Contractibility and NP-Completeness

A. E. Brouwer
CENTRE FOR MATHEMATICS AND COMPUTER SCIENCE
AMSTERDAM, THE NETHERLANDS
H. J. Veldman
DEPARTMENT OF APPLIED MATHEMATICS
TWENTE UNIVERSITY OF TECHNOLOGY
ENSCHEDE, THE NETHERLANDS

Abstract

For a fixed graph H, let H -CON denote the problem of determining whether a given graph is contractible to H. The complexity of $\mathrm{H}-\mathrm{CON}$ is studied for H belonging to certain classes of graphs, together covering all connected graphs of order at most 4. In particular, H-CON is NP-complete if H is a connected triangle-free graph other than a star. For each connected graph H of order at most 4 other than P_{4} and $\mathrm{C}_{4}, \mathrm{H}-\mathrm{CON}$ is solvable in polynomial time.

1. INTRODUCTION

We use [3] for basic graph theoretic terminology and notations, but speak of vertices and edges instead of points and lines. In describing problems and their complexity, the terminology of [2] is applied.

We recall that an elementary contraction of a graph G is obtained by identifying two adjacent vertices u and v, i.e., by the removal of u and v and the addition of a new vertex w adjacent to those vertices to which u or v was adjacent. A graph G is contractible to a graph H if H can be obtained from G by a sequence of elementary contractions. In several graph theoretic results, conditions in terms of contractibility to certain graphs occur, e.g., in Wagner's equivalent [5] of Kuratowski's theorem: a graph is planar if and only if it has no subgraph contractible to K_{5} or $K_{3,3}$. Numerous examples of such results can also be found in [4], the paper that actually motivated our present research.

Let the problem CON be defined as follows.

CON.

Instance. Graphs G and H.
Question. Is G contractible to H^{\prime} ?
As mentioned in [2], CON is an NP-complete problem. In view of the previous paragraph, it would be interesting to gain an insight into the complexity of the problem that arises from CON if H is fixed to be a specific graph. We are thus led to defining, for a fixed graph H, the problem H-CON.

H-CON.

Instance. Graph G.
Question. Is G contractible to H ?
It seems natural to initiate a study of the complexity of H-CON by first considering small graphs H. Furthermore, we restrict attention to connected graphs H. The number of components of a graph is invariant under contractions, and it is easily seen that H-CON is solvable in polynomial time iff, for each component K of $H, K-\mathrm{CON}$ is.
After stating preliminary definitions and lemmas in Section 2, we derive, in jections 3-7, necessary and sufficient conditions for contractibility to each of he connected graphs of order at most 4, except P_{4} and C_{4}. As is easily verified, the conditions can all be checked in polynomial time, so that, if H is one of these graphs, H -CON is solvable in polynomial time. In Section 8 it is shown that P_{4}-CON and $C_{4}-\mathrm{CON}$ are NP-complete. For the sake of simplicity, only graphs of order at most 4 occur in the titles of Sections 3-8, although some of the complexity results on H-CON are proved for each graph H in some infinite class.

2. PRELIMINARIES

We first develop some additional terminology in order to facilitate discussing contractibility. If G is a graph, then two subsets V_{1} and V_{2} of $V(G)$ are said to be close in G if there is an edge of G joining a vertex of V_{1} and one of V_{2}. Clearly, G is contractible to a graph H with vertex set $V(H)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ iff there exists a partition of $V(G)$ into vertex sets $V_{1}, V_{2}, \cdots, V_{m}$ such that

- the induced subgraph $\left\langle V_{i}\right\rangle$ of G is connected ($i=1,2, \cdots, m$);
- V_{i} and V_{j} are close in G iff v_{i} and v_{j} are adjacent in $H(1 \leqslant i<j \leqslant m)$.

The notion of a block will play an important role in our development. In finding criteria for contractibility to 2 -connected graphs, the following obvious lemma will be of much use.

Lemma 1. A graph G is contractible to a 2-connected graph H if and only if G is connected and some block of G is contractible to H.

