8100103

ARCHDEACON, DAN STEVEN

A KURATOWSKI THEOREM FOR THE PROJECTIVE PLANE

The Ohio State University PH.D. 1980

University
Microfilms
International o zew Road, Ann Arbor, MI 48106



A KURATOWSKI THEOREM FOR THE

PROJECTIVE PILANE
DISSERTATION

Pregented in Partial Fulfillment of the Requirements for
‘the Degree Doctor of Philogophy in the Graduate

School of The Ohio State University

By

Dan Steven Archdeacon, B.A., M.S.

* K K X ¥

The Ohio State University

1980

Reading Committee: Approved By
Henry H. Glover

John P. Huneke

G. Neil Robertson ‘ \f\}\K

Adviser
Department of Mathematics




ACKNOWLEDGMENTS

I wish to thank David Wise and Roland Young for introducing me to
mathematics; William Fishback and Hal Hanes for my fine undergraduate
training; and Henry Glover and Philip Huneke for my graduate training.

I also wish to thank Mara Saule for her loving support.

ii



VITA

May l]-, 195,'" . . . . . . . BOI‘n - Day—ton, OhiO

1075 ¢ ¢ ¢ o ¢ o v o 4« 4 B.A., Earlham College, Richmond, Indiana

19751980 & 4 o v o 4 . W Graduate Teaching Associate, Department
of Mathematics, The Ohio State University,
Columbus, Chio

1976 v o v o o o o o o o & M.S., The Chio State University, Columbus,
Ohio

FIEIDS OF STUDY
Major Field: Mathematics
Studies in Analysis. Professor Bogdan Baishanski

Studies in Topology. Professors Henry H. Glover, John P. Huneke,
and Graham Toocmer

Studies in Combinatorics. Professor Dijen K. Ray-Chaudhuri and
G. Neil Robertson



TABLE OF CONTENTS

ACmWIEDMNTS - . . @ . . - . [ - - - - L . LJ . . . - o - 3

Chapter

1.1
1.2
1.3
1.k
1.5
Chapter
2.1
2.2
2.3
2.4
2.5
Chapter
3.1

3.2

3.3

1 Some Basic Definitions and the Statement of the Main

Result
The Statement of the Main Result . . . . . . . . . .

The Topology of the Projective Plane . . . . . . . .

Two Partial Orderings for I{(P) « « « v ¢ v ¢ ¢ o o o &

An Outline of the Proof of the Main Result . . . . .
Some Definitions .« « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o s o o o
2 Disjoint k-graphs

The Disjoint k-graph Theorem . « + o o ¢ ¢ & o « = &
Disjoint kh's e e e e 8 o o w s s s e s e e e e
Disjoint k2,3's e e e e e e e e s e e e e e e a .
A Disjoint kh and k2,3 e e s s s s e e e e e s e .
Some Useful Corollaries . « « « « « ¢ o = o ¢ o « &
3 The Wedge of k-graphs

Statement of the Result and Standing Assumptions . .

The Wedge of k2 3's, Each With a Cycle Disjoint From
2

the OtBeTr » ¢ « ¢ o« o o s o o o s s o s 8 o o s o = »

The Wedge of k2 3's, One Containing a Cycle Disjoint
)

FTOIH the other . - - s o L] . L3 - - . e @ . = - e - -

Page

fode
e
| dd

11

13

16
19
22

27

32

37

51



Chapter

3.4
3.5

3.6
Chapter
b1
h.2
4.3
4L
.5
Chapter
5.1
5.2
5.3
Chapter
6.1
6.2
6.3
. Chapter
7.1

7.2

3 (Cbntinued)

A k2,3
the Other . « . . . .

A k2’3 WEdge a kh’ The kh Containing a Cycle

Disjoint From the

A Wedge of ks ..

4 A Cycle Disjoint From a Xk-graph
Statement of the kesult and Standing Assumptions

A lh-cycle Disjoint From a

.

k2’3

A lb-cycle Disjoint From a kh

A 3-cycle Disjoint From a k2 3
J

A >3-cycle Disjoint From a kh .

5 No Cycle Disjoint From a k-graph

Statement of the Result o « o « « « .

Case 1l v ¢ o o o o

Case 2 [} ] . [] 3 . .

6 Completion of the Result

Derivation of the 103

Disjoint k-graphs .

No Disjoint k-graphs .

7T Conclusions
Further Results . . .

Some Related Problems

APPENDIX - 103 Graphs ¢ « o

BIBLIOGRAPHY ¢ o ¢ o ¢ ¢ o &«

Graphs

k . L] . L] L] . . .
2,3 :

Wedge a kh’ Each With a Cycle Disjoint From

Page
63

72
87

89
91 .
115
118
1hk

146
148
158

167
169
179

205
211
212

219



Chapter 1

SOME BASIC DEFINITIONS AND THE STATEMENT OF THE MAIN RESULT

§1.1 The Statement of the Main Result

We shall assume the reader is familiar with the basic terms and
definitions and notation of graph theory. An embedding of a graph G
into a surface M, GC M, 1is a realization of a homecmorphic image
of G as a subspace of M. A graph G 1is irreducible for a surface
M provided there does not exist an embedding of G in M, denoted
G‘? M but for any proper subgraph H < G, HE M. Irreducible graphs
are the smallest (with respect to inclusion) graphs which fail to embed
on a given surface. ILet 1(_142 denote the set of homeomorphy classes
of irreducible graphs for the surface M.

The real projective plane, P, is defined as the orbit space of

the antipodal involution on the two-sphere. P can also be described
as the nonorientable surface of genus 1. The main result of this paper

will be to list the set of all irreducible graphs for the projective

plane.

Theorem 1.1. I(P) is the set of 103 graphs listed in the

appendix.



The proof of this theorem is in §1.4. This theorem is similar

in nature to Kuratowski's theorem [7] which states
I(R) = (K, oK)
5,355

where ZR2 denotes the real euclidean plane.

Glover, Huneke, and Wang [5] have shown that the 103 graphs in
the appendix are distinct, irreducible graphs for the real projective
plane. Thus to prove theorem 1.1 it suffices to show this list is
complete, i.e., it contains gll irreducible graphs for P.

Glover and Huneke have shown [3] that |z(®)]| is finite but
their bound is rather large compared to the number 103 of theorem
1.1. Another precursor to theorem 1.1l is the determination of the
cubic graphs in I(P), [4],[8].

The reader should note the graphs of appendix A are individually
named using a letter between A and G and a numerical subscript.
The graphs named with letter A all have Betti number 12, the
graphs with letter B have Betti number 11, and so forth.

Within each letter class the graphs are ordered by the numerical
subscripts in a manner consistent with the decreasing lexicographic

ordering on the vertex valency sequences.



§1.2 The Topology of the Projective Plane

A simple cycle C in P is called essential (denoted % %) if
the topological complement of C in P (denoted P/C) is connected,
and is called null (denoted = %) otherwise. The fundamental group

of P is Z Essential cycles correspond to the nonzero element in

2-

Z while null cycles correspond to O. The following is a well

2’
known theorem of topology.

lemma 1.2. Any two essential cycles in P must intersect each

other.

Proof. See ([5], lemma 2.2).

The star of a vertex, st(v), is the vertex v together with the
interiors of all edges incident with v. The closed star of v, m,
is the topological closure of st(v) in G, i.e., st(v) = st(v)U
all vertices of distance 1 from v. The preceeding two terms shall
also be applied to arbitrary subgraphs of G.

A subgraph K of a graph G will be called a k-graph if there
exist a graph L of G, KC LC G.

Such that ‘

1) kK=~ K, or K~ K2,3 (¢ denotes homecmorphism),

2) L\st(X) is connected, and
L

3) the quotient space igi—'ﬁ{-y‘v 1%’3 or m)-m K5.
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Figure 1.1 illustrates the homeomorphy types of k-graphs. The

solid lines are X, while the dotted lines represent minimal represen-
tations of INK. A k-greph homeomorphic to a K2 3 -with bipartition
b4
. X y
sets (a,b,c),(x,y) will be called a k, 3 and denoted (a b c) .

Similarly a k-graph homeomorphic to a K, on vertices (a,b,c,d}

. . a b .
11 .
will be called a le and denoted (c d) . A 1*’.__3"3 graph with
vertex set f{a,b,c} U {x,y,2} will be denoted (a 3 ;) .

Letma 1.3. If K is a k-graph of G and i: GE€ P is an
embedding of G then there exists a cycle C of K such that

i(c) is essential.

Proof: See (GHW [5], lemma 2.5).



§1.3 Two Partial Orderings for I(P)

Iet v be a vertex of a graph G, and lé,bel the n distincet
vertices adjacent to v by 1,2,3,...,3,J+1,...,n. From G we can
construct a new graph, Sv(G)’ by a process called splitting a
vertex. SV(G) is formed by removing st(v) from G, adding two
new vertices v,v' and an edge e Jjoining them, and adding in
edges joining 1,2,..., to v and Jj+l,...,n to v'. More
specifically we shall denote the resulting graph Sv:(l, ...,j)(G)'

The reverse of this operation, contracting an edge, will be denoted

by g We note contracting an edge is the same as topologically

identifying the edge with a point. As an example we note K3 3 may
>

be constructed from K5 by splitting a vertex and deleting two edges.



Lemma 1.4, If G¥ M then Sv(G)‘? M.

Proof. See GHW ([5], lemma 0.2).
O

Thus SV(G) mist contain some G' € I(M) if G € IM). We

shall say G' 1is an elementary derivation of G, and denote this by

G>G'. Note G' is constructed fram G by splitting a vertex and
deleting a set (possibly empty) of edges. We shall consider the
reflexive, transitive relation, also denoted >, on I(M) generated

by elementary derivations.
Iemma 1.5. (I(M),>) is a partially ordered set.

Proof. By definition it is reflexive and transitive. It remains
to show the relation is antisymmetric. Consider the function ©
assigning to each graph its valency sequence. Partially order the
valency sequences lexicographically, and also denote this ordering
by >. The function o 1is order preserving, i.e.,

G >G'=0(6) >0(G'). Since the range is antisymmetric the domain

is also.

For a given surface T 1let ™ () denote the set of maximal

elements in (I(Z),>).



Theorem 7.1. INP) = (Ay,85,B),83,Dg}

Proof'. See chapter 7.

Maximal graphs are of interest because by a sequence of vertex
splittings and edge deletions we can generate large numbers of
irreducible graphs from IM(P). However it should be noted that
this process is extremely tedious. Finding each of the possibly
many irreducible g.'r_‘aphs contained in any particular Sv(G) may
involve the deletion of several edges. Also for a given G € I(P)
many different vertex splittings are possible. Glover, Huneke, and
Wang have announced [6] that the 103 graphs of appendix A are
the entire set of graphs derivable from the 5 maximal graphs. To
avoid the difficulty of this check we shall use a courser partial
ordering (subordering) in which the type of edge deletions allowed

are explicitly stated. Por this we need the following lemma.

lemma 1.6. Iet M be a surface and let G be a graph. Iet v

be a cubic vertex in G adjacent to vertices a,b. If G< M then

¢ U (a,b) cM.

Proof. (Fram [5]) GCM with a local
neighborhood of v as in figure 1.3. As

shown in that figure we may extend G& M

to GU (a,b)cM. O



let G,G' € I(P), G CISV(G) for some vertex v. We shall say

G' dis an elementary = -derivation of G, G-% G', provided:

1)

or 2)

both G,G' do not contain disjoint k-graphs, and

e € E(SV(GY\G') = e is in a 3-cycle opposite one of the two
new vertices created in the splitting, said vertex being
valency 3 in Sv(G);

both G,G' contain disjoint k-graphs, Ki and Ké, with
G' = Sv(G), and either:

a) v is disjoint from (Ki u Ké),

b) v E€ K, and the bipartition of edges incident with v in

the splitting is ({the edges of Kﬁ],{edges not in Ki},

or c¢) vE€ K. =k with v one of the valency 2 vertices.

2,3

The reader is referred to figure 1.4 for some illustrations of

elementary « = derivations.
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We shall consider the reflexive transitive relation, also denoted

; s generated by elementary x -derivations. Note G-z G' implies
G >G' so it follows from lemma 1.5 that ; is a partial ordering.

Let II;E(P) denote the set of maximal elements in (I(P),;).
Iet G,G' € I(P), G'C SV(G). Define an elementary S-derivation,

G -z- G', if G' = SV(G). Again let % also denote the reflexive
transitive partial ordering generated by elementary S-derivations.
Maximal elements in (I(P),-z—) will be called sources. Sources are
often called minimal minors in the literature. Minimal elements in
(I(P),E) will be called sinks. Finally consider the partially
ordered set (I(P)’Ei‘) where -E-E = ;— n % Maximal elements in
this set will be called * - sources, minimal elements x - sinks.
Observe S—i— agrees with ; if G,G' contain disjoint k-graphs,

and -S>—* agrees with % if G,G' 4o not contain disjoint k-graphs.



81.4 An Outline of the Proof of the Main Result

Recall

Theorem 1.1. I(P) is the set of 103 graphs listed in the

appendix.

Proof. The 103 graphs of the appendix are each in I(P) by
[3]. Theorem 1.7 identifies a set of graphs containing If(P).
Theorem 6.1 identifies the 103 graphs as all those in I(P)
below a graph in the set identified by theorem 1.7. Finally we

note that G % G! = [v(@)] < |v(c')| shows each graph in I(P) is

é to a maximal graph, i.e., (I(P),é does not contain an infinite
chain.

Theorem 1.7 depends on the results in chapters 2, 3, 4, and 5,
which are independent of chapter 1. Theorem 6.1, and all the material

of chapter 6, is proved independent of the preceeding chapters.

|

We point out we do not find all relations in (I(P),<), or even
all relations in (I(P),é). We examine only enough relations to
guarantee reaching each graph in I(P).

Iet G € I(P) and let H,H, be k-graphs of G. ILet

Hi:M.Hé denote a one point union of Hl and Hé with the property

each Hﬁ contains a cycle disjoint from H3-i . Likewise write



Hy V.Hé if Hé contains a cycle disjoint from Hl' Similarly

Hﬁ'y Hé means Hl contains a cycle disjoint from Hé. Any such

one point union will be called a wedge product, or more simply a

wedge.

Theorem 1.7. Iﬂf(P) S {Al,AE,A »B),B ,Cl,C2,C7,Cll,Dl,Dh,D5,D9,D12,Dl7,

Ey»B3Bgr By Bgs By 5By 5By s Bp 9 B s Bpg s B By s Fp s Ty s Fig G«

Proof. Theorem 2.1 states if G € In(P) and G contains
disjoint k-graphs then G € (A},As,Bg,Cy5Cp,Cq,Coq,D0,D)5D0,Dg,Dy 05D )
El’E6’E8’E9’E11’E19’EQQ’EQG’E27’E42’Fé’Fu’F6’G]' Theorem 3.1 states
that if G € If(P) and G does not contain disjoint k-graphs but
contains a wedge of k-graphs then G € [A2,B1,E22}. Theorem 4.1
states that there does not exist G € Iﬁ(P) such that G contains
a cycle disjoint from a Xk-graph but G does not contain either
disjoint or a wedge of k-graphs. Theorem 5.1 states that if
G € Ig(P) and G does not contain a cycle disjoint from a k-~graph
then G € [E3,E18}. The proof's of these theorems will complete the
proof of theorem 1.7. It should be noted these theorems give an
exhaustive list of candidates for maximal graphs. The actual proof

of maximality follows fram theorem 6.1 which shows_no two of these

graphs are related by é.
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§1.5 Some Definitions

A graph G will be called projective if G< P, and nonprojective

if GZ P. An edge e of a nonprojective graph G is reducible
if Qe is nonprojective, and irreducible otherwise. A 0 ~graph
is any graph homeamorphic to the greek letter 6, i.e., the union
of two cycles along a coammon arc.

Given a graph G and a subgraph H, a (G,H)-bridge, B, is

defined as the topological closure of a path component of A\H. 1If
(G,H) is clear we shall refer to a bridge. A bridge may consist of
a single edge, or of several vertices and edges. BN H is a set

of vertices called vertices of attachment, abbreviated voa. An

n-bridge is a bridge with lvoa(B)l = n. Two bridges are equivalent
if their voa are equal. Given ®: HS P a region D is a component

of P\¢(H). A bridge is (¢,D)-admissible if there exists an

embedding : HUBCP with ¢ |; =9 and ¢(B) ©D. A bridge

is @-admissible if it is (¢p,D)-admissible for some region D,

and ®-inadmigsible otherwise. A bridge is @-transferable if it is

(p,D)-admissible for more than one region D. The prefix o- shall
be dropped if the embedding ¢ is understood from context. A region
D is ¢-dead if there does not exist a (p,D)-admissible bridge.

The cycle bounding D is @-dead if D is ¢-dead. A subgraph

LC H is dead if there does not exist a (G,H)-bridge with a voa

in L. Iet C be a simple cycle bounding a planer region D. Two
bridges Bl,32 are C-skew if there exiats vosg (Bl) Uy,5Vys and

vos. (B2) Up,Vp, such that uy,u,,Vvy,V, is the cyclic order on C.



Iemma 1.8. Iet C be a simple cycle,

Iet Bj,B, be two (p,D)-admissible bridges. Then BlU B, is
@(D)-admissible if and only if B, and B, are neither C-skew

nor equivalent 3-bridges.

Proof. See [1].

Figure 1.5 shows K3 3 C P, where the dotted circle is understood
>

to be identified x = -x. ILikewise in the right hand picture the

dotted circle is understood.

Figure 1.5

1k

D a region of @: CC 32.
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An embedding GC P will also be called an ﬁnlabeled embedding.
If G is a labeled graph, i.e., we name the vertices, G< P will
be called a labeled embedding. If G possesses symmetry there
will be more labeled embeddings that can be distinguished than
unlabeled embeddings that can be distinguished. In describing a
labeled embedding we will often'give a picture of its regions, as in

figure 1.6.

d 4

Two descriptions of the same labeled embedding.

Figure 1.6

Let (a,b) be an edge of HS G. If v € V(G), v € (a,b) we
shall denote v by ab. Likewise a vertex of G in edge (a,ab)
of H will be denoted a°b. Here (a,b) denotes the interior of
an edge, [a,b] will denote (a,b), i.e., including the endpoints.

Similarly [a,b) denotes (a,b) U {a}.



Chapter 2

DISJOINT k-GRAPHS

§2.1 The Disjoint k-graph Theorem
Theorem 2.1. Iet G € I§(P) contain disjoint k-graphs. Then
G e {Al,As,B3, Cl, C2, 07, cll,Dl,DL'-’Ds,D9,DJ_2,Dl7,El,E6’E8’E9’Ell’E19,

E20,E26,E27,E)+2,F2,Fh,F6, G} .

Proof. Iemma 2.4 says that if G is not connécted then
G € [A5, Cl15Euo }. ILemma 2.5 says that if G has a cut point then
G € [Al,Cl,El]. Lemma 2.8 says that if G is two-connected and
contains disjoint k)'s then G € {B3,C7,Dl7}. Iemma 2.11 says
that if G is two-connected and contains disjoint k2,3's then
G € (Dl,DQ,E6,E8,E9?E11,E26,E27,F2,Fh,FG,G]. Lemma 2.13 says that
if G 1is two-connected and contains a kh disjoint from a k2,3

then G € {C.,D, The proofs of these lemmas will
227N

D5 Dy9:EqgsFpo] -
complete the proof of this theorem.

Iemma 2.2. Iet G€ To(P), and let e = (x,y) be an edge of

G with endpoints x and y. If

16



17

1) G does not contain disjoint k-graphs,
or 2) G contains disjoint k-graphs K, and 'Ké and either
a) e is entirely contained in one open arc connecting cubic
vertices of k2’3 = Ki, i=1 or 2

or b) either [x,y) or (x,y] is disjoint from (K1 U Ké)',

c Pl

olq

Then

Proof. ILet G' = g, and by way of contradiction sﬁppose G ¢ P,
G\e' © P for all e' € E(G') by removing the edge corresponding
to e' in G, embedding, and applying the contrapositive of lemma

1.4 to contract e. Thus G' is irreducible, but @G' ; G contradicts '

G maximal with respect to 2 .

Lemma 2.3. If a graph G contains two disjoint k-graphs then

G is nonprojective.

Proof. By lemma 1.3 if G& P then each k-graph must contain
an essential cycle. The k-graphs being disjoint contradicts

| lemma 112.

Iemma 2.4. Suppose G G.Ig(P) is not connected. Then
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Proof. We first observe each component must be nonplaner or
else we could embed G by placing the planer component C in a
.fegion of A\CCS P. Each component must be a Kuratowski graph by

lemma 2.3. Hence the result follows.

Iemma 2.5. Suppose G € II;E(P) has a cut point. Then

G € {Al, Cl,El] .

Proof, ILet v be a cut point, and . Cl’ 02 be two components
(including v) of G\v. By a method similar to lemma 2.4 we see
each C; must contain a Kuratowski graph. Observe Ci\s‘t(v)
contains a k-graph, hence by lemms 2.3 G is the wedge product
of two Kuratowski graphs. If the wedge point v is in an arc
(a,b) of one of these Kuratowski graphs, then -t??;]- still contains

disjoint k-graphs, contradicting lemma 2.2.

0
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§2.2 Disjoint k,'s
Iemma 2.6. Suppose G € IEf(P) contains a k) disjoint from a
k-graph. Then the k; is on 4  vertices, i.e., an edge of the

le is an edge of G.

Proof. Iet v be a vertex on the edge joining a and b in the kh’
G consists of disjoint k-graphs together with whatever edges are
. G .
needed to complete them to Kuratowski grsphs. Observe m]- still

contains disjoint k-graphs, contradicting lemma 2.2.

0

Lemma 2.7. Iet G € II:(P) be two-connected and contain disjoint

k,'s. Then lv(a)] = 8.

Proof. By way of contradiction suppose |v(G)| = 9. By lemma 2.6

there exists a disjoint union v_u_ (;‘ i) 1l (Z‘ 3).

There exists
two paths from v to one k,, without loss of generality (v,a)
and (v,b), or else vertex v is not used in the completion of the

k-graphs. If wv,c,d all connect to the same camponent of G

v
b
G\st (ﬁb) then (vac d) is a k-graph, showing
c d

(e,d) is reducible by lemma 2.3. Hence without loss of generality
we have (v,c). Suppose v and d both connect to (;‘ ﬁ) If
vertex v connects to only one vertex of (;' ﬁ) s Say 1, then

-ﬁgﬂ still contains disjoint k-graphs. By symmetry d must also
2
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connect to two vertices of (% i). f (v,1),(d,1) both occur
then one of them is reducible. Hence given the assumption v and 4

connect to (; ﬁ) we conclude (v,1),(v,2),(d4,3),(d,4), a contra-

diction since G\(1,2) > (® b)Jl ( 1.2 ). Hence v,d cannot
c d v 3 k4
both connect to (% i), which implies v connects to d. By

symmetry no two vertices v,a,b,c,d can connect to (% ﬁ), hence

G 1is not two-connected, a contradiction.

Lemma 2.8. Iet G € IE(P) be two-connected and contain disjoint
4
_ ' 1 2 a b
Proof. By lemma 2.7 [v(&)| = 8. call the Kk 's 3 3,C @
respectively. Note G may not contain a subgraph homeamorphic to

figure 2.1 or else @(\(a,1) still contains disjoint k-graphs.

Figure 2.1

If all L4 wvertices 1,2,3,4 are adjacent to vertex a, then
wherever b connects gives a subgraph as in figure 2.1. If vertices

1,2,3 are adjacent to a then b,c,d must all be adjacent to Uk,



2l

giving B3. If vertices 1,2 are adjacent to a, then vertices
b,c,d must be adjacent to 3,4. The only choice is (b,3)(e,3),(d,4)
giving C7. If no two 1,2,3,% are adjacent to the same vertex

we get (a,l),(b,2),(c,3),(d,4) which is graph D17'
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§2.3 Disjoint k2 3

Iemma 2.9. Iet G € I&(P) contain a k2 3

is on 5 wvertices.

disjoint from a
k-graph. Then the k2’3
Proof. Iet G contain (1 5 3) disjoint from a k-graph, and
suppose GO v € (1,4). Then TEQ;T still contains disjoint
2

k-graphs, contradicting lemma 2.2.

Iemma 2.10. Iet G € IE(P) be two-connected and contain disjoint
k 's. Then |v(G)] =
2.3 v (el

Proof. There are at least 10 vertices needed in the k2 3
By way of contradiction suppose G contained an eleventh vertex, V.
By lemma 2.9 G contains a disjoint union v J| (a )_ﬂ (l o 3 .
Without loss of generality, we have (v,1),(v,2) or else v is not
needed in the completion of either Xk-graph. Suppose (v,3) is an
edge. By lemma 2.9 (I g g) is on 6 vertices. It remains to
identify the 3 edges from a,b,c respectively. If two of the 3
connect to adjacent vertices then the edge joining these vertices is
reducible. By two-connected the only two possibilities are
(a,1),(b,1),(c,2) or (a,l)(b,2)(c,3). In the former graph we can
contract (c,2) and still have l a e)_ﬂ (h v) and in the

latter graph we can remove st(5) and still have the nonprojective

graph G of appendix A. Ths (v,3) is not an edge of G.
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Since (v,3) is not an edge we have that v and 3 must both

connect to (adi)ec). If v connects to only one vertex v' then

(v,v') is contractible. If v connects to two vertices and one is
d (e respectively) then (v,d) ((v,e) respectively) is reducible.
Thus without loss of generality.we have (v,a)(v,b)(3,a)(3,¢), a

contradiction since (v,a) is reducible.

Lemma 2.11. Iet G € IE(P) contain disjoint and be

1
k2,3 s
. two-connected. Then G € {Dl,Dg,E6,E8,E9,Ell,E26,E27,F2,Fu,F6,G].

b5
12 3

we know |v(@)] =10. If (a,1)(b,2)(c,3) are all edges then we

Proof. ILet G contain (adbec)ﬂ_( ). By lemma 2.10

have graph G of the appendix. If (a,1),(b,2) are edges we have
three possible graphs: (c,1)(a,3) gives Fe, (e,1)(d,3) gives Fp»
and (e,4)(d,3) gives F,. Next suppose (a,1) is an edge and we
have no other edges of this type. If (2,a)(3,a) then we have two
graphs: (b,4)(c,4) gives Eg» (b,4)(c,5) gives E9. If we have
(2,a) then we have two graphs: (3,d)(b,4)(c,5) gives Eprs
(3,a)(b,4)(e,4) gives a graph with a reducible edge G\(3,4) = F,.
If both 1 and a are dead we have three possible graphs:
(b,4)(e,4)(2,8)(3,d) eives Eg, (b,4)(c,4)(2,d)(3,e) gives E

11°

and (b,4)(e,5)(2,d4)(3,e) gives E,g- This exheusts the graphs

with an edge (a,l).
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We now have that vertices a,b,c must be adjacent to either
vertices UL or‘ 5, and likewise that vertices 1,2,3 must be
adjacent to either 4@ or e. We have three possible graphs:
(a,4)(b,4)(c,4)(1,a)(2,a)(3,4) gives Dy, (a,4)(0,4)(c,4)(1,d)(2,4)(3,4d)
gives graph Eh together with a reducible edge (3,4), and

(a,h)(b,h)(c,5)(l,d)(2,d)(3,e) gives D9-
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§2.4 A Dpisjoint k, and k2’3

Iemma 2.12. Iet G € Ig(P) be two connected and contain a k, 3
b

disjoint from a k. Then v(@)] =o9.

Proof. G contains at least 9 vertices. By way of contradiction
suppose lv(G)I > 10. By lemmas 2.6 and 2. 9', contains a disjoint
union ((l 3 5) 1 (a b)) Il v. We shall examine how many edges
(edge disjoint paths) Jjoin v to (2‘ 3). Ir (v,a)(v,b)(v,c)(v,d)

gre in G and G were two-comnected then there exists two edges
2 L )

3 5
G\(a,b) D (1 3 5) il (a v) shows (a,b) is reducible. If

from (l connecting to (without loss of generality) ‘a and b,
(v,a), (v,b),(v,c) are in G +then by assuming not the previous case,

: L
v . and d both connect to (123 5). If v connects only to a
vertex v' then (v,v') is contractible. If v connects to vertices
1,2 then G\(v,2) still contains disjoint k-graphs, hence (v,2)
is reducible. Thus without loss of generality we have (v,1),(v,3),
(4,1),(d4,3), which contains reducible edge' (d,1). If (v,a)(v,b)
a b
& D)

into a Kuratowski graph or else one of the two would be reducible.

are in G then they must be used to complete the k-graph

Thus vertices wv,c,d must gll connect to the same component of

v
A\st ( ﬁb ) . G\(a,b) D (l )_H_ (v o d) implies
d

edge (a,b) is reducible. If (v,a) alone is in G +then TVEET
2

still contains disjoint k-graphs contradicting lemma 2.2. Finally if
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a b
( a

implying we have edges (v,1),(v,3),(v,5).

v does not connect to ) then v must be used to complete

2 4 )
1 3 57

The symmetry between +v,1,2,3,4,5 shows G is not two-connected.

