiple of 3 are edge chromatic
critical and χ′′(G) = χ′(G) + 1. As we know so far there is no progress toward the above
Goldberg’s conjecture. In this paper, we prove the following result and hope it will shed
some light on attacking this conjecture.

Theorem 1.1. If G is a graph satisfying χ′(G) ≥ max{∆(G) + 2, |V (G)| + 1}, then
χ′′(G) = χ′(G).

2 Preliminaries

Let G be a graph and ϕ be an edge k-coloring of G. Since each color class is a matching
of G, we have |E(H)| ≤ k⌊|V (H)|/2⌋ for any H ⊆ G. Therefore for an arbitrary graph
G, apart from the maximum degree there is another trivial lower bound for the chromatic
index:

χ′(G) ≥ ρ(G) = max

ß

2|E(H)|

|V (H)| − 1
: H ⊆ G, |V (H)| ≥ 3 odd

™

.

We call ρ(G) the density of G. In the 1970s, Goldberg [3], Gupta [5], and Seymour [6]
independently conjectured that for any graphG, if χ′(G) > ∆(G)+1 then χ′(G) = ⌈ρ(G)⌉.
This conjecture is known as the Goldberg-Seymoure conjecture. In joint work with Wenan
Zang, two authors of this paper, Guantao Chen and Guangming Jing [2] gave a proof of

2



the Goldberg-Seymour conjecture. We assume that the Goldberg-Seymour conjecture is
true in this paper.

Let G be a graph with χ′(G) = k and ϕ be a k-edge-coloring of G. We in this paper
always assume that the set of k colors is [k] = {1, 2, . . . , k}. For a vertex v ∈ V (G),
denote by ϕ(v) the set of colors assigned to edges incident with v and ϕ(v) the sets of
colors not-assigned to edges incident with v, i.e., ϕ(v) = [k]−ϕ(v). Let W be a vertex set
of G and ∂(W ) be the set of boundary edges of W , i.e., edges with exact one end in W . Let
ϕ(W ) = ∪v∈Wϕ(v) and ϕ(∂(W )) = ∪e∈∂(W )ϕ(e). We call W elementary if ϕ(u)∩ϕ(v) = ∅
for any distinct vertices u, v ∈ W , and closed if ϕ(W ) ∩ ϕ(∂(W )) = ∅. Moreover, we call
a closed set W strongly closed if additionally no two edges in ∂(W ) assigned the same
color. For a subgraph H of G, we call H elementary and closed (strongly closed) if V (H)
is elementary and closed (strongly closed), and denote ϕ(V (H)) and ∂(V (H)) by ϕ(H)
and ∂(H), respectively. In terms of critical subgraphs, the Goldberg-Seymour conjecture
can be stated as follows:

Theorem 2.1. [7] If G is a critical graph with χ′(G) ≥ ∆(G) + 2, then for any edge e
there is a (χ′(G)− 1)-edge-coloring ϕ such that G− e is elementary.

As a consequence of Theorems 1.1 and 2.1, we obtain the following result.

Corollary 2.2. Let G be a graph with χ′(G) ≥ ∆(G) + 2 and H be a critical edge-
chromatic subgraph with χ′(H) = χ′(G). If |V (H)| ≥ (|V (G)| − 2)/(χ′(G)− ∆(G) − 1),
then χ′′(G) = χ′(G).

Proof. Let G and H be defined as the above, e ∈ E(H) and ϕ be an edge (χ′(G) − 1)-
coloring of H − e. By Theorem 2.1, H − e is elementary under ϕ. Thus χ′(G) − 1 ≥∑

v∈V (H) |ϕ(v)|. Note that we have |ϕ(v)| = χ′(G)− 1− (dH(v)− 1) if v is an end-vertex

of the uncolored edge e, and |ϕ(v)| = χ′(G) − 1 − dH(v) otherwise. Hence we have the
following inequality:

χ′(G)− 1

≥2 +
∑

v∈V (H)

(χ′(G)− 1− dH(v))

≥(χ′(G)−∆(G)− 1)|V (H)|+ 2

≥|V (G)|.

By Theorem 1.1, we have χ′′(G) = χ′(G).

As a result of Corollary 2.2, we have χ′′(G) = χ′(G) if χ′(G) ≥ ∆(G) + 2 and G has a
spanning critical subgraph.
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Given a graph G, a subgraph H is called k-dense if |V (H)| is odd, |V (H)| ≥ 3 and
2|E(H)| = k(|V (H)| − 1). Moreover, H is called maximal k-dense if there does not exist
another k-dense subgraph H ′ containing H as a proper subgraph.

