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STRONG COLORING 2-REGULAR GRAPHS: CYCLE

RESTRICTIONS AND PARTIAL COLORINGS

JESSICA MCDONALD AND GREGORY J. PULEO

Abstract. Let H be a graph with ∆(H) ≤ 2, and let G be obtained from
H by gluing in vertex-disjoint copies of K4. We prove that if H contains at
most one odd cycle of length exceeding 3, or if H contains at most 3 triangles,
then χ(G) ≤ 4. This proves the Strong Coloring Conjecture for such graphs
H. For graphs H with ∆ = 2 that are not covered by our theorem, we prove
an approximation result towards the conjecture.

1. Introduction

In this paper all graphs are assumed to be simple, unless explicitly stated oth-
erwise. The reader is referred to [18] for standard terminology. One non-standard
term we use is the idea of gluing one graph onto another. Given vertex-disjoint
graphs G1, . . . , Gq, H with |

⋃

1≤i≤q V (G1)| ≤ |V (H)|, we glue G1, . . . , Gq onto

H by defining an injective function f : ∪1≤i≤qV (Gi) → V (H), and then form-
ing a new graph G with V (G) = V (H) and E(G) = E(H) ∪

⋃

1≤i≤q Ei, where

Ei = {f(a)f(b) : ab ∈ E(Gi), f(a)f(b) 6∈ E(H)}. The graph G is said to have been
obtained from H by gluing in G1, . . . , Gq.

In this paper we are primarily concerned with the chromatic number of a graph
obtained by gluing vertex-disjoint copies of K4 onto a 2-regular graph. To contex-
tualize this, consider the following general question.

Question 1.1. Suppose that G is obtained from a 2-regular graph H by gluing in
some number of vertex-disjoint copies of Kt. Is χ(G) ≤ t?

When H is a cycle and t = 3, Question 1.1 is the famous “cycle plus trian-
gles problem” originating in the work of Du, Hsu, and Hwang [4], popularized by
Erdős, and resolved affirmatively by Fleischner and Stiebitz [8] (see [8] for more
on the history of this particular problem). The result for t = 3 does not hold for
all 2-regular H ; in particular a C4 component in H can allow K4 to be created
after gluing in triangles, and Fleischner and Stiebitz [7] found an infinite family of
counterexamples without such C4 components as well, answering a further question
of Erdős [5].

Haxell [12] has answered Question 1.1 affirmatively whenever t ≥ 5 (in fact she
proved something stronger, as we shall discuss shortly). Question 1.1 remains open
for t = 4 however. There is an easy affirmative argument for t = 4 when H consists
only of cycles of length 3 or 4, and the problem can also be resolved positively
when H has girth at least 4 (see Pei [17]). In the present paper we step into the
intermediate ground, where H has both triangles and longer odd cycles, and prove
the following result.
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Theorem 1.2. Let H be a graph with ∆(H) ≤ 2, and let G be obtained from H
by gluing in vertex-disjoint copies of K4. If H contains at most one odd cycle of
length exceeding 3, or if H contains at most 3 triangles, then χ(G) ≤ 4.

We also prove the following approximation result for graphs H not dealt with
by the above theorem.

Theorem 1.3. Let H be a graph with ∆(H) ≤ 2, and let G be obtained from H
by gluing in vertex-disjoint copies of K4. Then there is a set of vertices Z with
|Z| ≤ |V (G)| /22 such that χ(G− Z) ≤ 4.

Theorem 1.2 actually proves the Strong Coloring Conjecture for graphs H of the
sort we describe in the theorem. Stating this conjecture in full generality requires
some technical setup which we shall now begin to give.

Given an n-vertex graph H where n is divisible by t, we say that H is strongly
t-colorable if, for any partition of V (H) into parts of size t, H has a t-coloring
where each color class is a transversal of the partition (i.e. where each color class
contains exactly one vertex from each part of the partition). In the case where n is
not divisible by t, we say that H is strongly t-colorable if H ′ is strongly t-colorable,
where H ′ is obtained from H by adding t⌈n

t ⌉ − n isolated vertices (the minimum
amount to ensure divisibility by t). The notion of strong coloring was introduced
independently by Alon [3] and Fellows [6] about thirty years ago.

In the definition of strong coloring, instead of requesting that each color class is
a transversal of the partition, we can equivalently ask for a copy of Kt to be glued
to each part of the partition, and then ask for the resulting graph to be t-colorable.
Hence, given an n-vertex graph H with t | n, Question 1.1 is exactly asking whether
or notH is strongly t-colorable. However, if t 6 | n, an affirmative answer to Question
1.1 may not imply strong t-colorability. In particular, Fleischner and Stiebitz’s [8]
result implies that cycles with length divisible by 3 are strongly 3-colorable, but
it is not true that all cycles have this property (since by adding K3’s to C4 plus
two necessary isolates we can create K4). On the other hand, since we only require
∆(H) ≤ 2 in Theorem 1.2, we get the following as an immediate corollary.

Corollary 1.4. Let H be a graph with ∆(H) ≤ 2 which either contains at most
one odd cycle of length exceeding 3, or contains at most 3 triangles. Then H is
strongly 4-colorable.

It is not obvious that a strongly t-colorable graph is necessarily strongly (t+1)-
colorable, but in fact this can be shown using a short argument due to Fellows [6].
Given this, it makes sense to define the strong chromatic number of H , sχ(H), as
the minimum t such that H is strongly t-colorable. Note that for any graph H ,
sχ(H) ≥ ∆ + 1, since if a clique was added to the neighborhood of a ∆-vertex,
a copy of K∆+1 would be created in the new graph, and obviously that is not ∆-
colorable. The previously-alluded to result by Haxell [12] says that for any graphH ,
sχ(H) ≤ 3∆−1. When ∆ = 2 this says that sχ(H) ≤ 5 (hence answering Question
1.1 affirmatively for t ≥ 5). Fleischner and Stiebitz [7] have given, for each ∆, an
example of a ∆-regular graph H for which sχ(H) ≥ 2∆, and hence the following
conjecture would be best possible if it is true. (Attribution for this conjecture is
somewhat tricky – according to [1], it may have first appeared explicitly in a 2007
paper by Aharoni, Berger and Ziv [2] after being “folklore” for a while, although it
could also be considered implicit in the 2004 paper of Haxell [12].)
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Conjecture 1.5 (Strong Coloring Conjecture). For any graph H, sχ(H) ≤ 2∆(H).