O

the k-graph (

Iemma 2.13. Iet G € IE(P) be two-connected and contain a

and k) . Then G € [CE,Dh,

disjoint Xk , D5,D12,E19,E2O}.

2,3

Proof. ILet G contain (7 z) 1 (1231‘5). By lemma 2.2
|v(g)] =9. 1If @> (1,2)(1,b)(1,e)(1,d4) then regardless of where
3 connects, say (3,a), the edge (1,a) is reducible. If
¢G> (1,a)(1,b)(1,c) then we must have  (3,d)(5,d4) giving D).
If G2 (1,a)(1,b) then we have two possible graphs: (3,c)(5,4d)
giving El9’ or (3,c)(5,e)(d,2) giving F, together with reducible
edges (a,b)(c,d). Thus no more than one of {a,b,c,d} may be
adjacent to either 1,3,5. If (1,a)(3,a)(5,a) € E(G) then we have
two possibilities: (b,2)(c,2)(d,2) giving C,, or (b,2)(c,2){(d,4)
which gives E, together with reducible edges (a,d)(b,e). If
(1,a)(3,a) € E(G) then we have two possibilities: (5,b)(2,c)(2,d)
giving D5, or (5,b)(2,c)(4,d) giving D,p+ Finally we have

(1,8)(3,0)(5,¢)(2,d), giving E,,.
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§2.5 Some Useful Corollaries

Lemma 2.14. Suppose G € I(P) is not three-connected. Then G
contains disjoint k-graphs.

Proof. See [2]. We note this lemma holds for any G € I(P),

although we will only use it for G € IE?(P).

Lemma 2.15. Iet Ll be a two-connected subgraph of G, L2 a

component of G\s'b(Ll), and e an edge not in I, U.st(Ié). If

GFZ P but \e C P with I, null, then there exists a k-graph

1
disjoint from I?

Proof. See [2].

Iemma 2.16. Iet G € I(P) contain a O-graph disjoint from a
k-graph. Then G contains disjoint k-graphs.

Proof. See [2].

Iemma 2.17. Iet G € IE?(P) contain a cubic (valency three) vertex

v with st(v) disjoint from a k-graph. Then G contains disjoint

k-graphs.
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Proof. ILet a,b,c denote the vertices adjacent to v. Define

a graph G' = GU {(a,b), (b,c),(c,a) \st(v) (see figure 2.2).

Case 1. G'¢ P. Then G' contains some irreducible subgraph.
If we delete an edge not in the cycle (a,b,ec) we can embed
(' U st(v) )\_e (and hence embed G'\e) by first embedding G\e
and then applying lemma 1.6 three times. If we delete two of the three
edges in (a,b,c), say (a,b) and (b,c), we get a homeamorph of
A(b,v), heﬁce it embeds. Thus either G' or G'\(one edge of

{(a,b),(b,c),(c,a)}, say G'"\(a,b), must be irreducible.

Figure 2.2
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But G~ S c)(G' N(b,c) ~ Sa:(a,b)(G'\(a’b)) contradicting @

a:(b,

. >
maximal w.r.t. 3.

Case 2. G'C P. St(v) is disjoint from a k-graph, hence for
any embedding of G' cycle (a,b,c) must be mull by lemmas 1.2 and
1.3. Consider the planer region bounded by (a,b,c). If we could
embed st(v) in this region we would have an embedding of G and
a contradiction. Thus there exists a blocking bridge in this region.
If G 1is not three connected then G contains disjoint k-graphs

(lemma 2.14), hence there exists same vertex v' adjacent to
. t
{a,b,c}, so that G contains a k-graph disjoint from (avbvc)'

O

Lemma 2.18. Iet G € IEE(P) contain a subgraph homeomorphic to
that of figure 2.3 with the K2 a k k-graph. Moreover suppose
’3 2,3
(a,b) is an edge with vertices a,b cubic. Then G contains disjoint

k-graphs.

o o
AT L XN

Figure 2.3 _ Figure 2.4
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Proof. By way of contradiction, suppose G does not contain

disjoint k-graphs. Note G is three-comnected by lemms 2.1%4.

Define @' = raiﬂu ((e,2),(d,3)] (figure 2.4).

Case 1. G'<7 P. G' must contain some irreducible subgraph. If
we delete an edge not in st(a) U st(b) and not (c,2),(d,3), we
can embed by first removing the corresponding edge in G, embedding,
applying lemma 1.6 twice, and then applying the contrapositive of
lemma 1l.4; i.e., adding in edges (c¢,2),(d,3) and then contracting
edge (a,b). If we delete an edge of the type ({(a,b)},2) we can
embed a homeomorph by embedding YE?:T (lemma 2.2) and filling in
edge (d,3) by lemma 1.6. Thﬁs the only possible reducible edges
in @' are (c,2),(d,3). Regardless of whether these edges are
reducible G' contains an irreducible graph = G, contradicting

*

G maximal. ‘ .

Case 2. G< P. Note G< P, with a local neighborhood of (a,b]

4 c
((a,b)] or else we can split vertex ({a,b} and embed G.
2 3

Adding m edges (d,3),(e,2) must give both cycles ({(a,b)},d,3)
and ({(a,b)},c,2) essential or else (((a,b)},d,3) (for instance)
seperates G and edge (c,2) must intersect ({(a,b)},d,3), =

contradiction. Cycle (0,2,1,4) is disjoint from ((a,b},d,3) hence
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cycle (0,2,1,4) must be null for all embeddings. Iikewise cycle
(0,3,1,4) must be null for all embeddings. This gives (2()3:lh)

mill contradicting lemms 1.3.

|

Iemma 2.19. Iet G € IE(P) contain either a cycle disjoint from

a K5

disjoint k-graphs.

or an n-cycle disjoint from a K3 3> B > L. Then G contains
2

Proof. If v 1is a cubic vertex on the cycle then regardless of
where its third adjacent vertex is we have st(v) disjoint from a
k-graph, hence the result by lemma 2.17. If v 1is not cubic then
it must connect to the star of at least two vertices of the
Karatowski graph (i.e., there exist paths from v to two vertices).
By the pidgeonhole principle in either case two vertices on the cycle
must connect to the star of some vertex in the Kauratowski graph,
giving ©-graph disjoint from a k-graph and the conclusion by
lemma 2.16. Note if the Kuratowski graph is a K3,3 (6 vertices)
and the cycle is a 3-cycle we cannot force two vertices on the

cycle to connect to the open star of some vertex.



Chapter 3

THE WEDGE OF k-GRAPHS

§3.1 Statement of the Result and Standing Assumptions

The result of chapter 2 classified the subset of Il;f(P) whose
graphs contained disjoint k-graphs. In this chapter we make the
standing assumption G € IE(P) does not contain disjoint k-graphs.

For ease of reference, let H3 refer to this standing assumption.

Theorem 3.1. Iet G € IELI(P) contain a wedge of k-graphs, one
containing a cycle disjoint from the other, but not disjoint

k~graphs. Then G € {Ae’Bl’Eez}'

Proof. Considering the two types of k-graphs and possible one
point unions the theorem naturally breaks into 5 cases (figure 3.1).
Each of the 5 cases will be covered in the appropriate proposition.
The proofs of the propositions will complete the proof of the theorem.
We observe that a unioning of a kh with another subgraph along the
interior of an edge is the same as the unioning with a k2’ 3° Also
the qondition one k-graph must contain a cycle disjoint from the

other eliminates one possible wedge of k2 3’s.
2

32
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N 9 . . . ,
b ‘b 4, 2 %2,3% K 3 b‘ Vo, 3% K5 3
5 o\ 2/
Prop. 3.5 Prop. 3.13
d 4 d 4
3 a z ) .
5 L ko 3L Ky p ka3 Vi
(2] Prop. 3.17 () Prop. 3.21
4 c 4 c
1 a
9 b kh'M kh
0 Prop. 3.25
3 c
Figure 3.1

For convenience we state the propositions, with the standing

assumption H3, G does not contain disjoint, k-graphs.

Proposition 3.5. Ilet G € To(P) satisfy H3 and let GO

Then G =E

D] AYA .
G=>k , k oo

2,3 2,3"

Proposition 3.13. There does not exist a G € IE(P) satisfying

H3 such that G contains a wedge k2,3 V.k2,3.

Proposition 3.17. There does not exist a G € IE(P) satisfying

M k)+o

H3 such that G contains a wedge k2 3
J
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Proposition 3.21. There does not exist a G € IE(P) satisfying

H3 such that G contains a wedge k2 3 V'kh'
J

Proposition 3.25. ILet G € Iﬂ(P) satisfy H3 and let

GOk, ¥ k. Then G€ (A,B ).

Throughout all of chapter 3 we shall maintain the standing assump-
tion H2, G does not contain disjoint k-graphs. From the lemmas
of §2.5 we gain the following standing assumptions:

1) G is 3-connected

2) G does not contain a ©O-graph disjoint from a k-graph

3) G does not contain cubic vertex v with st(v) disjoint from

a k-graph

4) @ P a subgraph homeomorphic to figure 2.3 with [a,b] dead

5) G does not contain a cycle disjoint from a L

6) G does not contain a cycle with 4 or more vertices disjoint

from a K3,3

The proofs in chapter 3 will be by contradiction, assuming a
subgraph as in figure 3.1 and coﬁsidering possible augmentations of
that subgraph. The particular contradiction reached will often be
referred to by name (described as in the above list) rather than by

the mumber of the lemms.
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Definition. An Svyindependent argument is a proof where each

implication follows regardless of whether we consider G or Sv(G).

An S-independent argument is one which is Sv-independent for all Sv'

Iemma 3.2. If there exists an Sv-independent argument showing
there does not exist a G € I¥(P), G containing H then there exists an
s,-independent argument showing there does not exist a G € Ig(P), G

containing SV(H).

Proof. Each implication follows independent of the splitting.
Thus the original proof suffices to show the second statement.

]

Lemma 3.3. The following implications may be used in an Sv-

" independent argument:

1) Each of lemmas 2.15 to 2.19

2) A contradiction identifying disjoint k-graphs in G

3) A contradiction identifying G with a known non-maximal graph
L) Temma 1.6 (there does not exist a cubic vertex in a 3-cycle);

provided Sv preserves the 3-cycle.

Proof,
1) Each lemma describes assumptions which must still hold when
considering SV(G) instead of G. Hence the implications

still follow,
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2) G contains disjoint k-graphs implies sv(c;) contains
disjoint k-graphs,
3) G contains Sv(G'), G' € I(P) implies G § If(P),

4) Obvious

On occasion we shall make Svrindependent proofs by considering
G contains H, G contains SV(H), as two separate cases. Also we
shall add new "tools" to our list of S,~independent implications of
' the previous lemma. As an example the reader should note proposition

3.10 is an S-independent version of proposition 3.5.
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$3.2 The Wedge of k2 3's Each With a Cycle Disjoint From the Other
2
Lemma 3.4. Iet G comtain Xk Yk as in figure 3.2. Then
_— 2,3 2,3

there is exactly one unlabeled and four labeled embeddings of this

wedge which may extend to an embedding of G.

Proof. Cyecles (1,3,2,4) and (a,c,b,d) are both disjoint from
k-graphs, hence they must embed null. Cyeles (0,3,2,4),(0,3,1,4),
(0,e,b,d),(0,c,a,b) must all embed essentially. This implies the
unique unlabeled embedding of figure 3.2. Observe regions III, IV
in figure 3.2 are dead, hence we need only depict regions I, IT.
The four labeled embeddings (arising from symmetries) are shown in
figure 3.3. Note the natural bijection between embeddings of the
wedge, H, and embeddings of S, (3,c)(H), shown in figure 3.Lt.
Also embeddings of 8§, (3,d)(H) are shdwn in figure 3.5.

0O

Figure 3.2
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Proposition 3.5. Iet G € T(P) satisfy H3 and let

o v . = .
G k2,3 k2,3 Then G E22

Proof. We consider how we may nonhomecmorphically complete the

given k-graphs to Kuratowski graphs. If the vertex missing from the
(,3,"
s3 0 1 2
then we have a O-graph disjoint from (O(:acib)’

s s c d
) does not lie in (O o b)

K3’3 containing the k2
a contradiction by
lemma 2.16. Thus each of the k-graphs camplete to Kuratowski graphs
by bridges to the other k-graph.

If (1,a),(2,b) are both arcs in G then we shall apply lemma
3.9 (see figure 3.11).

If (1,a) but not (2,b) is an arc of G then G contains a
graph homeomorphic to that of figure 3.10, or G contains a graph
homeomorphic to a splitting of the graph in figure 3.10. In either
case lemma 3.8 is applicable.

If neither (1,a) nor (2,b) are ares of G then let (i,c)
be an arc of G ((1,0c) is a splitting of this possibility, but we
will use (Sc-independent arguments). If (2,c) is an arc of G
then we have two possibilities; (a,3),(b,3) or (a,3),(b,4). The
former graph is E5, which is not maximal, and the latter graph is

covered in lemms 3.7. Finally if (2,c) is not an arc of G then

by symmetry we have (2,d4),(a,3),(b,%) giving graph Eop
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Lemma 3.6. There does not exist a G € Iﬁ(P) satisfying H3 and

containing a homeomorph of either H (the graph of figure 3.6), or

a splitting thereof where ( o 3 1 4 o ), ( o ¢ . db) are k-graphs of G.
. . Y -
H = @
2 b

Figure 3.6 Figure 3.7

Proof. To complete (0331142) to a k-graph vertex 2 must
comnect somewhere. Figure 3.7 shows (2,a),(2,c) both give F.,
which is not maximal. Observe this is an S-independent argument,

hence there does not exist a G containing a splitting of H.

O

Iemma 3.7. There does not exist a G € If(P) satisfying H3 and
containing a subgraph homecmorphic to either the graph of figure 3.8

or a splitting thereof.
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Proof. 8t(d) is disjoint from ( 1 Eh) so by the standing

3
assumption G does not contain disjoint k-graphs and by lemma 2.17

vertex d is not cubic. Where may it conneet? If (d4,1) or (4,2)

then G contains E (See figure 3.9.).

22"

embedding 3

Figure 3.8

Thus we have either (d,3) or (d,4), without loss of generality

,-l- (o] )
1 2 b”’

the addition of this edge creates a 6-graph disjoint from a k-graph,

assume (d4,3). Cyele (d4,a,3,0) is disjoint from ( hence
and by lemme 2.16 G contains disjoint k-graphs, a contradiction.
Observe this is an S-independent argument, hence there does not

exist a G € IE(P) containing either H or a splitting thereof.
O



Figure 3.10

embedding 3

hp
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Iemma 3.8. There does not exist a G € Ig(P) satisfying H3
and containing a subgraph homeomorphic to either that of figure 3.10

or to a splitting thereof.

Proof. Observe by lemma 3.3 there exists a unique embedding of
this subgraph. By lemma 2.18 we see that neither [1,4] nor [a,d]
is dead. We shall assume there exists such a G containing figure 3,10
and use S-independent arguments to establish the results.

Suppose vertex U4 connects somewhere. Edge (4,b) gives a
nonprojective graph with [a,d] dead, contradicting lemma 2.18.
Likewise an edge (U4,st(c)) gives either a nonprojective graph, or
else the edge embeds in region (2,c¢,0,4). In the latter case lemma
2,15 gives us a k-graph on (2,c¢,0,4), and since the region admits
no transferable bridges the resulting graph is nonprojective. 1In
either case [a,d] contradicts lemma 2.18. Thus we see we have
either edge (4,0d),(4,d)(4,ad) or (4,a). By lemma 2.15 there
exists a k-graph on cycle ‘(a,l,h,o,d). We note the arc (4, ) is
an edge of G, as 4 connecting to two places gives a ©O-graph
3 ¢ ). The k-graph on cycle (a,l,4,0,d)

0O 2 b
consists of the cycle, the edge (4, ), and a bridge B blocking the

disjoint from (

extension of an embedding of G\(4, ) to an embedding of G.

We shall analyze the possibilities for B. If O is not a v.o.a.
of B +then we have a 6-graph disjoint from (032c ). Note that
if G contains SO: (3,¢) then the same holds. Hence either G
contains exactly the subgraph of figure 3.10 or Sg. (3,a)" In

either case bridge B must be an edge out of O, If B does not
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transfer to cycle (a,1,3,0,¢) then B = (0,14) or (0,ad), and

we have either edge [1,14] or [a,ad] contradicting lemma 2.18.
Hence B = (0,1). To block this edge from transferring to (a,l1,3,0,c)
we have either (3,e),(3,a), or we have So. (3,a) with (1,0)

and either (0,c) or (0,a). The first case has a ©-graph disjoint
from a k-graph on cycle (a,l,4,0,d); the second has a ©-graph
disjoint from (a3b 52) if (4,d) and reducible edge (1,a) if

(4,2). In the 5o case, (0,c) gives a ©6-graph disjoint

(3,a)

c d ), hence we have (0,a). Edge (4,d) =a 6-graph

0O a b
1
disjoint fram Q)o]_ac)v and edge (a,0) in cycle (4,a,d,0) gives

from (

a O-graph disjoint from a k-graph. We have exhausted vertex &4
connecting anywhere using S-independent arguments.

To avoid [1,4],[a,d] contradicting lemma 2.18 we have vertices
1,a non-cubic. Note edges (1,b) contradicts lemma 3.4, and st(d)
is dead. Edge (1,0) creates 4 cubic in a 3-cycle or vertex d
cubic disjoint from (3 0021) unless we have (1,0) and So. (3,d)*
In this case examining the unique embedding 1S' of figure 3.5 and
embedding (1,0) in region (a,1,4,0',0,d) we get edge (a,0').
Embedding (1,0) in region (=,1,3,0,0',c) implies vertex 3

conmmects somewhere; edge (3,c) gives a O-graph disjoint from

( 0 a
o'1 4
Thus (1,0) cannot be an edge. We have forced into the case

) hence we must have (3,a),(1,c) and G contains E5'

(1,¢),(3,a2) and again, G contains E5. The sbove are S-independent

arguments, hence the result is established.
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Lemma 3.9. There does not exist a G € Ig(P)' satisfying H3 and

containing a subgraph homeomorphic to that of figure 3.11.

Proof. By way of contradiction let G be such a graph, and note
figure 3.11 also gives the two unique embeddings of the subgraph.
We shall first prove there does not exist a vertex v disjoint from
figure 3.11.

If al € V(G) then (al,0), or else we have a 6-graph disjoint

from a k-graph; note st(l), st(2),st(a),st(b) are all disjoint from
k-graphs. Connecting a and 1 somewhere without conéradicting
lemma 3.8 forces either (a,1) or (a,0). In either case vertex
al is cubic in a 3-cyecle, forecing by lemma 1.6 a vertex v in
(a,1),(a,0), respectively, giving a k-graph ( al.'vl). Examining
the embeddings and deleting st(v) forces a 6-graph disjoint from
(al v u) Thus there is not a vertex al.

Iet v be a vertex disjoint from the subgraph of figure 3.11, B
the bridge containing v. Without loss of generality two v.o.a.
must be O and c. If B had L4 or more v.oc.a., G contains a
0-graph disjoint from a k-graph; hence B consists of a single
cubic vertex v and there exists a vertex Oc., ILet v' be the third
vertex adjacent to e. If (Oc,l) then G contains a splitting of
the graph in figure 3.10, say H, by examining (v Occzd) U (3 L d)’
Thus (Oc,3), and above union of k-graphs implies v' =4 +o avoid

G containing H. By symmetry (O4,d), and there is a 6-graph

disjoint from ( Thus there is not a vertex disjoint from

o 18-

the wedge k2 3 M.k2 3°
J b
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Next we will show (a,0) 4is not an edge of G, by contradiction.
We have three cases:

1) (e,1)(d,1), nonprojective with [2,b] disjoint from

(3 c]-a) violating lemma 2.18.

2) (c,3)(c,k4), projective, embedding 3 of figure 3.11, is unique.
st(2),st(b) are both disjoint from k-graphs, hence they are
non-cubic. Examining embedding 3 we get (b,3)(2,c) and
contradict lemma 3.9..

3) (e,1)(d,4), projective embedding 3 unique. St(b) is
disjoint from (a()3:Lh)’ hence b 1is not cubic. The
inadmissible bridge from b is (b,04), giving a ©-graph
disjoint from (2 dlLOh) Avoiding a contradiction of lemma

3.8, there must be skew edges in either region (b,c,0,3,2)
or region (b,2, 4 ,d). If (0,b),(c,2) or (0,b),(c,3) then
the wedge (0 1 2) M.( O) gives a contradiction of
lemms 3.8, (0,2),(b,3) gives a nonprojective graph contra-
dicting lemma 1.6. Thus (a,0) is not an edge.

To finish the lemma suppose vertex a connects somewhere. IT
(a,13) or (a,3) then we may always add this edge in either embedding,
unless 1 connects somewhere. Any such connection gives G contain-
ing a splitting of the graph in figure 3.10." If (a,03) then b is

03 1 )

cubic disjoint from (3 Edge (b,03) gives k-cycle (1,3,2,4)

disjoint from (2 g 03), contradicting lemma 2,19, hence (b,04).

st(1) is disjoint from (Oh()clad) and any edge out of 1 contradicts
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lemma 3.8. Hence there does not exist an edge out of a, and by
disjointness arguments there does not exist an edge out of st(1).
The only possible crossing edges remaining are (c,03),(3,0c);
- . Oc 03 a Uk
the resulting graph viewed as a wedge (O o 3).M.(O . 2) contra-

dicts lemma 3.6.

O

Lemma 3.10. There does not exist a G € IL(P) satisfying H3

and containing a subgraph homeomorphic to that of figure 3.12.

Figufe 3.12 -

Proof. Because of the bijection between embeddings of this subgraph

H and ?5%%77 we see [0,0'] must not be dead. If there is a vertex

4 4 )
a 2 0'7°

either (0,13) or (0,1), since (O,4) is lemma 3.9.

00' then st(0) is disjoint from ( hence WLOG we have
Suppose (0,13) is an arc of G. If there exists v € (0,13)
then v connects somewhere on cycle (a,c,b,d), else G contains a

@ -graph disjoint from Q:adj)h)' An earlier lemma, depending on

where v connects, applies if we write G as (3

-Vl(l,h)th

).
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Thus (0,13) is an edge, not an arc of G. Next delete (0,13)

and embed G, using either embedding 1S or 38 of figure 3.k,
There exists an edge out of 3 which makes (0,13) inadmissible, by
SV independent arguments we need only consider edges between existing
vertices. Again, (3,0),(3,0') give a ©-graph disjoint from

(c a l#) Edge (3,c) gives a ©-graph disjoint from (a o O')’

and (3,a) is covered by an earlier lemma if we examine
( 13 4 U

1 O (0.0') We need not consider (3,b), as this
k]

(O' ) b)

edge does not make (0,13) inadmissible, hence we must have (3:d),
with embedding 1ls unique. St(1) disjoint from (300, d ), st(%)
disjoint from (a b 3) hence we must have a k-graph on cycle
(a,1,4,0',d) giving a nonprojective graph with vertex 13 cubic
in a triangle, a contradiction. Hence (13,0) is not an edge of
G, .so (1,0) must be.

Note st(2) is disjoint from ( OO, al), so we will break into
cases depending on where vertex 2 connects.

4
If (2,bc) then St(be) is disjoint from (oohld)’

so be

must not be cubic. Avoiding a contradiction of lemmas 3.6, 3.7, and
3.8, bec may only connect to 0,00', or O'., The first is equivalent
to edge (13,0), which case was just handled, the second contradicts

. . be d
lemma 3.8 if we examine (l o O ') (0',UOO') o' o b)’

and the
third contradicts lemmas 3.9. Hence 2 does not connect to the st(b).

If (2,c) is an arc of G, first consider the existence of a

vertex 2c¢. Any edge out of 2c¢ except (2c,0) gives either a
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@ -~-graph disjoint from a k-graph or an earlier case of completing the
k-graphs to Kuratowski graphs. If (2¢,0) is an edge, the avoiding
2c cubic in a 3-cycle we get a vertex Oc. Edge (0Oc,2) gives a

]
8-graph disjoint from (Oohld)’ (Oc,1) gives a ©-graph disjoint

O'l)
o 4 a’

Sv-independent arguments Oc cannot connect anywhere, hence (2,c)

. 0
from (Oco3lh)’ (Oc,L4) gives the wedge (hav cb) M ( By

is an edge, not an arc, of G. Next delete (2,c) and embed, using
either embeddings 18 or 3S of figure 3.4t. Vertex b connects
somewhere or we may always extend A\ (2,c)S P to GE P. Avoiding

a contradiction of lemmas 3.6, 3.7, and 3.8 gives that b connects

to [0,0']. Edges (b,0),(b,00') give embedding 1S unique, avoiding
vertex 3 cubic in a 3 cycle and st(d) disjoint from a k-graph
implies (3,d), a contradiction since st(a) is disjoint from
(bo324). Hence we get (b,0') is in G. Deleting this edge and

embedding gives either (d,4%) or (d,3). The former graph contains

c 1

a 6-graph disjoint from (O The latter graph has embedding

o)
3 unique, st(%) disjoint from (acbd3) and st(a) disjoint from

]
(00u2b), hence inadmissible bridge (a,4). The graph is Byqs

which is not maximal.

If (2,d) is an edge of G, ~ then vertex b must connect some-
2 O')
by a

we have (b,0). Deleting this edge and embedding implies there

where. Edge (b,0') gives 6-graph disjoint from ( hence
exists a bridge out of ¢ which prevents the embedding from extending
to an embedding of ' G, yet any such bridge gives a nonprojective
graph with st(a) disjoint from (3 ouab). Hence (2,d) is not

an edge of G.
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If (2,0'd) is an edge of G then st(d) is disjoint from

(O 1 2), so d 1is not cubic. There is a unique embedding even

after contracting (0'd,0'). One of the vertices a,b, will be
cubic disjoint from a k-graph.
If (2,0c) is an edge vertex c is not cubic. If (c,3) then
. G .
& is nonprojective, but so is . Avoiding a ©-graph disjoint
P J' ; m g grap dJ
from (hlooa) implies either (c,4) or (ec,14). The former

1 o
)

contains a wedge (Oc ¢ hab) Y (h 0 and the latter is covered

in lemma 3.8.
2 0! )
00 4 b’/

If (2,0) then vertex 3 connecting anywhere gives a wedge

If (2,00') then we have a ©-graph disjoint from (

(O 3 h) Y (0 o b) contradicting proposition 3.5.

If (2,0') we have vertices 3 and L cubic in a triangle.

d U 1 2

Examining (acb 0) ) (3 L 0,) we are forced to (3,a)(k,b);

with a ©-graph disjoint from ( Having exhausted the

lc3)'

places 2 may connect, the lemma is proved.

Corollary 3.1l. Iet G € II:(P) satisfy H3. If G contains

k2,3 ¥ k2’3 or a splitting thereof then G = E22.

Proof. The proofs of lemmas 3.6-3.9 completed the proof of

proposition 3.5, which covers G containing a wedge k 3 AYA k2 3°
2

The proofs of lemmas 3.6, 3.7, and 3.8 are S-independent, and lemms

3.10 is an S-independent version of lemma 3.9.
O
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83.3 The Wedge of k, 3's, One Containing a Cycle Disjoint From the
2
Other
Iemma 3.12. Iet G contain H =k vV k a8 in figure 3.13.
e e — 2,3 2,3
Then there exist exactly one unlabeled and 12 labeled embeddings of

H into P which may extend to an embedding of G.

Figure 3.13

Proof. Cycle (1,3,2,4) is disjoint from k-graph hence this
cycle must embed null. Exactly one of the cycles (O,b,a,c),
(0,b,a2,d),(0,c,a,d) must embed nmull. Thus the unique unlabeled
embedding is shown in figure 3.13. The 12 labeled embeddings arise
from the symmetries involved, and are shown in figure 3.1%. Note

region (1,3,2,4) is dead.



3 ) 2 d~~3 ° b~ ¢~ 3,
/] 4 /] b /)
2 i A 2 o )

embedding 1 embedding 3
[
2 e U 0 b3 b0
S ZOTOIeTOT®:
b A 4 A b A 4
2 0 0 8 0 ¢ 0
embedding 2 embedding U4
2 : % 4~ 4 P by a3
SIOXONeLO: { )
b c (3 d A c A
° 0 4 0 o 0 0
embedding 5 embedding 7
o b 0 3 e 0 3, 0 A (2] 3 ¢ (] 2,
O OO0
¢ 2 4 b 4
F) ~"4 4 3 . -
embedding 6 embedding 8
0 b
0 d~> b 2 4 3 g
O340 O
¢ 4 4 b 4
3 0 1 0 3 0 4 0 4
embedding 9 embedding 11
o 2., 4.2 2 beB &3
TOTONZOTO!
d b 4 d 4 ¢ 4
a o 4 0 3 0 o
embedding 10 embedding 12

Figure 3.1k
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Proposition 3.13. There does not exist a G € IE(P) satisfying

H3, G containing a wedge k2,3.y k2,3.