Lemma 2.3. Let G be a graph, ϕ be a χ′(G)-edge-coloring of G and H be a χ′(G)-dense
subgraph of G. Then H is elementary and strongly closed under ϕ.

Proof. Let G, H and ϕ be defined as in the lemma, and let k = χ′(G). Since |V (H)|
is odd, each color class contains at most 1

2
(|V (H)| − 1) edges. Note that 2|E(H)| =

k(|V (H)| − 1) as H is k-dense. Since there are k colors, each color class within H has
exactly 1

2
(|V (H)| − 1) edges. Therefore, for each color α ∈ ϕ(V (H)), there exists exactly

one vertex v ∈ V (H) such that α ∈ ϕ(v), and for each color β /∈ ϕ(V (H)), it is used for
exactly one edge in ∂(V (H)). Consequently, under the coloring ϕ, H is elementary since
ϕ(u) ∩ ϕ(v) = ∅ for two different vertices u, v ∈ V (H), closed since no color in ϕ(V (H))
appears on the boundary edges, and strongly closed since no color appears on two distinct
boundary edges.

In our proof we only use the elementary property in Lemma 2.3. We hope that in the
future by using the strongly closed property, one can extend the total coloring of some
χ′(G)-dense subgraph H of G to G as all the edges connecting H with the rest of G are
colored differently with colors in [k]− ϕ(V (H)).

3 Proof of Theorem 1.1

Let G be a graph with χ′(G) ≥ max{∆(G) + 2, |V (G)| + 1} and χ′(G) = k. The proof
of Theorem 1.1 is divided into three lemmas in this section. By Lemma 3.3, we see that
G is a subgraph of a k-dense graph G′ such that χ′(G) = χ′(G′) = k and ∆(G′) ≤ k − 1.
Then by Lemma 3.1, we observe that χ′′(G′) = k, so Theorem 1.1 holds. Lemma 3.2 is
used to prove Lemma 3.3.

Lemma 3.1. Let G be a k-dense graph. If χ′(G) = k and ∆(G) ≤ k−1, then χ′′(G) = k.

Proof. Let ϕ be an edge k-coloring of G. Since G is k-dense, by Lemma 2.3, G is elemen-
tary under ϕ. For each vertex v, since d(v) ≤ ∆(G) < k, ϕ(v) 6= ∅. We then assign v a
color from ϕ(v). Since G is elementary under ϕ, colors assigned to different vertices are
distinct. This vertex coloring plus the original edge coloring ϕ gives a total k-coloring of
G.

Lemma 3.2. Let G be a graph with χ′(G) = k ≥ ∆(G) + 1 and H1, H2 be two distinct
subgraphs of G. If both H1 and H2 are maximal k-dense, then V (H1) ∩ V (H2) = ∅.
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Proof. Assume on the contrary that V (H1) ∩ V (H2) 6= ∅. For each i = 1, 2, since Hi is
k-dense, we have |E(Hi)| = k(|V (Hi)| − 1)/2 and |V (Hi)| is odd. Let H = H1 ∩H2 and
H∗ = H1∪H2. By the maximality of H1 and H2, we have H1−H2 6= ∅ 6= H2−H1, which
in turn gives that H1 ( H∗ and H2 ( H∗. We consider two cases according to the parity
of |V (H)|.

Case 1: |V (H)| is odd.

Since E(H∗) = E(H1) ∪ E(H2) and E(H) = E(H1) ∩ E(H2), the following equality
holds.

|E(H∗)| = |E(H1)|+ |E(H2)| − |E(H)| = k(|V (H1)|+ |V (H2)| − 2)/2− |E(H)| (3.1)

On the other hand, since both H1 and H2 are maximal k-dense, H∗ is not k-dense, and
so the following holds.

|E(H∗)| < k(|V (H∗)| − 1)/2 = k(|V (H1)|+ |V (H2)| − |V (H)| − 1)/2 (3.2)

Combining 3.1 and 3.2, we have |E(H)| > k(|V (H)| − 1)/2. Hence
χ′(G) ≥ ρ(G) ≥ ρ(H) > k, giving a contradiction.

Case 2: |V (H)| is even.

