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Abstract 

A 3-graph consists of a vertex set together with a set of unordered triples of vertices; the 

members of the latter set are called edges. A bijection from one finite subset of the vertex 

set to another is called a local isomorphism of the 3-graph if it maps edges to edges and 

non-edges to  non-edges. A 3-graph is called homogeneous if each of its local isomorphisms 

extends to an automorphism. By exploiting the classification of finite Ztransitive permuta- 

tion groups which is found in the literature we show that up to  isomorphism there are only 

four non-trivial finite homogeneous 3-graphs and we give explicit descriptions of them. 



Acknowledgements 

The author wishes to  express appreciation for the invaluable help and encouragement given 

by her supervisor, Dr. A. H. Lachlan, and to offer a special thanks to Dugald hfacPhcrson 

for his help in sorting out the classification of finite simple groups., 



Contents 

Abstract 

Aekn~w1edgemelEts 

Contents 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 An end in sight 8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 Getting started 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1. h e a r  groups 30 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 Groups which are too mall. 42 



3.3 Unitary groups . . .. . . . - . . - . - - . - . . . - - - - . . - . . . . . . . . . -15 

3.4 Syrnpfecric graanps . - . - - . - . - - . . - . . . - - - . . . .... . . . . . . . . .I9 
- - 

3.3 A; and PSLf'E. 1 1 )  . . . . . . - . - . . . - . . . . . - . . . . . . . . . . . - . . :)a 

3.6 Sporadic groups. - . - . . . - - - -..- . . . . . . - . . - - . . . . . . . . . 5?1 

3.6.1 -1- = HS [Higrnan-SimsL n = 176. . . . . . . - . . . - . . . . . - . - . 59 

3-62? 3r = Co3 (Conway). n = 276 . . . . - . . - . - - - I - . , . - - . - . 61 

3.6.3 The 3fa;rfrieu Groups . . . . . . . . - . . - - . - . . . . . . . , . . . ti4 

4 Appendix 6 5 

Bibliography 



Chapter 1 

Introduction 

fn this thesis we classify the finite homogeneous 3-graphs. In fact, we wiU show that there 

are just four rron-trivial finite homogeneous 3-graphs. TWO of them are essentially the 

projective planes over GF[2) and GF(3). The remaining two are structures closely related 

to the projective lines over GFtS) and G F ( ~ ~ ) .  

In order to describe the objects which concern us we first explain the notion of a structure 

which has been stndied extensively by mathematical logicians since the 1950's. Let I, consist 

ofa finite set {R,, . . . , Rk) of relation symbds together with a signature (nl,. . . , nk), where 

ni is a naturd number called the a* of &. We call L a finite relational language. This is 

the only sort of language we s h d  consider although in other contexts an infinite number of 

retation symbols is often permitted as w& as symbols representing hc t ions  and constants. 

With L as above, an L-stmctufe itt is a (K + 1)-tuple 

snch that 

where M is a set c&ed the uniwrse o f M  and Mn denotes the n-th cartesian power of M. 

The ni-ary relation I%? is catied the interpretation of& in M .  
An I;-structure 



Ths  shere is a one-[a-one ~Wrepandence ~PZR-t*en snhstruct u r e  oT , t i  and t 1 1 t h  S I ~ ~ S T " I ~  of 

,W. The mstricfion cf,W io -1- .If, ,M FAY. is the substrurturi. s ~ f  , t l  an S ,  

Saw amsider an in*rifre map E : -1- - -11. %Ye exrend F to the  cartesiart powrrs r r i  ,l" 

aid their power sets in the ohviaus fshion: 

~fzty) = Ry n (F(x))Rr# 

F is an ismorphisrn if it is an embedding and onto M .  F is an ntriumurphisrrl if i t  is an 

hmofpbism and :%f = N- 

Consider a graph such as in figare 1.1. 

This graph, caff it M ,  can be regarded as an Lstructure, (M, RM) where the universe 

M is (a,B,c,d) and the language L consists of one relation wbase interpretation IVtf is 

{fa, b), fb? a)? {c, d), fd, c)). Often, to simplify matters when deaiing with graphs, we 

consider the relation RN to  be a subset of fA4j2, where [MF = { K  C M : fKf  = i). Using 

this emvention, the relation of the above graph becomes {{a, b ) ,  {c, d ) ) .  



an unordered pair. To dscribe a 3-graph within the frarneu-ark of model rkrmry u-e let 

Rowever, just as for graphs (which we can think of as %graphs in a more general setting) 

because of the itreffexir-eness and symmetry of the relation it is convenient for us to abuse 

the conventions of model theory and to let be a subset of &Mj3 instead of -\IJ. So in 

this thesis by bgraph we will understand a structure A4 = (,%I7 R?), where _li is the rertez 

set mef E t M  is the edge set. With &graphs so defined, we define the compkernent ,W of the 

3-graph M to be the srmcture (iV, [Mj3 - R,bi). SO the complement of a %graph is/l is 

the Sgraph with the same vertex set for ~ n i ~ e r s e )  having edges exactly where :Q does not. 

GraphicatIyt we will denote an edge of a $graph as a smaJl triangle, wit5 lines extending 

from the vertices of the triangle to the vertices belonging to the particular edge of the 3- 

graph, Far example Ie 6-crg2.e 12, ozx the Leff we have ib %graph on (a, b, E, d, e )  with edzes 

{a, b, e) and {6, c, d),  while eil the s&t we hawe the complerne~t of that 3-grzpE. 

am be extended to an automorphism of JM- Clonsider the stmctnres in figure 1.3. 



Figure 1.3: 

phisms, i.e., all rhe isoanorgfirisms from one (finite) substructure to another, and chcckirig 

that each of them mends; $a ao aultomorphism. This is tedious but presents no diffi- 

phisnr fa. c )  -. (a ,  d) ,  bat in this case there is no way to extend ir to an autcrmorphism of 

the stmcture. So te  that the cornpiemerit of a homugenrtirus 3-graph wilf he homogenmls. 

PWe let Hmg(L) denote the class of aft homogeneous stmrcucturils on the language 1,- Two 

A complete first-order tlhgc1r-y that admits quantifier eliminaticm has a countable ho- 

mogeneous model. Finite stmctnres are homagenmus if and only if they admit quantifier 

stmtn- a d  amdgaaitha dassm. Considering a particular bumogemeous stractirre often 



Extensive work has k e n  done on classif$-ing the homogeneous L-structures u-here L has 

a single b i n a v  re%ation, Henson began, with his paper -A family of countable homogeneous 

graphs" I131 itinat appeared in ISTI, a dassification of countabte homogeneous graphs. and 

presented a number af rdatecf questions- Gardiner. in [113, completed the classification of 

the hike ham-enmas graphs- ~d %%'draw and LacbIa t c m p k ~ e d  the classification of 

roontable hom~cwm101s graphs in and [19]. 

The eountab#z hom%eneaus partidy ordered sets were ciassiiied by Schmerl in f22] and 

the countable hawqenmms, tournaments were classified by Lachian in [I?;. Cherlin has  

of Pi.ar'm4, The smdy of these stnrctures is generally appraached by looking at the finite 

st;metures which the% and their corresponding amalgamation classes, omit. The technique of 

nsing amdgamation classes i s  not as useful whea dealing with finite homogeneous structures. 

Hoarever, as the latter can be interpreted as permutation groups, there is a wide variety of 

combinatorid and group thewetic atgumeats that can be applied. This paper depends on 

the dasification of Rnite simple groups ao guarantee a f d  listing of the finite homogeneous 

&&rrrphs. The g d  of th is  paper is to prove the following theorem, 

ore detaikd kdormation on these shrnctures can be fomd in 03-1.5, fj3.1.2', Lemma 1.10 

Given a mt M ,  2' E I a subgroup of the symmetric group on M, then we refer t o  the 

G sets pfim=i>- ar vze atiIf assme fh'f its z~tim has h a  extemkd to czmesi2n powers 



The permutation group &M; G )  is Emnsitiue if there is only one orbit in the action of C; 

on ,W, that is. for all a. b E 31. there egsts  g € G such that gfaf = b. The permutation 

w u p  ( Jf  : G) is k-tmnsitir.e (k 3 1) if. given any two ordered k-t uples (x, . . . . . rk), and 

( ~ ~ . - . . j t ~ f  of &stlac% dements of M. there is some g E G such that g(t,) = y,, 1 5 i 5 k. 

Two permutation groups (-MA: G; 1 and (2%; G2) are isomorphic if there exists a bijertinn 

F from MI to  :I& such that GZ = (FgF-' : g E GI)- Unless stated otherwise. isomorphic 

wifri mean isomorphic as permutation groups. 

With a $graph M, we associate the permutation group C = (iti ;G), where G is 

Ant (,W)? the subgroup of Sym(M) that. preserves the relation RM. if Aut (M) i s  equai to 

Sym(M), then we call iW a iri~+aI %graph; so a 3-graph is trivial if and only if it has cithcr 

a€l pwib le  edges or has no edges. 

When 2% is homogeneous, G must be transitive as, for any 2, y E M, there must exist 

an antomorphisin of A4 that maps z to y. In fact, as M has only a single ternary relation, 

G wilt be %transitive, s k t  for ;my two ordered pairs of points, the map taking one to the 

ather is a local isomorphism ;and hence extends t o  an automorphism of M .  So we have the 

Lemma 1.2 IfM is a homogeneow Q--mph, then the -wrmulalion group (M; Aut (M)) is 

ft is by considering %transitive permutation groups that we will be able to  determine all the 

firtite homogeneous %graphs- Cameron, in [4, page 51, considers the sorb  of a permutation 

group which is defined to bR the product of the minimal normal subgroups of the group. 

He shows that, whea G k a primitive pennutation group acting on a finite set, the socle of 

G is a direct product of ismorphic simple ~ O U P S .  Many of the results we use concerning 

*he 2-tliiIDsj6ive simple groups, parricnlarly the classicd groups and their actions, are used 

wiIth0zf.t spedfic rdCsenee to their sources, We use the descriptions of these groups, drawn 

on unordered triple, one of whicfr is the edge set of M. 



Xn the language of design theory (see jl]), homogeneous 3-graphs are 

satisfying a very strong symmetry property. For the four triple systems listed 

triple systems 

in Theorem 1.1 

the respective values of X are 2, 3, 1 and 2. These triple systems are surely well known to  

design theorists. 



1.1 An end in sight 

Before we start looking for specific instances of finite homogeneous 3-graphs, we will use a 

result of Cherlin and LachIan to show that there can only be a finite number of such 3-graphs 

that we  non-trivial. lye will use their dichotomy theorem, as well as the definitions leading 

to it, from [7, pages 817-818f. 

Let 6 = ( M ; G )  be a finite permutation group (not necessarily one arising from a 3- 

graph) and 3 = (8; : a E I) be a family of pairwise disjoint subsets of ,%I. 3 is mutually 

indiscernible in 6 if every x E S y m ( ~ 3 )  which fixes each Hi setwise extends to a member of 

G. 3 is mutually quasi-indiscernible if for every family {ni : ; f 1 )  with a; E Alt(H,) ( i  E I) 

there exists g E G such that grHj = R; ( i  E I ) .  