Proof. Iet G contain a wedge k Vk labeled as in
- 2;3 2,3

figure 3.13. We shall break into cases depending on how the

(BM
01 2
3k,

The missing vertex of the Kuratowski graph associated with (O 1 o

) k-graph completes to a Kuratowski graph.

must lie on Qja(:od)\{o}, else G contains a 6-graph disjoint
from Qaa(lo If vertices 1,2 both connect to the interior of

(aO
3 'b e d

The remaining three possibilities are (1,b)(2,a), (1,b)(2,e), or

2
the same arc of the k2 ) then we can apply corollary 3.11.
(1,a)(2,a). These three cases are shown in figures 3.15-3.17. The
nonexistence of G containing these first two subgraphs is proven

in lemmas 3.14-3.15 respectively for the first two cases. We note
the symmetry (0,a)(1,3)(2,4) shows any completion of Q)oc:ad
in the third case reduces it to one of the first two cases. Hence

the proof of these two lemmas shall complete the proof of the

proposition.



lemme 3.16

Figure 3.17

Iemma 3.14. There does not exist a G € II;I(P) satisfying H3,
G containing H homeomorphic to the graph of figure 3.15, where
0 a .
(b o g) isa k2,3.

Proof. By way of contradiction we shall suppose such a G and

breek into cases depending on how c,d comnect to complete (b 0 c & d)

to a K3 3° The reader is referred to figure 3.18.
2

Case 1. (c,13). We examine where d connects to complete the

k-graph. If (d4,1),(d,13) then G is a splitting of E,. If

(d,23) then the wedge (h 0323d) \Y% (ablc O) contradicts corollary 3.11.
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If (d,2) then observe (a,2) is an edge, since any edge out of a2

creates a ©-graph disjoint from (3 Ohad) or a O-graph disjoint

(bocad)’

somewhere else. By the symmetry (c 3)(b 4)(2 a) (the symmetry is

from Vertex d is cubic in a 3-cyecle, so d connects

described by the permutation on V(G)) we may assume (d,3).

Examining the 12 embeddings we see embedding 8 in figure 3.1k

is the unique embedding of our subgraph. St(1),St(13) are both
disjoint from k-graphs, hence they are not cubic. The skew bridges
in region (e¢,13,1,b,a) give us a nonprojective graph with d

cubic in a 3-cycle, a contradiction.

Case 2. (c,1). Again we examine where vertex d connects. As

in case 1 we may again force (4,3).

Figure 3.18



embedding L embedding 8

Figure 3.19

Vertex d dis cubic in a 3-cycle, we shall examine where else g

may connect. If d connects to st(0) or st(3) then we have a

0-graph disjoint from Q)aEZLc). If 4 comnects to st(a),st(2),st(3)
then we have a 6-graph disjoint from (b()c:lh)' Edge (d,4) gives
0 a

a wedge (1f321+d) v ( ) and we apply corollary 3.11. Thus

b e d
if d connects anywhere we must have (d,b), with embedding 8
unique. We examine why this embedding does not extend to an embedding
of the whole graph. If there existed an inadmissible bridge, it would
have to be embedding 4 admissible else edge (b,d) is reducible.
The only candidates for such a bridge are (c,1%) and (b,3); the
first graph being case 1 of this lemma and the latter graph containing
a splitting of D3. Since any set of equivalent 3-bridges creates

a ©-graph disjoint from k-graph, embedding 8 must not extend
because of a pair of skew bridges. The only live regions are
(a,2,4,0,c),(c,1,3,0), and (b,1,4,0)s +the rest are disjoint fram

a k-graph. Note the skew edges must be embedding 4 admissible.
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In region (a,2,4,0,c) the bridges must involve vertex c, or they
are not embedding U4 admissible. Edge (c¢,2) gives a ©-graph
disjoint from (3lh2c)’ hence we have (ec,4k). Edge (a,0) gives
a O-graph disjoint from (: g) and edge (2,0) contains a splitting
of B;. In the remaining regions (0,14) is equivalent to (0,24),
and (0,13) is equivalent to (d,23) instead of (d,3). Thus the
only choice is (1,0),(b,%) and (c,3), which has (b,d) reducible.
We conclude vertex d 1is cubic, and st(d) does not connect anywhere.
By d bheing cubic we know there exists a vertex 03. Vertex 03
adjacent to either a,d4,3,1,2 all give a G-graph disjo:i_n'b from a
k-graph. Hence (03,b), giving a wedge (2 a b) A2 (b i c) and

contradicting corollary 3.11.

Case 3. (c,23). Again we examine where vertex d connects.

Cases 1 and 2 rule out st(1), and (4,2) gives a ©-graph

disjoint from (3 Oh 1b)'

( 0 1
3 b &
S-independent arguments we have (d,4), with st(23) disjoint from

Edge (d4,3) gives a wedge

)V (c a2233), contradicting corollary 3.11. Hence by

(o a 4) If 23 connects to a,c, or 4 +then we have a O-graph

3 b h); (23,b). gives a wedge (32341‘0)

b 4
(lEd)'

cover the possibilities, hence (c,23) is not in G.

disjoint from ( (b R d)’

and (23,0) gives a 6-graph disjoint from These

Case 4. (c,2). Edge (d,2) gives a ©-graph disjoint from

(3 Ohlb)’ so by earlier cases of this lemma we must have (d4,3) or
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(4,03). We shall assume (d,3) and use §,-independent arguments.
Note there are L embeddings of this graph, shown in figure 3.20.

We examine vertex c¢ cubic in cycle (c,a,2).

0 (4
2. BN 5 e demg
¢ b 4 ¢
o 4 a 3

b
v 0 o
embedding 1 embedding 8
0 0 ()
9 ~ 2 0 ¢ 3 d k2
bOca 22 3 bOca 23 |
3 c 4 d - k) d 4 b 4
0 o ] o
embedding 9 embedding 10
Pigure 3.20

If there were a vertex a2 any edge out of a2 creates a ©O-graph
disjoint from k-graph except (a2,b),(a2,0). The first graph

(.b 3 1 4 2) Y (b a . Od) contradicting corollary 3.11,

contains a wedge
the second graph is an earlier case of the lemma. Thus (a,2) 1is
an edge, not just an arc, of G. Deleting this edge and embedding
we get either (c,3) or (ec,k4).

If (c,3) is a bridge then we have either embedding 8 or 10.
Deleting (c,2) gives the same embeddings, hence we have either

(a,0) or (a,4). Regardless the graph is nonprojective with vertex

d cubic in a 3-~cycle.
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If (c,4) is a bridge we have either embedding 1, 8, or 9, with
vertex d cubic in a 3-cycle. Edge (d,4) mekes vertex 3

symmetric to vertex L4, hence we can apply the preceeding paragraph.

Edge (d,b) gives a 6-graph disjoint from (g g), (d,e) gives a

0 1
3 400

By S-independent arguments st(d) is dead. Hence

8 -graph disjoint from ( ), (4,3) gives a O-graph disjoint

a 4
1 2 c)'

‘there exists a vertex 03. If 03 connects to either ¢ or d ‘then

from (

the preceeding arguments apply, also note (03,a) gives a wedge

2 1 a O
(4 3 a) (d c

embeddings 8 and 9. Deleting (a,2) implies a bridge (c,3),

03), case 2. Thus we have (03,b) and unique
a contradiction.

Case 5. Vertices c,d can only connect to 3,4,03,0L.

If (c,d) both connect to [3,0) there are three possibilities.

12)
3 4 p’*

(e,3),(d,03) give two embeddings, 8 and 10; unique even under

Edges (c,03),(d,03) give a O-graph disjoint from ( Edges

contracting (3,03). This implies (3,0d) giving a wedge

03 0d 1 2 . e
(O 3 d) \Y% (h 3 b) contradicting corollary 3.11. Hence we have
(¢,3) and (d,3). If there is a vertex O3 then we have a wedge

L 0 3 . . .
(l a O) v (c 03 d) is case 2 of this lemma. Edge (c,4) gives
a nonprojective graph with d cubic in a 3-cycle. Hence we have
(c,d) which gives normaximal graph Dg -

We have (c,3) and (d4,4), with both vertices e¢,d cubic in a

3-cycle. If (c,03) then G contains a 6-graph disjoint fram

a L

(2 b d)' The only place ¢ and d can connect is to each other.
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If this is not the case, then c¢,d are dead and there exist vertices
03,01&. If O3,0’+ connect to the same place we have either case 2

of this lemma or corollary 3.1l. Hence (03,ab)(Ok,a) or (03,ab)(0k,b).

a

c d and

The former graph contains a ©-graph disjoint from (Olto

3 4
(1 2 a.)'

Tms (c,d) € E(G) and vertices c,d are dead. All remaining

the latter a O-graph disjoint fram

bridges may connect only to a or st(b). Note (a,03) gives a
8-graph disjoint from (03 a2 3b) and (a,l) is case 2 by examining
a wedge (3 lhga) A% (b ac Od). Also observe (a,3) forces a vertex
a3 or else ¢ 1is cubic on a 3-cycle, yet a3 can connect nowhere.
We conclude all bridges have a v.o.a. in st(b). Edge (b,3) gives
a nonprojective graph with vertex 1 cubic in a 3-cycle. Any
splitting of this edge creates ©-graph disjoint from k-graph. Edge
(b,1) gives a 6-graph disjoint from (codae)’ hence st(b) is

dead. The only bridge addition which does not create a ©-graph

disjoint from 9>o<:ad) is (1,0), which gives a ©-graph disjoint
from (g :3)'). This completes case 5, which completes the proof of
‘the lemma.

Lemma 3.15. There does not exist a G € Isg(]?) satisfying H3,
G containing H homeomorphic to the graph of figure 3.16 where

0 = .
(b ¢ ) isea ky 3-
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Proof. By way of contradiction we shall suppose such a G and
break into cases depending on where d connects to complete the k2 3
3
0 a .
(b . d) to a Kuratowski graph.
Case 1. (d,1). We shall use Sy~independent arguments to also
cover the case (d,13). Note the symmetry (3 b)(4 da)(2 a). Vertex

& is cubic disjoimt from (031“2),

by symmetry 2 also cannot be
cubic. Edges (2,a),(2,1) contradict lemma 3.1%, edges (2,d)(2,b)
contradict corollary 3.11. By S-independent arguments we have (2,0).
This graph has U4 embeddings, generated from embedding 1 of figure
3.21 by ‘the symmetries b~d, 3~L4. Thus upon removing (2,0) we

may assume the graph embeds as an extension of embedding 1. We get
either 1) (c,b4),(c,3) with a ©-graph disjoint from (1doba),

2) (c,4),(3,a) with a ©O-graph disjoint from (3 a b) or 3)

2 0
o)

(c,4),(b,3) with a ©-graph disjoint from (

Case 2. (d,3). St(a) is disjoint from (0311“2), so a is not
cubic. We examine possible places where a may connect.

If (a2,03) +then st(2) is disjoint from a k-graph. Since cycle
(0,c,2,4) is disjoin't from (d b 03) we must have (2,b), with
the wedge (O o 1) VA ( 03 da) contradicting corollary 3.11. If
(a,04) then embeddings 9,10 are unique even under contracting
(O4,4). This implies either (4,d) or (Ok,c),(4,a). The former
graph contradicts corollary 3.1l and the latter contains st(1)

aisjoint fram (y, 0 2 .)-
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If (a,3) is a bridge then that bridge is reducible unless vertex
d is not cubic. By the previous case and corollary 3.11 we have
(d,b) and st(d) is dead. Consider TE?:T U {(3,4),(a,0)}. sSince
G is maximal this graph embeds and we know cycles (f2,c},3,h),

({2,c},a,0) are essential and (0,b,d), (a,b,d),(b,d,3,1) are null.

This implies k-graph (O]Da(i3) is mull, hence [2,c] cannot be

dead. If vertex 2 connects anywhere but (b,d,a) then there is a
. O a 3 b

O-graph disjoint from either (, . 4) or (l a a). Edge (2,a)

gives case 1 of this lemma, any splitting of this is lemma 3.1k,

Edge (2,b) is a contradiction of corollary 3.11, hence 2 and,

by S -independent arguments st(2), are dead; we conclude vertex c
is not cubic. Edge (c,3) creates vertex 2 cubic in a 3-cycle,

yet any other connection of c¢ gives a B8-graph disjoint from

3 4
1 2 0

(2,3) is not in G.

either ( ) or (J.3dj3a)' Hence c¢ is dead and we conclude
If (a,4) 'is a bridge we examine where vertex d can connect.
Edges (d,4),(d,c),(a,03),(3,04) all give a contradiction of
corollary 3.11, hence d 1is cubic. Avoilding a 3-éyc1e implies O3,
without loss of generality (03,b) and a contradiction as G is
nonprojective with 03 cubic in a 3-cycle.
Having exhausted the possible connections of a we conclude case

2 does not hold.

O
0 3
cOd a !
3 4

embedding 1
Figure 3.21
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83.4 A k, Wedge a k), Each Containing a Cycle Disjoint from

»3
the Other
Temma 3,16. Iet G contain H = k2 3'M'k4 as shown in figure 3.22.
>
Then there is exactly one unlabeled and 12 labeled embeddings of H

which may extend to an embedding of G.

Proof. Cycle (1,3,2,4) is disjoint from a k-graph hence it must
embed null. One of the cycles (0,a,b),(0,a,c),(0,b,c) must be
null. The unique unlabeled embedding is shown in figure 3.22. For a
particular choice, say (0,a,b), embedding null, there are 4 labeled
embeddings based on the symmetries 3~4, 1~2. The 12 resulting

labeled embeddings are shown in figure 3.23.
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B~ e Y~ e
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4 b 3 © ? b 4 c
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embedding 1 embedding 7
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embedding 2 embedding 8
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) 64 (= 4 63 C
( 2 \ y 3
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embedding 3 embedding 9
0 ] (2] o
~a o A~ 3
2 \ 2 \
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o 0 o 0
embedding 4 embedding 10
bbb 4o b BN
2 i p 2 1
A 83 c 2 aq (4
0 o ° 0
embedding 5 embedding 11
0 0 0 0
5 C “ 4 4 ¢ 3 c
y A | 2 | '
A a g b °
o 0 3 ] A 0
embedding 6 embedding 12

Figure 3.23
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Proposition 3.17. There does not exist a G € IE(P) satisfying

H3 and containing k2,3.¥ kh'

Proof. We label k2 3 Y kh as in figure 3.22. By propositions
— s .

3.5 and 3.13 we know G does not contain a wedge of hence

1
k2,3 5,
(0,a), (0,b),(0,c), (a,b),(a,c),(b,c) are all edges, not arcs, of G.
Moreover if there existed a vertex v disjoint from this wedge then

the bridge containing v must connect twice to one of the k-graphs.

We cannot avoid either a wedge or a ®-graph disjoint

V k
%2,3 7 2,3
from a k-graph. The proof of the proposition will be broken into

cases depending on how the completes to a Ké 3¢ The two
>

k2,3
choices are shown in figure 3.24 and 3.25 and the proof that there
does not exist a graph G containing this subgraph follows in lemma

3.18,3.19, respectively.

Figure 3.2k Figure 3.25
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Iemma 3.18. There does not exist a G € IE(P) satisfying H3

and containing e subgraph homeomorphic to that of figure 3.24 where

(O a

b of isa k-graph.

Proof. By way of contradiction suppose G were such a graph.
Note the only embeddings which admit both (1,2) and (2,a) are
embeddings 1,4,7,10 of figure 3.23. Also observe the symmetry
(0 a)(2 3)(2 4). From this we see vertices 1,2,3,4 are all vertex
transitive. Also (3,0)(4,0) must be edges of G or else there
exists a vertex disjoint from this wedge.

If b,c' comnect to the same vertex them G is D which is

3’
not maximal. Next suppose (b,13) is in G, note embedding 7 is
unique. Without loss of generaiity we have either (c,2) or (c,24).
St(I) and st(13) are each disjoint from k-graphs, hence we have
(l,b),(l3,a).. Regardless of where c¢ connects we have st(3)
is disjoint from (al})cu), a contradiction. Thus b and ¢
can connect only to 1,2,3 or U4,

Suppose (b,1),(c,3) are in G. If there exists a ninth vertex
then it must be either 13,14,23,24. By the preceeding paragraph
such a vertex may only connect to a. Supposing (14,a) gives 1k
cubic in a 3-cycle. Supposing (2k,a),(23,a) gives (2,0) or
(2,c) respectively and vertex 24,23 respectively cubic in a 3-eycle.
Finally supposing (13,a) and avoiding a cubic vertex in a 3-cycle

implies v € (1,13) and (v,0), which case was considered in the

preceeding paragraph. Hence there does not exist a ninth vertex.
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Examining the unique embedding for skew bridges gives (2,0),(4,a)

or (3,a),(1,0),(2,c),(4,b). The first graph is B while the

59
second has edge (c,3) reducible. Hence G does not contain edges
of the type (b,1) with (c,3).

Next suppose (b,3),(c,4) are in G. Note embeddings 7,10
are unique. Again if there were a ninth vertex without loss of
generality it is 13. Having previously eliminated (13,b) or
(13,¢) we have either (13,0) or (13,a). If (13,0) then avoiding
vertex 13 cubic in a 3-cycle implies either (a,03) or (13,a),(1,0).
The former graph contains st(3) disjoint from. (g
{g %) as covered by the preceeding

paragraph. If (13,a) then 13 is still cubic in a 3-cycle.

i) and the latter

contains a wedge (cb32a) Y (

St(13) as before can connect nowhere except a, hence we get a

3 4

@ .-graph disjoint from (2 o ). We conclude there are exactly 8

c
vertices in G. We have already checked the cases where any bridges
are incident with vertices b or c¢. The only possible edge

additions are (a,3),(a,4). Adding in both still gives a projective

graph.

Lemma 3.19. There does not exist a G € fﬁ(P) satisfying H3 and

containing a subgraph homeomorphic to that of figure 3.25 where
0 a
& &)

b o is a k~graph.
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Proof. By way of contradiction we shall suppose such a G and

break into cases depending on where c¢ connects in the completion of

0 a
(b

embeds as an extension of embeddings 2,3,4,8,9,10 of figure 3.23.

) to a Kuratowski graph. Note the subgraph of figure 3.25

Case 1. (c,03). Note SE(3) is disjoint from (7 a)', 03 is
cubic in a 3-cycle, cycle (03,0,c) is disjoint from (3 L a)
hence it embeds null, and embeddings 8 and 10 do not admit (e,03).
Without loss of generality vertex O3 connects to a, and vertex 3
connects to either a,b or -c. If (3,a) then observe in each
embedding cycle (03,3,1,a) is null, hence (03,1) and we have a
@-graph disjoint from k-graph. Edge (3,b) gives a 6-graph

03 a)

disjoint from ( Edge (3,c) always embeds in region

(e,0,03,3), so by lemma 2.15 there exists a k-graph on this cycle.

This gives either a wedge of k, 3’s or a wedge (O 1 2) VA (3 2).
2

Case 2. (c,1). Note this union of Kuratowski graphs has embeddings
3,4,9 and 10 of figure 3.23 as its only embeddings. We shall first
eliminate the existence of a ninth vertex.

If 13 is a vertex then note (13,a) gives a ©-graph disjoint
from (b032h)’ and (13,b) was eliminated in lemma 3.18. Hence
(13,0), and vertices 13,3 are cubic in a 3-cycle. There does not
exist a vertex in (13,0) or (3,0) because this would create a
vertex disjoint from subgraph of figure 3.22, by elimination we cannot

avoid 13 cubic in a 3-cycle.
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If 03 is a vertex note (03,a) is case 1, hence (03,b).

Again O3 is cubic in a 3-cycle, the opposite edge (0,b) is indeed
an edge, not an arc, of G, and st(03) can connect only to b,
A cubic vertex in a 3-cycle is unavoidable.

If 23 is a vertex note (23,a) was eliminated in lemma 3.18.
Edge (23,0) is the same graph as we get from adding (13,0), which
was previously covered. Hence (23,b), with vertices 2,23 cubic
in a 3-cycle. By elimination [2,23] can only connect to b, and
a cubic vertex in a 3=-cycle is unavoidable.

We conclude |v(g)| = 8, and examine possible graphs. If (2,0)
is an edge then delete it and embed. The 4 embeddings are generated
by 3~4, a~c so without loss of generality, suppose G\(2,c)
embeds in P as an extension of embedding 3. We get (3,b) and

either (4,b) or (4,c). The first graph is B, and the second
2 0

G o
edge, and avoiding a contradiction from lemma 3.18 implies vertex

contains a O-graph disjoint from Hence (2,0) is not an

2 1is dead. Vertex 1 can only connect to O, yet this makes
st(2) ©+  disjoint from (: i). Thus the only possible edges are
(3,8),(3,c), (4,a), and (b,c) since (3,5) and (4,b) make vertex
2 cubic in a 3-cycle. These edges are symmetric, as are the &4
embeddings, so it is easy to check adding only 3 gives a projective
graph and adding in all 4 a nomprojective graph. This graph without

edge (0,3) is B,.
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Case 3. (c,13). Note embeddings 3 and U4 of figure 3.23 are
eq smmas . G
the only possibilities. As in lemma 2.18 Ii:i§TlJ {(c,3),(4,a)}

should embed with cycles ({1,13},c,3) and ({1,13},%,a) essential.

3 4 )
0O 1 27

disjoint from cyele ({1,13},¢,3), and cycle (O,b,c) is disjoint

Cycle (a,b,c) is disjoint from ( cycle (0,a,b) is

from ecycle ({1,13},4,a) gives a null k-graph (g i). Hence
[1,13] is not dead. Cycle (1,a,c,13) is disjoint from (321L0b)
hence 1 camot connect to a or e¢. Edge (1,b) was lemms 3.18.
By symmetry and S - independent arguments we have (v,0) for v
either 1 or a new vertex in (1,13).‘ The former‘graph has edge
(4,a) by deleting (v,0) and examining embeddings, and st(2)

1l c )

is now disjoint from (13 o The latter graph is D..

2

Case 4. (c,3). Note the only embeddings are 2,3,4 and 9 of
figure 2.23. We shall first eliminate the existence of a ninth
vertex.

If 13 is a vertex, note (i3,b) contradicts lemms 3.18, (13,¢)
is case 3, and (13,0) is the same graph as adding (c,23), an
earlier case. Hence (13,a), and vertices 1 and 13 are cubic
in a 3=-cycle. Having eliminated any other connection of 13, we
cannot avoid a cubic vertex in é 3=cycle.

If 14 is a vertex then we have (14,0). Since either region
(1,4,0,a) or (1,4,0,c,a) is mull by deleting (14,0) and embedding
we get either edge (4,a) or (4,c). The former graph is nonprojective
with 14 cubic in a 3-cycle, and the latter graph is case 3 by |

( 4 3

. . 0 a
considering the wedge (5 h)'M'(b c)'
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If 03 is a vertex then we have either (03,a) or (03,b),

only one gives cubic vertex in a 3-cycle, so we must have both.
St(¥) is disjoint from (a03'b 03}. Edge (4,a) gives a O-graph
3 b . 3 b
o 03), edge (k,c) gives a wedge (c o 03) Y
a 3 )
2

b a . . s
(c 1 O)’ and edge (4,b) gives 6-graph disjoint from (l 03 e

eliminating possibilities and giving a contradiction.

disjoint from (c

If O4 is a vertex note (Ok,c) was a previous case. Avoiding a
cubic vertex in a 3-cycle implies (Ok,a) and (O4,b). St{&) is
disjoint from (.g 2’), so we have edge (4,¢) or (4,a). The former

graph contains a 6-graph disjoint from (13 o L»Lc) and the latter

by,

@ -graph disjoint from (032 o

We conclude G does not contain a ninth vertex, and examine
possible graphs on 8 vertices. By elimination the possible edge
additions are (1,0),(2,0),(3,2),(3,b), (4,a), (4,b),(4,c). If (%,a)
is an edge then avoiding cubic in a 3-cycle implies (1,0). We have
only embeddings 2 and 9, and symmetry (4 b)(1 c). ‘Examining the
embeddings gives either (2,0),(4,b) or (3,a). The former graph is
case 2 upon examining the wedge (o2 3 cb) AV ('g i‘) and the latter
graph is B,. Hence (4,a) is not an edge, by symmetry neither is
(4,b), If (4,c) +then the symmetry (O c¢) implies not (1,0) or
(2,0) by case 2. The symmetry (L4 3) shows no possible edge
additions, yet the graph is projective. Hence vertex U4 is dead,

which implies vertices 1,2 are dead. The addition of the remaining

edges (3,a)(3,b) gives a projective graph.
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83.5 A k, 5 Wedge a k), The Lk, Containing a Cycle Disjoint
2
ﬁm the k2,3
Ierma 3.20. Iet G contain a subgraph H, H = k2 3A/ kh’ as
2

shown in figure 3.26. Then there is exactly one unlabeled and 36

labeled embeddings of this subgraph which may extend to an embedding

of G.
L 2
b E [
0
c 4
Figure 3.26
. 0 o]
a [#]
3 2 g 4
3 4 ! !
b c
c b ‘ > 3 2
Figure 3.27

Proof. Each embedding is homecmorphic to the unique unlabeled
embedding of figure 3.26. We label the vertices and depiet a typical
labeled embedding in figure 3.27. Any other labeled embedding arises
from a symmetry, and hence may be described as the product of two
permutations, one on the set ({a,b,c} and the other on the set

{2,3,4}. There are 36 such symmetries, each giving rise to a
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different labeled embedding. We shall refer to these embeddings by
the permutations describing the symmetry. As examples the 12
embeddings arising from permutations on the stabilizer of a are

shown in figure 3.28.



[»] [+]
] F-) 2 3 4
5<::::>41’ I (
C
o B
| > 3 °

- embedding e

[»]
4 8 2 ] 3
O G
i b 4 ¢ 2
7] 0

embedding (3,4)

o (]
b G %
1 s 2 >

embedding (2,3)

[}
1] a A Py 2
2(:::)3 | i
1 b 1 [ 4 4
0 (/]

embedding (2,4,3)

0
(0] 3 a 2
O3 G
b C
. =3 4

embedding (2,4)

) o
0 a 2 a
OO0
b c
\ A > %

]
embedding (2,3,4)

0
0 a 2 3 3
OO
l c A b 2
0

Th

. .

’\ 3 3 J

O
o b

) > 3 > 2

embedding (b,c)

embedding (3,4)(b,c)

OO

embedding (2,3)(b,c)

00N

embeddlng (2 4,3) (v, c)

SO0’

embeddlng (2,4)(b,e)

o 5 2 2, a S 2
OG0
T c 42 b 3

o] o

embedding (2,3,4)(b,c)

Figure 3.28
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Proposition 3.21. There does not exist a G € Iﬁ(P) satisfying

H3 and containing k

2,3 vk

Proof. We bresk the proof into cases depending on how the k2 3
>

canpletes to a Kuratowski graph. Label the Xk v kh as in figure

2,3
. 0o 1 0 a . .
3.26, i.e., (2 3 h)'y (b ). Since G cannot contain a
ké 3 \Y k2 3 by proposition 3.13 vertices 2,3,4 may connect only
b4 J

to a,Oa,b,Ob,c,Cc. We will use Svrindependent arguments hence we
will assume 2,3,4% may connect only to a,b,c. The proof of the
proposition naturally falls into three cases:. 1) (2,a),(3,a),(4,a);
2) (2,a),(3,a),(4,p); 3) (2,a),(3,b),(4,c). The proofs that there
does not exist a G containing these three subgraphs are lemma

3.22, 3.23, 3.24 following. The proofs of these lemmas completes

the proof of the proposition.

Iemma 3.22. Iet H denote any graph homeomorphic to the graph of
figure 3.29, where (g i) is a k-graph. Then there does not exist

M
a G€I,(P) satisfying H3 and containing either H or Sa(H).
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Proof. By way of contradiction, suppose such a G exists., We
shall break into cages depending on where vertices b,c connect in
the completion of (g z). Case 1 is (b,2)(c,2); Case 2 is

(b,1),(c,2); and Case 3 is (b,2)(c,3). .

Case 1. (b,2)(e,2). Cycle (0,3,1,4) is disjoint from (i 2)’

b 2)
L)

cycle (a,3,1,4) is disjoint from ( hence the k-graph

3 4
(671

with st(1) disjoint from (g 2). Note this is an S-independent

) would be null if G embedded. There G is nonprojective

argument.

