
Representations of 
Graphs and Orthogonal 
Latin. Square Graphs 

Paul Erdijs 
c/o DR. R. 1. GRAHAM 

AT&T BELL LABORATORIES X382 

600 MOUNTAlN AVENUE 

MURRAY HILL, NEW JERSEY 07947 

Anthony B. Evans 
DEPARTMENT OF MATHEMATICS AND 

STATlSTlCS 

WRlGHT STATE UNIVERSITY 

DAYTON, OH/Q 45435 

ABSTRACT 

We define graph representations modulo integers and prove that any 
finite graph has a representation modulo some integer. We use this to 
obtain a new, simpler proof of Lindner, E. Mendelsohn, N. Mendelsohn, 
and Wolk’s result that any finite graph can be represented as an orthogo- 
nal latin square graph. 

Let G be a graph with vertices v,, . . . , u, and let n be a natural number. We say 

that G is representable modulo n if there exist distinct integers a,, . . . , a,, 

0 I a, < n, satisfying (ai - a+ n) = 1 if and only if ui is adjacent to u,. We 

call {a,, . . . , ad a representation of G modulo n and n the order of the represen- 

tation. If {a,, . . . ,a,} is a representation of G modulo n then so is {ba, + 

c, * . . , ba, f c}, where (b, n) = 1 and addition and multiplication are 

performed modulo n. 

We will show that any graph is representable modulo some positive integer. 

The proof will require the following lemma. 

Lemma. For any positive integer m there exist distinct primes pl, . . . ,pm 
such that for all pairs A,B of disjoint nonempty subsets of {p,, . . . ,p,}, 
(n{Pi:PiEA}-TZ{pi:pjEB},plP,...p,)=l. 
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Proof. Suppose that we have chosen a prime p, > 3” and further suppose 
that we have chosen primes p, < . . . < pE, s < m, to satisfy the conditions of 
the lemma. We note that in choosing the next prime the only restriction is that 
pr+l cannot be congruent to a /b modulo pi, where a and b are square free prod- 
ucts using the primes p,, . . .,p,anda# 1. Thusforeachi, i= l,,.., s, 
there are at most .3’-’ C 3” < p, < pi residue classes to be avoided. Thus for 
some nonzero residue class modulo p, . . ,ps any choice of a prime in this resi- 
due class would be a valid choice for the next prime. As we can also guarantee 
that this residue class is nonzero modulo pi, for i = 1, . . . , s, a theorem 
of Dirichlet guarantees the existence of an infinite number of primes in 
such a residue class, enabling us to extend our selection. The proof follows 
inductively. I 

We are now in a position to prove our main theorem. 

Theorem. Any finite graph can be represented modulo some positive integer. 

Proof. Let G be a graph with vertices ~1,) . . . , u,. Form a new graph G ’ by 
adjoining an isolated vertex u, to G. Let e,, . . . , e, be the edges of the comple- 
mentofG’andletp,,.. . ,pm be primes satisfying the conditions of the lemma. 
Then for i = l,..., r set a, = II {p,: ej incident with vi in the complement 
of G ‘} and set n = p,p2. . .p,,,. Then {a,, , , , , a,} is a representation of G 
modulo n. I 

Lindner et al. [5] defined an orthogonal latin square graph to be a graph, all 
of whose vertices are latin squares of the same order, adjacency being orthogo- 
nality. We now give a more elementary proof of their theorem [5, Theorem l] 
that any finite graph is realizable as an orthogonal latin square graph. 

Corollary. Any finite graph can be realized as an orthogonal latin square graph. 

Proof, Let G be a finite graph with vertices ul, . . . , u, and adjoin to G a 
vertex u0 joined to each of u,, . . . , u,. Let {a,,, . . . , ad, a, = 0, be a representa- 
tion of G U {uO} modulo n. Define a matrix L, whose ijth entry is a$ + j, 
addition and multiplication modulo n. Then L,, . . . , L, are latin squares and L, 
is orthogonal to L,, if and only if uk is adjacent to ukP. Thus G is realized as an 
orthogonal latin square graph. I 

Remarks 

Lindner et al. actually proved that any finite graph can be realized as an 
orthogonal latin square graph using idempotent latin squares. This extra 
condition is a by-product of the construction used in their proof and does 
not strengthen the result. 
This paper was motivated by Lindner et al.‘s paper and by the study of 
orthomorphism graphs of groups, orthogonal latin square graphs in 
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which all the latin squares are obtained from the Cayley table of a group 
by permuting rows. We have in fact shown that any finite graph can be 
represented as an orthomorphism graph of some cyclic group. For more 
information on orthomorphism graphs,, see Evans [ 1,2,3], Johnson, 
Dulmage, and Mendelsohn [4], and Mendelsohn and Wolk [6]. 
It should be noted that for a graph to be representable modulo n it is 
necessary although not sufficient for the smallest prime divisor of n to 
be at least as large as the clique number of the graph. This is in marked 
contrast to the situation for orthogonal latin square realizations, in which 
only finitely many latin square orders are ruled out for a given graph 
[5, Theorem 31. 
Let G be a graph obtained from K4 by removing the edges of a path of 
length 2. Then we have shown that G has a representation whose order is 
the product of 6 primes, each greater than 36. However (0, 1,3,5} is a 
representation of G modulo 15, the smallest possible order for a repre- 
sentation of this graph. This suggests the problem of determining for a 
given graph the smallest order possible for its representation. 
A graph representation modulo n is a subset of (0, . . . , n - 1) and any 
subset of (0, . . . , n - l} can be thought of as a graph representation 
modulo n. What relationship exists between properties of graphs and 
properties of the integer sets representing them? 
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