A finite permutation g ~ o u p  ( H : G )  is a (twisted) coordinate system if there is a G- 

invariant equivalence relation E on A such that H f E  = {H;  : i E I) is a finite mutually 

(quasi-) indiscernible family on which G acts transitively, and ]Ail 2 5 (i E I). The degen- 

erate case in which G = Sym(A) is allowed and even typical- The If; are the components 

of H .  

Given a possibly twisted coordinate system ( H ;  G )  with components R; and k such that 

O < 2k 5 jI;i;l, define the Gmssrnannzan pennutation group: 

G g ( B ;  G) = ({X c H : (Vi E I)(Ix n A;-) = k)); G). 

Of course, in this equation the final occurrence of G refers to the action of G on the Grass- 

manniaa set {X C H : (Vi E I)(IX II Ef;l = k)). Such abuses of notation will not cause 

confnsion since we cart infer from the context on which set G is thought of as acting. In the 

present; case note that the action of G on the Grassmannian set is faithful. 

A finite permutation group (M; G) is coordinatizable if it is isomorphic to Grk(H; G) for 

some k, 3, G as above. When (M; G) is coordinatizable, the coordinatization is essentially 

nniqne, as shown by the following resdt, where Soc(G) denotes the socle of G. This result 

is stat. l without proof in f7, page 8181. 

Lemma 1.3 WiL5 the above notation, %(G) 2 [ ~ l t ( n ) ] ~ ,  where d = 11 1. 

f 1ooE For i E I, let Mj denote the group consisting of all g E G (seen as acting on H) such 

that g fixes H - Hi pointwise and induces an even permutation on Hi- Since 3 is invariant 



as a set under G, A; d 6- Since IHiI 2 5. :V; is simple and so N'; is a minimal normal 

d g r o u p  of G. 

Sow consider an arbitrarlr, non-ide~tity, normal subgroup it- of G. Choose i E I .  a E H,, 

and g E N such that g[a) # a. There are two cases: 

Case 1. g(a)  E H,.  Then g(Hi)  = Hi- For dl n E -%, n-Ig-lng E M n :'V;. Choosing n such 

that ng(a)  # gn(a), we see that 1"V n ATi # (1). Hence Ni _< N .  

Case 2. g(a) E H, for some j E f - {i). Then g(Hi)  = H j .  Choose b E Hi - ( a ) .  Let 

h = g-'(gfa)g(b)lg(g(a)gCb))- 

Since h is a commutator, h E N. Also 

Cojugating by elements of S i ,  we see that (cd)(g(a)g(b)) E N for all c,d  E Hi such that 

e # d.  Again, it is clear that 1% 5 N. 

We have shown that the groups ilr;, i E I ,  are the only minimal normal subgroups of G 

which justifies our remark above. D 

A finite relational structnre ,M is cmdinatizable if the corresponding permutation group 

(M; Aut (M)) is coordinatizable. 

Theorem 1.4 (Dicho-t;omy Theorem, 173, page 818) Let a finite relational language L 

be fied. Them is an integer m such t h t  for every finite M E Emg(L) and every maximal 

quiuaknce relation E (where E # M2) on M invariant under Aut ( M )  one of the following 

(B) ( W E ,  K )  is mdinatizabre, where K 5 Sym(M/E) is the g m p  induced by Aut ( M ) .  

Corollary 1.5 Gp to  isisomafphism, there are only a finite number of non-trivial finite ho- 

mcrgeneous 3-gmplis. 



PrwE In the theorem fix the language f, to consist of a single ternary relation. Let rn 

denote the integer prot-ided by the conclusion. Consider a finite homogeneous 3-graph .M 

s e n  as an L-structure. Since M is 2-transitive the only equivalence relation E # M2, is 
the identity on M. We conclude that either 1M/ 5 m or it4 is coordinatizable. 

Consider the case in which A-4 is coordinatizable. There exist an integer k > 0 and a 

permutation group ( A ; G )  such that 2k 5 lfljl, i E I, and 

Consider a, b E ill and let &, Xb C H be the subsets of H which correspond to a, b under 

the isomorphism. If k > 1 or if1 > I, then as a, 6 run through M, /X, n Xbl takes at least 

the d u e s  0, 1, 2. In this case, the action of Aut ( M )  on .M is not Ztransitive because 

IX, n Xb 1 is preserved under Aut (M). 

Since homogeneous 3-graphs have 2-transitive automorphism groups, k = 1 and If 1 = 1. 

In this case the Grk(H;G) is just a set with either the symmetric group or the alternating 

group acting on it- Hence Aut ( M )  2 Alt(M). Since the language is that of a ternary 

relation it is clear that Aut (M) = Sym(M). So M is trivial if it is coordinatizable. a 



1.2 Getting started 

In a permutation group (34; GJ, for any s E M ,  we define the stabilizer of z, G,, to be 

( g  E G : g(z) = 2). For any A C M, we define the stabilizer of A, GA, to be Ig E 
G : @'a E A)g(a) = Q). For any A C M, we define the set stabilizer of AT G{,ll, to be 

(g E G : g ( A )  = A}- A transitive permutation group ( M :  G) is regular if G, is the identity 

for every z E M. A transitive permutation group (M; G) is primitive if it has no non-trivial 

equivalence relations that are invariant under the action of G. 

Lemma 1.6 ([26f, Propusi*ion 4.4) k t  (144; G )  be a transitiue permutation group, a E 

M, and G be abeiian. Then G, = (1). 

is a bijection from A4 to G. Further, for g E G, $he action of g on G induced by F ,  namely 

FgF-', is muitiplieatim by g on the left. 

Remark: If G is abelian, then in the previous lemma the action of g on G is addition of g 

and is thought of as a translation. 

Lemma 1.8 ([26], Theorem 8.8) Let ( M ;  G) te a primitive permatation group, N Q G, 

and N # (1). Then ( M ;  3 )  is transitive. 

Lemma 1.9 ([2], page 7, lemma 1.3.6) Let ( M ;  G )  be a transitive permutation group 

and a E M. Then ( M ;  G )  is k- tmsi t ive  if and only ij (A4 - {a}; G,) is (k - 1)-tmnsitive. 

W e  will later make use of projective spaces and the groups associated with them, so 

we will now make liesome definitions. We start with a vector space V of dimension d over a 

field F.  For our purposes, f;" will typically be GF(q), so we will give some of the definitions 

Let V' = V - ( 0 )  and z, y f V'. Define an equivalence relation where x and y are 

equivalent if the statement (3X E F)(z = Ay) holds. The eqnivalence classes so defined 

become r he points of the pjectise geometry PG(V). 



15% cza denote the eqakdence class of s E ':" as [fz], and, under the mapping L .- js j, 

the image of a subspace iY of V. denoted is a subspace of PGIV). It turns out that i f  a 

subspace U has dimension k. then its image [t-] has dimension t - 1, and, when br = Vf d.  q ) ,  

the dimension of generated projective space is d - 1, and P G f t - )  = PG(d - 1.q). See [2, 

82-51 for further details. 

The general linear group on V ,  GL(CT), is the group of linear operators on C*. which is 

isomorphic to the group of the d x d non-singular matrices with entries from F. The spcrinl 

linear group, SL(V) is the subgroup of GL(Y)  consisting of the elements with determinant 

equai to one. To get the projective general linear group, PGL(V), we start with GL(V)  

and divide by its center. Similarly, we get the projective special linear group PSL(V) from 

Lemma 1.10 Let M be a homogeneous Sgraph of size > 4 and having at least one edge. 

If the intersection of any two edges in JU is one or fewer points, or, equivulently, if t 1170 

points are suficient to determine an edge, then /MI = 7 and M is unique. 

Proof: First, we claim any two edges must meet in exactly one point. Since there exists 

one edge that connects two points, we know that for any two points there must be an edge 

connecting them. We have an edge, {a, b, c),  and a fourth point d,  and there exists an edge 

through a and d. So we know intersecting edges do occur. Now consider figure 1.4. If we 

laok at only ( a ,  b, d ,  e), the two sides are exactly &ke. As two points determine an edge, we 

cannot. hawe both of these sitaations mcuring. Since we know we do have intersecting edges 

in M ,  the situation on the left will never occur. This establishes the claim. 



CHAPTER I .  13-TROD CCTIOrt' 

If we think c>i the edges as lines, then we have a structure where each line has three 

points, two points determine a line, and two lines intersect in exactly one point. This is a 

projective plane with lines of size three. 

Suppme there are n points. Then there are n(n - 13  f 6  lines, and there are ( n  - 1)/2 

lines through eich point. ?Ve can look at a point P and a line 1, where P is not on 2, as in 

figure 1.5. Every line including P must cross 2 %  but 1 contains only three points, so P can 

be included in o d y  three lines. So (n - 1)/2 5 3, and n 5 7. 

If we look at  the projective planes, we see that the only projective geometry having lines 

of size three and order greater than three and less than eight is PG(2,2), which has seven 

points. So now we will check t o  make sure it is homogeneous. The points of M can be 

identified with elements of (GF(2)J3 - ((0,0,0)), where {A, B, C )  E [(GF(2))3 - ((0,0, 0))13 

is a line if A + B + C = (0,0,0). The ternary relation R on this geometry is defined by 

R(A, B, C )  u A + B + C = (0,0,0) in GF(2). 

Let V = V(3,2). For a y  two bases q, 2~2, a3 and vl, Q, pi3 of V, the mapping uj I+ v; 

generates a linear transformation which gives an automorphism of M. So, we start with an 

isomorphism between two substructures of M. If one of these substructures contains three 

vectors that are independent, then we can consider them as a basis. This basis must map to 

three independeni. vectors in the other substructure, and this generates an automorphism. 

If the substructures do not contain three independent vectors, then we can arbitrarily pick 

vectors independent of the vectors we already have, until we have three, and then proceed 

as before. So any isomorphism between substructures can be extended to  an automorphism, 



and PG(2,2) is homogeneous. 

Take M :  a finite homogeneous 3-graph with corresponding permutation group ( . I f ;  (,') = 

G- R e c d  that G is 2-transitive. 

Lemma 1.1 1 If W ,  the socle of a group G ,  is a non-abelian simple group, then 

Proof: Since 1V is normal, the elements of G will induce automorphisms of N by conjn- 

gation, so we need t o  show that distinct elements of G give distinct automorphisms of N ,  

We know CG(N) is normal, from the normality of N,  so either N < Cc(N), or C c ( N )  = 1, 

otherwise, Cc(N)  n 24- would yield a normd subgroup smaller than N ,  contradicting the 

minimality of N. 

The former case wouid imply that N is abelian, which is not the case we are considering, 

so it must be that C G ( N )  = 1. 