Case 2. (b,1)(c,2). First observe (c,02) contains a ©-graph

disjoint from (2 3 h) and (c,12) contains a wedge

(3 u b) \% (a 0 12) contradicting proposition 3.13. Hence we
have (c,2) and not a splitting thereof. Secondly observe cycle
(0,b,c) is disjoint from (2 13 ah) hence we must have one of the

12 embeddings of figure 3.28. Examining these shows there are

exactly two embeddings of our graph (figure 3.30) based on the symmetry

3~l,
-
b ()
c
Figure 3.29
o] [~ o [o] (2]
2 4 ' b { 203 i [
c c b
J rule g2 J 5 2 ) 4
embedding (23)(be) embedding (243)(be)

Figure 3.30
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We shall now prove there does not exist a G € IE(P) containing
Sa(H)' Ir (2,0a),(3,a),(4,a) then G is nonprojective with Oa
cubic in & 3-cycle. If (2,a),(3,0a),(4,0a) then G contains a
®-graph disjoint from (Oa30“1). If (2,0a),(3,0a),(%,a) then

G contains a wedge (OOa.2 ¢ a) Vv (3 oh 1b) , contradicting proposition

3.13. Finally if (2,a),(3,a),(4,0a) we still have the two
. . . . G
embeddings of figure 3.30, we will examine I;:BET. If an

inadmissible bridge becomes admissible we have either (a,0k) or

2 b 0 a
(0 c l) v (Oh Oa 3)

and the latter graph was Jjust covered. By contracting (a,0a). we

(2,0a). The former graph contains a wedge

must have "unskewed" skew bridges. We have already eliminated
(0a,2), and observing (0a,1l) gives a 6-graph disjoint from
(Oa 03 1)+) shows the skew bridges must be on region (a,0a,03) or
(0a,0,4). We must get a k-graph on these regions by lemma 2,15,
but this k-graph wedge (02(:b3) must contradict either corollary
3.11, proposition 3.13 or proposition 3.17. Hence we have exactly
H and not s (H).

Vertices 3 and 4 are cubic in a 3-cycle. If there was a
vertex Oa +then (Oa,l) (we have just eliminated any other choice)

giving a 6-graph disjoint from (3 0 L lOa)'

If there is a vertex
a3 then the bridge from a3 must embed, else vertex 4  remains
cubic in a 3-cycle. Region (a,0,3) is dead, because as above a
bridge on this region gives k-graph wedge (02<:b1)‘ Edges
(a3,4) or (a3,2) give a contradiction by proposition 3.17. Thus

(a3,1) and avoiding cubic in a triangle implies a vertex 13,
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resulting in a contradiction by proposition 3.17. We see a3 is
not a vertex, by the symmetry (2 b)(a O) neither is ak,03,0k4.

Edge (3,¢) gives a nonprojective graph with L4 cubic in a
3-cycle. Edge (3,4) gives a wedge (g E)V (Obcal)’ proposition
3.17. Edges (3,2) and (4,2) together give a ©-graph disjoint
from k-graph, by symmetry we do not have edges (3,b),(4,b) together.

Hence (3,2),(4,b), deleting one of them gives either (0,1) or

(a,1), by symmetry (2,1) and a ©-graph disjoint from (i ?_).

o

Case 3. (2,b)(3,c). Note St(I) is disjoint from (b 2) Edge

(1,b) or (1,c) gives case 2, edge (1,0b) gives a ©-graph

. s 0O 1
disjoint from (Ob L 3),

0 1
2 03

regardless O4 1is cubic in a 3-cycle. Edge (1,0a) gives either a

and edge (1,03) a ©-graph disjoint
from (h ). Edge (31,04) implies either (4,b) or (h,c),‘

8 -graph disjoint from (oao3l)+) or edges (3,0a),(2,0a) and s

6-graph disjoint from (h a.b 0 ).

Finally (0,1) gives either
(4,3) or (2,3). The former graph contains a 6-graph disjoint
from (g i) and in the latter graph avoiding vertex 4 cubic in a
3-cycle implies Ol or U4 connect someplace, any such connection

gives a O-greph disjoint from a k-graph.

Iemms 3.23. Iet H denote the graph of figure 3.31, where

0 =&
(bc

satisfying H3 and containing either H, Sa(H) or Sb(H).

is a k-graph. Then there does not exist a @ € I‘i(P)
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Proof. By way of contradiction, suppose G were such a graph.
Note a splitting of H of the type described which does not create
_k2’3 v k2,3 is the equivalent of (4,0b) replacing (4,b),(2,0a)
replacing (2,a), andfor (3,0a) replacing (3,a). We shall break

into cases depending on where vertex c¢ connects to complete the

o

k-graph (i i). Case 1 is (c,2) or a splitting thereof, case 2

is (ec,1). Note (c,4) gives a wedge (12a30)M (g ﬁ).

Case 1. (c¢,2). First we shall show the cycle (O0,4,b) must be
a 3-cycle.
If there exists a vertex O4 then edge (Oi,a) contradicts the

previous lemma, edge (OU,c) gives a wedge ( 2 3 )Y (OLF b ),

0O 1 a c 4 0
. ok 1
edge (O4,2) gives a wedge (2 3 O)V (g 2), edge (04,3) gives
a wedge ‘(3Ohulo) \Y (,g ec‘), so Oh may connect only to 1 or to

0

b. If (O4,1) then st(%) is disjoint from (b i), 4 cannot

connect to a or ¢ by previous cases, and 4 cannot connect to
(2 03 1 h)\(0} without creating a 6-graph disjoint from (g f:‘).

Hence G contains edge (4,0), and avoiding O4k cubic in a 3-cycle
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. . - L 0 2 3 < s
implies {O4,b) giving a wedge (b 04) v (O 1 a)’ contradlctlng‘
proposition 3.17. Thus O4 may only be adjacent to b. Avoiding

Ok cubic in a 3-cycle implies (4,0b), a contradiction since G

(o 2y y (OOMbObh).

If there exists a vertex Ob which connects anywhere but 4

contains a wedge Thus O4% is not a vertex.

we get a wedge (c ) Ob) % (021L3a)‘ Edge (Ob,k) gives Ob
cubic in a 3-cycle. Hence there is not a vertex Ob.
If there exists a vertex bl then we have both (b4,0) and

(bk,1) or else bk is cubic in a 3-cycle. Avoiding 4 cubic

in a 3-cycle implies (4,3) or (4,2). Regardless G contains a

0] a)

8-~graph disjoint from ( o

Thus cycle (O,b,4) is indeed a 3-cycle of G. Vertex L4 must
connect elsewhere, the only candidates are (4,2),(4,12),(%4,3) or
(4,13). By s,-independent arguments we will consider (4,2) or
(4,3). Before considering these two subcases we shall show that
neither (1,b) nor (1,0) can be in G.

If (1,b) then avoiding a @-graph disjoint from (: %) implies

(4,2). If cycle (0,3,2) is not a 3-cycle of G then we are

(3 DV (,°. 2.

3 must commect somewhere. The three possibilities, (3,c),(3,0a)

considering Sa: (0,2) and a wedge Thus vertex
and (3,b) contain a ©-graph disjoint from (8 :), 0 -graph
3 4 0 a .
disjoint from (c 1 h)’ and a wedge (O 1 b) % (2 c) respectively.
Thus (1,b) is not in @.
If (1,0) then (4,3) gives a 6-graph disjoint from (g i),

hence (4,2). Vertex 3 must connect somewhere else, since (1,0)
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is an edge, not an arc of G. The k-graphs (g ﬁ) A4 (2 .S) not
involving vertex 3 show any additional comnection yields ©~-graph
disjoint from & k-graph.

Having eliminated the possible edges (1,b) and (1,0) we proceed

by breaking into the two subcases, (4,3) or (4,2).

o [ o
a & 3 >
4@3 b 1 i
1 4 ¢ 2

0 o

embedding (3,4)

Figure 3.32

Suppose (4,3) is an edge of G and consider embedding (3,4)
as shown in figure 3.32. This embedding does not extend to an
embedding of G. The three inadmissible bridges are (0,1),(b,3),(c,k).
The first bridge was Jjust covered two paragraphs ago, and the latter

pair of cases both contain wedges YA kh' Because any pair of

k
. 2,3
equivalent 3-bridges creates a O-graph disjoint from a k-graph, we

conclude there exists a pair of skew bridges for this embedding. Regions

(O3lha)’ region (a,0,3) wedges (Oelhc)’ and

region (b,0,4) wedges (02 a3 1) so any pair of skew bridges on

(2,0,c) wedges

these regions create a wedge of k-graphs as has previously been

eliminated. We have shown (b,1) is not in G, and (b,2) gives a
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8-graph disjoint from (2 b), hence (a,3,1,2,c) does not admit

2
skew bridges. Skew bridges on (0,3,4) give a O-graph disjoint
from (g 2). If there are skew bridges on (a,0,2) they are

(2,02),(2,0a), and G contains either a O-graph disjoint from a
k-graph or a wedge k2’3‘M kh depending on whether G contains

(1,e) or (1,a). Finally observe skew bridges on region (a,3,1,2,c)
camnot contain (a,v) for v € [1,2] as this bridge is transferable

and (a,13) gives a wedge (.g i)V (1_'?:,'-&30)‘ Thus (4,3) is not

F) b 0 2 b q .
3{:::::}4 | I
. 8 3 < 2
o 0 .

embedding (ab)

an edge of G.

Figure 3:33'

We conclude (4,2) is an edge of G and we consider embedding
(a b) as shown in figure 3.33. Note skew bridges on cycles
(0,3,1,4),(4,1,2) and (a,2,1,3) all give a O-graph disjoint from
0
(b
and ‘also as before regions (b,0,4),(c,0,2),(a,0,3) cannot contain

a . . c b 2
vc)' Skew bridges on (b,4,2,c) gives a wedge (o h) % (O 133a)’

skew bridges or we have a previous wedge of k-graphs. Skew bridges

on (a,b,ec,2) must be (a,02),(b,2) and (1,a) gives a wedge
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a b a b
k, 3V @ 2) ky 3V (g )

this embedding must have an inadmissible bridge, either (a,4),(c,3),

and edge (1,c) gives a wedge v ( Hence

or (e,l). The first contradicts lemma 3.22, the second creates the
symmetry 2~ 3 and hence was covered in the preceeding subcase,
hence we conclude (c,1).

Heving established (4,2),(c,1) are in G we consider vertex 3
which is cubic in a 3-cycle. If (3,0,2) is not a 3-cycle then
we must have : (0,2) which gives a wedge (b 0a. 3 (l o b)
Thus vertex 3 conmnects somewhere. Edge (3,b) gives a wedge

0 2
(O 1 b) (a c)

(4,3) previously leads to a contradiction. Thus 3 connects to
1
)

Edge (3,c) gives 2~3, having eliminated

st(a), giving a 6-graph disjoint from (g .
Case 2. (c,1). Observe cycle (0,b,4) is disjoint from

(.2 1 ), hence that cycle is dead. Again we cannot have (4,c)

2 3 e

or (4,a), by previous casework. A vertex Ob gives a wedge

(O a l) A (c n Ob) Hence without loss of generality we have

(4,3). We shall work on vertex 2 being cubic in a 3-cycle.

If G contains S then the new vertex, called Oa in

a: (0,3)
keeping with convention, is cubic in a 3-cycle. Edges (0Ca,1) or
. s 3
(0a,2) give us case 1 considering the wedge (oa o b) V.( h)'
Edge (0a,03) gives a ©-graph disjoint from (2 b c) and edge

(Oa,4) gives the previous lemma. Thus G does not contain this

splitting.
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If there is a bridge on cycle (a,0,2) then delete that bridge
and embed. If cycle (a,0,2) is null then we get an earlier case

of a k-graph wedge (O<2b1+1)’ by lemms 2.15. Examining the

possible embeddings we see the only one with (a,0,2) essential is
the one of figure 3.34. The bridge on cycle (a,0,2) must be
(a,02), and the bridge blocking an extension of this embedding is

(2,b). The resulting graph contains a O-graph disjoint from

1 b )
)

(2 b e hence there is no bridge on (a,0,2).

v o o
o b b A
SN Z=
a A o A
i 2 0

Figure 3.34

We have vertex 2 1is in fact cubic in a 3-cycle and there is no

bridge on (a,0,2). If &2 is a vertex then avoiding a ©-graph

0 a

disjoint from either (g i) or (b c) implies (a2,0), and a

8-graph disjoint from (2£i3]'ao). A vertex 02 has several possible

connections. Edge (02,0b) contradicts the previous‘lemma using
o 1 O b
the wedge (3 h) v (a b c).

S AN

Edge (Ob,Oc) is case 1 using the

Edge (02,b) gives 02 cubic in a
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3-cycle, yet we have exhausted the places where it may connect.
Thus (a,0,2) is a 3-cycle.

EBdges (2,0c),(2,0b) are ruled out by the same k-graphs which
ruled out (02,0c),(02,0b) respectively, thus (2,b) is in G.
Vertices 2,c are dead, st(4%) is dead, by symmetry so is st(3).
The only edges left are (1,0a),(1,0b) with 6-graphs disjoint fram

(3 L Oa.) (3 ) Ob) respectively.

Terma 3.24%. ILet H denote the graph of figure 3.35. Then there
does not exist a G € T(P) satisfying H3 and either H, s_(H),

Sy (H) or S, (H).

é ()
L 2\ NG 5 <
& o9
Q8 HRAT R
)
Figure 3.35 Figure 3.36

Proof. By way of contradiction suppose G were such a graph.
Note if (1,0) is in G, avoiding cubic vertices in 3-cycles we
have (2,3). Any connection from 4 gives a 6-graph disjoint from

a k-graph. Hence (1,0) is not in G.
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Next consider the embedding of figure 3.36, this does not extend
to an embedding of G. If there were skew bridges on cycle (a,0,2)
then G contains a k-graph wedge (O3b ¢ h) is a previous proposition.
By symmetry there are not skew bridges on (b,0,3) or (c,0,4).
Since (0,1) is not in G there are not skew bridges on (a,2,1,4).
By the previous lemma (a,3),(a,4),(b,2),(b,4),(c,2),(c,3) are not
edges of @, so the only possibilities for skew bridges on (a,2,1,3)
or (a,0,3,1,4,c) are (2,3),(1,a) or (3,4),(1,0a). The latter
b L ).

. Oa 2
graph contains a wedge (o o l)M (O c 3

vertex 4 is cubic in a 3-cycle, avoiding the previous lemma

implies (4,c) giving a ©O-graph disjoint from (;L

In the former graph

i). Thus this
embedding mist not extend by reason of an inadmissible bridge.
Bridges (c,2),(b,4) give graphs covered in the previous lemma,
hence we have (1,0b). Avoiding 2,4 cubic in a 3-cycle implies

(2,4) which is symmetric to a previous case.
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§3.6 A Wedge of kh's

Proposition 3.25. ILet G € To(P) satisfy H3 eand contein

kh \Y k), as shown in figure 3.37. Then G € [AE,BlJ.

3 \
[7)
b 2
C )
Figure 3.37

Proof. First we note |v(G)l = 7. Any vertex v disjoint fram

O a
G &)Y
Likewise if there was a vertex 12 € (1,2) then G

(122L32()).

depending on deg (1), +the valency of vertex 1.

this subgreph connects to (WLOG) 0,1 giving a wedge
0 1
(2 3 v)‘

contains a wedge (g 2) v We shall break into cases

Case 1. deg (1) = 6. We have edges (1,a),(1,b),(1,c). Edges
(2,a),(3,a) give graph A,. Avoiding this, the largest graph

possible is (2,a)(2,b)(3,c) which is projective.

Case 2. deg (1) = 5. We have edges (1,a)(1,b). If (2,a)(2,b)
then the largest graph with only one valency 5 vertex is (3,c¢),
which is projective. If (2,a)(2,c) then avoiding the previous
sentence implies (3,b),(3,c) giving B,. If both vertices 2,3

have valency < 4 then the resulting graph is projective.



Case 3.

possible is

deg (1) = 4. Avoiding cases 1 and 2 the largest graph

(1,a)(2,2)(3,c) which is projective.

88



Chapter 4

A CYCLE DISJOINT FROM A k-GRAPH

84.1 Statement of the Result and Standing Assumptions

Chapter 2 characterizes graphs in IE(P) which contain disjoint
k-graphs. Chapter 3 characterizes graphs in If(P) which contain a
wedge, V, of k-graphs. In chapter 4 we make the standing
assumption, Hh, that G € IE(P) contains neither disjoint k-graphs

nor a wedge, V, of k-graphs.

Theorem 4.1. There does not exist a G € IE(P) which contains a
cycle disjoint from a Kk~graph but which does not contain either:

1) disjoint k-graphs, or

2) a one point union of k-graphs, at least one containing a

cycle disjoint from the other.
Proof. The condition G contains a cjcle disjoint from a k-graph
is exhaustively covered by the four propositions listed below. Their

proofs will complete the proof of this theorem.

Proposition 4.6. There does not exist a G € IE(P) satisfying

H4t and containing en n-cycle disjoint from a k, 37 where n > 4.
s Z

89
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Proposition 4.12. There does not exist a G € Iﬁ(P) satisfying

H4t and containing an n-cycle disjoint from a k,, where n > L,

Proposition 4.18. There does not exist a G € IE(P) satisfying

H4Y and containing a 3-cycle disjoint from a k, 3°
>

Proposition 4.22. There does not exist a G € I&(P) satisfying

Ht and containing a 3-cycle disjoint from a ky, .

We note standing assumption HY¥ includes H3, +the standing
assumption of chapter 3. The reader is referred to the list of

standing assumptions in §3.1.



91
84,2 A lk-cycle Disjoint From a k2 3
3

The goal of this section is the proof of proposition 4.6, concerning

G containing an n-cycle ﬂ. 2 3 for n > 4. We first shall prove

a b c
@29,

°N\(a,c) for n > b,

a partial result where G contains a Ké 32

a b
o X ¥y

and an

n-cycle disjoint from (

Iemma 4.2. There does not exist a G € IE(P) setisfying H4
and containing a subgraph, H, homeomorphic to the graph of figure

L.,1, where H has at least 3 vertices 1,2,3 as indicated.

Figure k4.1

Proof. By way of contradiction suppose G is such a graph. If
vertex 2 connects to either st(a) or st(c) -them G contains a
e-graph disjoint from a k-graph. If (2,b) then G contains a wedge
(l 3 b) v (b a c) and if (2,x) then G contains a wedge
(%520 v (,°

vertex 2 1is dead, a contradiction.

x a) By S,-independent arguments (corollary 3.11)



Temma 4.3. There does not exist a G € IEE(P) satisfying HL
and containing a subgraph, H, homeomorphic to the graph of

figure 4.2 where H has vertices 2,3 as indicated.

Figure 4.2

Proof. By way of contradiction suppose G were such a graph.
If vertex 2 connects to o,c then G contains a ©-graph disjoint
from a k-graph. If edge (2,a) is in G then G contains a
0 2
wedge (l 3 &

arguments 2 may connect only to x or y, likewise 3 may only

)Y (axb ¥ c). By symmetry and S -independent

connect to a or b. Assume G contains (2,x) and (3,a).
Next observe st(0) is disjoint from (axbyc) which implies

0, and by symmetry 1, must connect elsewhere. Edge (0,c) gives

a 8-graph disjoint from (x ayba)’ edge (0,x) gives a wedge
0 2 a b . . s

(l 3 x) 2 (x v oz)’ and edge (0,y) gives st(2) disjoint from
oy . . . .o 0 a

(a b O) which implies edge (2,y) giving a wedge (3 o y) \V4

(2 . 1If (0,a) and (0,b) are both in G +then st(2)
y 1 x ’

disjoint from (, aaby) implies (2,y) and a 6-graph disjoint

from (¥ Y ). If (0,aq) then st(@) disjoint from (

B.C)
2 b ¢

x y 2
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implies o« connects somewhere. Edge (o,c) is lemma 2.19, (o,b)

c
y 2
c) and (x,ax) respectively (x,ay) is equivalent

contains ©-graph disjoint from (xa ), (a,x) contains a wedge

0 2 X y
(l3x)v(ab

to the case where (3,ay) respectively (3,ax) is an edge of G.
Hence (o,y) and ax is cubic in a triangle so that aq connects
somewhere, yet any such connection yields either a ©-graph disjoint
from a k-graph or st(2) disjoint from a k-graph. Thus (0,aq)
is not an edge of G. If (O,a) then vertex 3 cubic in a 3-cycle

implies (3,b) is an edge of G and G contains a wedge

a b
3y o

assume G contains (0,b) and by symmetry (1,y).

) % (2 ‘lc xa). Thus by S -independent arguments we may

Vertex « is cubic in a 3-cycle, and (q,v) for v not in

cycle (x,b,y,c) gives O-graph disjoint from a k-graph. Edge

(a,c) contains a U-cycle disjoint from (g z ;) contradicting
. 0 2 X
lemma 2.19, (a,x) gives a wedge (x 1 3)N (a byc)’ (a,y)

- 0 2 b ¢ .
gives a wedge (y 1 3)y (a byc)’ and (o,b) gives a ©-graph

a ¢ -
2x)'

exhaust the possibilities.

disjoint from By Sv-independent arguments these

Iemma 4.4. There does not exist a @ € In_)'Z(P) satisfying H4
and containing a subgraph, H, homeomorphic to the graph of figure

4.3 where H has vertices 1,3 as indicated.



oL

Figure 4.3

Proof. By way of contradiction suppose G were such a graph.
Note there cgnnot exist vertices 01,12;23,03 else we can apply
lemma 4.3. Also note the symmetries (1 3),(a b),(x y), and
(a x)(b y)(xx c)(02). We examine where vertices 1,3 may connect.

Edges (1,a) or (1,c) create a' 8-graph disjoint from a
k-graph, hence they both may connect only to cycle (a,x,b,y).
Edges (1,x)(3,x) ‘together give a wedge ( 13 ) M g{a b ).

0 2 x y o

Edges (3,by),(1,ex) together give a subgraph (L & ¥ U by ¢ )5
b a O (X b) b y 2
2

by Sx-independent arguments and symmetry one of the pair 1,3 must
connect to an existing vertex, without loss of generality suppose
(1,x). If (3,y) +then we have a cycle disjoint from (axbo‘o).

ST(2) is disjoint fram ( & P

x y a) yet anywhere 2 connects

creates a ©-graph disjoint from a k~graph. By Sy-independent

arguments we conclude (3,b), giving the graph of figure L.k.



Figure 4.h

ab).

As was observed before, st(2) is disjoint from (x v o

Avoiding a contradiction we have 2 connecting only to x,y,cx,cy.

95

Likewise O may connect only to a,b,aq,ba. We examine where vertex

0. may connect.
If (0,0b) is in G note the cycle (0,a,0b) is disjoint from

(i ; (3:)\(3,a). If this cycle is a 4-cycle lemma 4.3 Oa, and

o 3
avoiding k-graph disjoint from the ©-graph 1 2
x c
implies (Ox,a), yet this gives O-graph disjoint from (1xb2c)'

Hence (0,a,0b) is a 3-cycle and both @,0b are not cubic. If
either connects outside of cycle (a.,x,b ,y) then we get a 6-graph
disjoint from a k-graph or a contradiction of lemma 2.19. Edges

. 0 « b ¢
(ayb), (0b,x) give a wedge (oz b X) v (x . 2), any other
connections give a wedge k) V (lxb2c>' Thus (0,0b) is not an

edge of G. Observe (0,0m) is not an edge of G since renaming

ac,0¢ by «,0b respectively gives the subgraph we just considered.
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If (0,b) is an edge of G then avoiding vertex 3' cubic in a
triangle implies (3,a). Since this creates a graph with a symmetric
to b we may assume (O,a) is an edge of G and by symmetry (2,y)
is also. Note (a,x) builds (¢ g) disjoint from a ©-graph.
By S _-independent arguments we have (a,y) and (c,a) giving
(1xb2c) disjoin't from a ©-graph,

g

Corollary 4.5. There does not exist a G € IE(P) satisfying Hk

a b ¢ e as ‘
o x y) and an n-cycle disjoint from

N(a,e) for n >k,

and containing a K3’3 (

(abc
g x ¥y

Proof. Depending on how (o,c) is added in we apply lemma 2.19
or one of the preceeding three lemmas. Observe this is an S-indepen-

dent argument,

Proposition 4.6. There does not exist a G € IS?(P) satisfying

H:t and containing an mn-cycle disjoint from a k, 3 for n > 4.
2
Proof. The vertex in the K3 missing from the k must lie
- )3 2;3

on the n-cycle by corollary 4.5. The proposition naturally breaks
into four cases, illustrated in figure 4.5. Each case is covered in
a separate lemma. The proofs of these lemmas will complete the proof

of this proposition.



lemma 4.10 lemma 4.11

Figure 4.5

Iemma 4.7. There does not exist a G € IE(P) satisfying HL4
and containing a subgraph, H, homeamorphic to the graph of figure

4,6 where H contains vertices 1,2,3 as shown.

97
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Proof. By way of contradiction suppose G were such a graph.

We first examine where vertex 2 may connect.
( 0 2
1l 3 a

(aJ{b5rc) implies edge (1,a) and st(l) is dead. Avoiding vertex

Suppose (2,a) is an arc of G. Avoiding a wedge ) X

1 cubic in s 3-cycle implies vertices Oa and 2a. Edge (0Qa,x)
gives cycle (0,1,2,3) disjoint from K3,3\e contradicting

corollary 4.5. If Oa connects anywhere else we get a similar
contradiction or a 6-graph disjoint from a k-graph. Thus edge (2,a)
is not in G.

Suppose (2,ax) is an arc of @G. Avoiding a subgraph

(axby ) ( U ) (1032ax) implies vertex 1 can only connect to
a,ax

[a,ex]. If (1,a) is in G and there exists a vertex Oa we can
repeat the above argument. Thus edge (1,ax) and G contains a

Y-cycle disjoint from (2 b ®)\(a,x) contradicting corollary k4.5.
x y O

Thus G contains (2,x), and since st(2) is disjoint from

( 0 v ) (2,y) 1is also in G. Next we shall examine where vertex
a b

1l connects.
Suppose (1,a) is in G. Bdge (3,a) .gives a contradiction of

corollary 3.11 and edge (3,x) gives a O-graph disjoint from
(aoby ).
(O (B %,
Thus we have (3,b) is in G. If there is a vertex Ob then G
(o3 ) ¥ G2y %0

Edges (3,by),(3,y) give a graph containing a wedge

) and a wedge (b ) (x v l) respectively.

contains a wedge hence (0,b) is an edge.
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Avoiding vertex 3 cubic in a triangle implies edge (3,c) giving

Ea).

1 x v These arguments are Sa- independent,

b e
a wedge (O 3 X) \4 (
hence (1l,ax) is not an arc of G.
We now have that vertices 1,3 may only connect to x or y.
If (1,x) and (3,x) occur together then G contains a wedge
1 X .
(0 23x) Y, (a byc)’ hence (1,x) and (3,y) with st(1),st(3)

dead. Since st(2) is dead G must combain a cubic vertex in a

3=-cycle.

Lerma, 4.8. There does not exist a G € IM*(P) satisfying HL
and containing a subgraph, H, homeomorphic to the graph of figure

4,7 where H contains vertices 2,3 as shown.

Proof. By way of contradiction let G be such a graph. We shall

first examine where vertex 2 may connect.
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y)

If (2,a) is in G then avoiding a wedge (l 3 a) M.(a v e

implies edge (3,a) with vertex 3 dead. Avoiding a cubic vertex
in a 3-cycle there exist 0a,2a. Any connection of vertex Oa
creates a U-cycle disjoint from K3’3 e contradicting corollary 4.5.
If (2,ax) is in G +then again (corollary 3.11 is Sa-independent)
3 can only comnect to [a,ax]. We get either a U-cycle disjoint
from Ké’3\e directly or a vertex as above from whence any connection
gives the same contradiction.

Thus vertex 2 may only comnect to [x,e¢] U [e,y]. Observe (2,c)

or (2,cx) give st(2) disjoint from ( a b

O)‘ If 2 connects
to st(ec) again then G contains a G-graph disjoint from a k~graph.
Thus without loss of generality edge (2,x) is in G.

We shall examine where vertex 3 may conmnect. First consider the

case (3,y). Using lemma 2.18 with k-graph (2 ) we conclude

X ¥y O
[1,2] is not dead.- Edges (2,a),(2,b) contradict corollary 3.11,
(2,c) glves 8 e-graph disjoint from (3 o b)’ and (2,y) gives

a wedge ( Y (a b 3) By S-independent arguments st(2)

1l x ¥y
is dead, by the symmetry (0 x)(3 ¢)(12) st(1) is dead, a contra-
dietion. By Sy-independent arguments edges (3,ay),(3,by) are also
eliminated.