Another useful and easily proved lemma is the following.
Lemma 2. If G is a 2 -connected graph other than a complete graph or a cycle, then G contains two nonadjacent vertices v_{1} and v_{2} such that $G-$ $\left\{v_{1}, v_{2}\right\}$ is connected.

3. CONTRACTIBILITY TO K_{1}, K_{2}, and K_{3}

Garey and Johnson's comment [2] on the problem CON is that K_{3}-CON is solvable in polynomial time. Indeed, a graph G is contractible to K_{3} if and only if G is connected and G is not a tree. Clearly, this condition can be checked in polynomial time. Just for the sake of completeness we mention that a graph G is contractible to K_{1} iff G is connected and to K_{2} iff G is connected and nontrivial.

4. CONTRACTIBILITY TO P_{3} and $K_{1,3}$

The following theorem shows that $K_{1, m}$ - CON is solvable in polynomial time for all $m \geq 1$.

Theorem 3. A graph G is contractible to $K_{1, m}$ if and only if G is connected and contains an independent set S of m vertices such that $G-S$ is connected.

Proof. If the stated condition is satisfied, then contraction of $G-S$ to a single vertex yields $K_{1, m}$. Hence, the condition is sufficient.

To prove necessity, suppose G is contractible to $K_{1, m}$. Then G is connected, and there exists a partition $\left\{V_{0}, V_{1}, \cdots, V_{m}\right\}$ of $V(G)$ such that
(1) for $i=0,1, \cdots, m,\left\langle V_{i}\right\rangle$ is connected;
(2) for $i<j, V_{i}$ and V_{j} are close iff $i=0$.

See Figure 1. For $i=1,2, \cdots, m$, let v_{i} be a vertex of V_{i} with maximal distance from V_{0}. Then $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ is an independent set of m vertices, whose deletion results in a connected graph.

Criteria for contractibility to P_{3} and $K_{1,3}$ are obtained by specializing Theorem 3 to $m=2$ and $m=3$, respectively. However, a more explicit characterization of the graphs contractible to P_{3} can be found.

Corollary 4. A graph G is contractible to P_{3} if and only if G is connected and G is neither a complete graph nor a cycle.

FIGURE 1.

Proof. The necessity of the condition is trivial. To prove sufficiency, let G be a connected graph other than a complete graph or a cycle. If G has a cut vertex, then G is easily shown to be contractible to P_{3}. If G is 2 -connected, then Lemma 2 asserts that G contains two nonadjacent vertices v_{1} and v_{2} such that $G-\left\{v_{1}, v_{2}\right\}$ is connected. G is then contractible to P_{3} by Theorem 3 .

5. CONTRACTIBILITY TO $K_{1,3}+x$

Let $H_{m, n}$ be defined as the graph $K_{1}+\left(m K_{1} \cup n K_{2}\right)$, so that $K_{1,3}+x=H_{1,1}$. We first obtain a necessary and sufficient condition for contractibility to $H_{m, n}$ within the class of 2 -connected graphs.

Theorem 5. A 2-connected graph G is contractible to $H_{m, n}$ if and only if $V(G)$ contains a subset S such that $\langle S\rangle \cong m K_{1} \cup n K_{2}$ and $G-S$ is connected.

Proof. Suppose G is a 2 -connected graph satisfying the stated condition. Since the vertices of S all have degree at least 2 , contraction of $G-S$ to a single vertex yields $H_{m, n}$.

Now assume that G is 2-connected and contractible to $H_{m, n}$. Then there is a partition $\left\{V_{0}, V_{1}, \cdots, V_{2 n+m}\right\}$ of $V(G)$ such that
(a) for $i=0,1, \cdots, 2 n+m,\left\langle V_{i}\right\rangle$ is connected;
(b) for $i<j, V_{i}$ and V_{j} are close iff $i=0$ or $i+1=j=2 k \leqslant 2 n$.