Now suppose we have a,b E G such that for every n E N, a-'na = b-'nb. Theri 

ba-'nab-' = n and (ab-f)-ln(ab-l) = n. But then ab-' E CG(N), so ab-' = 1 and a = b. 

Thus no two distinct elements of G yield the same automorphism of N ,  and we can conclude 

that G 5 Aut(N). U 
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Our main instrument will be a theorem characterizing the socle of a %transitive permu- 

tation group. The theorem that follows is a revised and expanded version of a theorem by 

Burnside. [3, pago 2021. 

Theorem 1.12 Let f M, G') be a Ltmnsitive finite permutation group and N be the socbe of 

fj. There are two possibilities. 

i )  N is simple and non-abelian. In this case, M can be identified with a conjugacy class 

o j  subgroups of N with G acting by conjugation. 

ii) IL' is elementary abeiian. In this case, M can be identified with N in such a way 

that a fimd element a E iW corresponds to 0, N acts by tmnslation, and G, acts by 

conjugata'on. 

Proof: As was mentioned above, from Cameron's paper [4, page 51 we know that Soc(G) 

is the direct product of isomorphic simple groups. If these isomorphic simple groups are 

abeiian, then certainly N is elementary abelian. Suppose otherwise, i.e., N is the direct 

product of isomorphic non-abelian simple groups. Zn this case the theorm of Burnside says 

that there is a normal subgroup A of G which is simple such that CG(B) = (1). Being 

simple, H must be a minimal normal subgroup, and since a.ny two minimal normal subgroups 

of a group wil! commute. N = A. For the rest of part i), if N is simple, then, to explore 

the nature of M, we luok at  a mapping 

N acts transitively, since N d G and (M, G) is primitive, so G, n N # N.  Suppose 

G, n N = (1). For this x, define the mapping b I+ nb ( b  E M )  by letting nb be the element 

of N such that nb(x )  = b. There is only one possibility for nb, otherwise there is an element 

of 217 - (1) that fixes z which contradicts g, n N = (1). The mapping is also one-to-one and 

onto. Esing this bijection to identify M with N, we now have G acting on N. We observe 

that G,  acts on N by conjugation, i.e., g(m)  = gmg-l (g  E G,, m E N). Since the action 

of G on -%f is 2-trasiti.re, the x t i cn  sf Gz 03 N - (I) is traasiti-ge. Eenee m y  t m  elements 

of :V - (1) are co~jugate in G. It follows that N is a pgroup for some prime p. Hence by 

121, page 5-1, Theorem 4-41, N has a non-trivial center, which is a contradiction. So G, n N 

is always a non-trivial subgroup of X .  



be E subgroup of S and also a subgroup of G,(,). So g(G, 2 S ] g - '  5 G',i,l n S.  and, sincc. 

gjG, ,? -1- jg-I has the same number of elements as rt S. the!? must be cq;~al. 

Since G, fi -1' fi -V. the mapping o must have range of size greater t han  one. 011 I tke 

other hand. if o is ~ o t  one-to-one, then we have a G-invariant block system defined 011 .\I; 

we can take z. y E 11.3 t o  be equivalent if and only if 6(x) = ~ ( y ) .  but this contradicts i: 

beicg 2-transitive. 

Now for part ii), fix a E M, where a is arbitrary. Define the mapping b r-- 71b jb E M) 

by letting nb be the unique element of iV such that nb(a) = b. There is only one possibility 

for ng since iV acts regularly on M. Gsing this bijection we identify the set A4 with the set 

A'. Then N acts on ,M = M by translation, i.e., n(m) = n + m ( m  E N ) .  Further, the 

stabilizer G,  of a in G acts on M = X by conjugation. Note that G = NG, = C,N, so the 

action of G is completely determined by the known actions of N and G,. Q 

This theorem of Burnside is the key t o  the rest of our work. In Chapter 2, we show that 

case ii j does not give rise to any non-trivial finite homogeneous 3-graphs. In Chapter 3, we 

consider case i), and find that it gives rise to exactly four non-trivial finite homogeneous 

3-graphs. 



Chapter 2 

-- A belian Sock 

We have a group G with socle 3 = 2, x * -  - x Z, , arid we want to know if there is a 

k times 
homogeneous 3-graph A4 such that Aut (Ad) = G- If there is such M, then there is a set 

of triples R~ E [M33, the edge set of A4, such that G is the stabilizer of the set RM in 

Sym(M). For the rest: of this section we shall suppose that we have a homogeneous 3-graph 

M whose autornorphism group is G, and we shalt explore the structure of M .  

We recall from Theorem 1-12 above that, since the socle is abelian, G acts on ,A4 in the 

the unique element of X such that nb(a) = b. There is only one possibility for na since iV 

acts regularly on -34- This bijection allows us to  identify the set M with the set N. Then 

N acts on Ad = ili by translation, i-e., n(m) = 7a- + rn ( m  E X ) .  Further, the stabilizer G, 

of a in G acts on iW = :V by conjugation, i.e., g(m) = gmg-l ( g  f G,, m E N).  Since 

G = WG, = G,N, knowing how IV and Ga act on M = .it' we know the action of G. 

We claim that the 4-ary relation S defined by 

is definable in hi. To see this we w e  as follows. First, since we are dealing with a finite 

stmetare, a relation on -iM (= It'j is definable in M if and only if the relation seen as a 

set of tupies is G-invatianl;. 5Vhen 2, y, z, ua- are moved by n E AT, then n + ra is added to 

each side of (2.1) and the equation still holds. On the other hand, if we move s, y, t, w by 



g E G,. then we are a p g l ~ i n g  a5 automclrphism to -k- and again iP.1? is prewrvt.ii. Since 

G = SG", and X a d  G, both preserve (2.11, G also preserves t2.1). B3- essentially t h e  

w e  argument we see that them i s  a dependence relation which il; &finablp in t he 

elements al, az. . . ., a, E .If are dependent if there exist XI, A2, ,, . ,, A, E G F ( ~ ~  rtot all 

0 snch that 

XI 9 X2 f *.  + A, = 0 and Xlal + X2az + . . . +- X,a, = 0. 

The dependence relattim dl be useful in the discussion below. We define some firrthrr 

nations related to the dependence relation. First, we s+- that b f _tl depends on r t  5 if 

there is an independent tupIe G -4 such that Zb, the f m -t 1)-tuple (at, a2, . . . . a,,, 61, is 

dependent. Otherwise, fl is said to independent o r ~ r  A. Secectmdiy, the affine cl~suw :T of 

seen that this closure operation satisiies the usual axioms: 

i) X C_ d(X), 

The dimension of a set W Is the size of the least Y C cl (X)  such that cl(4') = clCS). Since 

we are dealing with a vector space over GEbpf once a point is fixed, the aGne clmr~rrt of a 

set of dimemion 7n + 1 has size pn. 

We d show that no homogeaeoas %graphs, other than trivia3 ones, arise from group6 

with aMan d e s .  For p = 2 we obtain ac outright contradictjon. When p = 3 we show 

&haAaa, if M is a, homcgeneons %graph, then either each pair in {Mj2 fres in a unique edge 

of M ,  or each pair in [Mi2 Ees in a uaiqne edge of the complementary Zgraph. From 

zdatim is definable h ,A4 which is as-pimetric on triples of distinct elements. Again, this 
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2.1 M=Z,x * - - x Z p . p = 2  

We first consider the case &ere p = 2: as all the elements have order two. the relatior, 

z + y = z + up is equivalent to I f- y + s + w = 0. ? e  will use the latter form because it 

makes the  symmetry of the relation explicit, 

Lemma 2.1 Gizwn I. y, -7. w E -1f such thal 5 -+ y +  L+ w = 0. i f t h e  set (s, y , r , w )  has 

any edges on it, it has dl four p s s i b k  e4es. 

P w d  Suppose there is exactly one edge, zzw, on these four points, as in figure 2.1. We 

Figure 2.1: 

define a local isomorphism mapping z -, z, y -+ w, and tc - y. By homogeneity this 

kmorphSsm can be extended to Q f Ant jM). Since z + y + z + w = 0 and a preserves the 

ridation S, a(z) = z. However. this introduces a new edge, zyz = a(tzw), contradicti2g 

ow asswaption that ahere is exactly one edge an these four points. 

Snppofe there are exactly two edges on {z, y, t, w), as in figure 2.2. 

Gomider the I d  iSr,morphSsm that fixes z and interchanges z and y. Again, the induced 

mtomorphism i n t d n c e s  an extra, edge on the four points, resulting in a contradiction. 

If we have exxtly three edges, s y r ,  zwz, a d  yzw, we can use the same argument and 

zrgaln get a contradiction. Thns, we caa condude that, if there are any edges at a l l  on 

{z, g.l z, SF), dl fam possible edges must be present. Ci 

Sow I& ns st= again with four points z, y, 2, w such that z + g+ z-+ w = O and assume 

there is no edge on (z, y, r, zo). Take a point a independent over (t, y, z, w).  We will study 



Figure 2.2: 

the edges on the affine closure E of ( a , z l  y, t) in M, which has size 8. We can identify tht: 

remaining members of E as foUom. Let 

d = a + x + w .  

We can see that a, b, e, ti, z, y, z, TU are all distinct and so these are all the members of E. 

We will show that  up  to a, permutation of the points in E and complementation there is 

ody one possibility for the  set of edges on E. The possible edge set for E will be described 

in Case f -2 below. 

The point a  must have an edge with (z, y, z, w), otherwise, a and w would each have 

the  m e  type over ( z ,  y , z ) ,  which contradicts the definability of the relation S. By the 

same token we have: 

Lemma 2.2 For any t s f t  I" ( z ,  y, Z, w), (i point a, independent over (z, y, t, w), ntust 

We now consider various cases according t o  the number of edges which a makes with 

Case 1. There are exactly two edges between a and (z, 3, Z, w ) .  From Lemma 2.2 we 

may sappaw aithont loss of generality that the two edges are a z z  and awy, as shown in 

figare 2.3. Since azz is an edge and a + b + z + z = 0, by Lemma 2.1 we have all four 
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Figure 2.3: 

edges on {a, b,x, 2). It also follows that a + b + y + w = 0 [all edges]. Consider the 4-set 

(a, z ,  y,z),  on which the only edge is azz. For any n E Sym((a, x,  z ) ) ,  the map n u { ( y ,  y)) 

is a local isomorphism. Note that w U { ( y  , y)) means the extension of a to {a ,  x ,  y, 2) which 

maps y to itself. Hence there exists a* E Aut ( M )  such that n C n' and ~ ' ( y )  = y ,  where 

n C r* indicates that the function x' extends the function n. Since E is the affine closure 

of {a,x,y,z) ,n* fixes E as aset. 

We now consider two subcases: 

Case 1.1. The only edges between b and (s, y, z, w )  are bxz and byw. Let n fix z and switch 

a and z. Consider the image 2 of the $-set {a, b, y, w) under n'. There are four edges on 2. 