If edge (3,ax) is in G then again [1,2] cannot be dead. If
2 connects somewhere then for the same reasons as in the previous

paragraph we have either (2,y) or (2,cy). Using the symmetry

(2 3)(ax 1)(0 x)(c a) this is exactly the case of the preceeding



101

paragraph. Thus vertex 1 is not dead, we examine where it may
commect. Edge (1,ax) or (1,a) contradict corollary 3.11, (1,Db)

gives a U-cycle disjoint from (% z y)\(E,y), so 1 may connect

only to x,cx,y. If (1,x) then since st(2) is dead there exists
1x, either edge (1x,cx) or (lx,y) gives 4-cycle disjoint from

(g é; O)\(a,2) If (1,ex) then (1,c,cx) is a 3-cycle by the
x 3 ).

same reasoning, and (1,y) gives a O-graph disjoint from (O 0 ax
Thus (1,y) is an arc of G and vertex c connects somewhere.
Any choice gives either a 6-graph disjoint from (l b a), hocyele
disjoint from a K3,3\e, or lerma 4.7. Thus 3 does not connect
to ax.

If (3,x) then consider the 3-cycle (2,3,x). If there exists

2x we get either a h-cycle disjoint from (g 2 3)\(3,y) or a

8-graph disjoint from ( Thus we must also have (3,a).

2x a b)
Now note a vertex 3x gives a 0O-graph disjoint from a k-graph

unless (3x,b), in which case replacing (b,x) with (b,3x)(3x,x)
shows we are in an earlier case. Thus vertex 2 connects somewhere

else. Edge (2,y) gives a wedge (. °© )Y (b a 3) edge

1l x y
(2C) (ab

(2,cy) gives a wedge x 1 cy Xy

O)’ (2,x) gives a
@-graph disjoint from (a()bsrc) hence (2,c), and vertex 2 is
dead. Now vertex 1 cannot be cubic. Edges (1,c) or (1,y)

1l x
2 o)

s hence (1,b) and vertex 1 is dead. Deleting (3,x) and

give a O-graph disjoint from ( edge (1,a) gives a wedge

T

k2’3
noting cyeles (0,1,2,3),(0,3,a),(0,1,b), and (1,2,c) all embed

mull implies (3,x) is reducible.
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Thus we must have (3 ya) s and avoiding a cubic vertex in a

a b )
x y 3
hence 1 connects somewhere. Anywhere but (1,y) &gives a 6-graph

3-cycle we also have (3,b). St(1) is disjoint fram (

disjoint from a k-graph, hence (1,y). Examining cycle (1,2,x,c)
a.b)

3 v
which contradicts lemma 4.7.

disjoint from (O shows we must have edge (c,0) in G

Iemma 4.9. Iet G contain H, a k, 3 disjoint from a cycle, with
2
the vertex of the Ké 3 missing from the k2 3 lying on the cycle.
2 2
Then there are exactly 1 labeled and 6 unlebeled embeddings of

H which can allow an extension to an embedding of G.

Proof. If this embedding extends then the k, ; conteins en
essential cycle, there are 3 labeled choices. For each choice
the cycle containing the missing vertex must embed in the non-null
region, either clockwise or counterclockwise. The possibilities are

shown in figure 4.8.
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4 b Yy X b Y
x x
ae ay b c at ae b c
Y R Y
9 é % Y C x
x - Yy X 2
xX X
be ‘Ii!’ be a c be ‘!il' b¢ a c
Y . Y
Y 3 . 3 3 *
a % a -
x . y < Y "
Cce ce 9 b cé C b
. Y Y
Y b x Y b Tk
Figure 4.8

Iemma 4.10. There does not exist a G € Ig(P) satisfying HL
and containing a subgraph, H, homeamorphic to the graph of figure

4,9 where H contains vertices 1 and 3 as shown.
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Proof. By way of contradiction suppose G were such a graph.
Before proceeaing note (0,1),(1,2),(2,3) and (3,4) are all dead
by lemma 4,8, Also note st(2) is disjoint from (Oaxby) and
finally observe vertices 1 and 3 may only connect to cycle
(ayx,b,y). We shall break into cases based on where 1,3 can comnect.
If (l,ax) is in G then (3,a) gives a contradiction of corollary
3.11. If (3,y) then (2,c),(2,x) give a BO-graph disjoint from
(aOby3) and (2,y) gives a ©-graph disjoint from (loba‘xa). Thus
we have either (3,b),(3,bx) or (3,x), cases 1-3 respectively. If

there is no edge of type (1,ax) we have either (1,a),(3,x);

(1,a)(3,b); or (1,x),(3,y) cases 4-6 of figure 4.10 respectively.

-

case L case 5 case 6

Figure 4.10
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Case 1. We observe vertex 3 is cubic in a 3~cycle. If Ob
then avoiding corollary 4.5 we can have only (Ob,x) or (Ob,y).
If Ob is cubic then there exists a vertex ax,ay respectively
and wherever they comnect G contains a 6-graph disjoint fram a
k-graph. If Ob is not cubic then G contains a 0-graph disjoint

from (bebyc). Thus vertex 3 is not cubic. If (3,b) then

G contains a O-graph disjoint from (_%_°

<2y 2)y (3) gives lema

ax O

b l). Thus G

4.8 by considering (3,2,y,c) disjoint from (a
must contain (3,x).

Next we note SG(2) is disjoint from (xaybo) implies vertex
2 1s not cubic, 2 may connect only to Xx,y,cx,cy. Before considering
the choices, by examining lemma 4.9 we see our subgraph embeds in

exactly 2 ways, shown in figure 4.11.

AL 2% 3 Y
% y &
A ¢ B b 9) b C
Y Y
Y c x
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We note cycles (1,2,c,x,ax),(2,3,x,c) are disjoint from 6-graphs,
hence they cannot contain k-graphs. If (2,x) or (2,cx) then
upon deleting this edge we get a k-graph on one of these cycles by
lemms, 2.15. If (2,y) the deleting implies (e,b),(c,a) or (c,ax).
The first contains a 6-graph disjoint from a k-graph, the second
is the previous lemma with k2,3 disjoint from (ax,a,0,1), and

the third bridge transfers to cycle (1,2,c,x,ax), a contradiction.

Case 2. Using lemma 4.9 we see our subgraph only embeds two ways,

shown in figure 4.12. We examine where vertex 2 can connect, either

% _bx Y y

< rd
axe L b% bx1¢ Q b a%
[}
g ! be bx
Q¢
ax
Y
Y 3 x Y c x
Figure L4.12

cx,cy, Or Yy,

(2,x) or (2,cx).

and (L ab3)2 axybx)(cx).

Thus

(Z,Y) and embedding gives either

keeping in mind the symmetries

(1 3)(a b)(ax bx)

(112: C,X, ax), (3’2: c’x:bx)

(c,a) or

(cyax).

are both disjoint from 6-graphs, hence by lemma 2.15 we cannot have

(2,y) and by symmetry (ax,bx). Deleting

The former
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02)U(3X

graph contains a subgraph (l 3y (5-) b ax o
2

) and the latter

contains a ©O-graph disjoint from a k~graph.

Case 3. We note the symmetry (1 2)(2 y)(3 b) and the three

embeddings shown in figure 4.13. Again we examine where vertex 2

% b y % b y % 3%X 2
x ES L) |
%4 3 13 A - a
X EE e by (2 3 Paf e
! as )
) c x Y c * Y c *
Al A2 : B

Figure 4.13

may connect. If (2,x) then vertex 3 is cubic in a 3=-cycle, yet
any other comnection gives an earlier case of this lemma. If (2,cx)
then deleting that bridge and embedding in one of the above embeddings
implies (ec,1),(c,3) or (c,ax). The first two are lemma 4.8 and
the last graph contains a U-cyele disjoint from (aéx c;c 2)\(3,c).
Edge (2,cy) is the same as (2,cx), hence (2,y). Deleting this
bridge and embedding implies (c,a),(c,b) and (c,ax). Again (by
symmetry) the first two are lemma 4.8 hence (c,ax) with embedding

B unique. Every region except (1,2,y,b,x,ax) is disjoint from a

0~graph, hence any admissible bridge embeds in this region. Vertex
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, (L,b) is

2 is dead, (1,x) gives a wedge (aycax )V

(x 0 2)
a splitting of this so vertex 1 cannot be a v.0.a. of an admissible

bridge. Thus admissible bridges are (a,bx),(y,x) and st(3) is

a.xy)

disjoint from (b o a

We conclude there exists an inadmissible
bridge for embedding B. The only candidate for such a bridge which
avoids a cubic vertex in a 3-cycle is (a,bx), which gives cycle
(0,1,2,3) disjoint from (ﬁf Z if)\(ax,b).

Case 4., Vertex 1 is cubic in a 3-cycle. If there is a vertex
Oa +then either (0a,x) or (Oa,y), since (Oa,st(a)) is equivalent
to (1,ax) which has been ruled out. Both (Oa,x) and (Oa,y)
give a wedge (Oaxbyc) A (012 3x) hence we can have only one of
them, If (Oa,x) then there exists ax, as a result we get either
the previous case with cycle (0Oa,a,ax,x) disjoint from (l 3 y)
or a O-graph disjoint from (ax b c). If (Oa,y) then there
exists ay. Edges (ay,1),(ay,3),(ay,0) are earlier cases, (ay,2)
contradicts corollary 3.11, edge (ay,x) gives a 6-graph disjoint

from (ay b c), hence ay may connect only to b or c¢. If both
P ¢ )
x y ay’’
if just (ay,b) (edge (ay,c) respectively) then there exists a vertex

edges occur then G contains a 6-greph disjoint from (

by (vertex cy respectively) and any connection gives a 6-graph dis-
joint from a k-graph. Thus Oa is not a'vertex and 1 is not cubic.
If (1,b) then lemma 4.8 gpplies, hence edge (1,y). St{2)

is disjoint from ( *. Y ), (2,y) gives a 8-graph disjoint from

a b ¢
0 x
(

a b 3) and anything else gives a 0-graph disjoint from (a b l)



109

Case 5. If either vertex 1,3 connect elsewhere then we have an
earlier case. Thus there exist vertices 0a,0b which can connect
only to x,y. If (Oa,x) with (Ob,x) then G contains a 6-graph
disjoint from (aaObxax)’ hence (Oa,x) and (Ob,y). Vertices
ax,by must connect to c¢ or we get a 6-graph disjoint from
(% %), yet this gives an earlier case with cycle (0,1,2,3)

ax Oa 2
. e ax by
disjoint from (a b c)'

Case 6. Note vertices 1,3 are now dead. If (2,x) then G

contains a 6-graph disjoint from (a. Oby3). By symmetry 2 is cubic,

contradicting lemma 2.17.

O

Temma 4.11. There does not exist a @ € ISE(P) satisfying H4 and
containing a subgraph, H, homeomorphic to the graph of figure 4.1k

where H contains a vertex 3 as shown.

Figure 4.1k
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Proof. By way of contradiction suppose G were such a graph.
Up to symmetry vertex 3 may connect only to ay,a or y forming

cases 1,2 and 3 respectively.

Case 1. (3,ay). Note the symmetry (1 a)(2 ay)(d x)(c y). If
(0,3) is not an edge we get either a 6-graph disjoint from a
k~graph or a contradiction of corollary 3.11. ILikewise neither
vertices O nor 3 can connect anywhere else without an earlier
case, so [0,3] dis dead.

Next, if there were a vertex 23 any connection gives a contra-
diction of corollary 4.5. By lemma 2.18 vertex 2 is not cubic. We
can only have edge (2,x) or (2,y), or else we get either lemma
4.8 or we contradict corollary 4.5. By the above symmetry and
(a y)(a ay)(0 3)(1 2)(b c¢) vertices 1,a,ay also cannot be cubic.
Examining -(-5?? U {(1,a),(2,ay)] € P as shown in figure 4.15 we
have (without loss of generality) (2,y),(c,a),(1,x) and (b,ay).
Since vertices 0,3,1,2,a,ay are all dead any bridge additions occur
on cycle (b,x,c,y), the graph is projective with (b,x,c,y) null
and disjoint from a ©-graph, by lemms 4.5 we must get a ©-graph

disjoint from a k-graph.

% b y .
C
aYr—z 3
Y 3 2 4

Figure 4.15
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Case 2. (3,a). If cycle (0,a2,3) is not a 3-cycle then we have
the previous lemma. Thus vertices 0,3 connect somewhere, avoiding
the previous case implies they can only connect to x or y. If

(a,x),(3,x) then G contains a wedge (g ay v ( ), Thence

a l vy’
edges (0,x),(3,y). Examining extensions of the embeddings of lemms,

4.9 we get exactly 3 embeddings, shown in figure L.16.

5T e TV = NAT A
FHopeEe
< M * Y 2 * Y v

A B | c

Figure 4.16

If there exists a vertex 12 then (12,a), gives a wedge of

k2’3's, (12,x) or (12,y) give a wedge \L k. ,'s and (12,bx)

2,3
1l bx -
12 0 b). By lemma 2.18 either 1

or 2 is not cubic, without loss of generality, suppose 1 is not

gives a 6-graph disjoint from (

cubic. Either edge (l,a) or (1,c) give the previous lemma, edge
. 1 .

(L,y) gives (O 5 y) (a 5 ) Thus we have either edge (1,x)

or (1,bx). Deleting this bridge and embedding with either an

extension of A or B gives a k-graph disjoint from a 6-graph
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(k-graph on cyele (0,1,b,x)) hence we must have an extension of C,

yet this implies (b,c) and a ©-graph disjoint from (% ’cc)-

Case 3. (3,y). By elimination vertex 3 may only connect to xX.
Suppose (3,x) is in G. St(1) is disjoint from (axcy3) implies
(1,bx) or else we get an earlier lemma. Cycle (1,b,bx) is a 3-cycle
since it is disjoint from a K3,3\e, vertices (b,bx) may only
comnect to (x,a,y,c). Edge (b,a) gives a ©O-graph disjoint from

¢ 3 ) hence (b,x),(bx,y) and G contains a wedge

(2 X ¥y

3 ¢ y 1 . .
(2 x y)y (b bx a). Thus vertex 3 is cubic.

If vertex O 1is not cubic note (0,y) implies a wedge

O ¥y b ¢
(Oy o 3) \ (x - Z), so O may comnect only to ax,x. If (0,ax)
then (0,a,ax) disjoint from a K3 3\e implies it is a 3-cycle;

J

so a must connect elsewhere. Edge (a,x) gives a ©-graph disjoint
from (32cyl)’ a connecting to cycle (0,1,2,3) gives an earlier
lemma, (a,b) is case 1 if we examine (baaxxy)’ and (a,c) is

& X ), Hence under the supposition O is

case 1 by examining (c ax

not cubic so we get (0,x).

If (0,x) is in G note (2,x) gives a wedge of k-graphs, (2,¥)
makes the dead vertex 3 cubic in a 3-cycle, and (2,cx) is
symmetric to (0,ax) Wwhich was Jjust ruled out. Vertices 2,3 cubic

G . . . .
i i U 0 ti th
implies B35 {(0,¥),(1,e)} is projective, the unique embedding

with cyeles ({2,3},0,¥),({2,3},1,c) essential is shown in figure L.17.
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ks Y
o
C f2,5} cl 3 b
|
Y
Y b %
Figure 4.17

Vertex a is cubic in a 3-cycle (if cycle (a,x,0) contains a
fourth vertex we apply the previous lemma), by figure 4.17 we have
either (a,b) or (a,by). The latter gives case 1 if we use the
‘k-graph (;bbe{c), thus (a,b), and we get the symmetry

(0 y)(e 1)(b x). Finally note (1l,y) gives a wedge (32(:y]) i
(loabx)’ (1,ex) gives cycle (2,3,y,c) disjoint from

(é % ;;)\(a,cx),(l,bx) is equivalent to (0,ax) if we use

( 0 bx ), hence 1 may only commect to x. If 1 and ¢ are

l x a

both non-cubic we get St(3) disjoint from (at)cjil) hence without

loss of generality 1 is not cubic. [1,2] dead contradicts lemma 2.18.
We conclude (0,x) is not in G, vertex O is dead, by symmetry

so is vertex 2. We shall complete the lemma by showing vertex 1

is cubic and hence contradicting lemma 2.18. Observe

T§§§7'U {(1,e)(0,y)) embeds in P, as does T??ET U {(2,¥),(1,a)].

The unique embeddings are shown in figure %4.18. We see vertex 1

mey only commect to x or bx, regardless vertex b connects elsewhere.



The only two possibilities,

the above embeddings.

is complete.

Thus

114

’j < Y %
2
b a | io'a} !a ¢
' g
Y o x
Figure 4.18

st(a) or st(e) do not extend one of

1l 1is cubic, and the proof of the lemma
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84.3 A lk-cycle Disjoint From a k),

Proposition 4.12. There does not exist a G € II\:(P) satisfying

H4 and containing an n-cycle || k, for n>kh.

Proof., By way of contradiction suppose G were such a graph.
Label the cycle and the k) as in figure 4h.,19, call this graph H.

First we will show there is not a vertex v disjoint from H.

3 b
3 s )
Figure 4.19

Iet v be such a vertex. Note v may not conmect twice to the
eyele. If (v,a) and (v,b) then v must be in the same camponent
of G\st(kh) as the "missing" vertex of the k,, else a and b
form a cut set separating v and this vertex, contradicting lemma
2.1k, Cycle (0,1,2,3) is disjoint from (_° dbv) contradicting
proposition 4.6. If (v,a),(v,b), and (v,c) are in G, note v
must be the "missing" vertex of the k), else (avbdc) is a k2,3
disjoint from a U-cycle. The remaining arc (v,d) must intersect
cyele (0,1,2,3) by lemma 2.19. Also note no bridge hits the cycle

(0,1,2,3) and the interior of an edge of the k), else the k) 1is
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a k2’3.
(1,a),(2,2),(3,b). Avoiding 1 cubic in a 3-cycle implies (1,b)

(e §> v (b1032)'

not both in G. Note each of the vertices 0,1,2,3 must connect to

If (v,0) and (d,0) then without loss of generality

giving a wedge Thus (v,0) and (d&,0) are
the kh’ either because they are degree 2 or are cubic vertices
disjoint from a kh‘ Also note not all of a,b,c connect to the

(v a)

a b o is a k-graph, without loss of generality suppose

cycle or
¢ does not connect to the cycle. Whichever pair out of 0,1,2,3
which are not adjacent to {v,d} must (by avoiding a cubic vertex
in a 3-cycle) be adjacent to without loss of generality a,
creating a wedge of k-graphs. Thus there is not a vertex disjoint
from H.

We summarize our knowledge of G: 1) there does not exist a
vertex v disjoint from H, 2) an edge of the k, is an edge of
G, 3) all bridges are edges joining the cycle to {a,b,c,d}.

With this information the proof shall proceed based on the valency

of vertex O.

Ir (0,a),(0,b),(0,c),(0,d) +then without loss of generality G

0 2
(l 3

vertex 1 only connects to a it is cubic in a 3-cycle.

contains edge (2,a). a) must be a k-graph, because if

r (0,a),(0,b),(0,c) then again edge (2,a) and k-graph

(a0123)’ as (2,4) has st(2) disjoint from (.S 2.

If (0,a),{(0,b) +then suppose (2,c),(2,d). Vertices 1 and 3

must connect somewhere twice. Edges (1,a)(1,b) imply (3,c)

0] 1).

a p)+ Edees (1,2)(1,c) imply

giving a ©-graph disjoint from (
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(3,b},(3,d4). Any other edge addition yields a wedge k2’3 Xk,
yet this graph is projective, We conclude vertex 2 is cubic, say
(2,c). Both vertices 1 and 3 cannot conmect to d, say (1,d)
note c¢ is dead else 2 is cubic in a 3-cyecle. Thus (3,a),(3,b)
are the only possible edge additions, yet the resulting graph is
projective,

We have G contains edges (0,a),(1,b),(2,¢),(3,d) and there
exists a vertex OL. This vertex can only connect to a or b,
or else we get a wedge k2,3 ¥ k), suppose (01,a). Now O1 is
dead and cubic, hence there exists v € (0l,a) and (v,a) giving

6-graph disjoint fram (% 7).

For easy reference we summarize the results of proposition 4.6

and proposition 4.12 in the following corollary.

Corollary 4.13. There does not exist a G € If(P) satisfying

HY and containing an n-cycle disjoint from a k-graph for n Z}h.
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§4.4 A 3-cycle Disjoint From a k, 3
>
The goal of this section is to prove proposition %.18, concerning
G contains a cycle disjoint from a k2 3° We shall first prove the
2

a b c
)s

partial result where G contains a K3 32 (O Xy and a 3-cycle
3

(1,2,3) aisjoint from (5 . SN\(0,c).

Iemma 4.l%. There does not exist a G € IE(P) satisfying Hk4

and containing a subgraph homecmorphic to the graph of figure 4.20.

Proof. By way of contradiction let G be such a graph. Note
(1,2,3) is a 3-cycle of G by corollaery 4.13, so 2 and 3 are
of valency at least U4, Observe neither 2 or 3 may connect to
st(0),st(c) or we get a O-graph disjoint from a k-graph. Also,
if 2 and 3 are both adjacent to st(a) we get a U4-cycle disjoint
from a k-graph. Note the symmetries (x y),(a b),(2 3), and
(c 0)(x a)(b y). Finally each embedding of (1,2,3) ]| (axbyc)

given by lemms 4.9 extends in 2 ways to an embedding of

((1,2,3) .”_ (axbyc)) U st(0), the 12 embeddings are given in

figure 4.21.
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Case 1. (2,ax). Vertex 3 connects twice to [b,y]. The two

unique embeddings are shown in figure 4.22. The remaining bridge with

ax a

* 2 Y % x X Y X
o 0 Py,
X9 ¢3
A3 [ B)-l- -¥ b c
S Y4
g% y——x

Figure 4.22

v.0.a. 2 must connect to either a or x. From the embeddings
(2,0) implies (ax,0),(ax,1),(ax,3) or (ax,y). The first 3
contain cyele (x,b,y,c) disjoint from a k-graph, contradicting
corollary k.13, and the fourth contains cycle (2,a,0,1) disjoint
from (axatbbrc)' Bridge (2,x) implies either (ax,b),(ax,c) or
(ax,l).‘ The first contains a 6-graph disjoint fram (c
)

the second a 6-graph disjoint from (:; .)> and the third a

8-graph disjoint from (:; i). Case 1 is done.



%
S
Y
>
Y
x
&

Figure 4.21
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Case 2. Since 2 and 3 both comnect only to cycle (a,x,b,¥y)
and they must cqnnect to existing vertices by case 1, we have either
(2,x),(2,¥),(3,a),(3,b) or (2,x),(2,e),(3,¥),(3,b). The former
graph contains eycle (x,c,y,2) disjoint from (loaBb) hence
the latter. Note verticeé 2 and 3 are dead, and we have the
unique embeddings A,,B), based on the symmetry (x y)(2 3)(0 c).

Suppose vertex O is not cubic. If (0O,c) then either
(1,v),(1,x),(1,a), or (l,y). All are symmetric and (0,c¢)(1,b)

& © ). If edge (0,ax) then

give a O-graph disjoint from (x v 0

By

connection gives a ©-graph disjoint fram a k-graph. If (0,x)

is a unique embedding with ax connecting somewhere. Any such

then we have either (1,b),(c,b), or (a,b). The first graph
contains a 6-graph disjoint from (3:lb;yc)’ the second a 8-graph

disjoint fram (l°133y), and the third a 6-greph disjoint fram

(O %), By So-independent arguments st(0) and by symmetry st(c)

x b

are dead.
We know 1,2,3,0,c and star thereof are all dead. Edge (a,b)

implies a vertex ab, without loss of generality (ab,y) and cycle

b).

(c,y,3,1) is disjoint from (abax 0 If (a,bx) then G

ab)‘

contains a O-graph disjoint from (bx 0y This exhausts the

possibilities.

Iemma 4.15. There does not exist a G € To(P) satisfying H: and

containing a subgraph homeamorphic to the graph of figure 4.23.
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Proof. To avoid a ©-graph disjoint from a k-graph each vertex
{0,1,2)} must connect to adjacent vertices on (: § Z). Without
loss of generality we assume G contains edges (1,0) and (1,c)

and apply lemma 4.14.

Iemma 4.16. There does not exist a G € Iﬁ(P) satisfying Hh4

and containing a subgraph homeomorphic to the graph of figure 4.24.



123

Figure 4.2k

Proof. By way of contradiction let G be such a graph. The vertex
3 must connect twice to cyecle (a,x,b,y) or else G contains a
B-graph disjoint from a k-greph. Note the symmetry (1 2)(c 0)(a x)(b y).
We break the proof into three cases; (3,ax) case 1, (3,x)(3,y) |

case 2, and (3,a)(3,x) case 3.

Case 1. (3,ax). Again there are exactly 12 embeddings of the
subgraph given in the lemma, the 5 admitting (3,ax) are given in

figure 4.25. We examine where vertex 2 may connect. Edge (2,b)

b 4
£+ b » * - ¥y oy 4 —Y
3 a3 =
™ 3 i ¢ > 3 ¢ |3 c
=1 2 a 7 Yax 24 \%51ax
N 7] 9
yb—&—, 3 y—e % LS
Ao A3 . Ay
ax_2a x_Bp 3
% M, RR P
by s 4 b <::::>C ¢ s/ Jo]ed v
P %
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gives a U4-cycle disjoint from (xlay_ca). Edges (2,a),(2,ax)
imply 3 connects again to [a,ax] or else G contains a k-graph
disjoint from cycle (y,b,x,c), yet such a connection creates a
O-graph disjoint from (x y-cl) Hence 2 connects only [x,c) U
(c,¥y], by symmetry 1 connects only to [a,0) U (0,b]. Regardless
of where 2,1 connect c,0 respectively must connect to cycle
(a,y,b,x,ax).

Suppose (2,x) we examine where c comnects. Edge (c,ax)

gives cycle (0,a,y,b) disjoint from ( 8% Y, and (c,bx)

c x 3
gives either cycle (c,bx,b,y) disjoint from (a 3 2) or a
bridge from 3 to [ax,x] and a wedge (; ax) 4 (a b 2) If
(c,a) then this pair of edges does not eliminate any of the 5
embeddings, hence deleting (2,x) implies either (c,1),(ec,0), or
(e,3), all of which give contradictions. If (c,b) then again
this pair of edges does not eliminate any of the embeddings, ¢
must comnect elsewhere, yet the possibilities are exhausted. We
conclude we cannot have (2,x), hence (2,y) and (1,b).

Vertex O now connects to the cycle (a,y,b,x,ax). If edge
(0,y) then G contains a ©-graph disjoint from (J.Oaax£), hence
either edges (c,a),(c,b) or (c,ax). Edge (c,b) is transferable
in each embedding, since st(1) and st(2) are now dead. By examin-
ing the embeddings we get (x,y) or (x,0). The former graph contains
a O-graph disjoint from (z ;) and the latter graph a O-graph

0 ax

disjoint from ( Bdge (c,ax) is transferable in every

3)'
embedding, hence we get either edges (x,0),(x,y) or (x,a). The
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first gives a 0O-graph disjoint from (:; g), the second a 6-graph

disjoint from (J a;‘), and the third a O-graph disjoint from
¢ =

x g )+ Hence G contains edge (c,a) and by symmetry edge

a 2

(0,x), and cycle (b,x,0,1) is disjoint from (3 o y)

contradicting

corollary L4.13.

Case 2. (3,x),(3,y). Checking extensions of the embeddings in
figure 4.21 we see there are exactly &4 embeddings of our subgraph,

shown in figure L4.26.

- 4 4 X Res
0
Ay 2 4 2 © A -
y—t— ;
2% ¥ Y %
o
B, ¢ By b b ¢
Y y a—r 9
Figure L4.26

By lemma 4.14% we do not have edge (1,c¢) in G. If (1,x)

0 x )
a b 17’

independence we have (l,a). If la then (la,b) giving a

then cycle (3,2,c,y) is disjoint from ( so by S -

a b )
x 0 la’’

arc, of G. Next, note examining cycle (0,1,a) disjoint from

@-graph disjoint from ( hence (1,a) is an edge, not an
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(2 ; y)\(2 b) shows 2 cannot comnect to a or b, hence without

loss of generality we have edge (2,x). Now, deleting (1;a) and
embedding implies either edge (0,x),(0,ax),(0,ay),(0,y) or (0,cy).