The Strong Coloring Conjecture is trivial for ∆ = 1, where it asks essentially for
the union of two matchings to be bipartite. The conjecture remains open for all
∆ ≥ 2, but several partial results are known for general ∆. Haxell [13] proved that
sχ(H) ≤ (114 +ε)∆(H) when ∆(H) is sufficiently large, improving her general upper
bound of sχ(H) ≤ 3∆(H) − 1. Aharoni, Berger and Ziv [2] proved a fractional-
coloring version of the conjecture. Lo and Sanhueza-Matamala [16] proved the fol-
lowing asymptotic version of the conjecture: for any constants c, ǫ > 0, there exists
an integer n0 such that sχ(H) ≤ (2+ ǫ)∆(H) for every graph H with |V (H)| ≥ n0

and ∆(H) ≥ cn.
In contrast to many of the above results, which weaken the conclusion of Con-

jecture 1.5 in some form or another, our Corollary 1.4 proves the exact conclusion
of Conjecture 1.5 in several new cases. Corollary 1.4 improves previous work by
Fleischner and Stiebitz [7] who (separately from their cycle + triangles solution)
verified the conjecture for all cycles H . Our result also strengthens the previously
discussed results of Pei [17], who verified Conjecture 1.5 when H consists only of
cycles of length 3 or 4, or has girth at least 4.

If H is a graph and V1, . . . , Vn are disjoint subsets of V (H), an independent set
of representatives (ISR) of (V1, . . . , Vn) is an independent set R containing exactly
one vertex from each set Vi. Hence in the definition of strongly t-colorable, we may
replace “H has a t-coloring where each color class is a transversal of the partition”
with “H has t disjoint ISRs of the partition”. The following theorem of Haxell [11]
(proved for a general ∆ but stated here for the case ∆ = 2) guarantees the existence
of one ISR (where Conjecture 1.5 asks for four).

Theorem 1.6 (Haxell [11]). If H is a graph with ∆(H) ≤ 2 and V1, . . . , Vn are
disjoint subsets of V (H) with each |Vi| ≥ 4, then (V1, . . . , Vn) has an ISR.

We shall use Theorem 1.6 in our proof of Theorem 1.3. It is worth noting that
the following extension of Theorem 1.6 serves as another approximation towards
Conjecture 1.4 when ∆ = 2.

Theorem 1.7. If H is a graph with ∆(H) ≤ 2 and V1, . . . , Vn are disjoint subsets
of V (H) with each |Vi| = 4, then (V1, . . . , Vn) has two disjoint ISRs.

When ∆(H) ≥ 3, Theorem 1.7 can de deduced from the work of Aharoni, Berger,
and Sprüssel [1] as a consequence of a more general result about matroids. Haxell
observed (personal communication) that the ∆(H) = 2 case follows quickly from a
strengthened version of Theorem 1.6, which uses topological tools. It is also possible
to give an elementary algorithmic proof of Theorem 1.7, using a lemma of Haxell,
Szabó, and Tardos (Lemma 2.6 of [14]), and we include this as an appendix to the
present paper.

The rest of the paper is organized as follows. In Section 2 we show how to 4-
color a large fraction of the vertices when H has few long odd cycles. In Section 3
we prove two lemmas about ISRs that are needed for Section 4, in which we show
how to 4-color a large fraction of the vertices when H has few triangles. In Sec-
tion 5 we combine results from Sections 2 and 4 to establish both Theorem 1.2 and
Theorem 1.3.

2. Graphs with few long odd cycles

Our goal in this section is to prove the following theorem.
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Theorem 2.1. Let H be a graph with ∆(H) ≤ 2, and let G be a graph obtained
from H by gluing in vertex-disjoint copies of K4. Let C be the set of odd cycles in
H with length exceeding 3, and let V (C) be the set of vertices contained in these
cycles. Then there is a set of vertices Z ⊆ V (C) with |Z| ≤ |C| /2 such that G− Z
is 4-colorable and Z contains at most one vertex from each cycle of C. It also holds
that |V (G) − Z| ≥ (9/10) |V (G)|.

We will need the following lemma about equitable coloring in our proof of The-
orem 2.1.

Lemma 2.2 (Hajnal–Szemerédi [9]). If G is a graph and k > ∆(G), then G has a
proper k-coloring with color classes A1, . . . , Ak such that |Ai −Aj | ≤ 1 for all i, j.

Proof of Theorem 2.1. We start by showing that it suffices to prove the result for
problem instances that satisfy the following additional assumptions:

(1) The vertices of each added copy of K4 form an independent set in H ,
(2) H is 2-regular, and
(3) The added copies of K4 partition V (H).

Let H be any graph with ∆(H) ≤ 2 and let Y1, . . . , Yq be the vertex sets of added
copies of K4. We will modify H and Y1, . . . , Yq to guarantee each of the properties
(1)–(3) in turn, taking care not to invalidate earlier properties when establishing
later ones, and taking care not to increase the size of C. At each step, we will
observe that a 4-coloring of the modified graph implies 4-colorability of the original
G.

(1) Let H1 consist of the graphH where all edges within each Yj have been deleted,
and let G1 consist ofH1 with copies ofK4 glued in on the vertex sets Y1, . . . , Yj .
The only edges deleted in passing from H to H1 are restored when we glue in
the K4’s, so G1 = G. Clearly, deleting edges cannot increase the size of C.

(2) If H1 is 2-regular then let H2 = H1. Otherwise, we form H2 from H1 by adding
new vertices and edges as follows. Let P1, . . . , Pt be the path components of
H1. For each path component Pi, if |V (Pi)| is odd then we add one new vertex
vi adjacent to the endpoints of Pi, while if |V (Pi)| is even then we add two new
adjacent vertices vi, wi with vi adjacent to one endpoint of Pi and wi adjacent
to the other. Let G2 consist of H2 with copies of K4 glued in on the sets
Y1, . . . , Yq. We see that G2 contains G1 as an induced subgraph (since no new
edges are added within V (H1)), hence 4-colorability of G2 implies 4-colorability
of G1. Furthermore, since all Yj ⊆ V (H1), we see that Property (1) still holds.
Since all new cycles created in this manner are even cycles, |C| has not increased
in this step.