Hence each of the points in Z - (2, y) makes an edge with { x ,  y). Since none of a, b, z ,  w 

make a;n edge with { x ,  y), the remaining points of Z must be c and d. But a+ b+ y + w = 0 

and c + d + x + y # 0. So Z cannot be the image under a* of (a,  b, y, w}, contradiction. 

Case 1.2. Otfierwise. Then b makes a t  least one edge with ( x ,  y, z ,  w )  other than bxr and 

bury. Let rl be the local isomorphism which fixes a, y ,  w and switches z and z ,  and nz 

be the local isomorphism which ~LXS a, x ,  z and switches y and w. From the homogeneity 

ahere exist T:, a; E Aut ( M )  extending a l ,  2r2 respectively. Since b = u + 2 + z ,  we have 

rrfb) = ?r:(b) = b. NO= the p o p  (r:, 3) x t s  trmsltively oa the set 

Thns, since b makes an edge with one of these pairs, it makes an edge with each of them. 



Focusing for the moment on the edges through a, we observe that: 

a + d + y + z = O  fnoedges], a + d + x + u : = O  [noedges], 

a + € +  z + y = 0 [no edges], a + c +  2 + w = 0 [no edges], 

c + d + x + z  = 0 jnoedges], c + d +  y + w = 0 [no edges]. 

Each of the equations may be checked by substituting for b, c, d the expressions which definc 

them. In each case the absence of edges follows from Lemma 2.1. For example, since ayr is 

not an edge, there is no edge on (a, d,  y, z). 

We also observe that the map a, which fixes b and x, and permutes z, w. and y cyclically, 

is a local isomorphism and hence extends to a* E Aut (M). Since a = b+ x + z, c = b+ z + w ,  

and d = b + x + y, a* permutes a, c, and d cyclically. Applying a' we get: 

b + e + x + w = O  [alledges], b + c + y + z = O  [&edges], 

At this point we have determined all the edges of E which intersect both {a, b, c, d) and 

( 2 7  Y 7  z, w l .  
It remains t o  discover what edges, if any, there are on (a, b, c, d). The Cset {x, t , C, a)  

spans E,  and the only edge on it is (a, x, z). Thus there is an automorphism of M which, 

while fixing E as a set, permutes x, z ,  a cyclically and fixes c. Since there is an edge through 

c and x, there is a\so a;n edge through c and a in E .  From our findings above, the third 

point of that edge must be either b or d. So by Lemma 2.1 we have 

a + b + c + d = O  [alledges]. 

We conclude that this case determines uniquely the set of edges on E.  

Case 2. There are six edges between a and (z, y, z, w). Clearly, we have 

a + b + z + z = O [ d e d g e s ] ,  a+b+y+w=O[a.lledges]. 

To obtain a contradiction suppose that b makes more than the edges bzz, byw with {z, y, z, w). 

By the same argument as in Case 1.2, b makes six edges with (z, y, t, w).  But then x and 

y both form a complete %graph on four points with the edge abz. This is a contradiction 
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of Lemma 2.1 since a + b + x + z  = 0 but a + b + y  + z # 0. Therefore there are exactly two 

edges between b and (2. y, z,  w). This takes us back to Case 1.2 with the roles of a and b 

interchanged. 

Case 3. There are either five edges between a and ( x ,  y ,  z ,  zo) or three edges two of which 

intersect only at a. Without loss of generality we may suppose that axz,  axy, and ayw are 

edges, and that a m  is not. There is a locd isomorphism a fixing a and x  and switching 

y and z. Let a" E Aut ( iM)  extend a. Since x  + y  + r + w = 0,  cu*(w) = m. ~h~~ 

azw = a8(ayw) is an edge, contradiction. So this case cannot occur. 

Case 4. There are four edges between a  and { x ,  y, z ,  w}. Up to a permutation of { x ,  y, z, w) 

there are only two possibilities for the set of four edges. There must be two edges whose 

intersection is a, which we may take to be axz and ayw. Now the two possibilities are 

distinguished by whether the two remaining edges intersect in two points or one. In the 

former case the two remaining edges may be taken to be axy and axw. This case is ruled out 

by the argument of Case 3. Thus the two remaining edges which a  makes with { x ,  y, z ,  w} 

meet only in a. Thus without loss of generality the edges which a  makes with { x ,  y ,  z ,  w) 

are axr,  ayw, azy,  and arw. Consider the edges between b and { z ,  y, z ,  w).  Since 

0 + b +  x  +- z = 0 [all edges], and a +  b+ y +w = 0 [all edges], 

bzz and byw are both edges. From Case 3, b cannot make either three or five edges with 

(2, y, z ,  w}. From Cases 1 and 2, if the number of edges between b and {x, y, r ,  w )  were two 

or six, then the number of edges between a and ( x ,  y, z ,  w) would be six or two respectively. 

We conclude that b makes exactly four edges with { x ,  y, a, w) .  The argument for a shows 

that the other two edges which b makes with { x ,  y, z,  w )  have intersection b. So there are 

two mes: 

Case 4.1. b realizes the same type as a over { x ,  y, z,  w}. Since there are four edges on each of 

the sets (a ,  b, x ,  z},  ( a ,  b,x,  y), the mapping (a, b, x ,  z )  -, (a,  b, x ,  y) is a local isomorphism 

and so extends to an automorphism of M .  Since a + b + x + z = 0 but a + b+ x  + y  # 0, 

this is a contradiction. 

Case 4.2. The edges between b and ( s ,  y, z, w }  are bzz, byw, byz, and bzw. There is a local 

isomorphism which fixes a and maps s -+ z -+ w --, y  + 2. The induced automorphism 



switches b and c. Thus the edges which c makes with {x, y. 2, w )  are czy, crw. crtu,  a~td 

cyz. Since a + d + z + ZL: = a + d + Y + t = O1 neither dsw nor dyz  is an edge. Since 

b + d + w + 2 = b -3- d + ;t + y = 0, neither dwz  nor dzy  is an edge. Finally, since 

c + d + z $ z = c + d + y + w = 0, neither dzz  nor dyw is a n  edge. We conclude that 

there are no edges between d and {s,  y, t, w ) .  This contradicts Lemma 2.2. 

Case 5. Otherwise. From above, if any of a,  b ,  c, d makes a number of edges with 

(z, y, z ,  w) which is different from three, then the same is true for a l l  of a, b, c ,  d .  Thus 

in the present case each of a,  b, c, d makes three edges with {x, y, z ,  w ). On the one hand, 

from Case 3 any two of the three edges which a makes with (x, y ,  z ,  w) meet in a pair. On 

the other hand, from Lemma 2.2 the intersection of the three edges is a.  Thus without loss 

of generality we may suppose that the edges which a makes with (s, y, z ,  w )  are axy, uyz, 

a d  a z z .  Since a + b + z + z = 0,  bzz is an edge and byw is not by Lemma 2.1. To obtain 

a contradiction suppose that the edges which b makes with {x, y, z, w )  are bxz, bxw, btw. 

(Just as a selects a triple from { x ,  y, z ,  w) so must b.) Notice that { a ,  b, y, w} is a 4-set with 

no edges such that a + b + y $- w = 0. Further, the edges which x makes with this 4-set 

are precisely xab, zag, and zbw. Since the last two of these intersect only at x, we have 

a contradiction by Case 3. It follows that b realizes the same type over {t, y,r, w} as a. 

Similarly, e and d a3so realize the same type over {z, y ,z ,  w) as a. We may also note that 

the only edges which (a, b) makes with (z, y, r ,  w) are abz and abz because 

and azz is an edge, while ayw is not. In the same fashion all edges which meet { a ,  b, c , d )  

in a pair are determined. In particular, between w and {a, b,c, d) there is no edge between 

to and (a ,  b, c,  d l .  

It only remains to  determine the edges on { a ,  b ,  c, d) .  Since a + b + c + d = 0, we have all 

or none. If there are none, then w realizes the same type as a over {b, c, d), contradiction. 

Thus we have all four edges on (a ,  b, c, d ) .  

We have shown above that up to a permutation of E there are two possibilities for the 

set of edges on E found in cases 1.2 and 5 respectively. However, it is easily checked that 

the permutation (ay)(fna)(cz)(dz) maps each of these edge sets into the complement of the 
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other. Thus up to complementation and a permutation of E there is only one possibility 

for the edge set on E.  It is also clear that, if ;44 is non-trivial, then it has affine dimension 

greater than four because the structure on E found above is clearly not homogeneous. It is 

important to observe that no 4-set in E has exactly 2 edges on it. Hence the same is true 

For the rest, replacing .M by M if necessary, we may suppose that there is a closed 

subset 

E = {a,b,c,d,x,y,r,w) 

of M whose edge set is that found in Case 1.2. Let e E M - E be arbitrary, and F denote 

the f i n e  closure of {e) u {s, y, z, w). There are two cases: 

Case I. M TE E N IF. Then there exists f E F - E such that f and b realize the same 

type over {x, y, z, ur), i-e., b and f both make edges with every pair from {x, y, z, w). For 

every pair {u,  v) from (2, p, Z, m), on (b ,  f, U, v) we have at least the edges buv and f uv. 

Hence a t  least one of b f u and b f v is an edge, otherwise we wodd have a Qset with exactly 

two edges on it. Therefore we can choose .rs, v in {z, y, r, w) such that there are four edges 

on {b, f,u, v). Without loss of generality, there are four edges on (b, f,s, y), From the 

discussion above we have 

b+ d +  z + y = 0 [all edges]. 

Hence d and f realize the same type over x + y + 6, contradiction. 

Case 11. Otherwise. Then the edge set on F is like that described in Case 5. In particular, 

there exist f E F - E and a Sset  from {x, y, t, ut), say (x, y, z) ,  such that the edges between 

f and {z, y, z, w) are fxg, fyz, and fzx. There is a local isomorphism o which fixes x, y, z 

and takes b to f. Let a* E Ant ( M )  extend a. Then o*(w) = w since x + y + z + w = 0 

a d  S is definable. Hence f and b realize the same type over {z, y, t, w ) ,  contradiction. 

W e  now consider the cases in which p > 2. In this situation, the relation s + s = y + z 

is nun-trivial and definable. Restricted t o  distinct z, 3, z this relation 111ust be either the 
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relation of the %graph or the complementary relation. Repiacing ,iLZ by ,M if necessary, we 

may suppose that ;E + s = y t z defines the edge set of ,W. 

If p = 3, then x+z = y + z is equivalent to  z + y + 2 = 0 which shows that the relation is 

symmetric. In this case ,U has the property that each doubleton is included in exactly onc 

edge. By Lemma l . l O ,  ;ti is PG(2,Z). But the socle of the automorphisni group of PC;('2,2) 

is PSL(3,2) which is simple non-abelian. So this case yields no homogeneous 3-graphs. 

If p > 3, t2en we test to see if the relation is symmetric. We let 2s  = y + z ,  and hence 

y = 2% - z. If the relation is symmetric, then also 22 = x + y, and y = 22 - x. But then 

2 % - z = 2 2 - x  

and z  = x. So, for p > 3, if the relation is non-trivial, it is not symznetric, so it cannot be 

the relation of a 3-graph. 