Let H∗
1 = H1 − V (H) and H∗

2 = H2 − V (H). Clearly, both H∗
1 and H∗

2 have odd number
of vertices. Since both H∗

1 and H∗
2 are edge k-colorable, the following two inequalities

hold.

|E(H∗
1 )| ≤ k(|V (H1)| − |V (H)| − 1)/2

|E(H∗
1 )| ≤ k(|V (H2)| − |V (H)| − 1)/2.

(3.3)

Since both H1 and H2 are k-dense, we have the following equalities.

k(|V (H1)| − 1)/2 = |E(H1)| = |E(H)|+ |E(H∗
1 )|+ |E(H∗

1 , H)|

k(|V (H2)| − 1)/2 = |E(H2)| = |E(H)|+ |E(H∗
2 )|+ |E(H∗

2 , H)|
(3.4)

where E(X, Y ) denotes the set of edges between X and Y . The combination of 3.3
and 3.4 gives the following.

|E(H∗
1 , H)|+ |E(H)| ≥ k · |V (H)|/2

|E(H∗
2 , H)|+ |E(H)| ≥ k · |V (H)|/2

(3.5)

Therefore
∑

x∈V (H) dG(x) = |E(H∗
1 , H)|+ |E(H∗

2 , H)|+ 2|E(H)| ≥ k|V (H)|, we have

reached a contradiction to ∆(G) < k.
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Lemma 3.3. If G is a graph with χ′(G) = k ≥ max{∆(G) + 2, |V (G)| + 1}, then there
exists a k-dense graph G′ containing G as a subgraph such that χ′(G′) = k and ∆(G′) ≤
k − 1.

Proof. Let G and k be defined as stated in the lemma. Notice that k = χ′(G) ≥ ρ(G).
Let |V (G)| = n. If n is even, we add an isolated vertex to G. So we may assume that
n ≤ k and n is odd. Let G′ be a spanning supgraph of G with maximum number of edges
such that χ′(G′) = k and ∆(G′) ≤ k − 1. Since each color class is a matching of G, we
have ρ(G′) ≤ k and |E(G′)| ≤ k(n−1)/2. In the remainder of the proof, we will show that
G′ itself is k-dense, i.e., |E(G′)| = k(n − 1)/2. Let U = {v ∈ V (G′) : dG′(v) < k − 1}.
We have the following claim for U .

Claim 1. If |U | ≥ 2, then there is a k-dense subgraph H of G′ such that U ⊆ V (H).

Let u, v be two vertices in U . We then add a new edge e between u and v to G′ and
denote the resulted graph by G′′. Note that ∆(G′′) ≤ k − 1. Since |E(G′)| is maximum
under the conditions that χ′(G′) = k and ∆(G′) ≤ k − 1, we must have χ′(G′′) ≥ k + 1.
By the Goldberg-Seymour conjecture, we have ⌈ρ(G′′)⌉ = k + 1, and therefore G′′

contains a subgraph H with 2|E(H)| > k(|V (H)| − 1) and |V (H)| odd. Since
E(H)−E(G′) ⊆ {e} and ρ(G′) ≤ k < ρ(H), we have e ∈ E(H) and
2|E(H − e)| = k(|V (H)| − 1). So, H − e is a k-dense subgraph of G′ containing both u
and v. Since u and v are any two vertices in U , by Lemma 3.2, there must exists a
unique maximal k-dense subgraph of G′ containing all vertices of U . Thus we have as
claimed.

By Claim 1, we then have the following four cases according to the size of |U |: U = ∅;
U = {u} is a singleton and dG′(u) = k − 2; U = {u} is a singleton and dG′(u) ≤ k − 3;
and there is a k-dense subgraph H of G′ such that U ⊆ V (H).

Case 1. U = ∅.

In this case, we have dG′(v) = k − 1 for every v ∈ V (G′). Since n ≤ k, we have

χ′(G′) ≥ ρ(G′) ≥ 2|E(G′)|
|V (G′)|−1

= (k−1)n
n−1

≥ (k−1)k
k−1

= k and the equality holds only when n = k.

Since χ′(G) = k, we have that G′ is k-dense.

Case 2. U = {u} is a singleton and dG′(u) = k − 2.

In this case, we have we have dG′(v) = k − 1 for every v ∈ V (G′) with v 6= u. By
counting the total degree, we have the following equality:

2|E(G′)| =
∑

v∈V (G′)

dG′(v) = (k − 1)(n− 1) + k − 2 = k(n− 1) + k − 1− n.
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If n < k, then we have 2|E(G′)| ≥ k(n− 1). Thus G′ is k-dense since
|E(G′)| ≤ k(n− 1)/2. If n = k, then k is odd and the total degree∑

v∈V (G′) dG′(v) = (k − 1)(n− 1) + k − 2 is odd, which contradicts the total degree being
an even number.