(3) Let J be the subgraph of H2 induced by the vertices not covered by Y1, . . . , Yq.
Let J ′ be the disjoint union of J and t copies of K3, where t is chosen so that
J ′ has at least 12 vertices and |V (J ′)| is divisible by 4. (Since 3 and 4 are
coprime, such a t can always be found.)

Let k = |V (J ′)| /4. By our choice of t, we see that k is an integer with
k ≥ 3 > ∆(J ′). Hence, by Lemma 2.2, we see that J ′ has a k-coloring with
color classes A1, . . . , Ak such that |Ai −Aj | ≤ 1. Since |V (J ′)| = 4k, this
implies that all |Ai| = |V (J ′)| /k = 4. These color classes are independent sets
that we will be able to glue new copies of K4 onto.

Let H3 be the disjoint union of H2 and t copies of K3 (with the latter having
the same vertex set as those we added in passing from J to J ′). Let Y ′

1 , . . . , Y
′
q′
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consist of the original sets Y1, . . . , Yq together with the color classes A1, . . . , Ak

from the coloring of J ′. Let G3 = H3 with copies of K4 glued in on the sets
Y ′
1 , . . . , Y

′
q′ . As G3 contains G2 as an induced subgraph, 4-colorability of G3

implies 4-colorability of G2 and hence G.
Now Y ′

1 , . . . , Y
′
q′ partition V (H3), and by our construction, each Y ′

j is an

independent set in H3. In passing from H2 to H3 we have maintained 2-
regularity, so Properties (1) and (2) still hold. As we have only added triangles
in passing from H2 to H3, we also see that we have not increased |C|.

For the remainder of this proof, we will assume that Properties (1)–(3) hold. We
will view the edges of G (and its subgraphs) as being colored red and blue: all edges
coming from the 2-regular graph H will be colored red and all edges of the added
copies of K4 will be colored blue. (Obviously this is not a proper edge-coloring,
as in G every vertex is incident to two red edges and three blue edges. However,
Property (1) does ensure that there are no red and blue edges in parallel).

Let C0 be the set of all odd cycles in H (including triangles), and let V (C0) be the
set of vertices in these odd cycles. Observe that every component of H − V (C0) is
an even cycle, hence H has a matching (of red edges) that saturates V (H)−V (C0).
Fix such a matching M0.

A transversal of C0 is a vertex set T ⊆ V (G) containing exactly one vertex from
each cycle in C0. We will use the word transversal as shorthand for “transversal of
C0”. Given a transversal T and a vertex t ∈ T , we write C(t) for the cycle of C0
containing t. Observe that for any transversal T , there is a unique matching of H
that extends M0 and saturates V (G)− T . Let M(T ) denote this unique matching.
(While the base matching M0 is arbitrary, we use the same choice of M0 for all
transversals T when defining M(T ).)

Let J be an arbitrary perfect matching of the blue edges in G, and for any
transversal T , let B(T ) = M(T ) ∪ J , considered as a subgraph of G. (As before,
while the choice of J is arbitrary, we use the same J for all T .) Inheriting the edge
coloring from G, we observe that, within B(T ), every vertex v is incident to exactly
one blue edge and either exactly one red edge (if v /∈ T ) or to zero red edges (if
v ∈ T ). In particular, B(T ) is bipartite, and its components consist of even cycles
together with |C0| /2 paths whose endpoints are vertices in T .

Now, among all the possible transversals T , we will choose an “optimal” transver-
sal T ∗. Our selection proceeds in two stages. First, among all transversals T , choose
T1 to minimize the sum of the lengths of all path components in B(T1). Call any
transversal achieving this minimum a semi-optimal transversal.

Claim 1. Let T1 be a semi-optimal transversal, let t1 ∈ T1, and let Q be the
component of B(T1) containing t1. Then there is at least one vertex in the odd
H-cycle C(t1) that is not contained in Q.

Proof of Claim. Let C1 = C(t1), and suppose to the contrary that every vertex of
C1 lies in Q. Observe that Q is a path with t1 as one endpoint and another vertex
of T1 as the other endpoint. Let t2 be the other endpoint of Q, so that Q is a
(t1, t2)-path.

Let t′ be the last vertex of C1 along the (t1, t2)-path Q. Observe that since Q
contains every vertex of C1, we have t′ 6= t1. Since t′ is the last vertex of C1 along
this path, the (t′, t2)-subpath does not contain any edges from C1.
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(a)

t1 t++
1t+1

t2

(b)

t1 t+1t++
1

t2

Figure 1. Two possible configurations of the component Q of
B(T ∗) containing t1. Wavy lines denote blue edges in B(T ∗); solid
lines denote red edges in B(T ∗); dashed edges are red edges con-
tained in H −M(T ).

Let T ′ be the transversal obtained from T1 by replacing t1 with t′. We claim
that the path-components of B(T ′) have a smaller sum of lengths than the path-
components of B(T1), contradicting the choice of T1.

First observe that the only edges that lie in B(T ′) but not in B(T1), or vice
versa, are edges from the cycle C1, since this is the only cycle whose transversal-
representative has changed. Since (by hypothesis) every vertex of C1 lies in Q,
for every vertex v not in Q the set of edges incident to v in B(T1) is identical to
the set of edges incident to v in B(T ′). In particular, for every t ∈ T − {t1, t2},
the component containing t in B(T1) is identical to the component containing t in
B(T ′).

Since the (t′, t2)-subpath of Q did not use any edges of C1, we see that it is
still present in B(T ′). However, the length of the (t′, t2)-path component in B(T ′)
is strictly less than the length of the (t1, t2)-path component in B(T1), with all
other path components having the same length in both graphs. This contradicts
the choice of T1 and completes the proof of the claim. �

Next, we refine our choice among the semi-optimal transversals. To define our
optimality criterion, first fix a cyclic orientation of each cycle in C0. For each
v ∈ V (C0), let v+ be the successor of v in this cyclic orientation, and for v, w in
the same cycle, let d+(v, w) be the “directed H-distance” from v to w along the
directed H-edges.

Claim 2. Let T1 be a semi-optimal transversal, let t1 ∈ T1, and let Q be the
component of B(T1) containing t1. If t+1 ∈ Q, then the unique (t1, t

+
1 )-path in Q

starts with a blue edge and ends with a red edge.