Chapter 3 

Nonabelian Simple Socle 

In this section .A4 denotes a supposed finite homogeneous 3-graph whose automorphism 

group is G. N denotes the socle of G and is assumed to be non-abelian. As noted in 

Theorem 1.12, since G is 2-transitive in its action on M y  N is simple, N < G 5 Aut (N),  

and G acts in the following way: M can be identified with a conjugacy class of subgroups of 

N and G acts by conjugation. Camerm 14, page 81 lists all triples (N, n, k) such that there is 

a finite k-transitive permutation group G of degree n with socle N, but no (k  + 1)-transitive 

permutation group of degree n with socle N. We have reproduced Cameron's list below in 

Table 1. The list indicates how many Ztransitive representations there are in each case, 

that is to say, how many possibilities there are for the conjugacy class of subgroups of N, 

which is naturally identified with M. 



-V n k Remarks 

A,,n 2 5 

PSL(d, q) ,  d 2 2 

PSV3,  q )  

2B2(q) (Suzuki) 

2G2(q) (Reel 

PSP( 2 4  2) 

PSp(2d, 2) 

PSL(2,ll) 

PSL(2,8) 

A7 

Mll (Mathieu) 

Mll (Mathieu) 

M12 (Mathieu) 

M22 (Mathieu) 

M23 (Mat hieu) 

(Mathieu) 

HS (Higman-Sims) 

Co3 (Co~way) 

Two representations if n = 6 

(d ,  q )  # (2,2). ( 2 , 3 )  

Two representations if d > 2 

q > 2  

= 22a+l > 2 

q  = 3*a+' > ;! 

d > 2  

d > 2  

Two representations 

Two representations 

Two representations 

Two representations 

Table 1. 

We will consider all the pairs IN, n) which occur in Cameron's list and check for which 

of them there is a corresponding group G whose %transitive permutation representation of 

degree fa yields a homogeneous 3-graph. The results of our search will be as follows. The 

only non-trivial finite homogeneous %graphs are those given by the pairs: 



N = PSL(3,2 j, 

N  = PSL(3,3), n = 13. 

As well as supplying the list of possible pairs ( N ,  n) which is the basis of om work in this 

section, Cameron [4j offers another useful piece of information. It turns out that, except 

in the case in which N  = PSL(2,8) and n = 28, the action of N  is also 2-transitive. Note 

that we may ignore the alternating groups because the bgraphs generated by their natural 

action either have all possible edges or none and thus are of no interest. We now proceed 

to  treat the remaining pairs ( N ,  n) listed in Table 1 beginning with the cases in which N is 

one of the projective special linear groups. 



3.1 Linear groups 

Let d 2 '2 and V = V(d,q) denote the vector space of dimension d over GF(q). 'rhen 

the special linear group SL(d,q) is by definition the group of all linear transformations 

of V into itself which have determinant 1. The center of SL(d.q) consists of the linear 

transformations of the form v I- XV, where X E GF(q) and Xd = 1. Let P = PG(d - 1, q )  

denote the projective space corresponding to V which is defined to be the set of 1-spaces of 

V. Clearly, SL(d, q) has an induced action on P. The projective special group PSL(d, q )  is 

defined to be the quotient of SL(d, q) by its center. An equivalent definition is obtained by 

saying that PSL(d, q) is the group of permutations of P induced by SL(d, q) - we can check 

that the elements of SL(d,q) which fix P pointwise are just the elements of the center. If 

we fix a basis of V, then with respect to  that basis the elements of %(d, p), and hence also 

those of PSL(d, q), are represented by d x d matrices over GF(q) with determinati t 1. 

According to Table 1, for d > 2 there are two possible 2-transitive representations of 

PSL(d, q) of degree (qd - l)/(q - 1). These are afforded by the action on the 1-spaces of V 

and the a c t k  on the (d - 1)-spaces of V. From our perspective these two representations are 

the same because, whether we deal with 1-spaces or (d - 1)-spaces, the resulting permutation 

group is the same. The mapping A ct ( A - I ) ~  is an automorphism of the group of d x d 

matrices of determinant 1. The corresponding automorphism of 'PSL(d, q) interchanges the 

stabitizer of a 1-space with the stabilizer of its null space. When d = 2, then d - 1 = 1 and 

the two possible representations coincide. Thus below it w2l  be sufficient to examine the 

action on 1-spaces, is., the action on P. 

For any v E V - {O), the corresponding 1-space is (v) E P. We say that distinct points 

(vl ) , . . . , (vk) in P are dependent or independent according as {vl , . . . , vk) is dependent or 

independent in V .  fn particular, we say that the points are collineur if 

We note t-he following elementary lemma. 

Lemma 3.1 i) k t  ( a l , .  . . , ad) and (b, . . . , bd) be independent d-tupks in P .  There 

ezists a E PSLfd, q )  such that &(a;) = hi (1 I i < d) .  



ii) Let d > 2, or d = 2 and q be even. Let al, 02 ,  as, a4 E P be distinct collinear points. 

Them rzi.sts a E PSLCd, g )  such that a ( a l )  = al ,  a (az )  = az, and a(as)  = ad. 

iii) i f  d = 2 and q is aid,  then PSL(d, q) has two orbits on triples of distinct points. 

From the lemma. if d = 2 and q is even, then the action of PSL(d, q)  on P is 3-transitive. 

Hence no non-trivial homogeneous %graph can arise in this case. In the other cases, because 

there are only two orbits, 01 and 0 2  say, of N on triples of distinct points of P,  the edge-set 

of ~4-i must be one of these two orbits (ic does not matter wK&, of course). Thus there is 

only one possibility for G, namely, the group consisting of all n E SymfP) which fix O1 and 

0 2  as sets. In particdar, whenever d > 2 we can assume that the edge-set of M is the set 

of all triples (a, b, c )  C P such that a, b, c are collinear. This means that the set of lines of 

the projective space is invariant under G. We now proceed t o  consider various cases which 

arise, The case in which d = 2 and q > 9 will be left to  the next subsection. 

Fix a basis of Cr and with respect to  the basis let a, b, e, d, e be the foilowing points of P: 

There are no edges on either of the Pfets (a, b, c, d l ,  (a ,  b, c, e). Thus, from the &homogeneity 

of M there exists a E G whieh fixes a, B, and c, and maps d to  e. Also, there exists f ,  

n d y  ((1,1,0, a)), such that abf and ee f are both edges. However, there is no f such that 

ab f and cdf are boah edges, This contradicts the invariance of the set of edges under a. 

Thus no homogeneous 3-t-graphs arise in this ease. 

3.1.2 d = 3. q > 3 

Each Ene in PG(2,q) contains q + 1 pints. So, since q > 3, we have at least five points 

on each line. Talre two lines, I = ab and m = zy in the projective space which meet in a 

point o. Let p be the point of intersection of the lines az m d  by. Now mnsider points c? d 



on d different from o, a. b. and let z.  a: be the unique points on rn such that pcz and pdtr 

are edges. as shown in figare 3.1- fn the %graph ,W each of the quadruples (a. 6. r .  df and 

(t. y. t. at-) has A four possible e d p .  and there are no other edges on these eight points. 

From the 3- homogeneit_v there exists a E G which switches and ur and fixes a. b, r, d ,  r 

and yl Clearly. ahpj = p and so a hes the Enes pc and zy setwise. Since : is the unique 

point of intersection ofabie Lines: pc and 23, a(t) = z. This contradicts a{=) = u*. So, again 

we get no homogenecrus %graphs, 

3-13 d = 3 ,  q = 2  

Here we get the homogeneous 3-graph of size. seven mentioned in Theorem 

Here M is the projective plate over CF(3) which has 13 points. As noted above, far the 

edges& of N we may take the set of all triples {a, 8, c )  in P such that a, b, c are coUnear. 

This set of edges is inMT.iant: nader the group pa@, 3) whose definition is the same as that 

of PSL(3,3) except that the heat transformations are now ody required to be nonsinguiar 

d not necessarily zo have determinant 1- From this observation we get 
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k m m a  3.2 Let a. b. c. d E P = PG(2,3) be distinct points no three of which are colbinear, 

and r :  y, z, u be a similar quadruple. There ezists a E PGL(3,3) such that a ( a )  = x, 

albf  = g1 atcj  = 2, and atd) = 21. 

We now check that in this case any 1 0 4  isomorphism of ,A4 extends to an autornorphism. 

We will consider cases proceeding in increasing order of size of domain. Since Aut ( M )  is 

evidently 2-transitive we begin with size three. 

Suppose that a - a', b -. b', e --, c' is a local isomorphism. From i) of Lemma 3.1, the 

local isomorphism certainly extends to  an automorphism of M if a,  b, c are not collinear. 

So suppose that a, b, c are collinear. Choose a point o off the line abc and let x be a third 

point on the line bo, as shown in figure 3.2. There are no edges on a,  c, o, x, and b is the 

intersection of the bnes ac and ox. Perform the same construction on at, bt, c' to get o' and 

z'. From our remarks above there is an automorphism that maps a, c, o, x to a', c', o', r' 

respectively. Since the geometry is preserved this automorphism must also map b to bt. 

Fignre 3.2: 

Tow we consider focd isomorphisms with domain of size four. If the domain consists 

of four points, no three coEnear, then, from Lemma 3.2 the iocai isomorphism extends to 

ztn automorphism. For four points all on a line any antomorphism which maps three of the 

points as required mast afso map the fourth point appropriately because the fines have size 

four. For three points on a h e  and a fourth point off the h e ,  we a n  use the same argument 

as for three points on a line, letting the fonrth point be the point o in the construction. 



Before proceeding farther u;e cd- two observations. First, consider four points x ,  y, 2, in, 

no three of which are coUinear. Six lines are generated by these points, as shown in fig- 

ure 3.3, and the intersections of these lines give us three new points. Since each line has 

four points on it, there is one additional point on each line. None of the points shown can 

coincide, since each pair of lines intersects in a single point. So we have thirteen points 

defined, which is all the points in the plane. We conclude that, given any five points, at 

least three of them must lie on a line. 

For any X C ltf we define dcl(X), the definable closure o f X  in :Id to be 

{a E A 4  : g(a) = a for all g E Gx) .  

FOP our second observation, let y be a local isomorphism of M with domain X u Y ,  the 

disjoint union of X and Y. If Y E dcl(X), then it is sufficient to show that there is an 

automorphism extending y rX. We call a subset X of M imdundant if for no a E X is a 

in dcl(X - {a}). A subset which is not irredundant is said to have redundancy. Clearly, to 

prove 3-homogeneity it suffices to consider locd isomorphisms with inedundan t domain. 