See Figure 2. For $i=1,3,5, \cdots, 2 n-1$, let $v_{i} v_{i+1}$ be an edge of $\left\langle V_{i} \cup V_{i+1}\right\rangle$ such that the sum of the distances of the incident vertices from V_{0} is maximal; the 2-connectedness of G then implies that $\left\langle V_{0} \cup V_{i} \cup V_{i+1}\right\rangle$ $\left\{v_{i}, v_{i+1}\right\}$ is a connected graph. Furthermore, for $i=1,2, \cdots, m$, let $v_{2 n+i}$ be a vertex of $V_{2 n+i}$ with maximal distance from V_{0}. Now the set $S=$ $\left\{v_{1}, v_{2}, \cdots, v_{2 n+m}\right\}$ has the required properties.

FIGURE 2.

If a graph G is connected, but not 2-connected, then the condition of Theorem 5 is neither necessary nor sufficient for contractibility to $H_{m, n}$. The graph G_{1} in Figure 3 is contractible to $H_{m, 1}$, but no subset of $V\left(G_{1}\right)$ satisfies the condition of Theorem 5. On the other hand, the subset $V\left(G_{2}\right)-\{v\}$ of $V\left(G_{2}\right)$ satisfies the condition of Theorem 5, whereas G_{2} is not contractible to $H_{m, 1}$.
With the aid of Theorem 5 it is possible to obtain a necessary and sufficient condition, checkable in polynomial time, for contractibility to $H_{m, n}$ of arbitrary (not necessarily 2 -connected) graphs, so that $H_{m, n}$ - CON is solvable in polynomial time for arbitrary m and n. However, since this condition looks very nasty when formulated for general m and n, we only give it for $m=n=1$, in which case it has a simple form. Obviously, a graph G which is connected, but not 2-connected, is contractible to $K_{1,3}+x$ iff at least one block of G is contractible to K_{3}, or, in other words, iff G is not a tree. Summarizing, we have the following consequence of Theorem 5.

FIGURE 3.

Corollary 6. A graph G is contractible to $K_{1,3}+x$ if and only if either G is connected, has a cut vertex, and is not a tree or G is 2 -connected and contains three vertices v_{1}, v_{2}, v_{3}, exactly two of which are adjacent, such that G $\left\{v_{1}, v_{2}, v_{3}\right\}$ is connected.

6. CONTRACTIBILITY TO $K_{4}-x$

By Lemma 1, a graph G is contractible to $K_{4}-x$ iff G is connected and some block of G is contractible to $K_{4}-x$. The blocks of a graph can be found in polynomial time. Hence, in order to show that ($K_{4}-x$)-CON is solvable in polynomial time, it suffices to find a polynomial time criterion for contractibility of 2-connected graphs to $K_{4}-x$.

Theorem 7. A 2-connected graph G is contractible to $K_{4}-x$ if and only if G is neither a complete graph nor a cycle.

Proof. Complete graphs and cycles are not contractible to $K_{4}-x$. To prove the converse, assume that G is a 2 -connected graph other than a complete graph or a cycle, and let v be a vertex of G of maximal degree. Then $\operatorname{deg} v \geq 3$ and $N(v)$ contains two nonadjacent vertices v_{1} and v_{2}. Let $G_{1}, G_{2}, \cdots, G_{k}$ be the components of $G-\left\{v, v_{1}, v_{2}\right\}$, and let G^{\prime} be the graph obtained from G by contracting each of these components to a single vertex. If $k=1$, then, since G is 2 -connected and $\operatorname{deg} v \geq 3, G^{\prime}$ is $K_{4}-x$. If $k \geq 2$, then, for some $i \in\{1,2\}, V\left(G^{\prime}\right)-\left\{v, v_{1}, v_{2}\right\}$ contains two vertices v_{3} and v_{\neq}such that v_{3} is adjacent in G^{\prime} to v and v_{i}, while v_{4} is adjacent to v_{1} and v_{2}. Contraction of the edge $v v_{3-i}$ now yields a graph $G^{\prime \prime}$ in which the vertices of degree at least 2 induce $K_{2}+m K_{1}$, for some $m \geq 2$. Clearly, $G^{\prime \prime}$ is contractible to $K_{4}-x$.