Proof of Claim. Since t1 has no incident red edges in B(T1), the only other pos-
sibility is that the (t1, t

+
1 )-path starts and ends with a blue edge, as shown in

Figure 1(a). As t+1 is covered by M(T1) and therefore has an incident red edge in
B(T1), we see that the vertex following t+1 in Q is its other H-neighbor, namely
t++
1 . We know that the other endpoint of Q is another vertex of T1; let t2 ∈ T1 be
the other endpoint of Q.

Let t′ = t++
1 and let T ′ be the transversal obtained from T1 by replacing t1 with

t′. As shown in Figure 2 (see also Figure 1(a)), the only effect of this replacement on
the matching M(T1) is to replace the matching-edge t+1 t

++
1 with the matching-edge
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t1

t+1

t++
1

t1

t+1

t++
1

=⇒

Figure 2. Effect of replacing t1 with t′ = t++
1 on the matching

M(T ′). Thick edges are edges in M(T ∗) or M(T ′); circled vertices
are vertices in the transversal.

t1t
+
1 . This transforms the component Q into an (even) cycle containing t1 and t+1

and a shorter (t++
1 , t2)-path and has no effect on the other components of B(T1).

Since the sum of the lengths of the path components in B(T ′) is shorter than the
sum for B(T1), this contradicts the choice of T1 as semi-optimal. �

For a transversal T and a vertex t ∈ T , let Q denote the component of B(T )
containing t (note that Q is a path). Say t ∈ T is bad if t+ ∈ Q. The cost of a bad
vertex t ∈ T is the minimum directed H-distance d+(t, v) for v ∈ V (C(t))− V (Q),
and the cost of a non-bad vertex t ∈ T is 0. (Note that for semioptimal T , the set
C(t)−Q is nonempty by Claim 1, hence the cost of a bad vertex is always finite.)

Define the cost of a semi-optimal transversal T to be the sum of the costs of the
vertices in T . Among all semi-optimal transversals, choose T ∗ to have minimum
cost.

Claim 3. T ∗ has no bad vertices.

Proof of Claim. Suppose to the contrary that t1 ∈ T ∗ is a bad vertex, and let Q
be the component of B(T ∗) containing t1. We know that Q is a path whose other
endpoint is another vertex of T ∗; let t2 ∈ T ∗ be the other endpoint of Q. Let v
be the vertex of C(t1)−Q minimizing d+(t1, v), so that d+(t1, v) is the cost of the
bad vertex t1.

Since t1 is bad, we have t+1 ∈ Q. By Claim 2, the unique (t1, t
+
1 )-path in Q starts

with a blue edge and ends with a red edge, as shown in Figure 1(b). In particular,
the vertex preceding t+1 in this path is the other H-neighbor of t+1 , namely t++

1 .
Thus, d+(t1, v) ≥ 3.

Let t′ = t++
1 and let T ′ be the transversal obtained from T ∗ by replacing t1

with t′. As before, the only effect of this replacement on the matching M(T ∗) is
to replace the matching-edge t+1 t

++
1 with the matching-edge t1t

+
1 ; see Figure 2.

In particular, this replacement does not alter the length of the path-component
containing t for any t ∈ T ∗ − {t1, t2}. Furthermore, after removing the edge t+1 t

′

and adding the edge t+1 t1, we see that B(T ′) has a (t′, t2)-path using exactly the
vertices of Q, obtained by starting at t′, traversing Q backwards until t1, taking the
new edge t1t

+
1 , and then completing the rest of the path from t+1 to t2 (see Figure

1(b)). Hence, the sum of the lengths of the path-components in B(T ′) is the same
as the sum of the lengths in B(T ∗), that is, T ′ is also semi-optimal.

Observe that since we replaced t1 with t′ = t++
1 and since d+(t1, v) ≥ 3, we

have d+(t′, v) ≤ d+(t1, v)− 2. Thus, the cost of t′ is strictly less than the cost of t1
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(regardless of whether t′ is bad). Furthermore, we have not altered any components
of B(T ∗) except for the component Q, so every other vertex of T ′ has the same
cost it did in T ∗. It follows that T ′ is a semi-optimal transversal having lower cost
than T ∗, contradicting the choice of T ∗. �

Now we use the optimal transversal T ∗ to produce the desired coloring. First
we will randomly produce a 2-coloring of T ∗ using the colors black and white,
then we will use the black-and-white coloring to 4-color most of G. Each compo-
nent of B(T ∗) is bipartite. Obtain a random black-and-white coloring of B(T ∗) by
randomly choosing one of the two possible black-and-white colorings for each com-
ponent independently and with equal probability. Let φ be the resulting coloring.

Claim 4. For any vertex t ∈ T ∗, the probability that φ(T ) = φ(t+) is equal to 1
2 .

Proof of Claim. By the previous claim, t is not a bad vertex, so t and t+ are in
different components of B(T ∗). As the colorings on these components are chosen
independently, the claim follows. �

Now we restrict our attention to the vertices of T ∗ that lie in C, disregarding
the vertices of T ∗ that lie in triangles. Say that a vertex t ∈ T ∗ ∩ V (C) is unhappy
if φ(t) = φ(t+). By Claim 4 and by linearity of expectation, the expected number
of unhappy T ∗-vertices in a random coloring is at most |T ∗ ∩ V (C)| /2 = |C| /2.
Hence, there is a coloring φ∗ with at most |C| /2 unhappy vertices in T ∗ ∩ V (C).

Let Z be the set of unhappy vertices for φ∗. Let W1 be the set of vertices colored
black in G−Z, let W2 be the set of vertices colored white in G−Z, and let Gi be
the induced subgraph G[Wi] for i ∈ {1, 2}.

Claim 5. Let i ∈ {1, 2}. Every vertex of Gi is incident, within Gi, to at most one
red edge and to at most one blue edge.

Proof of Claim. First suppose that some w ∈ V (Gi) were incident with two blue
edges within Gi, say wx and wy. So, w, x, y all received the same color under φ∗.
Since B(T ∗) is properly 2-colored by φ∗, neither of wx or wy is in B(T ∗). Since
w, x, y must all be part of the same (blue) K4, and B(T ∗) contains a perfect (blue)
matching of this K4, we conclude that xy is in B(T ∗). But this is a contradiction,
since x and y receive the same color under φ∗.

Next, let some w ∈ V (Gi) be given; we argue that G is incident to at most one
red edge within Gi. Let wx and wy be the two red edges incident to w. If w /∈ T ∗,
then one of these edges appears in B(T ∗), say wx ∈ E(B(T ∗)). Then w and x
receive opposite colors in B(T ∗), so that wx /∈ E(Gi), establishing the claim that
w is incident to at most one red edge in Gi. However, if w ∈ T ∗ we must be slightly
more subtle.