Now consider a l o d  isomorphism whose domain is irredundant of size at least five. From 

irredmdancy the domain has the following character. There are three points on a line, say 

a, b, c. The fourth point of that line, o say, cannot be in the domain by irredundancy. Let 

2, y be two other points of the domain. If the fine z y  meets abc in any of the points a, b, 



c, then the domain clearly has redundancy. Therefore zy and abc meet in o. However, now 

a is clearly in the definable closure of b, c, x, y. Thus there is no local isomorphism with 

irredundant domain of size greater than four. 

In this case M is the projective line over GF(5), a structure of size six. We will show 

that N gives us a homogeneous 3-graph. Take a basis of V = V(2,5) and let the points of 

The group N = PSL(2,5) is generated by the mappings: 

where the arithmetic is modulo 5 and 

for all i, 0 < i 5 4. Take the edge-set to be the orbit of {oo, 0,l) .  Then the edges are: 

Since 8 acts 2-transitively, in order to  show homogeneity it suffices to consider local iso- 

morphisms which fix both 0 and 1. Since the permutation (14)(23) is in N, any i o d  

isomorphism with domain of size 3 extends to an automorphism. 

For the rest, we claim that the definable closure of any 3-set is M. To see this it suffices 

to look a t  the edge E = (m,O, 1) because the edges and non-edges are interchanged by 

the outer automorgHlsm sf ,nJ h d ~ c d  by mnjsgaticm by the m a t ~ k  1 O / . X o w 4 i s  
l o  2 
L -t 

the mique point of -44 - E which makes an edge with ooO. Also, 2 and 3 are distinguished 

kame  2 makes an edge with ml while 3 does not. This is sdcient.  



Sow ibf is the projective line over GF(7). Following the same method as in the previous 

case we 5x a basis of V = V(2.g). In terms of the basis we label the points of Ai by 'ca, 

0, 1, . . .? 6. Here ca means ((0, I)), while i means ((1,i)) for 1 5 i < 6. The orbits of 

Nmo, the pointwise stabilizer of {m,O), are { O ) ,  (m), {1,2,4), and {3,5,6). The matrix 

[:I :] maps cm, 0, 1 to  0, a, 6. Thus any non-empty symmetric ternary relation on 

M which is N-invariant contains all triples. So no homogeneous 3-graph arises in this case. 

The essential difference between this case and the last one is that -1 is a square (mod 5) 

but not (mod 7). 

The group PSL(2,S) is isomorphic to Ag. We find it convenient here to focus on N in its 

guise as an alternating group. We will describe a 2-transitive action of Ss of degree 10. 

We view S6 as the group of all permutations of the set S1 = {a, b, c, d, e, f). We label the 

partitions of this set into two 3-sets by the integers 0 through 9 as follows. 



Label Partition 

abc 1 def 

abd I cef 

abe I cdf 

abf I cde 

acd I bef 

ace ] bdf 

acf I bde 

ade I bcf 

adf I bce 

aef 1 bcd 

We study the induced action of G = Ss on M = {0 ,1 , .  . ., 9 ) .  

k m m a  3.3 G acts 2-tmnsztiuely on M. 

Proof: Since G clearly acts transitively on N, it is sufficient to show that Go is transitive 

cia N - (0). Let i = (X, Y) be a partition of {a ,  b, c, d, e ,  f) into two 3-sets. It is sufficient 

to show that there exists g f Go which maps { X , Y )  to  I. Without loss of generality, 

1-X n (a, b, c)l = 2. So let X n (a, b, c) = (u, v) and X - {a, b, c) = {w). Now let g permute 

a, b, e so that g(u) = a, g(v) = b, and permute d,  e, f so that g(w) = d.  Then g E Go and 

g(i)  = 1 as rqnired. [7 

We note from the proof that & a h  acts Ztransitively on M. For, when we created 

g E Gat we arbitrarily chose g(u) = a and g(v) = b. So, we can make g an even permutation, 

switching the dues of g(a) and g(o) as necessary to adjust the parity. 
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If we take one part Xi of a partition i, then, for a distinct partition j ,  the intersection 

of Xi with one part of j ,  say X j ,  will have exactly one element in it, while the intersection 

of Xi with Y ,  will have exactly two elements. Also, then IY;. nYjj = 1 and /x n x,I = 2. So, 

from a pair of partitions i, j, we have generated a set (X; n X,)  LJ (E; n k3) that is a pair in 

fl = {a ,  b, c, d, e,  f). More explicitly. for p = (i, j )  E [MI2 define F ( p )  to be 

By inspection F ( ( 0 , I ) )  = ( c , d ) .  From the 2-transitivity of the action on M ,  F maps [MI" 

into [Ql2. Now I[Rf21 = 15 aad 1[MI2/ = 45. From the 2-transitivity of the action on Q ,  

F - l ( X )  has the same size for all X E [RI2. Therefore 1 FW1(X)I = 3 for all X. Define E to be 

the equivalence relation on [MI2 such that pEq if and only if F(p )  = F(q) .  The equivalence 

classes of E will have size 3. In particular, the E-class of {O,1) is ( ( 0 ,  11, { 5 , 7 ) ,  {6 ,8 ) ) .  

Looking at  Gol the pointwise stabilizer of {O,1} we find it is generated by the permuta- 

tions (cab), (e f), (ae)(cd)(bf) ,  and hence by the permutations 

(49)(58)@7), (23)(56)(78), (29)(34)(57). 

Define R to  be the set of all p E [MI3 such that 

We regard R as the edge set of a $graph with vertex set M. The elements of R will be 

d e d  edges. 

Lemma 3.4 i )  Fur distinct i ,  j ,  k E M, (i, j ,  k) E R if and only if there ezists 1 E M 

S U C ~  that {i, j )E(k,  1). 

ii) f f ( p , q , ~ )  iSanE-c lass , e f  R, a n d e c p u q u r ,  then 

iii) If (p, q , ~ )  is an E-class, and e E Ip U q U TI*, then there are either two or four edges 
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Proof: i)  It is sufficient to treat the case in which i = 0 and j = 1. Suppose there is 

no I E -A such that {O, l)E(k. I). Then k t: {2,3,4,9). Since Gal acts transitively on 

(2,3,4,9), it is sufficient to check the case where k = 2, i.e. that neither the E-class of 

(0,2), nor that of { l ,2 )  gives rise to an edge (O,1, 2). We find that the respective E-classes 

of (O,2) and ( l , 2 )  are 

w* 21, { 4 $ 7 1 ,  w, 911, {{I, 21, {4,51, { g m .  

So we have that no equivalence class generates the edge {0,1,2), which contradicts our 

initid assumption. 

ii) We can take p, q, T to be (0, 11, {5,7), {6,8} since these are the pairs in the E-class 

of (0, 1). Looking at  GG we see that 5 and 7 can be switched while holding the rest of 

p U q U T fixed; similarly, for 6 and 8. Thus it suffices to check that (0,5,6) 4 R, which 

follows from the fact that (0,5), {I,?), {3,9} is an E-class. 

iii) We have two cases. Either e contains two pairs in the E-class in entirety, or e contains 

one pair, and one element from each of the remaining pairs. In the first case, e will have 

f a r  edges; in the second case, e will have two edges. CI 

Again, we take one part Xi of a partition i ,  and a distinct paxtition j, and Xj with 

!Xi n Xjl = 1, IX; n yil = 2, Ix n Xjl = 2, and /x n Yjl = 1. This time we will map the 

pair {i ,  j )  to the set of three pairs {(Xi fl Xi) U (X n Yj), Xi n 5, x n Xj). fn short, we 

define F : [,w]~ [fQ]T3 by setting P ( ( i ,  j)) equd to 

{F( ( i ,  j ) ) )  u {U E [S212 : (3X E i)(3Y E j)(U = X n Y)) . 

Again we define an equivalence relation E' on [MI2 from P, as E was defined from F. So 

Pj.(Ol)) = {(a, b), (c, d) ,  { e , f ] ) >  and we find that the E' class of {O,1) is ((0, I), {2,3}, (4,911. 

Then define R' from Ef as  R was defined h m  E. In the same way as before we can show 

that d the - properties - of E and R mentioned above hold equally for El, The triples in R' 

are d e d  cu-edges. Inspecting the E-dass and the Et-class of (O,l), it is clear that for 
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We are now ready to  show that the 3-graph M with vertex set .$I and edge set R is 

homogeneous. Let f : X - Y be an isomorphism between sub-3-graphs of M. We have 

to  show that f extends to an automorphism of M. From 2-transitivity we can assume that 

0 , l  E X n Y and that f (i) = i for i E (0, 1). We may also assume that IXI 3 2. 

Case 1. 1x1 = 3. Let X = (0, 1, s) and Y = (0, 1, y). By the duality of edges anti  

co-edges we can suppose that -X and Y we edges. Therefore x, y E (5,6,7,8). Since Gol is 

transitive on (5,6,7,8), we have the desired conclusion. 

Case 2. 1x1 = 4 and there are either four or no edges on X. By the duality of edges and 

co-edges we can assume that there are four edges on X . From Lemma 3.4, 

Bat either of the first two generators of Gol switches {5,7) and {6,8), while the third 

switches 5 and 7 keeping 6 and 8 fixed. Hence f has an extension in Gol as required. 

Case 3. Otherwise. So 1x1 2 4 and, if 1x1 = 4, then X does not have four edges on it. 

We daim that there exists a 4set  Xo C: X such that on Xo there are exactly two edges. 

from Lemma 3.4 pazt iii), if X C (0,1,5,6,7,8), then any subset of size 4 of X will have 

either 4 or 2 edges, and if it has 4 edges, then it was covered by Case 2, so Xo exists as 

chimed. For the rest, by duality we may assume that 

By applying an appropriate element of Go%, we can suppose that 5 E X. By examining the 

E-efasses, we find that each of 2,3,4,9 makes exactly one edge with (071, 5); the E-classes 

that generate these edges are: 
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The edges formed are {0,3,5), {0,5,9}, {1,2,5), and {1,4,5}. So now we have our Xo as 

claimed. Without loss of generality we can suppose that the. two edges of Xo intersect in 

(0 , l ) .  We saw above this occurs only in the case that Xo C {O,l, 5,6,7,8).  Thus we can 

suppose that Xo = {0,1,5,6) because Gool induces every permutation of (5,6,7,8) which 

preserves the partition {{5,7), {6,8)). Finally, observe that every element of M realizes a 

different 1-type over Xo. For instance, 7 is the unique point such that there are four edges 

on Xo U (71, while 2 is the unique point which makes an edge with {I, 51, {0,6), {5,6), and 

with no other pair from Xo. This is sufficient. 

This completes our treatment of the projective special linear groups with the exception 

of the case d = 2, q > 9 which is treated in the next section. 



3.2 Groups which are too small 

In thls section we dispose of a number of the pairs ( N ,  k) from Table 1 by showing t h a t  

t k  s-lpposed group G cannot be large enough to yield the amount of symmetry t h a t  a 

hoxogeneous 3-graph must possess. The cases addressed here are: 

_v = PSL(2,8) ( n  = 28), 

Y = PSL(2,q) ( n  = q + 1 ,  q > 9, and q odd), 

V = 'B2(q)  (n = q2 + 1 ,  q = > 2) ,  
3 -V = 'G2(q)  fn  = q -k 1, q = 3',+' > 3). 

i~ these cases no homogeneous 3-graphs arise. The first observation we need shows tha t  

the automorphism group of a finite homogeneous 3-graph is fairly large. 