Note that Corollary 4 is a consequence of Theorem 7 also, since every graph contractible to $K_{4}-x$ is contractible to P_{3} too.

7. CONTRACTIBILITY TO K_{4}

For a 2-connected graph G we define the reduction $R(G)$ as the graph obtained from G by successively contracting edges incident with vertices of degree 2 until either K_{3} or a graph with minimum degree at least 3 results. It is easily seen that $R(G)$ is unique up to isomorphism.

In combination with Lemma 1, the following result implies that $K_{4}-\mathrm{CON}$ is solvable in polynomial time.

Theorem 8. A 2-connected graph G is contractible to K_{4} if and only if $R(G)$ is not a triangle.

Proof. Let G be a 2 -connected graph. Clearly, G is contractible to K_{4} iff $R(G)$ is. Hence, if G is contractible to K_{4}, then $R(G)$ is not a triangle. Conversely, suppose $R(G)$ is not a triangle, so that $\delta(R(G)) \geq 3$. Dirac [1] proved that every graph with minimum degree at least 3 contains a subdivision of K_{4}. Obviously, a connected graph with a subdivision of K_{4} is contractible to K_{4}. It follows that $R(G)$, and hence G too, is contractible to K_{+}.

8. CONTRACTIBILITY TO P_{4} AND C_{4}

We start by showing that $P_{4}-\mathrm{CON}$ is NP-complete. Clearly, $P_{4}-\mathrm{CON}$ is in NP since it is a subproblem of CON. We transform the following problem, which is mentioned in [2] to be NP-complete, to $P_{4}-\mathrm{CON}$:

Hypergraph 2-Colorability (H2C).

Instance. Hypergraph L with vertex set X and (hyper-) edge set \boldsymbol{E}.
Question. Is there a 2 -coloring of L, i.e., a partition of X into two subsets X_{1} and X_{2} such that no edge of \boldsymbol{E} is entirely contained in either X_{1} or X_{2} ?

Obviously, H2C remains NP-complete if L is required to satisfy the following additional conditions:

$$
\begin{equation*}
|\boldsymbol{E}| \geq 2 \text { and } X \in E \tag{*}
\end{equation*}
$$

From a hypergraph $L=(X, \boldsymbol{E})$ satisfying (*) we construct a graph G_{L} as follows:

- $V\left(G_{L}\right)=\left\{v_{1}, v_{2}\right\} \cup X \cup \boldsymbol{E}_{1} \cup \boldsymbol{E}_{2}$ where \boldsymbol{E}_{1} and \boldsymbol{E}_{2} are disjoint copies of \boldsymbol{E};
- $N\left(v_{i}\right)=\boldsymbol{E}_{\mathrm{i}}(i=1,2)$;
- $\langle X\rangle$ is a complete graph;
- $\left\langle\boldsymbol{E}_{1} \cup \boldsymbol{E}_{2}\right\rangle$ is a complete bipartite graph with maximal independent sets \boldsymbol{E}_{1} and \boldsymbol{E}_{2};
- a vertex $u \in X$ is adjacent to a vertex $E \in E_{\mathrm{i}}$ iff $u \cup E(i=1,2)$.

An example is depicted in Figure 4. The NP-completeness of $P_{+}-\mathrm{CON}$ is now established by showing that $G_{l .}$ is contractible to P_{+}iff L is 2 -colorable.

Suppose first there exists a 2 -coloring $\left\{X_{1}, X_{2}\right\}$ of L. Then, in G_{L}, each vertex of \boldsymbol{E}_{i} is adjacent to at least one vertex of $X_{i}(i=1,2)$. Since $\left\langle X_{i}\right\rangle$ is complete, it follows that $\left\langle\boldsymbol{E}_{i} \cup X_{i}\right\rangle$ is connected ($i=1,2$). Now G_{L} is contractible to P_{+} by contracting $\left\langle E_{1} \cup X_{1}\right\rangle$ and $\left\langle E_{2} \cup X_{2}\right\rangle$ to single vertices.