If w ∈ T ∗ ∩ V (C), then since w /∈ Z, we see that w is not unhappy under φ∗.
Hence, φ∗(w) 6= φ∗(w+), so the red edge ww+ is not contained in Gi, again implying
that w is incident to at most one red edge in Gi.

Finally, if w ∈ T ∗−V (C), then w lies in some triangle wxy of H , so that M(T ∗)
must contain the edge xy. Hence x and y, the two neighbors of w along red edges,
receive opposite colors in the proper 2-coloring of B(T ∗), implying that at most
one of the red edges wx,wy lies in E(Gi). �

We are now able to deduce that Z satisfies all the desired conclusions of Theorem
2.1. By the definition of unhappy vertices, we know that Z contains at most one
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vertex from each cycle in C. Our selection of φ∗ (made possible by Claim 4) tells
us that |Z| ≤ |C| /2. Claim 5 tells us that each Gi inherits a proper 2-edge-coloring
in red and blue, and hence is bipartite. Since V (G1) ∪ V (G2) = V (G) − Z, this

implies that χ(G − Z) ≤ 4. Finally, since |Z| ≤ |C|
2 ≤ (|V (G)|/5)

2 , it follows that

|V (G)− Z| ≥ 9
10 |V (G)|. �

3. Two lemmas about ISRs

A total dominating set in a graph G is a set of vertices X such that every vertex
in G is adjacent to a vertex in X . In particular, every vertex of X must also have
a neighbor in X . The total domination number of G, written γ̄(G), is the size of a
smallest total dominating set; if G has isolated vertices, then by convention we set
γ̄(G) = ∞.

Given a graph H and disjoint subsets V1, . . . , Vn ⊆ V (H), for each S ⊆ [n] we
define a subgraph HS by taking the subgraph induced by the vertex set

⋃

i∈S Vi

and deleting all edges in G[Vi] for every i ∈ S.
Using the above definitions, we can now state the following result of Haxell [10].

Theorem 3.1 (Haxell [10]). Let H be a graph and let V1, . . . , Vn be disjoint subsets
of V (H). If, for all S ⊆ [n], we have γ̄(HS) ≥ 2 |S| − 1, then (V1, . . . , Vn) has an
ISR.

Theorem 3.1 was originally stated in terms of hypergraphs (see also [15] for a
formulation not in terms of hypergraphs), and we have stated it above in a slightly
modified but equivalent formulation.

The first of the two lemmas we will prove in this section is a deficiency version of
Theorem 3.1: using weaker bounds on the size of total dominating sets, we can still
obtain a “large” partial ISR. In particular, our proof will show that Theorem 3.1
is “self-strengthening”, i.e., that the following can be obtained as a Corollary to
Theorem 3.1 itself.

Lemma 3.2. Let H be a graph, let V1, . . . , Vn be disjoint subsets of V (H), and let
k be a nonnegative integer. If, for all S ⊆ [n], we have γ̄(HS) ≥ 2 |S|− 1− 2k, then
(V1, . . . , Vn) has a partial ISR of size at least n− k.

Proof. Let H ′ be the disjoint union of H with k copies of Kn, and let V ′
1 , . . . , V

′
n

be obtained from V1, . . . , Vn by defining V ′
i to be Vi together with one vertex from

each copy of Kn, chosen so that V ′
1 , . . . , V

′
n are disjoint.

Observe that if (V ′
1 , . . . , V

′
n) has an ISR, then at most k of the vertices from the

ISR are from the added copies of Kn; the remaining n − k vertices yield a partial
ISR of (V1, . . . , Vn) of size at least n− k, as desired. Thus, it suffices to show that
(V ′

1 , . . . , V
′
n) has an ISR.

To do this, we apply Theorem 3.1. Let S be any subset of [n]. We will show
that γ̄(H ′

S) ≥ 2 |S| − 1. If |S| ≤ 1 then there is nothing to show, so assume that
|S| ≥ 2.

Let H ′
1 be the subgraph of H ′

S induced by the original vertices of H and let H ′
2

be the subgraph of H ′
S induced by vertices from the added copies of Kn. Since each

Vi has exactly one vertex from each added Kn, we see that H ′
2 is isomorphic to k

copies of K|S|.
As there are no edges joining H ′

1 and H ′
2, clearly γ̄(H ′) = γ̄(H ′

1) + γ̄(H ′
2). By

hypothesis, γ̄(H ′
1) ≥ 2 |S| − 1 − 2k, and since γ̄(Kt) = 2 for all t ≥ 2, we have
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γ̄(H ′
2) = 2k. It follows that γ̄(H ′) ≥ 2 |S| − 1, and by Theorem 3.1, it follows that

(V ′
1 , . . . , V

′
n) has an ISR. �

The second lemma we will prove in this section lets us “combine” ISRs for two
different families of disjoint sets, under suitable conditions. In order to state it, we
require the following technical definition.

Let X and Y be two collections of pairwise disjoint subsets of V (G). However,
we make no disjointness requirements between sets in X and sets in Y. The pair
(X ,Y) is admissible for G if, for each edge e ∈ E(G), at least one of the following
holds:

• There is some X ∈ X with both endpoints of e in X ,
• There is some Y ∈ Y with both endpoints of e in Y ,
• Both endpoints of e are missing from all X ∈ X , or
• Both endpoints of e are missing from all Y ∈ Y.

Lemma 3.3. Let G be a graph, and suppose (X ,Y) is an admissible pair for G. If
X has an ISR RX in G and Y has an ISR RY in G, then G has an independent
set R ⊆ RX ∪RY that is a transversal of both X and Y.

Proof. Initially, let R0 = RX ∪ RY . The set R0 clearly hits every Xi and Yj , but
as there may be edges between RX and RY , the set R0 may not be independent.
We next describe an algorithm for iteratively deleting vertices from R0 in order to
obtain an independent subset of R0 that still hits every Xi and every Yj . Note that
some vertices of R0 may lie in RX ∩ RY ; such vertices are automatically isolated
vertices in R0.