Lemma 3.5 Let M be a finite homogeneous bgmph, /MI = n, and G denote the automor- 

phism group of M .  Then 

crcri:rding as n is even or odd. (Note that when n is even one of n or n - 2 is divisible by 

4;  similarly for n - 1 of n - 3 when n is odd.) 

Pr~of: Consider first the case in which n is even. Fix a*, a1 E M .  There are n choices far 

ao7 md then n - 1 for ax. Let X2 be the largest orbit of the pointwise stabilizer G,,,, of 

{ao, al } in G, and let a2 E X2. Let X3 be the largest orbit of the pointwise stabilizer G,,,, ., 
of (ao, a l ,  a2) in G and let E X3. Since there are lXzl choices for a2, and 1X3) choices for 

as, ?rovided X3 exists there are at  least n(n - l)lX21 lX31 4-tuples in the orbit under G of 

(w:cal:a2,a3). Therefore we have IGI 2 n(n - l)lX211X31. Since there are only two orbits 
.- r .  

GI .; on M - { ~ o ,  q), the larger orbit X2 has size at least (st - 2)  / 2. Let the other be 

denoted Xi. An element of M - (%,a*, az) can make an edge with one, neither, or both of 

the pairs {ao, a2), { a l ,  az) ,  Rence G,,,,,, has at most four orbits on X2 - ( a z }  and at most 

four on Xi. One of the sets & - (a2 ) ,  Xi tias size 2 (n - 2j/2. IIence 1x31 2 (n - 2) /8 .  

The conclusion of the lemma is now clear when n is even. For odd n the argument is similar. 

L 7  
d 



CHAPTER 3. XOXABELIAN SEMPLE SOCLE 43 

%We now turn to  the pwi idar  cases. W e  need the following information about the 

projective special linear groups: 

Lemma 3.6 Let q be a power of a prime. 

ii) The index of PSL(2, q)  in its automorphism group is IAut(GF(q))l or 2 . IAut(GF(q)) 1 
according as q is even or mld. 

Part i) appears in f21, page 1661. Part ii) follow from Part i) and the previously defined 

properties of PSL(2, q). 

Consider first the case in which N = PSL(2,8) and n = 28. From Lemma 3.6 we have 

[GI < ( 8 - 7 . 6 ) - 3 =  1008 

since GF(8) has Galois group of order 3. On the other hand from Lemma 3.5 we have 

So we have the desired contradiction. 

Next, let N = PSL(2, q) and n = q + 1, where q > 9 is odd. Here M may be identified 

with PG(1, q) the set of 1-spaces of V(2, q). Wow PGL(2, q) 5 Aut(N) and acts 3-transitively 

on PC(1, q) because the matrix 

where A E GF(q) - {a), fixes ((0,l)) a d  ((1, U)), and maps ((1,l)) t o  ((1, A)). Therefore 

G is a proper subgroup of Aut(N), and the index of G in Aut(N) is at least 2. Let q = pk,  

where p is prime. From Lemma 3-6 we have 

On the other hand, since q is odd, from Lemma 3.5, we have 



Putting these two inequalities together we observe that 

It follows that k < 2 and that q _< 9. Since this contradicts the case hypothesis, there is 

nothing to  prove. 

We now turn to the case of the Suzuki group. Here N = ' ~ ~ ( q )  and 1AfI = q2 + 1, where 

q = 225+1 > 2. From [23, p. 8693, 1 N f = (q2 + l)q2(q - 1 ) .  From [23, Theorem 1 1, p. 1391 

the group of outer automorphisms of N is isomorphic to the Galois group of GF(q). Since 

q = 22a+1, the latter group has order 2a + 1. Hence 

On the other hand from Lemma 3.5, we have 

These inequalities are clearly incompatible. Thus the Suzuki groups yield no homogeneous 

3-graphs. 

Finally, we consider the case of the Rhee group N = 2Gz(q) and IMI = q3 + 1, where 

q = 325+1 > 3. From [20, Theorem 8.5, p. 4561, IN1 = ($ + l)q3(q - 1). From 120, Theorem 

9.1, p. 4591, the group of outer automorphisms of N is isomorphic to the Gaiois group of 

GF(q). We obtain a contradiction in exactly the same way as for the Suzuki groups. 
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3.3 Unit- groups 

The treatment of the material in this section was inspired by the mimeographed notes 1161 

of Kmtor, We biegin by fixing q. Let t" = V(3, q2). For x E GF(q2), define ST to be xq. Then 

cr : x H K is an automorphism and a2 = o. The automorphim o is extended coordinatewise 

to the vector space V. 

We define a Hermitian form on V by: 

(a, v) = z t z q  + ~ 2 %  + u3E. 

Elements of V will be written as row vectors relative to a chosen basis. However, when 

yecmrs are cornbizmi with matrices, t h y  will be treated as thorlgh they were column vectors. 

We define u l v  to  mean (u,v) = 0, i-e., u 1 6  + uz% + 9~3% = 0. For a subspace U of V, 

UL denotes the mbspaee {v E V such that (U,v) = 0). The subspace 19 is total13 isotropic 

if U C UL, and U is non-simplorif kt n UL = (0). 

Suppose that n and v generate a subspace of dimension 2, and that this subspace, (u, v), 

is totally isotropic. The &pace (u)i is the nnllspace of l so we kmw that  dim((^)^) = 

 dim((^)^) = 2- S i c e  u and v mnst be independent vectors, dim((n)l fi ( V ) ~ )  < 1. But, if 

(n, v) is totally isoltropic, t h e  f u, v) C f l  (v)' ), bat then we haye a contradiction, so 

it mast be that a totally isotropic subspace cannot have dimension greater than 1. 

Let GU(3, q )  denote the p u p  of all Linm transformations A : 5' -. V which satisfy: 

(An. Av) = (u, v). 

These hear t d o m a t h m  are called isometriesries Relative to a basis of V an isometry A 

cafc be identified with 3 x 3 matrix over which sa€isiies A- = I. For, if A satisfies 

T T- (Pin, Av) = a A (h) = u*(ATZ~:)T = oTq = (n,v). 

i n e  gmap SG(3, q)  csrtsisrs of t2re h e e r i e s  of beterminat i, anci f SG(3, q j is obtained 

SfSCS, q)  by fk%arizg oat the center. The center will consist of the st.a;lar hear trans- 

formaa,io,ns in SFQ3,q)- The gronp PSU(3, q) acds n & d y  on the snbspaces of V ,  As long 

as q > 2, PSlJ@,q) is a simple group and a Bore1 snbgroup is the s t a b i i  of a totally 

btmpie 1-space lt4& g- 91- 



According to the Main Theorem of IS], when a group between 9 = PSf'(3, q )  anti 

Aut (N) acts 2-transitively7 the stabilizer in 3 of a point is a Bore1 subgroup, Thus -11 

t-;an be identified with the set of totally isotropic 1-spaces of 1'. Therefore f-\If = g3 + 1 

because this is the n~mber  of totally isotropic 1-spaces. We will obtain a contradiction to 

the assumption that :%4 is a homogeneous 3-graph by looking at the geometry induced by 

the unitary group. 

CaSi l a line of ,W if it is a maximal subset of M such that in 1.' we have 

d i m ( ( U { ~  : U E I ) ) )  = 2. 

A line 1 of M will be the intersection of with a line of the projective space PG(2, q 2 ) ,  

so I d be uniquely determined by any two points on it. 

Lemma 3.7 Let T, iY be distinct totally isotropic I-spaces of V. Then there ezist d ,  e, and 

f in V sueh that 

T = (el, 0 = (f) ,  (e.f) = (d,d) = 1, (d,e) = (d,f) = 0. 

This lemma foflorvs directly from a [I 6, p. 8, Theorem]. From the lemma, we see that 

the action of PSV(3,q) on the set of totally isotropic 1-spaces is 2-transitive, We can count 

the mtdy isotropic I-spxes in terms of the basis d,e,f. Each totally isotropic 1-space not 

represented by f is represented by a vector of one of the forms: 

tatidly iscrtmpic l-spms of V as noted previously, Observe that the line through (e) and 

( f )  ~~~s of ( f )  tagether with the I - s p  reprented by the vectors (3.1). 
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Lemma 3.8 The set of lines o f M  is invanant under G. 

f roof: Let T. C ,  d. e, and f be the same as in the previous lemma. Let m be the line 

through ?Y and tr. Let H be the pointwise stabilizer of {T, li} in G. Let the 3 x 3 matrix A 

represent an element of H CkiV d a t i v e  to  the basis d ,  e, f. Then Ae, Af are scalar multiples 

of e, f respectiveIy. Also, Ae, Af 1 Ad since e, f i d. Therefore e, f i Ad, which means 

that A d  is a scalar multiple of d. Thus A is a diagonal matrix with diagonal entries K, A ,  /I 

say. Since the determinant of A is 1, we have K A ~  = 1. Mso, since Ad, Ae, and Af satisfy 

the identities givm is kmma 3.7, we have 

(.;ie,Af) = (Xe,Ccff = AjZ= 1 and (Ad,Ad) = ( ~ d , ~ d )  = KE = 1. 

Thus X = p-9 and ~ p - q p  = SO K = pq-I. W e  conclude that relative to the basis d, e, f 

%he elements of H f3 ,?r" are represented by the diagonal matrices 

Since DL),(O, 1,a) = ( 0 , ~ - g , p ) ,  the q - 1 points of rn - (T, GT), which are represented by 

vectors ofthe form (3.1) with Q # 0, form an orbit of H II N. Let us now consider the action 

of D, on a point of M corresponding to a vector of the form (3.2). In pazticula, suppose 

we: have a fixed point of D, so that 

(o ,C l , a%~) )  = (bq-II  1.1-•÷P, w)) = ((1, A 7)). 

Since neither 9 nor 7 is zero, these qnations give fl+' = ilL*-l = I by comparing the ratios 

of the h E  zwo coordinates and of the last two coordinates on each side. We deduce that 

p3 = 1, i.e., jl, fixes ((I*@,?)) fctr at most three values of p. Sin= there are 42 - 1 possible 

asismrnptka, we dednce that (8 - 1)/3 > q - 1. Therefore m - {T, U) is the unique orbit 

d a fl X of size q - 1- Since H f3 N 4 H ,  conjugation by my element of H induces an 



isomorphism of the permatation group { i W ,  A r! 3). Thus rn - (7'. C) is an orbit of H ,  so 

the ternary relation of coltinearity on ,if is G-invariant. 

Since a homogeneous %graph has only two types of triples of distinct elements and the 

complementary 3-graph is also homogeneous, we may suppose that ( T .  U, W )  is an edge of 

M if and only if T ,  Ut W' are collinear. Now homogeneity fails because there are pairs of 

iines which meet in iM and pairs of lines which do not. 