Case 3. There is a k-dense subgraph H of G′ such that U ⊆ V (H).

In this case we may assume H is a maximal k-dense subgraph of G′. If H = G′, then G′

is k-dense and we are done. Thus we may assume that V (G)− V (H) 6= ∅. Let F be the
subgraph of G′ induced by V (G)− V (H). In this case, every vertex outside of H has
degree k − 1 and |E(H)| = k(|V (H)| − 1)/2. Counting edges in H and F , and edges
between H and F , we have the following inequalities:

k(|V (H)| − 1) + (k − 1)|V (F )|+ |E(H,F )|

=2|E(H)|+ 2|E(H,G′ −H)|+ 2|E(F )| = 2|E(G′)|

<2 · k(|V (G′)| − 1)/2 = k(|V (G′)| − 1) = k(|V (H)| − 1) + k|V (F )|,

where |E(H,F )| denotes the number of edges between H and F in G. Hence,
|V (F )| > |E(H,F )|. We also notice that since all vertices in F have degree k − 1 > ∆ in
G′, each vertex in F is incident to an edge not in G. Thus, there must be an edge
e1 ∈ E(F )− E(G) as |V (F )| > |E(H,F )|. Let the two ends of e1 be x and y. By the
Cases 1 and 2, we may assume that there exists a vertex v ∈ V (H) such that
dG′(v) ≤ k − 3 or there exist two distinct vertices v, v′ ∈ V (H) ∩ U . Let
G′′ = G′ − e1 + e2 + e3, where in the former case e2, e3 are edges between v and x, y,
respectively; and in the later case, e2 ∈ E(v, x) and e3 ∈ E(v′, y). Clearly,
|E(G′′)| = |E(G′)|+ 1 and ∆(G′′) ≤ k − 1. Thus we have χ′(G′′) = k + 1 by the
maximality of |E(G′)|.

Now by the Goldberg-Seymour conjecture, there exists a subgraph H ′ of G′′ such that
|V (H ′)| is odd and 2|E(H ′)| > k(|V (H ′)| − 1). If |{e2, e3} ∩ E(H ′)| = 1, assume without
loss of generality, e2 ∈ E(H ′) and e3 /∈ E(H ′). Since ρ(G′) ≤ k, we have that H ′ − e2 is a
k-dense subgraph of G′. Since x /∈ H , x ∈ H ′ and v ∈ H ′, we see that H and another
maximal k-dense subgraph of G′ containing H ′ − e2 having nonempty intersection,
giving a contradiction to Lemma 3.2. If e2, e3 ∈ E(H ′), we similarly see that H and
another maximal k-dense subgraph of G′ containing H ′ − e2 − e3 + e1 having nonempty
intersection, giving a contradiction to Lemma 3.2. Since all possibilities reach
contradictions, we must have H = G′ and G′ is k-dense.

Case 4. U = {u} is a singleton and dG′(u) ≤ k − 3.

Let F = G′ − u. We first assume that E(F )− E(G) = ∅. Since every vertex v in V (G′)
other than u has degree k − 1 > ∆(G), v must have been joined by an edge in
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E(G′)− E(G) to u. Thus dG′(u) ≥ n− 1. By counting the total degree, we have the
following:

2|E(G′)| = (k − 1)(n− 1) + dG′(u) = k(n− 1) + dG′(u)− (n− 1) ≥ k(n− 1)

Since χ′(G′) = k, we have 2|E(G′)| = k(n− 1), so G′ is k-dense.

We then assume that there is an edge e ∈ E(F )−E(G). Let the two ends of e be x and
y, and let G′′ = G′ − e+ e2 + e3, where e2 and e3 are two edges between u and x and
between u and y, respectively. Clearly, |E(G′′)| = |E(G′)|+ 1 and ∆(G′′) = k − 1. Thus
we have χ′(G′′) = k + 1 by the maximality of |E(G′)|. By the Goldberg-Seymour
conjecture, there exists a subgraph H ′ of G′′ such that |V (H ′)| is odd and
2|E(H ′)| > k(|V (H ′)| − 1). Similarly as before, we must have that H ′ − e2 − e3 + e is
k-dense subgraph of G′ containing u. Since u is the only vertex in U , we are done by
Case 3.
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