(g ;')-V (axbyc)’ the next two contain

a 6-graph disjoint from (bxcy3), (O,cy) gives the previous lemma,

hence G contains edge (0,y). Deleting (0,y) implies either

The first contains a wedge

(1,v), (e,b),(2,b) or (b,3), we need only consider embeddings
A3,B3 or else G contains a 6-graph disjoint fram k-graph on
cycle (a,y,b,0). The first gives a ©-graph disjoint from

(2 vx(‘:y)’ the second a O-graph disjoint from (0 ;), the third a
8-graph disjoint fram (3 b c)’ hence (b,3). By the symmetry

(02)(a 3)(xy)(® c) we have (a,c) giving a ©-graph disjoint from

(lcx>

Case 3. (3,a),(3,x). The graph embeds in exactly 6 ways, shown
in figure 4.27. Vertex 3 is dead or else either case 1 or case 2

applies. Note the symmetry (1 2)(0 c)(a x)(b y).

IO TS T

9 c x A Y c x A

2 L

7‘. Y
¢ b
b @ P(_
Y

Yy *

Co

Figure 4.27
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If (lL,y) is in G then (aobyl) disjoint from cycle
(3,2,c,x). Edge (1,c) gives lemma k4.1k, edges (1,2) or (1,3)
give a ©-graph disjoint from a k-graph. Edge (1,x) creates a
hocycle (a,y,b,c) disjoint from a K),, in order that the X, is
not & k, k-graph G must have edge (2,x). Vertex c is cubic
in a 3-cycle, and any connection creates (; i), a k. Thus we
have (1,v) for v € [a,0) U (0,b], by symmetry (2,v') for
v € [x,¢) U (e,¥y].

If (1,b) note (1,0,b) disjoint from (23x°y) jmplies O
is not cubic. Edge (0,c) is lemma 4.1k, edges (0,2) or (0,3)
give a ©O-graph disjoint from a k-graph. Edge (0,ax) is case 1,
viewing cycle (1,2,3) disjoint from (ﬁf ;’ x)\(c,o), likewise
(0,ay) is case 1 upon a similar symmetry. If (O,by) then consider-
ing (xay 0) in place of (xaybo) shows that it is thé
equivalent to adding (1,bx), which was previously eliminated;
likewise (0,x) is the seme case as edge (1,by). Note O may
only connect to x or y. If (0,x) then (2,x) gives a wedge

("

to either a or b, the former giving a ©-graph disjoint fram
2
(

o b c) V-( %), hence let us assume (2,y). Vertex c connects

c) and the latter a ©-graph disjoint from ( ). We

lax

conclude (0O,y), and examine where 2 comnects. If (2,x) then
¢ connects to either a or b, yet (c,a) contains a cycle

(1,0,y,b) disjoint from (c2 a Also note edge (2,y) is

X 3)
symmetric to edge (1,b), hence we also conclude (c,b). Regardless

of (2,x) or (2,y), deleting (ec,b) and examining the embeddings
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implies either (x,y) or (x,1). The former graeph contains a
O-graph disjoint from (: g) and the latter has been previously
considered. We conclude (1,b) is not in G.

In case 3 we have now forced (1,a), and by symmetry (2,x).
Deleting (2,x) and examining the embeddings implies either
(e,3),(e,0),(e,b) or (e,a). The first two have been previously
considered. The third edge is transferable, deleting it and embedding
gives (x,¥),(yv,2) or (y,3), giving a ©-graph disjoint from
(Z ;) and two previous cases respectively. Hence we have (c,a),
by symetry (x,0) and G contains a wedge (}2{ ij)v (ax'byc)'
This completes case 3 and the proof of the lemma,

O

Corollary 4.17. There does not exist a G € Iﬁ(P) satisfying

a b e
O x ¥

H4 containing a ( ) and a cycle disjoint from
53

(6 2 9\,

Proof. The result follows immediately from corollary 4.5,

lemma 4.1k, lemma 4.15, and lemma 4.16.

Proposition 4.18. There does not exist a G € I&(P) satisfying

H4 containing a 3-cycle disjoint from a k2 3¢
>

Proof. The vertex in the Ké 3 missing from the k2 3 must be
2 2

on the 3-cycle by corollary 4.17. The proposition naturally breeks
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into three cases, illustrated in figure 4.28. Each case shall be
covered in a separate lemma. The proofs of these lemmas will complete

the proof of this proposition.

0
3 a2
& , €5 o (5 5
[A < C
lemms 4.19 lemma L4.20 lemma 4.21

Figure 4.28

Lenma 4,19, There does not exist a G € IE(P) satisfying HA4

and containing a subgraph homeamorphic to the graph of figure 4.29.
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Proof. By way of contradiction suppose G was such a graph.
Note there exists vertices 2,3 as shown and by proposition 4.6
(1,2,3) is a 3-cycle. We shall break into cases depending on where
vertices 2,3 connect. If (2,ax) then we cannot have (3,ax) by
corollary 4.17, (3,a) and (3,x) give proposition 4.6. Hence
we have either (3,by) (case 1) or (3,b) and (3,x) (case 2)
since (3,b) and (3,c) give cycle (1,2,ax,a) disjoint from
(xbyc3'). If edges (2,2) and (2,b) them G must have edges
(3,¢),(3,¥) (case 3) since (3,x),(3,y) gives E,;gU (1,2). Edges
(2,x),(2,a) give either (3,c),(3,y) (case 4). or (3,x),(3,y) .

(case 5). If G does not contain (2,a),(2,x) then G contains

(2,x%),(2,¥),(3,x),(3,y) giving E3 U (2,3). The five cases are

illustrated in figure 4,30.

case 1 case 2 case 3
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Case 1. (2,ax),(3,by). Vertex 3 may only connect to [b,y].
If (3,b) then cycle (3,b,y) is disjoint from (?‘_ ; fx‘)\(2,y),
hence edge (3,y) and by symmetry (2,x). We note by examining

lemma 4.9 there are exactly 3 embeddings, shown in figure 4.31.

aX 8 ) ~4 2 Y
vy ax, b
| /] v
Y 5
¥ Y b\j b ¥
A B | c
Figure 4.31

Deleting (2,x) and checking the embeddings implies (ax,c) or
(ax,b). The former gives a 4-cycle disjoint from (blay3) and

the latter a U-cycle disjoint from ¢ a3

Case 2. (2,ax),(3,b),(3,y). We observe cycle (3,b,y) is disjoint
from (2 laa.xx) hence it must embed mull. Thus there are exactly
3 embeddings corresponding to the 3 embeddings fo figure 4.31. Again
2 cannot connect to b,ax,a,x or cy by similar arguments, hence
(2,c) and embedding C is unique.

Next note st(ax) is disjoint from (b lcy3)’ so ax is not

cubic. It cannot be a v.o.a. for an admissible bridge since the

cycles bounding ax, (ax,2,x,c),(ex,2,1,a) and (ax,a,y,b,x), are
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all disjoint from a U-cycle, by lemma 2.15 we would get a contradiction
of corollary 4.13. Avoiding cubic vertex in a 3-cycle implies
either edge (ax,cy),(ax,1c) or (ax,1b). The first and third

contradict corollary 4.17 and the second contains a ©-graph

X ax

disjoint from (1c x 3

Case 3. (2,a),(2,b),(3,¢),(3,y). We note there are exactly two

embeddings, shown in figure 4,32, the two embeddings based on the

symmetry (a2 b).

b | 2
¥ <Y y p v x
a a < b ¢ b c
Y ‘ Y
Y c * Y c p 2
A B
Figure 4.32

First we shall rule out the possibility of an admissible bridge.
Note regions (a,x,b,2),(1,2,3),(a,y,b,1),(1,3,c),(3,c,y) occur in
both embeddings and are either disjoint from U4-cycles or ©-graphs.
Using lemma 2.15 an admissible bridge contradicts either corollary
4,13 or lemma 2.16. An admissible bridge on (1,2,b) creates a
8-graph disjoint from e k-greph. An admissible bridge on (2,3,y,a)
which is not admissible on (2,3,y,b) gives (% i) disjoint from

eyele (e,x,b,y), a bridge admissible on both gives (a,3) and

a l).

o 3 A similar argument holds

G contains a wedge (axbyc) Y (
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on eycle (1,a,x,c) except for the bridge (la,x), which gives a
cubic vertex in a 3-cycle and (b,c¢),(x,y) with a O-graph disjoint
from a k-graph. We conclude there is not an admissible bridge.

If a bridge inadmissible in either embedding has 3 or more
v.0.a. then no two v.o.a. are on the same region, else there is a
k-graph on that region. Recalling vertex 3 is dead implies 2 is
also dead. If 1 is a v.o0.a. then so is cy, and G contains a
hecycle disjoint from (lasz). Since there does not exist a
vertex cy, any 3 vV.0.a. on (axbyc) give 2 v.o.a. on a
common region.

If a 2-bridge is inadmissible in either embedding involves a
ninth vertex, by symmetry it is either ax,ay,cx or cy. if it is

1 2)
’

a vertex ax then st(x) 1is disjoint from (3 if cy +then

a b )
1 2 x’°

ay then edge (ay,bx) gives a hoeyele disjoint from (clby3)

G contains a U4-cycle disjoint from ( If it is a vertex

and if it is a vertex cx then (cx,2) gives a U-cycle disjoint from
1l 2

¢ 2.
(3,x) giving E,g U {(1,2),(3,¢)].

Thus the 2-bridge is between existing vertices, hence it is

Case 4. (2,a)(2,x),(3,b),(3,y). Note cycle (3,b,y) is disjoint

1l x
c 2

graph has 3 embeddings corresponding to the embeddings of figure

from ( ), hence it embeds null as does (2,x,a). This
4.31. Also note st(3) is dead implies st(2) is dead. If edge

(1,x) then G contains a wedge (; z) Y2 (; %), edge (1,by)
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1 x
a)'

5 Thus st(1) is dead as

gives a kL-cycle disjoint from (c
well.

If there is a ninth vertex disjoint from our graph then it must
comect to [e,x] U [x,a], avoiding a cubic vertex in a triangle

a b

implies v giving a wedge (F 2

3 p) Y (a"byc). If the

c
ninth vertex is on the k-graph (axb yc) then it is either c¢x or
bx., If it is cx then edge (cx,v) for either v € st(x) or
v € st(y). Regardless replacing the k-graph (axbyc) with
(avbyc) gives an earlier case. Similarly the ninth vertex is not
bx.

We conclude G has exactly 8 vertices and (a,b),(a,c), (b,c)

are the only possible bridge additions. G U {these bridges} is

still projective.

case 5. (2,¢),(2,x),(3,x),(3,y). Note st(3) is dead. Edge
(2,y) has been ruled out so st(2) is also dead. Edge (1,x)
gives a wedge (albyc) \L (;‘ i). Edge (1,y) is equivalent under
the symmetry (1 x) to (x,y), which gives either (c,b) and a

8-graph disjoint from (.};

Z) or (c,a) which is case 4 under the
symetry (3 a). Thus st(1) is also dead. By the aforementioned
symmetries st{c) and st(x) are dead, so the only live vertices
are [b,y] U [y,c]. Without loss of generality G contains edge

(b,cy) which is a previous case if we replace the k-graph (axby c)

with (axbcyc). This completes the proof of case 5 and lemma k4.19.
ad
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Iemma 4.20. There does not exist a G € I%(P) satisfying HL4

and containing a subgraph homecmorphic to the graph of figure 4,33,

Figure 4.33

Proof. By way of contradiction suppose G were such a grqph.
Note there exists a vertex 3 as in figure 4.33. We shall bresk
into cases depending on where vertices 2,3 connect.

Suppose (3,c) is in G. If (2,ax) then 3 may not connect

1 2y,

to vertex a (cycle (x,b,y,c) is disjoint from (3 to

vertex ¢ (6-graph disjoint from (xaybl) or to vertex b (cycle

b ¢
x ¥y 3

(1 ¢)(x a)(b y) this exhausts the possibilities, hence edge (2,ax)

(1,2,ax,a) is disjoint from ( )). Under the symmetry
is not in G. If (2,a) is an edge of G then we have either
(3,b) (case 1) or (3,x) (case 2).
Suppose (3,c) is not in G. If (2,ax) then the symmetry
(1 2)(a ax)(x y)(b ¢) implies 3 may only connect to
[x,a] U [a,ax] U [ax,y]. If (3,x) and (3,y) then cycle (1,2,ax,a)
is disjoint from anc:y3)’ so 3 must conneet to [a,ax].
Avoiding cycle (xX,b,y,c) disjoint from a k-graph implies (3,a), (3,ax),

and 3 is dead. Embedding O\ (ax,2) gives cycle (3,8,ax) null
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. . s b ¢ X ¥y
as is (3,1,2) (disjoint from k-graphs (l x y)’(a b c)
respectively) , hence we have a local embedding around 3 as in
figure L4.34. This embedding extends to inelude (2,ax), a contra-
diction. Hence G does not contain edge (2,ax). If (2,a) then

1

again we do not have (3,c),(3,b). If (3,a) then (3 ":) is

disjoint from cycle (x,b,y,c), hence (3,x) and (3,y) (case 3).

a ax

\ 2

Figure 4.3k

Under the supposition (3,c) is not in G we know 2 may only
connect to x or ex. If (3,y) then cycle (2,x,c) being disjoint

from (alby3) gives an earlier case. If (3,a) and (3,b) then
cyele (2,x,c) disjoint from (la3b ) shows we have in an earlier

case. If (3,x),(3,ax) then cycle (3,x,ax) disjoint from (albyc)
implies (1,ax). Thus we have (3,x),(3,a) (case 4). Note in case

4 we have (2,x), as (2,cx) gives cycle (2,c,ex) disjoint from

(i Z 3)\ (3,y). The L cases are illustrated in figure 4.35.

Note by lemma 4.9 we get 12 embeddings of the graph in figure 4.33,

these embeddings are given in figure L4.36.
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Figure 4.35
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Case 1. (2,a),(3,b),(3,c). Note cycles (1,2,3),(1,2,a),(1,3,b),
(2,3,c) are all disjoint from k-graphs, hence they must be 3-cycles.
Suppose there exists v disjoint from this subgraph. If (v,2)

then (v,x),(v,y) eiving cycle (3,1,8,2) disjoint from (,* 7V ).

If (v,x),(v,y) and without loss of generality (v,a) then

(bxcyv) is disjoint from cycle (a,1,3,2). If (v,a),(v,b),(v,c)

2. °)

, hence v
X y v

then cycle (1,2,c¢,3) is disjoint from
connects only to [a,x] U [x,b]. If v connects entirely in [a,x]
then there exists a vertex ax and without loss of generality edge

(ax,c). This gives the equivalent of vertex v connecting to [a,x]

and [x,b] upon considering the k-graph (ashbaxc). Thus without

loss of generality there exists both ax,bx connecting somewhere.

a b

ax v y) disjoint from cyele (1,2,c,3),

Edge (ax,b) gives (

thereforé G has edges (ax,c) and (ax,b). G now contains cycle

ab),
3

hence we conclude there is
v x 1

(c,ax,x,bx) disjoint from (
not a vertex v disjoint from this subgraph.
If there is a ninth vertex on this subgraph then it must be,

without loss of generality, cx. Examining cycle (c,2,3) disjoint

from (xa bl) corollary 4.17 implies either (ecx,a) or (cx,b).

If (ecx,a) then either edge (ax,c) with cycle (2,1,b,3) disjoint

cx ax .

from (a X c) or edge’ (ax,b) with vertex x disjoint from
(ax51y1)l) contradicting the previous paragraph. Hence (cx,a) and
(cx,b) and again vertex x is disjoint from (aybcx ) contradicts

the previous paragraph. Hence |v(G)] = 8.
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If G contains edge (a,b) then vertices x and y are both
cubic in a 3-cycle. Edge (x,y) gives cycle (1,2,c,3) disjoint
If edge (x,1) then (y,1), or else a O-graph

1

disjoint from ( if). Deleting edge (a,b) and embedding implies

edge (x,y), a comtradiction. If edges (x,2) and (y,2) then

a b

1 x y) gives lemma 4.19.

considering cycle (2,3,e¢) disjoint from (
Thus (x,2),(y,3) and X, y are dead. Every edge addition has been
ruled out, yet our graph is still projectivé.

If there is no edge of the type (a,b) then note again given
edges (2,x),(2,y) we can apply lemma 4.19 as sbove. If
(1,x),(2,x),(3,x) then G contains a wedge (;' }2c) v (axbyc)

hence we have at most (1,x),(2,x),(3,y) which gives a projective

graph.

Case 2. (2,a)(3,c)(3,x). Note 3 is dead by exhaustion of cases.
By the symmetry (c 1)(2 3)(a x)(b y) vertex 2 is also dead.
We will show G contains exactly 8 vertices.

If cx is a vertex note (cx,y) gives a 9O-graph disjoint from

(abe,cx)_ Edges (cx,a),(ex,b) respectively are equivalent to

edges (3,bx)(3,ex) which was contradicted. By S-independent
arguments there is no vertex cx. If cy 1is a vertex then again

(ey,x) gives a ©-graph disjoint from (cyxayb)' Edge (cy,b)

has cycle (ey,y,b) disjoint from (ch ;) implies (cy,a) and

ab).

Xy oy Edge (cy,a) is

cycle (e,2,1,3) 1is disjoint from (



L1

equivalent, using (axbcyc). Thus there is no new vertex in st(e)
and by symmetry st(l1).

If ax 1is a vertex then» (ax,y) gives a O-graph disjoint from
a k-graph, edge (ax,b) or (ax,c) are equivalent to edge
(3,ex),(3,bx) respectively, and (ax,1) is equivalent to (2,ay),
all of which have been eliminated. If ay 1is a vertex we have either
edges {ay,b) or (ay,c). The first is equivalent to the existence
of cy, using (axbayc) , and the latter gives a 3-cycle with y
dead.

If bx is a vertex them (bx,a),(bx,c) give similar contradictions.

Edge (bx,y) is equivalent to a vertex 1b. If by is a vertex note

b d
by a

N(b,2) and edge (by,a) or (by,c)

(by,x) is equivalent to 1b wusing ( yc)r; (by,1) contains

(by,y,1) disjoint from (Ja_ g ;2
is equivalent to vertices cy, ay respectively.

If the ninth vertex, v, ’is disjoint from our subgraph then edge
(v,1) implies edges (v,x),(v,y) giving cycle (x,¢,2,3) disjoint
from (albyv)' A1l 3 of the vertices a,b,c cannot be v.o.a., '
avoiding cubic vertices in a 3-cycle imply edges (v,a),(v,b), (v,x),(v,y)
giving cycle (a,1,3,2) disjoint from (vxbyc).

Given G contains exactly 8 vertices, note (%,y) implies
(b,a) or (b,c) end a O-graph disjoint from (z g), 6-graph
disjoint from (3; ‘Z) respectively. The four possible remaining

edges are (1,x),(c,a),(1,y),(c,b), addition of all four yields a

projective graph.
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Case 3. (2,a),(3,x),(3,y). We note the symmetries (1 2),(a 3).
Since st(3) 1is dead by exhaustion of cases so is sta)., If 1
is not dead we have (1,x) and cycle (1,b,x) is disjoint from
(a2<:y3) is lemma 4.19, hence st(1) and by symmetry §t(2) are

dead.

If bx is a vertex note (bx,y) is equivalent to 1b, wusing

(* ¥ * I,

a ¢ bx a b o Any other connection creates a

) in place of (

3-cycle disjoint from a Ké 3 €. By symmetry there does not exist a
2

ninth vertex.

The only possible edge additions are (b,c)(x,y), adding in

both gives a projective graph.

Case 4. (2,x),(3,a),(3,x). By exhaustion of the casework st(3)
is dead. If 2 connects to ex then both c,cx connect elsewhere.
Edge (cx,a) or (ecx,b) is an earlier case by considering
(a°?b3’c). Edge (cx,y) 1is equivalent to edge (2,y) (deleting
(c,cx)), using cycle (1,a,3) disjoint from (2bec) we get
either case 1 or case 2. Thus st(2) is dead.

If there qxists a vertex c¢x +then the only connection not giving
a contradiction is (ex,y). Cycle (cx,y,c) is a 3-cycle (disjoint

from a k-graph) yet cx is cubic, a contradiction. We conclude

(2,x,c) is a 3-cycle and c¢ 1is not cubic.

If (c,v) for v € (ax,bx} then examining (avbyc) we get
an earlier case. If (c,b) then y is not cubic, (y,x) gives a
X

8-graph disjoint from (b Z). Thus edge (y,1) and symmetry
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(1 x)(y e)(2 a). By the symmetry St(a) -‘is dead, also note (1,x)
gives a wedge (:L 2) v (¥ Y ). Thus all bridges lie on cycle

3 x a b ¢
(y,b,c), yet since there exists an embedding with this eycle null we
get a k-graph disjoint from a ©-graph. By exhaustion on where c
connects we have (c,a). Again (y,1) is forced, as is either

(byay) or (b,cy). Regardless, there exists a UY-cycle disjoint

from (2:13Jcb). This completes the proof of case 4 and lemma 4.20.
(]

Lemma 4.21. There does not exist a @ € IE(P) satisfying H4

and containing a subgraph homeomorphic to the graph of figure 4.37.

>

c
Figure 4.37

Proof. Vertices (1,2,3) non-cubic imply without loss of generality
edges (1,x),(2,x),(3,y). Since st(3) is dead c connects samewhere,
without loss of generality (c,a). Considering cycle (2,x,b)

disjoint from (1ac 3y) shows we can apply lemma 4.20.
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§4.5 A 3-cycle Disjoint From a k),

Proposition 4.22. There does not exist a G € II:(P) satisfying

H: containing a 3-cycle disjoint from a k.

Proof. By way of contradiction let G be such a graph. ILabel the

cycle and the Xk, as shown in figure 4.38.
L

3 v
]
()
Z o 4
Figure 4.38

If v is a vertex disjoint from this subgraph then v may not
conmect twice to the eycle. If (v,a) and (v,b) then v is in
the same component of G\st(kh) as the missing vertex of the k),
else {a,b} is a cut set, contradicting lemma 2.14. Now the cycle is
disjoint from (vacbd)‘ If (v,a),(v,b),(v,c) then v is the
missing vertex of the k,, by lemma 2.19 the arc (v,d) intersects
cycle (1,2,3). Note neither v nor d may comnect twice to the
(V.
is a k2’3, without loss of generality, assume c¢ does not. If

cycle, if g1l 3 of ({a,b,c} connect to the cycle then

(v,1)(4,1) then (2,a),(2,b),(3,2),(3,b) and eycle (2,3,a) is

disjoint from a If edges (v,1),(d,2) then (3,a),(3,b) and

k .
2,3
1l may only connect to a or b, regardless G contains a wedge

of kh's.
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Since there does not exist a disjoint vertex all edges connect

from the cycle to the kh' If there exists a vertex &b then

a b
(ab c d)

Ir (1,a)(1,v)(1,c)(2,d) then WLOG (2,a),(2,b),(3,c) and

is disjoint from cycle (1,2,3), thus [v(G)] = 7.

(3,d). The graph is projective and any edge addition gives a wedge
ky Lk . If edges (1,a), (1,b),(1,c) are in G then without loss
of generality assume (2,d),(2,¢). Vertex 3 may connect only to
a,b,d. If all 3 are present then the graph is projective and any
edge addition gives a wedge, k, ¥ k. If (3,2),(3,d4) and (2,b)
the graph is symmetric. If none of the vertices 1,2,3 can have
vlaency > 5 there are only 2 possible graphs, both are projective.

O



Chaptexr 5

NO CYCLE DISJOINT FROM A k-GRAPH

§5.1 Statement of the Result
Theorem 5.1. Iet G € Iﬁ(P) and suppose G does not contain a

eycle disjoint from a k-graph. Then G € [E3,E18}.

Proof. Since G is nonplaner G contains either a Ké 3 or a
>

Ks. If G contains a K. with no vertex disjoint, then any bridge

)
addition creates a K3,3. If G does contain a vertex disjoint
and G 1s 3-connected then the bridge containing the vertex creates
either a K3,3 or a cycle disjoint from a k-graph. Finally if G
is not 3-connected then by lemma 2.14 G contains disjoint k-graphs
and hence a cycle disjoint from a k-graph. Therefore we may assume
G contains a Ké,3, say G contains (g g g).

Iemma 5.8 states GO K3,3 then the K3,3 is on 6 wvertices, 1i.e.,

en edge of the Ks 3 is an edge of G. Hence G contains a vertex
2

0 2 bk
1 3 5°°

is adjacent to at least 3 vertices of the Ké 3° If +two adjacent
>

v disjoint from ( By lemma 2.14 the bridge containing v

- vertices are v.o.a. then we may replace the edge with an arc containing

v, contradicting lemma 5.8. Hence without loss of generality v is

adjacent to 0,2,4, giving K, 3°
b4

146
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The exi§ting graph is projective, hence there exists an eighth
vertex v' disjoint from this Kﬁ,S' By an argument similar -to
that gbove, v' connects to 3 wvertices in one of the bipartition
sets of the KL’3. One choice gives G = K3,5 = E3, and the other
choice gives G = Kﬂ,d\Ké = E18'

O

The remainder of chapter 5 shall be devoted to the lemmas we use
to prove lemma 5.8 which is in turn used to prove theorem 5.1. Note
that if G contains disjoint k-grsphs then G contains a cycle
disjoint from a k-graph. Hence we shall use G does not contain
disjoint Xk-graphs for the remainder of the chapter. Observe we may
also use G is 3-connected, G does not contain a ©-graph

disjoint from a k-graph, etc. using the various lemmas of §2.5.
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§5.2 Case 1
Section 5.1 shall concern G € I[:(P) containing a subgraph homeo-
morphic to that of figure 5.1. Observe said subgraph is a K3 3 with
J

an arc connecting the interiors of opposite edges.

Figure 5.1

Iemms 5.2. Iet G € II:(P) contain a vertex v disjoint from a
subgraph homeamorphic to figure 5.1. Then G contains a cycle

disjoint from a k-graph.

Proof. By way of contradiction suppose G does not contain a
c'ycle disjoint from a k-graph. We examine the bridge containing the
vertex v. It must have at least 3 v.o0.a. We will break into
cases depending on where these v.o.a. are.

If OL is a v.0.a. then another v.o.a. cannot be in st(1),st(2),
st(0),st(7), else G contains a cycle disjoint from a k-graph.

Iikewise if the bridge comnects to st(4) +then cyele (2,3,7,6) is

01 4
0 1 v

the other two v.o.a. must be 3 and 6; giving cycle (0,01,1,5,4)

disjoint fram ( ) or a splitting thereof. Hence by symmetry

disjoint from (7326v). Thus Ol must not be a v.o.a.
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If vertex O is a v.o.a. then st(0),st(l) cannot contain
v.0.a, or else there is a cycle disjoin:b from (h3762_). By
symmetry the only possible v.o.a. are vertices 6,2, giving case 1

of figure 5.2.
Y\(
K/
2
o
)5\4

case 3

We have reduced to cases where the only v.o.a. are existing vertices
O through 7. Without loss of generality let O be a v.o.a. If
1 is a v.0.a. then cycle (v,0,1) is disjoint from (23467). If
3 is a v.0.a. then cycle (1,2,6,5) is disjoint from (7043‘,).
Hence the only possible v.o.a. sets are (0,2,6} or (0,2,4,6}.
Finally we note that v.oc.a. set {0,2,4,6} must give case 3 of

figure 5.2 as any splitting contains a cycle disjoint fram a k-graph.

Case 1. Vertex v is cubic, (v,2),(v,6) are edges, so by lemma
1.6 there exists a vertex 26. Vertex 26 is disjoint from a sub-
graph homeomorphic to 5.1 so by previous arguments 26 connects to

st(4), creating a cycle disjoint from (v076l)'
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Case 2. As in case 1, we have a vertex 26, which conneci;s to

either st(0) or st(k). If (26,st(0)) then cycle (7,6,5,4,3)

is disjoint from (lov226)’ and (26,st(4)) gives eycle
. s 0 6
(4,3,2,26) disjoint from (l 7 v)'
Case 3. First we shall show [v(G)] = 9. If there exists ¥

disjoint from our subgraph then the v.o.a. are either {0,2,4,6} or

{1,3,5,7}. The former contains cycle (3,4,5,6,7) disjoint from

(vO;Ql) and the latter contains cycle (7,V,3) disjoint from
(6 v L 2 l)' If there exists a vertex 15 then it cannot comnnect to
st(1),st(0) or st(7) without a cycle disjoint from ( 2345).

Symmetry exhausts the possibilities, hence there does not exist a

vertex 15. If there exists a vertex Ol +then it cannot connect

to st(1),st(0), or st(7) without a cyele disjoint from (v23,+5)'
Likewise a connection to st(2) or st(3) gives a cycle disjoint
from (v0765). A comnection to st(4) or st(5) gives a cycle

disjoint from (Ov673)' Since by the previous construction it does
not connect to st(v), we have exhausted the possibilities. Finally

suppose there exists a vertex Ok, If OF connects to st(0),st(1)

46)
v 3 57

symetry these are the only choices. Thus we conclude |v(G)| = 9.

or st(2) then there exists a cycle disjoint from ( by
The only possible edge additions are of the type (i,if3) mod 8,
as (i,ifa) gives a cycle disjoint from a k-~graph. Therefore

without loss of generality (0,3) is an edge. Vertex 7 is cubic in
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a 3-cycle, hence we have edges (7,2) or (7,4). The former
contains cycle (4,5,6,v) disjoint from ( 3 7) and the latter

contains cycle (4,5,6,7) disjoint from (l 3 v)
0

Iemma 5.3. Iet G € Ig(P) contain a subgraph homeomorphic to
that of figure 5.1, and suppose ,V(G)I > 9. Then G contains a

cycle disjoint from a k-graph.