Assume next that G_{L} is contractible to P_{+}. Then there is a partition $\left\{V_{1}, V_{2}, V_{3}, V_{+}\right\}$ of $V(G)$ such that
(i) for $1 \leqslant i \leqslant 4,\left\langle V_{i}\right\rangle$ is connected;
(ii) for $i<j, V_{i}$ and V_{j} are close iff $j=i+1$.

FIGURE 4. The graph G_{L} in case $X=\{1,2,3\}, \boldsymbol{E}=\{\{1\},\{2,3\},\{1,2,3\}\}$.

If $u \in V_{1}$ and $v \in V_{4}$, then $d(u, v) \geq 3$. Using (*), it is easily checked that v_{1} and v_{2} are the only vertices having distance at least 3 in G_{L}, implying that $\left|V_{1}\right|=\left|V_{4}\right|=1$ and $V_{1} \cup V_{4}=\left\{v_{1}, v_{2}\right\}$. Assume without loss of generality that $V_{1}=\left\{v_{1}\right\}$ and $V_{4}=\left\{v_{2}\right\}$. Since all vertices of \boldsymbol{E}_{i} are adjacent to $\boldsymbol{v}_{i}(i=1,2)$, it follows that $\boldsymbol{E}_{1} \subset V_{2}$ and $\boldsymbol{E}_{2} \subset V_{3}$. Hence, there are two subsets X_{1}, X_{2} of X with $X_{1} \cup X_{2}=X$ such that $V_{2}=\boldsymbol{E}_{1} \cup X_{1}$ and $V_{3}=\boldsymbol{E}_{2} \cup X_{2} .\left\langle V_{2}\right\rangle$ is connected and E_{1} is an independent set of G_{L} with $\left|E_{\mid}\right| \geq 2$, so $X_{1} \neq \varnothing$, and every vertex of \boldsymbol{E}_{1} is adjacent to at least one vertex of X_{1}. Similarly, $X_{2} \neq \varnothing$, and every vertex of \boldsymbol{E}_{2} has at least one neighbor in X_{2}. Thus, $\left\{X_{1}, X_{2}\right\}$ is a 2-coloring of L, completing the proof.

The following more general result, implying that C_{4}-CON is NP-complete too, can be established in an analogous way.

Theorem 9. If H is a connected triangle-free graph other than a star, then H-CON is NP-complete.

Since the complete proof of Theorem 9 is quite long, we only give an outline.
Let H be a connected triangle-free graph, but not a star, and $L=(X, E)$ be a hypergraph satisfying (*). Then H contains an edge $u_{1} u_{2}$ with $\operatorname{deg} u_{1} \geq 2$ and $\operatorname{deg} u_{2} \geq 2$. Obtain a graph G from disjoint copies of $H-\left\{u_{1}, u_{2}\right\}$ and $G_{L}-\left\{v_{1}, v_{2}\right\}$ by joining each vertex of $H-\left\{u_{1}, u_{2}\right\}$ neighboring u_{i} in H to all vertices of $\boldsymbol{E}_{i}(i=1,2)$. Now L is 2 -colorable iff G is contractible to H, implying the result. The major part of the proof consists of showing that, if G is contractible to H, then $\boldsymbol{E}_{1} \cup \boldsymbol{E}_{2} \cup X$ is the union of exactly two classes of the relevant partition of $V(G)$.

The fact that H-CON turns out to be NP-complete, even for such small graphs H as P_{4} and C_{4}, makes us expect that the class of graphs H for which H-CON is not NP-complete is very limited.

References

[1] G. A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22 (1960) 61-85.
[2] M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, San Francisco (1979).
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA (1969).
[4] C. Hoede and H. J. Veldman, Contraction theorems in Hamiltonian graph theory. Discrete Math. 34 (1981) 61-67.
[5] K. Wagner, Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114 (1937) 570-590.