To describe the algorithm, it will help to classify the edges between RX and
RY . If uv is an edge of G with u ∈ RX and v ∈ RY , we say that uv is an X -
edge if {u, v} ⊆ Xi for some i, and that uv is a Y-edge if {u, v} ⊆ Yj for some j.
Admissibility of the pair (X ,Y) implies that any edge joining a vertex of RX with
a vertex of RY must be an X -edge or a Y-edge, since such edges intersect both a
set in X and a set in Y. It may be possible for an edge to be both an X -edge and
a Y-edge.

Claim 6. Every vertex of RX is incident to at most one Y-edge, and every vertex
of RY is incident to at most one X -edge.

Proof of Claim. Suppose that u ∈ RX and uv1, uv2 are two different Y-edges inci-
dent to u. It follows that {u, v1} ⊆ Y1 and {u, v2} ⊆ Y2 for some sets Y1 and Y2 in
Y, and since the sets Y ∈ Y are pairwise vertex-disjoint, this implies that Y1 = Y2.
Hence, v1 and v2 lie in the same set Y . Since RY is an ISR of Y and {v1, v2} ⊆ RY ,
this is a contradiction.

The same argument, interchanging the roles of X and Y, proves the claim about
X -edges. �

Now consider the following algorithm, which defines a sequence of vertex sets
R0, R1, . . . starting with R0 = RX ∪RY . Say a vertex v is dangerous for the vertex
set Ri if it has degree 1 in G[Ri], and either v ∈ RX and the incident edge is not
an X -edge, or v ∈ RY and the incident edge is not a Y-edge. Thus, if v ∈ RX is
dangerous for Ri, then its incident edge in G[Ri] is a Y-edge, and vice versa; the
awkward negative wording is intended to exclude the possibility that the incident
edge may be both an X -edge and a Y-edge.
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Note that vertices which were not initially dangerous for R0 may become dan-
gerous for some later Rj as their neighbors are deleted, while vertices which were
initially dangerous become non-dangerous if their neighbor is deleted. Given the
set Ri, we either produce a new set Ri+1 and proceed to the next round, or produce
the final set R:

• If Ri has a dangerous vertex:
– Let v be a vertex that is dangerous for Ri, and let w be its unique

neighbor in Ri.
– Let Ri+1 = Ri − w, and proceed to the next round.

• Otherwise, if Ri has no dangerous vertices, then let R be obtained from Ri

by deleting every vertex of RY ∩Ri that has positive degree in G[Ri].

This algorithm clearly terminates, since |Ri+1| < |Ri| whenever Ri has a dangerous
vertex, and the resulting set R is clearly independent. It remains to show that R
hits every set X ∈ X and every set Y ∈ Y.

First consider any set X ∈ X , and let w be the representative of X in the set
RX . If w is still in R, then clearly R ∩X 6= ∅. Otherwise, w ∈ Ri+1 −Ri for some
i, which only occurs when w is the sole neighbor of vertex v which was dangerous
in Ri. (It cannot happen that w is deleted in the last step as a member of RY ∩Ri,
since if w ∈ RY as well, then it is isolated in R0 and thus in every subsequent
Rj , and hence never deleted in our algorithm). Thus, v is isolated in Ri+1 and
every subsequent Rj , and the algorithm therefore never deletes v in the rest of its
execution. Hence v ∈ R. Furthermore, since v was dangerous in Ri with v ∈ RY ,
we see that the edge vw was an X -edge. This means that {v, w} ⊆ X ′ for some
X ′ ∈ X , and since the sets X ∈ X are pairwise disjoint, this forces X = X ′, so
v ∈ X . Hence R ∩X 6= ∅.

Next consider any set Y ∈ Y, and let w be the representative of Y in the set RY .
As before, if w ∈ R then we are done. Otherwise, w was deleted at some point.
If w ∈ Ri − Ri+1 for some i (that is, if w was deleted because of some dangerous
vertex v ∈ RX ), then by the same argument as before, we have v ∈ R at the end of
the algorithm, and since vw was a Y-edge, we have v ∈ Y , so that R ∩ Y 6= ∅.

Otherwise, w was deleted in the last step, when no dangerous vertices remained
in Ri. This implies that either w had degree at least 2 in Ri, or w had degree 1 and
the incident edge was a Y-edge (since if the incident edge were not a Y-edge then w
itself would be dangerous). Since, by Claim 6, the vertex w is incident to at most
one X -edge, in both cases w was incident to a Y-edge in Ri. Let vw be a Y-edge
incident to w, with v ∈ Ri. Since w was deleted in the last step, no subsequent
step could have deleted v, so v ∈ R at the end. Furthermore, since vw is a Y-edge,
we have v ∈ Y . Hence R ∩ Y 6= ∅.

Thus, after executing the algorithm, R is an independent set in G that intersects
every set X ∈ X and every set Y ∈ Y. �

4. Graphs with few triangles

Our goal in this section is to prove the following theorem.

Theorem 4.1. Let H be a graph with ∆(H) ≤ 2, and let G be a graph obtained
from H by gluing in vertex-disjoint copies of K4. Let T be the set of triangles
in H. Then there is a set of vertices Z with |Z| ≤ |T | /4, containing at most
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one vertex from each cycle in H, such that χ(G − Z) ≤ 4. It also holds that
|V (G)− Z| ≥ 11 |V (G)| /12.

If H has no triangles, then it has girth at least 4. As mentioned in the introduc-
tion, Pei [17] proved that after gluing in K4’s to such an H , we get a graph G that
is 4-colorable. The main idea of Pei’s proof is to find an independent set R hitting
each added K4 and each cycle, and to observe that G − R can then be viewed as
a subgraph of a “cycle-plus-triangles” graph. Since every such graph is 3-colorable
(by the celebrated result of Fleischner and Stiebitz [8]), using a fourth color on the
set R gives the desired 4-coloring of G. We will adapt this idea in order to 4-color
“most” of the vertices of G in the case where H has few triangles.

Letting T denote the set of triangles in H (where ∆(H) ≤ 2), we observe that
Pei’s result easily yields a partial result itself. Deleting one edge from each triangle
yields a graph H ′ with girth at least 4, and after 4-coloring the resulting “glued
graph” G′, we must, at worst, uncolor one vertex from each triangle (an endpoint
of a deleted edge) in order to obtain a proper partial 4-coloring (of at least |V (G)−
T | ≥ 2

3 |V (G)| vertices). We improve this to a partial coloring of 11
12 of the vertices

by showing that only |T | /4 vertices must be deleted, rather than |T | vertices as in
the simple argument.