Proof. By way of. contradiction let G be a graph as described.
By lemma 5.2 the ninth vertex must be (without loss of generality)
either Ok or OL.

If there exists a vertex OU then a connection to st{0) or
st(1l) creates a cycle disjoint from (7 o 4) By symmetry the
only possibilities are either (04,26) (case 1 of figure 5.3) or
(ok,2) (case 2 of figure 5.3).

If there exists a vertex Ol +then a connection to st(l) or
st(2) creates a cycle disjoint from (O 3 5), and (01,st(3))
gives cycle (1,2,6,5) disjoint from (Ol )+3.7) By symmetry we
have either (0l,4) or (01,45), cases 3 and 4 of figure 5.3

respectively.
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Figure 5.3

Case 1. We note the graph is both vertex and edge transitive. If
there existed an additional vertex then without loss of generality
v € (04,26), contradicting lemma 5.2. Since the graph is projective
there exists an additional edge out of, without loss of generality, O,
by the previous argument we have edge (O4,2), giving a cycle

. s 5 7

disjoint from (l 3 6)'

Case 2. First we shall eliminate the possibility of a tenth vertex.
The edges fall into 5 symmetry classes, represented by (0,7),(3,7),
(2,3),(2,04),(0,04). By lemma 5.2 the possible tenth vertex lies in

the interior of one of these edges.
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Symmetries of case 2

" Figure 5.4

If there exist a vertex 07 then by previous arguments it connects
to either 3,3%, or L. The former two graphs contain a cycle
disjoint from . (O'-L 2Ohh) and the latter graph contains cycle
(0,04,2,1) disjoint from (071+573). If there exist a vertex
37 then it must comnect to either vertex 1, with cyele (37,7,0,1)
disjoint fram (04231*6)’ or to vertex 5, with cycle (37,3,4,5)
disjoint from (040126)' If there exists a vertex 23 it connects
to either 6,67,7, yielding a cycle disjoint from (Olzmh)'

Iemma 5.2 shows that there does not exist a vertex in edge (2,04).
Finally if there exists a vertex v € (0,04) +then we must have
either edge (v,2) or (v,6). The former graph contains cycle

(v,04,2) disjoint from (O5 3 76) and the latter graph contains

Eh).

cyele (v,0,7,6) disjoint fram (g, “5" 5

Having exhausted the

possibilities we conclude [v(G)] = 9.
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If (O4,6) 1is an'edge of G then vertex L4 is dead, and by
symmetry so are 2 and 6. Vertex O can connect only to 3,2 or

4  (up to symmetry). The first has cycle (3,0,7) disjoint from

(60uh51)’ the second has cycle (0,1,2) disjoint from (Ohu563),
and the last was handled in lemma 5.2. Hence by symmetry both O
and 4 are dead. Edge (1,7) gives cycle (0,1,7) disjoint from
(Olt23 h6), so the only two edges which may be added are (1,3)

and (5,7). Adding in both edges gives cycle (2,04,6) disjoint

13
G 2,

Thus we see (O4,6) is not an edge, and vertices O4,6 are dead.

from and adding in only one edge gives a projective graph.
Vertex 2 camnot be adjacent to 0,4,5 or 7, since such an

edge makes either vertex O4 or 6 cubic in a 3-cycle. Hence

vertex 2 1is dead also. Also note (1,7) is not an edge because

the resulting graph contains cycle (0,1,7) disjoint from (Oh23 h6).

We are left with 5 possible edge additions, (0,3),(1,4),(0,5),(1,3)

and (4,7). If (1,4) is an edge then avoiding a cubic vertex in

a 3-cycle implies edge (0,5), giving cycle (5,6,7,0) disjoint

from (123h01+). By symmetry (0,3) is not an edge. Of the

3 remaining edges adding in any two still gives a proJective graph,

end adding 21l 3 gives cycle (1,2,3) disjoint from (O5h76)’

Case 3. Consider the specific embedding shown in figure 5.1.
This embedding does not extend to an embedding of G. Iemma 5.2
rules out the existence of equivalent 3-bridges, and cases 1, 2

rule out inadmissible bridges. Each of the regions (i, i+1,i+5,i+h)
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mod 8 are disjoint from a similar "complementary" region, so skew
bridges on such a region must create a cycle disjoint from a k-graph.
Hence there must exist skew bridges on region (0,1,2,3,4,5,6,7) and
bridge (01,4) can fit in region (0,1,5,%).

By previous arguments there cannot exist edges (i,i+ %), (i,i+ g)
mod 8. Also edges (i,i+3),(i,i+%) mod 8 are all outer region
admissible, where outer region refers to one of the type (i,i+l,
i+5,i+4). Hence the skew bridges must be of the form (i,ite), pick
i s.t. the skew bridges are (i-1,i+1)(i,i+2). We observe avoiding
a cubic vertex in a 3-cycle implies vertex Ol must connect to
both vertices 4,5. Symmetry shows we need only consider the cases
i=0,1,2,3 or 4, where i determines the location of the skew
bridges as described previously. If i = O then eyele (01,L4,5)
is disjoint from (02376)’ if i =1 then cycle (0L,4,5) is
aisjoint from (,2,7¢), if i =2 then cyele (1,2,3) 1is disjoint
from (010457), if i =3 then cycle (OL,0,4) is disjoint fram

(23567), and if 1 =4 then cycle (01,4%,5) is disjoint from
(o 2 T¢)
0 3 6°°

Case 4. By cases 1-3 we'know vertex Ol is deead, hence by symmetry
all vertices are dead. The only possible bridge additions are of the
type (12,56). These bridges may be added repeatedly and the graph
still embeds by an extension of the embedding shown in figure 5.1.

0
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Temma 5.4. Iet G E€ IE(P) contain a subgraph homeamorphic to
that of figure 5.1, and suppose Iv(G)l = 8. Then G contains a

cycle disjoint from a k-graph.

Proof. Observe all edges to be added are of the type (i,ite) and
(1,1%3).

If (0,3) is an edge then k4,7 are both cubic in a 3-cycle. If
(4,2) then cyele (0,3,7) is disjoint from (,2,°), end ir
(4,7) then cyele (1,2,5,6) is disjoint fram (5 3). I (4,1)
is an edge then we must have (by symmetry) either (5,7) or (2,7).
The former graph contains cycle (5,6,7) disjoint from (g i) and
the latter has either edge (5,2) and hence (6,1) with cycle
(0,3,4) disjoint fram (12567) or edge (5,0) with cycle (2,6,7)
disjoint from (1()31+5). Thus we must have (4,6) and by
symetry (5,7). Observe avoiding earlier cases implies 5 “may
only conneect to 3. The only possible edge additions are
{(5,3),(6,0),(3,1),(0,2)}. Edge (1,3) implies (since 2 is cubic
in a 3-cycle) (0,2) giving cycle (4,5,6) disjoint from (g %).
Thus there are only two possible edge additions, and G together
with these edges is projective. Hence we see (0,3) is not an edge,
and there cannot exist edges of the type (i,if3).

Without loss of generality let (0,2),(1,3) be edges. Note edge
(4,6) creates cycle (4,5,6) disjoint from (10237), hence
(4,6),(5,7) are not in G. Also note if (3,5) is an edge of G

vertex 4 is cubic in a 3-cycle, hence (4,2) is an edge. By
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symmetry and the previous argument our graph may not be augmented
further, yet it is still projective. We have only two possible edge
additions remaining, (1,7) and (2,4%). Adding on both gives a

projective graph.

Corollary 5.5. Iet G € Ig(P) contain a Kg 3 and a bridge
2
adjacent to two points not vertices of the Ké 3° Then G contains
)

a cycle disjoint from a k-graph.

Proof. The two vertices lie in the topological interior of edges
of the Ké,3. If they both lie in the same edge, or in edges inecident
with a common vertex, then there exists a cycle disjoint from a
k-graph. If they lie in opposite edges then we apply either lemme

5.3 or lemma 5.k%.
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85.3 Case 2

Section 5.3 shall concern G € IE(P) containing a subgraph
homeomorphic to that of figure 5.5. Observe this graph is a K3,3
with an added edge connecting a vertex and the interior of a non-

incident edge.

. Figure 5.5

Lemma 5.6. Iet G € IE(P) contain a vertex disjoint from a
subgraph homeomorphic to figure 5.5. Then G contains a cycle

disjoint from a k-graph.

Proof. By way of contradiction let G be such a graph without a
cycle disjoint from s k-graph. We examine possible vertices of
attachment for the bridge containing v. By corollary 5.5 there are
not v.o.a. in the interior of edges. Observe vertices 0,1 may both
be viewed as in the interior of an edge.

If 46 is a v.o.a. then two others must be chosen from the set
{2,3,5}. If two adjacent vertices are chosen, say 3 and 5, then
replacing the edge (3,5) with the arc through v gives a contra-

diction of corollary 5.5. Hence the v.o.a. are U46,2,5 and G
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contains cyele (2,0,1) disjoint from (v%h > 6)' Thus 46 is not
a v.o.a.; by symmetry, neither is 35,45,L46.

If 24 is a v.o.a. then two others must be chosen from (3,5,6].
Again chosing nonadjacent vertices gives v.o.a. {24,5,6}, and G
contains cyele (2,0,1) disjoint from (3 5l+6v)'

by symmetry 23, are not v.o.a. A similar argument shows & v.0.a.

Hence 24, and

may not lie in the interior of any edge, i.e., the v.o.a. must lie
in the set {0,...,6}.

If 1 is a V.0.a. then the other two cannot be adjacent. Chosing
3,4 gives cyele (2,0,1) disjoint fram || '(536hv) hence the v.o.a.
are 1,2 and 5. Avoiding v cubic in a 3 cycle gives a vertex
‘12, If 12 1is adjacent to 1,4 or 6 then G contains a cycle
disjoint from (VE3 50), if adjacent to 2 or 3 then G contains
a cycle disjoint from (vlo54), if adjacent to O or v then G

contains a cycle disjoint fram (2 3 5)46)’ and if adjacent to 5

15)
v 0 12°°

Hence vertex 1, and by symmetry O, are not a v.o.a.

then G contains a cycle (3,2,4,6) disjoint from (

If 2 is a v.o0.a., then without loss of generality so are 3 and
5, any other v.o.a. gives cyecle (2,0,1) disjoint from a k-graph.
The bridge must consist of the single cubic vertex v, and avoiding
cubic in a 3-cycle forces the existence of vertex 35, which may

connect only to 2,4 or 6. The first gives a graph containing

35)
v 357

corollary 5.5 using the K3 3 (g 31? g),
2

cycle (2,0,1) disjoint from (6 the second contradicts

and the third contains
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cycle (2,3,v) disjoint from Q)51;635)‘ Hence 2 is not a v.o.a.,

leaving only the set (3,4,5,6].

Without loss of generality let 3,5 be v.o.a. If 35 is a vertex
then we must have either (35,4) or (35,6), because 35 is disjoint
frdm a subgraph like figure 5,5, giving a k~graph disjoint from

cycle (2,0,1). Hence ({3,4,5,6) is exactly the v.o.a. set, and the

3 L
bridge is ::><§: , or else cycle (2,0,1) is disjoint
5 6

from a k-graph. Vertices 0,1 are still cubic in a 3-cycle,
without loss of generality st(1l) connects to a vertex not O or
2. If (st(1),5) then cycle (5,1,0) is disjoint fram (2361*‘,).

By symmetry we have (st(1),4) which gives cycle (3,v,6) disjoint

0 X4

from (l o 5).

Iemma 5.7. ILet GE€ If(P) contein a vertex disjoint fram a Ké 3
s
on 7 or more vertices. Then G contains a cycle disjoint from a

k-gx‘aph .

Proof. By way of contradiction let G be as described without g
2 6 5
cycle disjoint from a k-graph. Denote the b
oy J grap k3w (G 3 1)
and let the seventh vertex, 1, lie in edge (0,6). Avoiding
a cycle disjoint from a k-graph and using corollary 5.5 we have

the graph of figure 5.5. A vertex disjoint from the original K3 3
2
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but not from this subgraph must be 12. Corollary 5.5 implies 12

connects only to vertices, vertices 1,2,0 or 6 all give a cycle
disjoint from a k-graph. If 12 connects to two adjacent vertices
we may again apply corollary 5.5, hence we have (12,5) and st(12)

is dead. Since vertices 3,4 and O are disjoint from Ké 3's
J

(12 0 h) (l 2 5 (12 3 4
1 5 277% 12 3 2 5 6

st(3),st(4) and st(0) are all dead. The only live edge for a

) and ) respectively, we know

ninth vertex is (1,6). By corollary 5.5 and the above arguments 16

may connect only to vertex 2 (symmetrically 5) giving cycle

1 2 )
12 0 167

exactly 8 vertices, the only live ones being 1,2,5 and 6. Note

(3,5,4,6) disjoint from ( Hence the graph G contains
edge (1,2),(1,5) make vertices 12,0 respectively cubic vertices
in a 3-cycle, yet they are dead, a contradiction. Hence vertex 1
is dead. Adding in the three remaining possible edges gives a

projective graph.

lemma 5.8. Iet G € IE(P) contain a Ké 3 on 7 or more
2

vertices. Then G contains a cycle disjoint fram a k-graph.

Proof. By way of contradiction let G be as described, G not
containing a cycle disjoint from a k~-graph. As in lemms 5.7 G
contains a subgreph homecmorphic to that of figure 5.5. We observe
vertices 0,1 are both cubic in a 3-cycle. By lemma 5.7 (0,2),(1,2)
must both be edges. We will first show there does not exist a vertex

0l, then examine where O and 1 connect.
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Suppose 01 1is a vertex. By repeated use of the fact that there
does not exist a cubic vertex in a 3-cycle we may assume O1

connects somewhere other than vertex 2. If (01,6) then vertex 1

0 3 b
2 5 6

we may assume (01,4). Observe G = (

contradicting lemma 5.7. By symmetry

(;)L ;- g g)\{(1’6)’(0113),(5;0)}

and by symmetry a ninth vertex, if it exists, lies on either

is disjoint from (

(1,2),(2,4),(01,1). If 12 is a vertex them G contains a cycle
disjoint from a ke-graph by lemma 5.7. If 24 is a vertex it must
connect to either 1, v € (0,1), or U46. The former pair are
corollary 5.5, while the latter graph contains a cycle disjoint
from (20536)' A vertex v € (1,01) may only connect to 2 and/or
L., Thus the only possible additional vertices lie on edges (6,3),
(3,5),(5,1),(1,01), (01,0),(0,6) eand must connect to 2 and/or L.
Next we examine possible edge addition between existing vertices.
By symmetry these fall into three classes, represented by edges
(01,3),(0,1),(0L,2). The first type was previously eliminated, and
the second has cycle (0,01;,1) disjoint from (23351*6). Thus
the only edge additions are (0,4),(1,%),(3,%),(01,2),(5,2),(6,2).
Thus under the supposition of a vertex Ol we have characterized
all edge additions, whether between existing vertices or with one
endpoint a new vertex. Adding these edges still gives a projective
graph, in particular embedding as an extension of the embedding shown
in figure 5.6. Thus there does not exist 01, and (0,1,2) is a

3-cycle of G.
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Next we examine where 0,1 may connect. First suppose (0,6) is
is an edge of G, observe vertex 1 is disjoint from (g g g).
If there exists an eighth vertex then by lemma 5.7 and the above
argument it must be 16. If 16 connects to 0,2 we get a cycle
disjoint fram a k~-graph. If 16 connects to 3 or U4 then avoiding
16 cubic in a 3-cycle (opposite edge must be an edge or we epply
lemma 5.7) 16 must connect somewhere else. Edge (16,5) gives
cyele (0,1,2) disjoint from (16536h)’ and 16 connecting to
both 3 and 4 gives (1635h6) disjoint from cycle (0,1,2).
Hence 16 is not a vertex and |v(G)| = 7. We shall bresk into cases
depending on valency (1). If valency (1) =6 consider the extension of
the embedding shown in figure 5.7. This does not extend to an
embedding of G, and all edge additions are admissible. Hence there
must be skew edges in one of the regions bounded by a &4-cycle, yet

any choice gives a cycle through vertex 1 which is disjoint from a

k-graph. If wval (1) =5 suppose (1,3) is not an edge. The above
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2 /
3 a
,1
5 6
[}
Figure 5.7

argument still holds except for skew edges (4,0)(2,5), this graph
contains cyele  (2,3,5) disjoint from (S é). If vertex 3 is
cubic then G embeds, since Kg triangulates P. Hence vertex 1
is of valence 4. Iet (1,5) be the additional edge and note

we have (021536u) U (0,1), so by symmetry O is dead. Vertex
3 must connect to 4, so 3 and 4‘ are dead. Any edge of triangle
(2,5,6) gives a cycle disjoint from a k-graph. Thus (1,4) must
be the additional edge and vertex 1 1is dead. Vertices 3,5 cannot
be cubic, so without loss of generality (3,0),(5,2) giving cycle
(1,4,6) disjoint from (g %). Thus lV(G)I =7 implies G
contains a cycle disjoint from a k-graph, and we conclude (0,6)

is not an edge of G, and hence we now have vertices 0,1 may

only be adjacent to vertices 3,L4.
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Figure 5.8

If 0,1 connect to different vertices we have the graph on the
left of figure 5.8. It was previously argued edges (0,1),(0,2),(1,2)
are edges, not arcs, of G; the same arguments show (0,3),(0,5),(3,5),
(1,%), (4,6),(1,6) are all edges. If 23 1is a vertex then a connection
to an edge or to vertices 0,1,5,6 violate corollary 5.5, hence
(23,4), and G contains a cycle (0,1,2) disjoint from (23 5 6)

If 36 is a vertex observe edge (36,2) and G contains cycle

(0,3,5) disjoint from (l L 36)’ hence (36,4). Using vertex

0 2 6
13

former graph contains cycle (1,4,6) disjoint from (O g) and

5 € (O,h) in ( ) we get either (5,2) or (5,6). The

the latter cycle (0,2,3) disjoint from (l 5 36) Thus |v(@)] =
Vertex 5 is cubic in a 3-cycle, (5,2) gives cycle (1,4,6)
disjoint from (g g), hence (5,6) and vertices 5,6 are dead.
Likewise edge (1,3) gives cycle (4,6,5) disjoint from (2 %)
hence vertices 0,1 are dead. The only remaining edge addition is
(3,4), and the resulting graph is still projective.

Finally we have that O and 1 must connect to the same vertex,

giving the right hand graph of figure 5.8. Moreover vertices O and
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1 are dead. Using vertex 5 € (0,4) CZ(E i g) we get that
(0,5) and (4,5) are edges, not ares of G, (5,2) is an
edge of G, and vertices 4 and 5 are dead. Vertex 3 € (6,5) C

(é g 2) implies edge (3,4), a contradiction.



Chapter 6

COMPLETION OF THE RESULT

§6.1 Derivation of the 103 Graphs

Iet the set of specific graphs listed in theorem 1.7 be denoted
by &, i.e., & = [Al,Az,As,Bl,ByCl,02,C7,Cll,Dl,Du,D5,D9,D12,D17,
El,E3,E6,E8,E9,Eu,E18,E19,E20,E22,E26,E27,Eh2,F2,F4,F6,G] . The goal
of this chapter will be theorem 6.1 which identifies {G' € I(P)|
G! ; G, G an arbitrary graph in <}. The reader should recall
that theorem 1.7 (using the results of chapters 2,3,4 and 5) showed
that & O Ti(P), the set of maximal graphs with respect to .
Theorem 6.1 identifies the 103 graphs in the appendix and completes
the proof of theorem 1.1, the main result. However it should be noted
this chapter does not depend on results in previous chapters. We
examine possible splittings and deletions of graphs, independent
of 4> II_E(P) As a corollary we note the fact that no distinct
elements Gl’G in & are comparable. This, together with theorem

2
1.7, establishes the graphs actually are maximal, and hence

S = I[\_):_I(P).

Theorem 6.1. The set {G € I(P)| @' s G, G €4} consists of
aeorem O.. X

precisely 103 graphs, listed in the appendix.

167
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Proof. We partition & into four subsets, H = [Al,A5,B ,C7,D17),
Hy = (C15CpsCy35045Dss D10, B gsFpg)s Hy = (Dy,Dg,Eq,BgsEg,Egy By, Epgs
E27,Eh2,F2,F)+,F6,G) end H) = {AQ,Bl,E3,E18,E22]. Iemmas 6.2-6.4
exhsustively search for G' 5 G, G in H,H, and H,
This completes the listing for G' € I(P), G' contains disjoint

respectively.

k-graphs. H, = (G € 4| @ does not contain disjoint k-graphs}.

Temma 6.7 finds H. = {G' € I(P)| G' éG € Hy, G' a - sourcel.

5

Iemmas 6.9-6.16 exhaustively search for graphs -<S- a graph in H5.

The camplete set of graphs thus found are listed in the appendix.
O
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86.2 Disjoint k-graphs

Recall # as defined in 86.1. The goal of this section is to find
all G' € I(P), G' é G for some G €4, where G contains
disjoint k-graphs. Two graphs are comparable under é if and only
if either they both contain disjoint k-graphs or they both do not
contain disjoint k-graphs. Thus, equivalently, the goal of this
section is to find all G' € I(P), G' contains disjoint k-graphs,
G' ;G for some G €.4.

The reader is asked to recall the definition of an elementary
% -derivation for G,G' containing disjoint k-graphs, Ki disjoint.
Ké.

¢ 3
a) V.|l (Kl U KE)’

b) v € K, end the bipartition of edges incident with v in the

G' provided @' = SV(G) and either

splitting is (the edges of Ki] U {edges not in Ki} s

or ¢) VvE€E Ki = with v one of the valency two vertices in Ki'

*,3
We shall call these type a, type b, and type c¢ splittings

respectively. The reader is referred to figure l.4% for illustrations.
No edge deletions are allowed in these splittings. Thus, for
example, any splitting which creates a cubic vertex in a 3-cycle is
not allowed by lemma 1.6.
We cite some restrictions for type a, type b and +type ¢
splittings may occur. For type a splittings, if v is a cut
point .o:f‘ G then SV(G) may not be 2-connected, otherwise the newly

created edge (v,v') would be reducible. Similarly if the partition
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on edges incident with v created by the splitting is the same as
the partition created by v being a cut point then again (v,v') is
reducible. For type b splittings we need at least 2 edges
incident with v which are not part of the k-graph toc which v
belongs. For any splitting we need valency (v) > 4. These criteria
shall be applied in upcoming lemmas to greatly decrease the number of
splittings considered. |

Finally before proceeding, {G € 3, G> _U_ k-graphs} breaks

naturally into the following three subsets:

H, = (€ 4| a> k), Jil k) = (A},AgB5,CnyD00 ),
H, = [G€ 4| ¢> k), 1 Ky, 3} = [€15Cp5C1q,D;5D5,D 5,8 s By )
Hy = (G € 4| ao ko 3 1 ky 3 = (Dy,Dg, By, Egs By, By By, B, By

FpsF),,Fg, G

Lemma 6.2. Iet H = {A;,As5,B3,CppDy0). Then (G' € 1(P)|

<
G" x G, G e Hl} = Hl U [A3’A)+’BB,BJ.O).

Proof. We refer the reader to figure 6.1l. Graphs A5,C7,D17
are all x - sinks.

If G = B3 there are no type a or type ¢ splittings. Up to

isomorphism there is g unique type b splitting, creating B8. Any
type a splitting on BB creates a cubic vertex in a 3-cycle. The

unique type b splitting gives BlO' BlO is a - sink, so we have

<
all a! % B3.
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Ir G = Al’ avoiding a cubic vertex in a 3-cycle gives a

unique type a splitting. The resulting graph is A3. Again

there is a unique (up to symmetry) type a splitting yielding Ay,

8 %=-sink. Thus we have all G' ; Al, which completes the proof of

the lemmsa.
]
Dl? B3 A
C7 Bg A3
Ag Bio By

Figure 6.1



172

C,,C Then

C5CpsC95Dys D5, Dy, By g Bp) -
< i

' — =
(¢ €1(P)| ' G, G €8y} = H, U (Cs,C;,Cq,Cg,Cy 0Dy 301 g5 By

Iemma 6.3. Iet 1-12 = {

Proof. We refer the reader to figure 6.2. Graphs C,; and E,,
are both % - sinks.

In graph Dg,S, 2,3) has edge (4%,5) reducible. The only
other type b splitting creates a cubic vertex in a 3-cycle, hence
D5 is & #=-sink. In graph D

80 D12 is also a % - sink.

In graph E

12,81: 2,3) has edge (4,5) reducible

19 there are no type a splittings and any type b

splitting creates a cubic vertex in a 3-cycle. Both type ¢
splitting gives E23, a . *¥=sink, o

In graph C, we note the symmetry (1 2) using the labeling of

figure 6.2. The type b splitting is unique up to symmetry yielding

c In C. there again is a unique type b splitting giving C9.

5° 5
There are no type b or type ¢ splittings in 09. The unique
up to symmetry type a splitting which avoids a cubic vertex in a

3-cyecle is Sl' (3,4) this splitting has (5,6) reducible, so
. J

<

¥ 02.

there are only type a splittings. Recall we

C, is a - sink and we have gll G

9
In the graph C

1
mist avoid the creation of a 2-connected graph. The two splittings
which do not create a cubic vertex in a 3-cycle give graphs 06 and
C8' Doing both splittings gives Clo’ a «=- sink.

In the graph D, we note the symmetry (1 2)(3 4)(5 6). This

symmetry shows there is a unique type b splitting, which gives Dl3'
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In Dl3 there again is a unique type b splitting. This splitting

creates D18’ a ¥ - sink.



8,808
/%\ @ @ .
§-664-9¢
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Iemma 6.4. Iet Hy = (Dl,D9,E1,E6,E8,E9,E11,E26,E27,E,+2,F ,FA,F6,G].

r r < -
Then (G' € I(P)| G' 5 G, GE Hy} =HgU (Ey 5,y 05 Fpqs B Bag, Bars By o)

F7’F8’F10’F11’FJ2}°

Proof. Examining figure 6.3 it is clear EpgsByosF), and G are
all % - sinks.

Graph D, admits a unique up to symmetry type b splitting on

1
vertex 13 however, the new edge (1,1') is reducible giving El'
The graph D9 admits a unique up to symmetry type b splitting on

‘vertex 1, but § (D9)\st(1¥) = F,. In a similar manner

1: (2’3)
Sy, (2’3)(}38)\(1»,5) =F, and S, (2,3)(5:11)\(#,5) = F,. These
exhaust the possible type b splittings. There are no type a or
type ¢ splittings, hence D:L’D9’E8 and Ell are ¥ - sinks.
Graph E27 admits a unique up to symmetry type c¢ splitting
yielding E3O’ a %-sink. The unique type b splitting on E27
' <
i l'" = . ! vy .
is 8§y, (2,3)(E27)\s’c( ) = G. We have all G' ¢ o7
Por the remaining graph splittings the reader is referred to
figure 6.4.

Graph E, admits a unique up to symmetry type a splitiing which

1
gives El6' Applying the same process again gives ELI-O’ a ¥%-sink.
Since neither’ El nor El6 have any type b or type c¢ splittings
<
we have all G' 3 El'
Given graph E; we note the symmetry (L 4)(2 5)(3 6). This
symmetry shows the two type b splittings both give E13’ A type ¢

splitting on E is by symmetry equivalent to a splitting of vertex 1.
6
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Any such splitting has a reducible edge (4,i) for i =7,8 or 9;
e.g., 8y, 7,2) has (4,7) reducible. In E13 the unique type b
splitting gives E36' Any type c¢ splitting has the new edge (v,v')
reducible. In E36 the only splitting possible is a type a
splitting on vertex 4, or symmetrically ver‘l?ex 1. Sl: (2,3) has
edge (3,4) reducible. Thus E36 is a % - sink and we have found
all @' 3 E.

Given graph E9 the unique up to symmetry type c splitting gives

E29. The unique up to symmetry type ¢ splitting on E29 gives
E37, a ¥%-gink. In either E9 or E29 the unique type b
splitting gives a reducible edge (1,2). Thus we have all G’ §E9.

Given graph F2 the unique type b splitting is Sl: (2,3)
which has edge (4,5) reducible. The unique type ¢ splitting

gives F a ¥ - sink,

10°
Given graph F6 the unique up to symmetry type b splitting

gives F7 and the unique up to s:ymrﬁetry type ¢ splitting gives

F8. In F8 the unique type b splitting sl: (2,3) has edge

(4,5) reducible. Similarly, the new edge in any type c¢ splitting

of F7 is reducible. A type b splitting on F7 gives Fll’

each type c splitting on Fg gives Fio- Both graphs are x - sinks

so we have found all G' é Fg-
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E
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Figure 6.3
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§6.3 No Disjoint k-graphs

Recall # and the partition H; (i = 1,2,3,4) as defined in
86.1. Also recall é respects the dichotomy of I(P) determined by
the existance or nonexistance of disjoint k-graphs. In §6.2 all
graphs in I(P) which contain disjoint k-graphs were determined.
In this section only those graphs in I(P) which do not contain
disjoint k-graphs will be considered.

H, = (Ay,B,E5,E g,Ey) = (G € 4| ¢ || x-graphs}. In this
section we shall find all G' € I(P) such that G' é G, G€ H,.
‘Note any splitting which creates a graph containing disjoint
k~graphs is not a relation in ;—, and hence need not be considered
towards this goal. We shall first find all «x - sources (for a
definition see §1.3), then examine all % derivations on the

#* = sources.

Iemma 6.5. ILet H, be a «-source in I(p). 1If H, is an
elementary #* - derivative of G2 then G2 is a = source.
Proof. By way of contradiction suppose G2 é Gl’ where G2 is

derived from Gl by a single elementary splitting operation. Iet

G
e, denote the new edge created, so that 2. G, . DNote e. is
1 eq 1 1
not in a 3-cycle of G2, hence e, is also in H2 Define
H
Hy =2=. We will show H/ € 1(P).

-
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Figure 6.5

Suppose Hl is projective, and let ¢ be an embedding. Iet v
be a cubic vertex created in S(G2) which forces an edge deletion in
creating H2 If v € V(Hl) is not cubic then e; mist be incident
with v, yet this implies e, is in a 3-cycle, a contradiction.
Thus using lemma 1.6 we may extend @ to @': S(Gl) < P. The

embedding ¢' contradicts lemms 1.4, hence Hl is nonprojective.

Iet e be an arbitrary edge of Hl' By embedding H2\e cP

and applying the contrapositive of lemma 1.4 we get Hl\e is projective.

H
The two preceeding paragraphs show H:L € I(P). Since Hl = -6-2—
' 1

2

> . . .
HlEHE which contradicts H2 is a - source.

Iemms 6.5 says in order to find all « - sources we need only
consider splittings of x-sources. Iet G be a x-source in

I(P), (a,b,c) a 3-cycle in G. We observe Sa: (b c)(G)\(b,c) =
. 2
a b

Sb: (&,c)(G)\(a,c) = Sc: (a,b)(G)\(a’b) = (G\(a,b,c)) U ( \ﬁ‘ ).

c
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Call this operation a triangle replacement. If (a,b,c),(a,0,1)

are both 3 cycles with only vertex a in common, and valency

(a) = 4, +then we may consider a double triangle replacement.

This corresponds to splitting vertex a and deleting two edges,

(0,1) anda (b,c).

Figure 6.6

Rephrasing lemma 6.5, all x - sources are generated from
% - sources by triangle replacements or double triangle replacements.
Note given a candidate for a double triangle replacement, a single

triangle replacement creates a cubic vertex in a 3-cycle.

lemms 6.6. Iet G,G' € I(P), with G' either a triangle
replacement or a double triangle replacement of G. Suppose
SV(G) contains a reducible edge e, € not in a triangle which is

replaced in the creation of G'. Then e is reducible in Sv(G').
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Proof. Suppose G,G',e and Vv are as given in the hypothesis,
assume e is not reducible in SV(G') and embed SV(G'Y\eC: P.
Tocally the vertices created in the triangle replacement look as
shown in figure 6.7. In either case we may extend the embedding to
include the dotted edges, giving SV(G)\e C P, This contradicts e
reducible for SV(G). We note the condition e is not in a triangle
replaced in the creation of G' 1is used only to be sure a corresponding

edge exists in G@G°.

Figure 6.7

<
% G

Lemma 6.7. Iet H = [AE,Bl,E3,E18,E22]. Then (G' € I(P)) G'

Proof. We shall examine all possible triangle replacements. We
refer to the graphs as labeled in figure 6.8.
Graph A2 = K%\( g'Ké), so up to symmetry -there are only two

types of triangles, represented by (1,4,5) and (0,1,2). Replacing
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triangle (1,4,5) gives B7, where the new vertex is labeled "7".
Replacing triangle (0,1,2) gives Dy U ((1,5),(2,6)}, hence it
does not generate an irreducible graph. Thus B7 is the only

% - source which is an elementary « -derivative of Al.

Graph 37 has the symmetries (2 3)(4 5) and (1 5)(2 6). Using
these symmetries the triangles fall into 4 equivalence classes,
represented by (3,5,6),(2,3,6),(0,1,2) and (0,2,3). Replacing
triangle (3,5,6) gives C3, where the new vertex is labeled "8",
and replacing (2,3,6) gives C,. Using lemma 6.6 we see replacing
triangle (0,1,2) gives a graph with (2,6) reducible and replacing
(0,2,3) gives (2,4) reducible.

Graph C, has the symmetries (1 4)(36) anda (1 3)(4 6)(7 8).

3
The triangles fall into 3 classes represented by (2,4,6),(0,1,2)

and (0,4,6). Replacing a triangle in the first class gives Ib,
replacing a triangle in the second class, say (0,1,2), gives a
graph with (2,6) reducible by lemma 6.6, and replacing a triangle
in the class represented by (0,4,6) gives .DlO § D7.

Graph D, contains the symetry (1 2 3)(7 98)(4 6 5). The

triangles fall into symmetry classes represented by (1,2,3) and
(0,1,2). Replacing the former gives E, and replacing the latter

gives F_U (O,L).

5

Graph E2

Greph C), 1s a 6 wheel with vertex 7 attaching to alternating

does not contain a triangle.

rim vertices 1,4 and 5 and vertex 8 attaching to alternating

rim vertices 2,3 and 6. Thus all triangles are symmetric, replacing

. <
(0,1,2) gives Dy5 X D7.
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We have found all % - sources G' with &' é.AQ.

Greph B, is K%\cycle (1,4,3,6). The triangles fall into 2
classes, the first represented by (0,2,5) and the second a double
triangle replacement represented by ({(0,4,6)(2,5,6)}. Replacing
(0,2,5) gives E3 U ((1,3),(4,6)} and the double triangle replace-
ment gives D3. Note in the latter replacement valency (6) = 2,
hence 6 1is not labeled as a vertex of Ds.

In D., we have the symmetries (2 5) and (1 3). Triangle

3
(0,1,2) shares a valency L4 vertex with (1,3,5), performing a double
triangle replacement gives Fl. By symmetry we have considered all

triangles containing either vertex 2 or vertex 5. Replacing triangle

(0,1,3) gives E5.

Since E5 and Fl do not contain any triangles we have found

all % - sources G', G' éB .
Observing E3’E18 and E22 are triangle-free completes the
proof of the lemma.

0
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Iemma 6.8. Iet G,G' € I(P), G' =S (G). Suppose S_ (G)
1 V2

. 1
where v, #vy. Then S (G') also

contains a reducible edge e
' 2

l’

has el reducible.

Proof. By way of contradiction suppose Sv (G')\el C P. Applying
2

the contrapositive of lemma 1.4 we get S, (G)\e:L C P, contradicting
2

reducible. Note we need v # Vv, to ensure S_ (G') is well
2

€1

defined.

Lenma 6.9. AE’B7’C3’ClL and D, are all % - sinks. Also

<
(¢ € ()| G35 E,) = (EyE,Eagle

Proof. We label the graphs as shown in 'figure 6.8.

Recall A, is K\((1,6),(2,5),(3,1)). 8y, (o sy = By U ((4,5)],
81: (3,4) = D3 U ((0,2),(1,5),(2,6)}, 8, (u,5,6) = P17 Y
[(2,4),(2,6),(3,5)) 8o, (3. 5) = D3 U ((2,4),(3,5), (4,5)), S, (3.4) -
E; U ((1,2),(2,6),(6,5),(5,1)), and S,, (3,4,5) = F1g U
{(1,2),(2,6),(3,5),(4,5)}. By symmetry this exhausts the possibilities.
Since every splitting contains reducible edges A, is a % - sink.

B7 contains the symmetries (2 3)(4 5) and (1 5)(2 6). By
lemms 6.6 any splitting of vertex 2 contains a reducible edge,

by symmetry so does any splitting of 3 and 6. Any splitting of 1
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creates a cubic vertex in a 3-cycle. By lemma 6.6 any splitting of
O contains a reducible edge. Thus B7 is also a ¥ = sink.

In C, any splitting of 1 creates a reducible edge by lemma 6.6.

3
By symmetry we need not consider splittings of 3,4 or 6. By lemma
6.6 any splitting of O or 2 contains a reducible edge. Thus

_C; isa x-sink.

As was observed in lemma 6.7 all valency 4 vertices of C, are
similar, By lemma 6.6 we need only consider 8. @,3) = D5 U ((0,5)}.
Any splitting of O contains a reducible edge by lemma 6.6, hence
Cy, is a *-sﬂm..

In D

2
of these vertices gives a cubic vertex in a 3-cycle. Any splitting

note vertex 1 1is similar to 2 and 3, any splitting

of O gives a reducible edge by lemms 6.6.

In E,, O is the only non-cubic vertex. ILemma 6.6 does not apply

because the reducible edges in SO(D2) is in cycle (1,2,3). We note

So: (u,5) 8 Sp; (4,5,6) Poth contain O-graph | k-graph.

So: (2,5) = F1pr So: (1,2,5) T s 4 So: (2,4,6) = Fg Y ((0:5)].
By the symmetry shown in the right hand side of figure 6.9 these

exhaust the possible splittings. Any additional splittings of El7

and Egg give a splitting of. So: (4,5) &nd thus contain &

@-graph disjoint from a k-graph, except S = F9 U {(2,6)].

1: (1,6) Fap)

Thus we have found all G' € I(P), @ §E2.

O
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Figure 6.9

<
Temma 6.10. (G € I(P)| & S By) = (By,B,,By,B5, BB, By, )

Proof. We - -shall refer to the graphs as labeled in figure 6.10.
Note B = K%\cycle (1,4,3,6). Any splitting of vertex 1 creates
a reducible edge so by lemma 6.8 and symmetry we need never consider
splitting vertices 1,3,4 or 6. 85: k) = B, 85: (1,3,4) = By,

= B_. = U {(o L

and 8, (1,2,4) Bg. We observe S, (0,2) Eq {(0,2),(1,3), (4,6)}
and 8, (1,2) has (1,2) reducible, thus we need never consider

hd J
these splittings. These splittings exhaust the possibilities in Bl'

In Bh if we split 5 again we get B6' If we split a second

vertex in 36 we get a graph containing Ch’ In Bh we cannot

split 7 without a forced deletion. If we split another vertex, say
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2, +then we must get B,, else the graph contains C,. Splitting
i

9
all 3 wvertices gives Bll'
In 32 if we split 7 we must get B6’ else the graph contains
C3. Since B6 é BLL we have already found all graphs less than
B6' If we split a second vertex we get a graph containing Ch'

B
Pinally in graph B5 we note _(T%-T = Bl’ hence since we need
b4

not consider Sh we need not congider s7. By symmetry we cannot

split vertex 5. If we split another vertex we get either a graph

below ]32 or Bl+ or we get a graph containing Ch'



&

N

@ &

AN

D P

\

&



191
' <
Temma 6.11. (G € I(P)| G 5 D3} = (Dg,Dg, D05 Dg, D 5,01 15Dy,,D; 5

D16’D19}'

Proof. We shall refer to the graphs as labeled in figure 6.11. We
observe any splitting of either vertex 2 or vertex 3 creates a
‘cubic vertex in a 3-cycle. By lemma 6.8 we will need only consider
splitting vertices 0,2,5. Note the symmetries (2 5),(4 7) and
1 3).

Case 1. &' = 5,(Dy).

Without loss of generality in splitting O we get 2 vertices
adjacent to 0. If the two are among the set (1,2,3,5]} then we
get a cubic vertex in a 3-cycle. Thus assume 8 is adjacent to O,
(8,5) contains ©-graph disjoint from a k-graph, thus
SO: (8,1) = D8 is unique.

in D8 note the symmetry (1 9), this says we need not consider
splitting 9. If we split a second vertex then avoiding a cubic
vertex in a 3-cycle or a O-graph disjoint from a Xk-graph we have
S, (3,4) = Epg U ((5,7)) or Sp (4,9) ~ Dy

In Dlh splitting vertex 10 gives D16' In D8 vertex 2,
and by symmetry vertex 7, had a unique splitting. Applying this
splitting to vertex 7 in Dlh gives Dl9' The only possible

graph below D . and D is s5: (1,h)(D16) =F9U ((1,3),(5,12)].

19
<
' -—

We have found all G 3 SO(D3).
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D3 which do not split wvertex O.

Without loss of generality in D3 we consider splitting vertex 5.

Case 2. @'

nlA

Avoiding a ©6-graph disjoint from a k-graph implies either

85: (0,4) = D6 or S5: (1,4) = D7. In D6 we have the symmetry
(02)(5 7)(4t 8) shows we need not consider splitting vertex 2, or
else we are in case 1. If we split vertex 9 again it is equivalent
to splitting vertex 9 1in D7, from which it is seen avoiding a
Thus we

O~graph disjoint from a k-graph implies D or D

11’ 10°

have found all @' § D6 end all G' < D, which involve splitting

3
either vertex 2 or 5 into 3 cubic vertices. The only remaining
possibility is to split vertex 2 in D7 in a manner similar to

> .os
D3 5 D7, giving Dl5'
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<
Temma 6.12. (G € I(P)] G2 Eg) = (BygsBy5Ey)»EpgsEay s EansEag)

Proof. We shall refer to the graphs as labeled in figure 6.12.
Note E,g = Kh’d\(o,h), with bipartition sets (0,1,2,3},(%,5,6,7}.
Up to symmetry the only possible splitting is 8., (h,S)(E18) =E,,-

In E we consider continuing to split vertices in the bipartition

21
set {0,1,2,3}. 83, (6,7)(E21) contains a O-graph disjoint from a
k-graph. Since 6 is symmetric to 7 we have without loss of
generality S3: (h,6)(E21) = Ep),- In B, S, (4,6) and S, (4, 5)
both contain || k-graphs, hence 5,5, (5,6)(E2h) = E3l is unique.

We have exhausted graphs which involve splittings in only one
bipartition set.

In E vertices 5,6,7 are all symmetric, S5: (0,2) = F9 U ((8,7)}

31

. =F
5: (0,1) ~ 79
edge. Thus we have found all graphs which involve splitting all

and S U {(3,6)) show any splitting contains a reducible

3 valency 4 vertices of a bipartition set.

In E,) observe vertex 5 is symmetric with 6. S7: (0,2) ©

F5 U ((3,6)} and 5o, 2,9) = F9 U {(2,5)}. By symmetry we need

not consider splitting vertex 7. 85: (0,2) = F9 U {(7,8)} and

S5, (0,1) = Fy U {(3,6)}. Thus the only two splittings are S5, (1,2)
and S6: 2,9)" Doing one gives E32, doing both gives E38‘ We,
have exhausted the possible graphs where two vertices in the same

bipartition set are split.

In E21

the set (4,5,6,7). S, (0’2)(E21) = Epgs Ss, (0,1)(E21) =F5 U ((3,6)1,

we need only consider a single splitting of a vertex in



195

S¢ . (0,2) = F5 U {(3,6)] and Sg. (0,8) = E,g- These exhaust the

possibilities by symmetry, and complete the proof of the lemma.
0



Figure 6.12
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<
Lemme 6.13. {G € I(P)| G 3 Eg) = (BB B ) 0,8 ), By s Bl

Proof. The reader is referred to figure 6.13. Note E3 = K3 5
b4
with 0,1,2 the valency 5 vertices. Without loss of generality
5o (3,h)(E3) = Ey. We shall first consider G § Eq where one
valency 5 vertex is split into 3 cubic vertices.
In Eh splitting vertex 8, wup to symmetry we need only examine
Sg. (0,5)(Eh) = E7. In E7 symmetry shows the only two splittings
B =F L nd S E =E_,.
are 32: (3’5)( 7) 3 U {(l: )} a > . (3,6)( 7) 1k
S10: (2,&)(E14) = Ty U ((1,6)} and 8. (2,5)(Elu) = E,,. Since

E.. =E. we know by lemma 6.9 EI? is & *-sink. If we split the

17 s "2
valency 5 vertex in Elh we have elther Sl: (4,5) = F5 U ((7,9)},
S, . (,7) = F5 U ((58)}, 5. (3,4) contains a O-graph disjoint
from a k-graph or S, 3,5) = F9 U {(1,4)}. Thus we have all
G E E3 which involve splitting a vertex twice.

In Eh if we split vertex 2 we have by symmetry 82: (3,6) = ElO’
From the above we need only consider splitting vertex 1. Sl: (3,&)(E10)
and Sl_ (3,6) both contain 6-graph disjoint from a k-graph.

hd J
= . - - 'nk .

5, . (3,5)(E10) E3l’ which is a % - sink by lemma 6.12 5. (4,6)
contains a ©-graph disjoint from a k-graph, S =F. U ((7,8)],
. 1: (4,5) 5

s, (5,6) = F5 U {(0,7)} and S, (5,7) = (1,4) U F3. Thus we have

<
' S—
all graphs G 3 ElO'
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Figure 6.13
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<
Temma 6.1k. {G € I(P)| G S Eg) = (Eq,EpsEypBy By o, B ), Bas,

Eg),sEggoByp -

Proof. We label the graphs as in figure 6.14. Viewing
3 &4 17 = '
G g 1)V ( 5 g) Wwe see Sg, (7,8)(E5) = E;. From lemma 6.13
< .
we know (G E.I(P)I G < E7} = {E’T’Ellt’El?}' Thus we need not consider
this splitting of vertex O. Since S, (1,8)(E5) and S;, (2,8)(E5)
both contain 6O-graph disjoint from a k-graph we will assume through-
. . . S -
out this lemma O is not split. In E5 Sl: (3,4) ﬂ_ k-graphs
and S, (0,5) = Fl U ((0,5)}. Thus .w1thout loss of generality we

have S, (u’5>(E5) = Ep-

We shall first consider graphs in which a valency 5 vertex of

12
9? S9: (0,1) = El5 is the only choice by lemma 6.8. Clearly

E5 is split into three cubic vertices. In E this corresponds
to S

splitting vertex 2 once gives E splitting twice gives Ehl'

39°
Thus we have all graphs where a valency 5 vertex is split twice.

It only remains to check SE(EJ2)' SE: (3,6)(E12) = E3h and

<
_ ‘s . , <
8,. (h,5)(E12) = Eg3. Any further splitting gives G' S E SO

15

we are done.
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< —
Temma 6.15. (G € I(P)| & S Bppl = (BppsBposBas,Bay s BanBag, By, )

Proof. We label the graphs as in figure 6.15. E,, =
KB,A\{(1,6),(2,7):(3,5),(4,8)] where the bipartition sets are
(0,1,2,3,%),(5,6,7,8}. Observe 5g. (5,8) contains disjoint k-graphs,
by symmetry we may assume throughout this lemma vertex O is not
split. Also by symmetry there is a unique splitting of E22,

S5: (1,14) = Fost

In E25 the valency 4 vertices are in two symmetry classes,

[7] and {6’8}‘ Note 87: (O,l)(E25) = E3)+) S7: <0,3)(E25) = E33
(o,h)(E25) = F5 U {(3,8)}. By lemma 6.14 we know

and S

! <

<

(¢ € I(P)| & 3By or GTEy) = {E33,E3H,E39,Ehl}, so we need
not consider splitting vertex 7. Since S, (0’2)(E25) = F5 U {((&,7)}
and Sg, (0’3)(E25) =Ty U ((1,7)}, there is a unique splitting on
vertex 6, by symmetry there also is a unique splitting on vertex
8. Splitting one of these vertices gives E35, splitting both gives

E39. Since E39 %-E33 the proof of the lemma is completed.
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Lema 6.16. (G € I(P)| ¢S F,) = EB 0 J 5 YR

Proof. ILabel the graphs as shown in figure 6.16. We shall first
. < .

find (G € I(P)| GESO(F]_)J. Note S, (6,8)(F1) contains a
O-graph disjoint from a k-graph hence up to symmetry there exists
a unique splitting of 0, 8§, (3,8)(Fl) = F5.

InLLF5 observe 82: (1,4) contains a ©-graph disjoint from

1
G 3 5)'
55, (1,6)(F5) = Ty Vertex 1 is symmetric to 2 in F, but the

Up to symmetry there is a unique splitting,

. two possible splittings of vertex 1 are not symmetric in F9.
5, (2’3)(F9) =F,), and S, (2’5)(F9) = F13. Since the graphs are
cubic we have found all ¢<s (F.).
s 01
we now need only consider splitting vertices 1 and 2.

1
82: (1,4) contains a O-graph disjoint from (2:L31#5),

In F
so up to
symetry S, . (1,6)(Fl) = F; is unique. Both Sl(F5) give F9,
since F9 § SO(Fl) the proof of the lemma is completed.

O
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Chapter 7

CONCLUSIONS

In this section we offer several theorems which follow from our
main result. In §7.2 we investigate some possible research directions
and give some concluding remarks.

§7.1 Purther Results

Theorem 7.1. IM(P) = [Al,Ae,Bl,B3,D9}.

Proof. Recall & as defined in §6.1. Following from theorem 6.1
and theorem 1.7 & = II:(P) Since ;— is a course ordering we know
IM(P) c II_;I(P). The proof of the theorem breaks into two parts;
first finding < derivations for G € IEE(P)\IM(P), secondly showing
[Al’Ae’Bl’B3’D9] are incomperable under <.

For the first part of the proof we refer the reader to figures
7.1, 7.2 and 7T.3. In these figures we have identified each graph
in Iﬁf(P) (excepting those claimed in IM(P)) as an elementary

derivation of some other graph. Thus we conclude IM(P) c

(Ayshp,By5B5,Dg).

205
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Cy %

lso: (1,6,8) ',:!s

E
) ¥ ” S0: (3,4)

= |
= lso (1,9)
l 1D n?“
% “ E9 N
Eag

Figure 7.1
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Figure 7.2
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S

184: (1,2,5,6)

Figure 7.3
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For the second part of the proof we need to show each of the 5
graphs are maximasl. It suffices to show the 5 are pairwise incom-
parable under <. As in the proof of lemma 1.5 we shall use the
function ¢ which assigns to each graph its valency sequence:. We
offer the following obvious facts:

1) ¢>a6'=o0o(6) >o(a"),

2) G>a' = pB(G) >p(G') where B(G) denotes the betti number of

G.

From the appendix we have G(Al) = (8,&8) > o(Bl) = (63,hh) > c(B3) =
| (62,h6) > G(AQ) = (6,56) > G(D9) = (52,h2,36). From the contrapositive
of 1) we immediately conclude Ay € IM(P). For graph B, we need
only check if it derives from Al. Since no splitting of a single
valency 8 vertex gives 3 valency 6 vertices we conclude
B, € IM(P). Likewise we know B3 £ Ay, since we checked all
splittings of B, (lemma 6.10) we conclude B3 € IM(P). Graph
A, 4 A (A2 contains too many vertices of valency > 4), 1) and
2) combine to show A, is not comparable to either B, or B3.
We note D9 ¢ Al since the only way to get two valency 5 vertices
is to split the valency 8 vertex. The valency 5 vertices are
9° Observe By contains 4 +valency
4  vertices while D9 contains only 2. Any splitting of a valeuncy

4 vertex, or edge deletion of an edge incident to a valency U

adjacent in S(Al) but not in D

vertex, was examined in lemma 6.7. Such an operation decreases the
B number by 2, thus D9 £ B,. Finally in graph B, splitting a

valency 6 vertex causes 2 edge deletions. Splitting both valency
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6 vertices gives a graph G' with pB(G') < 9. By 2) we conclude
D9 £ B3' Thus D9 € IM(P) and the proof of the theorem is complete.

a

Define the Kuratowski cover number of G, K(G), as the least k

k
s.t. G = U H,,
i=1 *

where }%_G I(I@).
Theorem 7.2. G € I(P) implies K(G) = 2.

Proof. It is clear KX(G) > 2. To show K(G) <2 we check the
103 cases, writing each graph as the union of two Kuratowskl graphs.
We note in many cases the union is easy, e.g., G contains disjoint
k-graphs. The graphs as shown in the appendix emphasize the k-graphs
of G, 1in each case there is a campletion of the k-graphs to

Kuratowski graphs which gives all of G.
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§7.2 Some Related Problems

The real projective plane is probably the last surface ¥ for
which an explicit listing seems realistic. Por example, it is easy
to verify the mmber of one-connected graphs in I(EE) is over
4L000. However, many interesting questions sbout I(Z) remain open.

The following are but two well known unsolved problems:

Conjecture. |I(Z)] <= for all surfaces =

Conjecture. 1) G € I(Zn) = K(G) =2n + 1,
2) G€IE)=K(@G) =n+1.

We note theorem 7.2 shows the second conjecture (part 2) is
true for n = 1.

Of special interest in I(Z) are the maximal graphs and the
minimal graphs. Observe bounding IM(Z)I. also bounds |I(Z)|. on
the other hand, given an arbitra.rslr ggggr! wg lggnbcolligglf 11':.5 (ge)rlms I%Irl
splitting (in all possible ways) to a set of cubic grephs and locking

* for minimal irreducible subgraphs. Characterizing any of these
sets remains an open question.

Finally, given G,G' € I(Z), G' < G, what does S(G)\G' look
like? Which edges are reducible in S(G)? The set I(P) provides a

place to investigate these problems.
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cg 1L(6,44,30) (<o) ¢, 8(%M0) (@) gy 11(5,47,37) (<o)

e 1(7,3%) (<o) 01220539 (g oy 1m02,3°) (<o)

2 .8 3 .6 3,2 23
D, 10(65,3%) (<C,) D, 10(6,47,37) (<c3) Dy 8(57,45,37) (<B))
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e & &

b, 9(P,4%,3Y) (@) by 1006,43,3%) (<) pg 9(P3,3Y) (<0,

&Y &2

p, 9(F,13,3") (@) by 9(F13,3") (@) py 10(5°,4,5°) maxima

&D &) &

Dyo 10(F,48,3%) (@) by 10(52,18,30) (<) Dy, 9(5,47,37) (<cp)

o & &

L 1005,4%,3%) (@,) Dy, 10(5,1%,3%) (@,) Dy 10(5,4,3%) (D))

'@W@

Dy 11(5,43,37) (@) Dy, 8(45) <<A2> D, 11(47,30) (<0y3)
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& T =

po 10,3 (@) B 110630 (<o) B, 11(6,3%°) (<)

/

By =1 5 805,37 (@) B, 9(u3P) () By 9(F,4P) (<)

=

Eg 10(2,3%) (<D,) E., 10( (2,3%) (<®,)  EBg 10(,3°) (<E5)

L €

2 .7 2 g7
Ey 10(5,4%,37) (<)  Ep 10(5,4%,87) (<)) E

=D 6B

12 205,430 (@) B, 110,4,57) (@) By 115,537 ()

11 1005,42,37) (<)
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@@t@@

5 11(5,4,3) (@) By 120531 (B) B, 120530 (<)

Eig=¥, 1\ 8(u8,3%) (<By) Epq 9(u%,3"%) (<p3) Eoo 9(4%,3") (<)

ED

5 gk 5 ot 4 6

&P &=

5, 1004,3%) (@) 5,5 200%,3) (@) By 20044, (<)

&b &

L 1005,38) (@) Eg 1004,3) () By 1105,3%) (<)
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& D &

20 12(45,3%) (< o 103,30 <my) By, 1103,3°) (<)

By, 11085,3%) (@) By, 103,39 ()

2 ,10 2 .10

3.8
Byg 11(4°,37) (<Bys)

By 12(42,37°) (<my5)

Byg 12(4%,3'0) (<)) By 1304,3"8) () By, 13(4,3%8) (@)
B, 267 (@, F 903E) @) E 1008,3°) (@)
minimal
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R
&
3

Fy 10(1;2,38) (<) F), 10(&2,38) (<B,5) Fy 10(42,38) (<))

5
©
5

Fe 100:2,3%) (<gy) P, 11(4,3%0) (<) Eg 11(4,3%0) (<)

R
&
v

o 1(4,370) () P 1,30 () Fpy 126%) (<)

5
B
8

B
)
\Ov

12(32) (7

minimal

b

¢ 10(3%°) (<)
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