Proof of Theorem 4.1. Let X1, . . . , Xp be the vertex sets of the cycles of H and let
Y1, . . . , Yq be the vertex sets of the added copies of K4. Let X = (X1, . . . , Xp) and
let Y = (Y1, . . . , Yq).

Note that Y has an ISR in G by Theorem 1.6. Our general strategy will be to
first apply Lemma 3.2 to find a “large” subfamily X ′ ⊆ X that admits an ISR. We
will then be able to apply Lemma 3.3 to get an independent set R in G which is a
transversal of both X ′ and Y. Finally, we will use this R (in a similar way to the
set R described above in Pei’s proof) to define our desired 4-coloring.

Claim 7. X has a partial ISR with p− k vertices, where k = ⌊T
4 ⌋.

Proof of Claim. Let S be any subset of [p]. In order for Lemma 3.2 to yield our
desired result, we must show that γ̄(HS) ≥ 2 |S| − 2k − 1. Since all edges induced
by the sets Xi are removed in constructing HS , the only edges remaining in HS are
edges that were added by the copies of K4. Hence, every component of HS has at
most 4 vertices. Since every graph – and, in particular, every component of HS –
has total domination number at least 2, it follows that

γ̄(HS) ≥ |V (HS)| /2.

On the other hand, since every set Xi is the vertex set of either a triangle or a cycle
of length at least 4, we have

|V (HS)| ≥ 4 |S| − |T | .

Combining these inequalities yields

γ̄(HS) ≥ 2 |S| − |T |
2 = 2 |S| − 2

(

|T |
4

)

≥ 2 |S| − 2
(⌊

|T |
4

⌋

+ 3
4

)

= 2 |S| − 2k − 3
2 .

Since γ̄(HS) is an integer, this gives our desired bound. �

Let X ′ be the subfamily of X consisting of the sets containing a vertex from the
partial ISR found in Claim 7. Then X ′ has an ISR in G.
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Claim 8. There is a independent set R in G that is a transversal of both X ′ and
of Y.

Proof of Claim. Since X ′ and Y each have an ISR in G, we get our desired result
via Lemma 3.3 provided that (X ′,Y) is admissible for G. To this end, observe that
every edge e ∈ E(G) belongs to either a cycle of H or one of the added K4’s, and
hence falls into one of the following categories:

• e ∈ G[X ] for some X ∈ X − X ′, so that both endpoints of e are missing
from all X ∈ X , or

• e ∈ G[X ] for some X ∈ X ′, so that both endpoints of e are in X , or
• e is an added edge from some K4, hence both endpoints of e are in Y for
some Y ∈ Y.

It follows that (X ′,Y) is admissible for G. �

Let F be a set consisting of one edge from each cycle of H not represented in
X ′ (so |F | = k). Let J = H − R − F and observe that J is a graph of maximum
degree at most 2 with no cycles. By adding edges between the endpoints of path
components in J , we obtain a Hamiltonian cycle J ′ on the same vertex set. For
each j ∈ [q], let Y ′

j = Yj −R; we have
∣

∣Y ′
j

∣

∣ = 3 for all j, since R intersects each Yj

in exactly one vertex. Let J∗ be the graph obtained from J ′ by gluing in a triangle
on each Y ′

j . By Fleischner and Stiebitz’s [8] cycle + triangles result, we get that
J∗ is 3-colorable. As G − F − R is a subgraph of J∗, it follows that G− F −R is
3-colorable. Using a fourth color on the independent set R yields a 4-coloring of
G − F . Let Z be a vertex set consisting of one endpoint of each monochromatic

edge in F . Now G − Z is properly 4-colored, and we have |Z| ≤ k ≤ |T |
4 . Since

|T | ≤ |V (G)|
3 , this implies |V (G)− Z| ≥ 11 |V (G)| /12. Furthermore, since F has at

most one edge from each cycle, the vertex set Z has at most one vertex from each
cycle, as desired. Theorem 4.1 now follows. �

As stated, Theorem 4.1 gives us no control over which cycles contain uncolored
vertices, in contrast to Theorem 2.1 which guarantees that the uncolored vertices
are contained in the long odd cycles of H . However, it is possible to refine the
statement of Lemma 3.2 so that when we apply it in the proof of Theorem 4.1,
only “dummy vertices” are added to the sets Xi obtained from triangles. With
this change, one can guarantee that the set R hits all long odd cycles, and that all
uncolored vertices lie in triangles of H . Proving this formally would require more
technical conditions in the hypothesis of Lemma 3.2, so in the interest of clarity we
have opted to only formally prove the simpler formulation.

5. Theorems 1.2 and 1.3

Combining Theorems 2.1 and 4.1 gives us an immediate proof of Theorem 1.2.

Theorem 1.2. Let H be a graph with ∆(H) ≤ 2, and let G be obtained from H
by gluing in vertex-disjoint copies of K4. If H contains at most one odd cycle of
length exceeding 3, or if H contains at most 3 triangles, then χ(G) ≤ 4.

Proof. If H contains at most one odd cycle of length exceeding 3, then we can
apply Theorem 2.1 with |C| ≤ 1 to obtain a set of vertices Z with |Z| ≤ 1/2 such
that G − Z is 4-colorable. If H contains at most 3 triangles, then we can apply
Theorem 4.1 with |T | ≤ 3 to obtain a set of vertices Z with |Z| ≤ 3/4 such that
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G− Z is 4-colorable. In either case, as |Z| is an integer, we have Z = ∅ and so G
is 4-colorable. �

Theorem 2.1 is weakest when most vertices of H lie in long odd cycles; The-
orem 4.1 is weakest when most vertices of H lie in triangles. These worst-case
scenarios cannot happen simultaneously; combining these bounds gives a stronger
overall bound on the number of vertices in a 4-colorable subgraph, namely, Theorem
1.3

Theorem 1.3. Let H be a graph with ∆(H) ≤ 2, and let G be obtained from H
by gluing in vertex-disjoint copies of K4. Then there is a set of vertices Z with
|Z| ≤ |V (G)| /22 such that χ(G− Z) ≤ 4.

Proof. Let nt and nℓ denote the number of vertices of H that lie in triangles and
in odd cycles of length exceeding 3, respectively, and let n0 denote the number of
other vertices in H , so that |V (H)| = |V (G)| = n0 + nt + nℓ. Let n4 denote the
number of vertices of G in a largest 4-colorable induced subgraph.

Theorem 2.1 says that n4 ≥ |V (G)| − |C|
2 , where C is the set of all odd cycles in

H of length exceeding 3. Since |C| ≤ nℓ

5 , we get that

n4 ≥ n0 + nt +
9

10
nℓ.

Similarly, Theorem 4.1 says that n4 ≥ |V (G)| − |T |
4 , where T is the set of all

triangles in H . Since |T | = nt

3 , we get that

n4 ≥ n0 +
11

12
nt + nℓ.

Given any λ ∈ [0, 1], we can take a convex combination of the above two inequalities
(with λ times the first and (1− λ) times the second), to get

n4 ≥ n0 +

(

λ+
11

12
(1− λ)

)

nt +

(

9

10
λ+ (1− λ)

)

nℓ.

Setting λ = 5/11 equalizes the coefficients of nt and nℓ, yielding the bound

n4 ≥ n0 +
21

22
nt +

21

22
nℓ ≥

21

22
|V (G)| . �
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Appendix .

Here we present an elementary algorithmic proof of Theorem 1.7. Our main
idea is similar to the proof of Theorem 2.1: we’ll have both red-coloured edges and
blue-coloured edges and we’d ideally want to partition the vertex set into two parts
so that the two induced graphs each have maximum degree 1 in red and maximum
degree 1 in blue. (Such a partition would mean that the two induced graphs are
bipartite, and then the whole graph would have chromatic number at most 4). We
won’t be able to show that both induced graph are bipartite, but we’ll modify a
lemma of Haxell, Szabó, and Tardos (Lemma 2.6 of [14]), to get a stronger condition
for one of the induced graphs: that it is not only bipartite but its two partite sets
are two ISRs.

Theorem 1.7. If H is a graph with ∆(H) ≤ 2 and V1, . . . , Vn are disjoint subsets
of V (H) with each |Vi| = 4, then (V1, . . . , Vn) has two disjoint ISRs.

Proof. By embedding H in a larger graph we may assume that V1, V2, . . . , Vn par-
tition V (H).

Let G1 = H , let G2 consist of the edges of a C4 on each part Vi, and let G3 consist
of the edges of a K4 on each part Vi. We regard the edges in G1 as colored red
and the edges in G3 as colored blue (as in the proof of Theorem 2.1); we shall also
regard the edges of G2 as colored green. Let G be the multigraph G = G1∪G2∪G3.
(While the edge multiplicity is not relevant to the coloring problem, it simplifies
things to be able to view a pair of vertices as possibly joined by edges of multiple
colors.)

Claim 9. There exists a partition V (G) into two sets W1 and W2, with |W1| =
|W2|, such that Gi[Wi] has maximum degree 1 for each i ∈ {1, 2} (that is, G[W1]
has maximum degree 1 with respect to red edges and G[W2] has maximum degree 1
with respect to green edges).

Proof of Claim. A lemma of Haxell, Szabó, and Tardos (Lemma 2.6 of [14]) tells
us that we can find a partition of V (G) into two sets W1 and W2 such that Gi[Wi]
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to has maximum degree 1 for each i ∈ {1, 2} (G[W1] has maximum degree 1 with
respect to red edges and G[W2] has maximum degree 1 with respect to green edges).
We want to get their conclusion with, additionally, |W1| = |W2|.

We form our partition using the following algorithm, which is adapted from [14]
with one minor tweak (which we shall point out shortly). Fix an orientation of
G1 and of G2 with maximum outdegree 1 in each orientation. For each vertex
v ∈ V (G), let v1+ and v2+ denote the successor of v in G1 and G2, respectively,
whenever these successors exist. Likewise, we write v1− and v2− for the predecessors
of v in G1 and G2 when these predecessors exist.

Initially, set W1 = W2 = ∅. We start by adding an arbitrarily-chosen vertex to
W2, and after this and each subsequent added vertex, we choose the next vertex to
add as follows:

• For i = 1, 2, if the just-added vertex v was added to Wi:
(i) If vi+ exists and is not yet placed, then add vi+ to W3−i. (Now vi+ is

the just-added vertex for the next step.)
(ii) Otherwise, if vi− exists and is not yet placed, then add vi− to W3−i.

(Now vi− is the just-added vertex.)
(iii) Otherwise, if there is any unplaced vertex w, then add w to W3−i.

(Now w is the just-added vertex.)
(iv) Otherwise, terminate.

Our algorithm differs from the algorithm of [14] only in that our algorithm always
alternates between placing a vertex into W1 or into W2, while the algorithm of [14]
always places the next vertex intoW1 when it makes an arbitrary choice in Case (iii).
Since V1, V2, . . . , Vn is a partition of V (H) = V (G) where each part has size 4, we
know that |V (G)| is even, so this alternation guarantees |W1| = |W2| = |V (G)| /2
at the end.

The proof of Lemma 2.6 of [14] immediately implies that ∆(Gi[Wi]) ≤ 1 for
each i. (As their proof never specifically uses the choice of W1 in Case (iii), but
rather only uses the choices made in Case (i) and Case (ii), it goes through without
modification for this version of the algorithm.) �

As a result of Claim 9, we can show that G[W1] satisfies some strong conditions.

Claim 10. G[W1] has maximum degree 1 in each of red and blue and it contains
exactly two vertices from each Vi.

Proof of Claim. TakingW1,W2 as in the previous claim, we must additionally show
that:

(1) G[W1] has maximum degree 1 with respect to blue edges, and
(2) W1 contains exactly two vertices from each Vi.

If W1 has least three vertices from some Vi, then this would force G[W1] to
have maximum degree at least 2 with respect to blue edges. Hence, it suffices only
to prove (1). To this end, suppose on the contrary that some vertex v ∈ W1 is
incident to two blue edges within G[W1]. Then W1 contains at least 3 vertices of
the corresponding copy of K4, and W2 contains at most 1 vertex of that copy of
K4. Since |W1| = |W2| = |V (G)| /2, this forces W2 to contain at least 3 vertices
of some other copy of K4. However this would force G[W2] to have a vertex with
green degree at least two, contradicting our choice of W2. �



STRONG COLORING 2-REGULAR GRAPHS 17

Claim 10 implies that not only is G[W1] bipartite, but that its partite sets (each
of which must contain exactly one vertex from each Vi since G has a blueK4 induced
on each Vi) are our desired pair of ISRs. �
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