3.4 Syrnpledic groups 

In this section we deal with the pairs ( N ,  a) such that 

N = Sp(2d, 2) and n E (22d-1 + 2d-1, 22d-1 - zd-') (d > 2). 

Fix d > 2. We will show that this case yields no homogeneous 3-graphs. According to 

the &fain Theorem of [9] in this case G = N .  Thus we need only study the 2-transitive 

re~resentations of the gronp Sp(2d, 2) without worrying about the effect of possible outer 

automorphisms. Again we rely on the notes [16f of Kantor which give a description of the 

two 2-transitive representations which exist for Sp(2d7 2). 

Define V = V(2d + 1,2). Within the context of a given bilinear form ( , ) : V x V -. 

GF(2) we define orthogonality of vectors and the related notations as we did in the case 

N = PSU(3,q), i.e., u I v means (u,v) = 0, and so on. 

Proofs of Lemmas 3.9,3.10,3.11, and 3.12 are included in the appendix. 

Lemma 3.9 There ezlst a symmetric bilinear fom ( , ) : V x V -, GF(2) and a mapping 

Q : fi -- GF(2) satisfying 

(v, V) = 0 (v E V), (3.3) 

From now on let mappings ( , ) : V x V -+ GF(2) and Q : V -, GF(2) be fixed which 

satisfy (3.3 ), (3.41, and (3.5). Farther, let d denote the unique non-zero vector in VL . A 

non-zero vector v is d e d  totally singulcrr (+s.) if Q(v) = 0. For any subspace U of V we 

prse p(U) to denote U n UL. In particnlar, p(V)  = (0, d). 

in this conkat the group G = Sp(26,2) is seen as the group of all hear transformations 

T 0: 5- leave Q kvariaat k i.tk sense that 



Cle;rl_v, from the identity satisfied by Q, any linear transformation which leaves Q invariant 

also preserves the bitinear form. (If we were only concerned with defining the group Spf 'Ld, 2), 

the most natural definition would be to define it as the group of a l l  Linear transformations 

of a ;-hyperplane U of V which preserve the restriction of ( , ) to U ;  +-hyperplanes are 

defiled below.) 

-4 hyperplane of a vector space is a subspace having dimension one less than the vector 

space; in this case, the hyperplanes have dimension 2d. Consider two hyperplanes W and 

C not containing d. W and U are in the same orbit of G if and only if there are bases 

(w; : 1 5 i 5 2d) and (u; : 1 5 i 5 2 d )  of W and U respectively such that 

Given such bases (wi : 1 5 i 5 2 4  and (ui : 1 < i 5 2d)  there is clearly a unique T E G 

thz will map one basis t o  the other, so that Tw; = u; for each i, 1 < i 5 2d. Thus to study 

hos G acts it is usefd to study the kinds of bases that subspaces of V have. 

Lemma 3.10 Let U be a subspace of V of dimension 2d - 1 not containing d. There exist 

vectors q, ej, f'i E V (2 5 i 5 d )  such that 

( (%,d+e,d+fi)~(ei , f i :31i Id)) .  (3.11) 

-1 (2tt - 1)-space (i-e., a subpaee of V of dimension 2d - 1) is said to be of type 0, I or 

2 zccording as it; has the form (3.91, f3.10), or (3.11) respectivdy. 
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Lemma 3.1 1 Let CT be a hyperplane of V not containing d. There ezjst vectors e;, f; E 

V f l 5 i 5 d )  such that for all !Ii, j ,  1 5 i ,  j 5 d, 

Q(e) = Q(E) = 0 (3.14) 

and U is one of the subspaces 

Hyperplanes of the forms (3.15), (3.16) are c d e d  +-hyperplanes and --hyperfllanes 

respectively. This terminology is natural because it turns out that the stabilizers in G 

of +- and --hyperplanes are the orthogonal groups denoted by G0+(2d ,  2 ) ,  GOe(2d, 2) 

respectively. By induction on d we can verify that the number of t.s. vectors in U+ is 

22d-1 + 2d-1 - 1 and in U- is 22d-1 - 1. Thus a hyperplane cannot be of both types. 

Lemma 3.12 Let li be a (2d - 1)-space not containing d. 

iif If Cf is of type 0, then Uo, Ul ate both +-hyperplanes. ff U is of type 1, then one of 

Uo, Ul is a +-hyperplane, and the other is a --hyperplane. ffU is of type 2, then Uo, 

Crl are both --hgper&nes. 

iii) G acts ttmnsitinely on the +-hyperplanes, and &tmnsitively on the --hyperplanes. 

We now fix vectors e;, f;- E V ( 1  I: i 5 d )  such that (3.12), (3.13), and (3.14) are 

satisfied- Clearly, taken together with d these vectors determine a basis for V. In terms of 

this basis we define gi, E G to be the nniqne involutions such that 

gifei) = ei + f;- + 4 ici(ei) = fi, k(6) = ei, 

g; fixes f;-, and both g; and h; fix att of the vectors d, ej, fj, ( 1  5 j < d,  j # i). We also let 

U9, U- denate the hyperp1aes (3.15) and (3J6) respectively. 
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Wow 2- can be identified either with the set of +-hyperplanes or with the set of -- 
hyperplanes. We consider the cases separately. 

Case 1. M is the set of +-hyperplanes. 

Lemma 3.13 Let C'o, Pl, U2 f i W  be distinct and p(Uo n ul) C tT2. Then p( l f l  n & ) f f.fo. 

Proof: From the 2-transitivity without loss of generality we can take Uo = I/'$ and 

Crl = gl(U+) = ((d +el +fl ,  fl) u {e;,f; : 2 _< i 5 d ) ) .  

Let W denote (e;,f; : 2 5 i 5 d). It is clear that Uo n U1 = ((ft) U W) and hence that 

p(Uo n Ql) = (fl). Thus our hypothesis is that U2 is a +-hyperplane different from Elo, U l ,  

and containing fl. Let v be the unique non-zero vector in p(U1 nu2). From the 2- transitivity 

of +-hyperplanes Q(v) = Q(&) = 0. Since v E Ul, there exists w E W such that v is one 

However, since v I. Ul n U2, we have v I fl. Hence only the first two vectors listed are 

possible values of v, and so v E Uo as claimed. 0 

We define R to  be the set of all triples (Uo, Ul, Uz) E [MI3 such that p(UO n U1) C UZ. 

Notice that 

P(U+ n &(U+N = (fl), 

and that f1 E g;(U+) for a31 i, 1 < i < d. Also, for any U > (el,fl) in M, fl 4 hlglhl(U). 

Thus, R is a non-trivial Ginvariant subset of [MI3. Supposing, towards a contradiction, 

that M is a homogeneous %graph, we may assume that R is the set of edges of M. 

We define a G-invariant equivalence relation E on [MI2 by 

a d  since for each i ,  f < i 5 d,  there exists g E G which moves fl to fi, E is certainly 

nm- trivial. 



edge of iM . 

Proof: From 2-transitivity we can take Uo = U+ and Ul = gl(U+). Suppose that 

{Uo, UI)E(Uo, U). It is sufficient to prove that U = Ul. By hypothesis p(F+ n U )  = 

(fi). f ince U and ts'+ are distinct hyperplanes, dim(U+ n 5') = 2d - 2. Further, since 

p(U+ n U) = (f,), we have 

Therefore U+ n U = ((fi} U {e;,.f; : 1 < i I dl) .  By inspection the only hyperplanes 

containing this last snbspace bnt not d are the ones obtained by adjoining either el or 

d + el to ({fI) u (e;, f ;  : f < i 5 d) ) .  Hence U = gl (U+). This completes the proof. 0 

We can now derive a contradiction. We consider four distinct +-hyperplanes: Uo, U l ,  

Uz, U3. From the lemma 

From the assumption of homogeneity this implication is an equivalence. Now take: 

The basis: 

Hence 



a d  p(Uf ng2f lii)) = (22)- 30w applying g3 which maps Z.?', g2(Lr+) to Z.i, Cr3 respectively 

we get 

c2nLF3= ( (e l , f1 , f~ ,d+es+f3 , f3)~{ej~f j  : 3  < i < d ) )  

and hence p(U2 n br3) = (f2). From all this we have: 

Therefore every triple from (UO, &, 272, U3) is an edge of M .  From above this implies that 

(Uo, U l )  E(U2, Us) which contradicts our finding that 

Case 2. M is the set of --hyperplanes. Here we follow essentially the same strategy as in 

Case 1. The roles of li+ and gl(U+) are played by U- and gl(U-). Since p(U- f l g l ( U - ) )  = 

(d + fi), the role of fl is played by d + fl. We omit the details. 
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In this section we consider the pairs (N, n): 

Firstly, we show that the representations of N = PSL(2, lI)  of degree 11 give rise to 

no homogeneous 3-graphs. A 2-transitive representation of N with degree 11 is described 

by Conway 18, p. 2171. Applying an outer automorphism we get the other representation 

mentioned by Cameron. We could proceed by studying the properties of this known struc- 

ture. However, we choose to give an ad hoc argument which relies mainly on exploiting the 

notion of 3-homogeneity. From Lemma 3.6 we infer that IN1 = 660 and that either G = N 

or N has index 2 in G. 

We now consider a supposed homogeneous 3-graph M with G = Aut(M) and IMI = 11. 

Let R C [MI3 denote the edge set of M. Let a, b E M be distinct. Let X (= X(a, b)), Y 

(= Y ( a ,  b) )  denote {c g M : {a ,  b, c )  E R),  A4 - ( X  U (a ,  b})  respectively. Let Gab denote 

the pointwise stabilizer of ( a ,  b )  in G. From the 2-transitivity of G on M, 

Frctm the 3-homogeneity of M ,  X and Y are orbits of Ga5 and so 1x1, (Y 1 divide /Gab/. 

Since X U Y = M - {a ,  b)  has size 9, it is easy to infer that one of X and Y has size 6 

and the other has size 3. Without loss of generality 1x1 = 6 and IY) = 3. Let yo, 91, y2 

enumerate Y. As already noted, Gab is transitive on Y .  From the symmetry of the edge 

relation, X(a ,  b) = X(b,a) .  There exists g E G which switches a and b, fixes yo, and fixes 

the set (gl, yz} setwise. I t  follows that (a, yl, y2} is an edge if and only if {b, y ~ ,  y2) is. By 

symmetry we see that there are now only two possibilities: Y U {a ,  b)  is a 5-set with no 

edges at A, or each 2-set fsom Y makes an edge with a and with b. 

h the first possibility? we have a Sset with no edges on it geaerated by an arbitrary 

~ i p  r--I -1 b. E a h  p i r  h M M m g s  te some snch 5s&, a d  smh &set is generated by 

4 of the 10 digereat pzirs it contains. Two of these 5-sets cannot have a pair of points 

in common, so we can mint  how many of these 5-sets there are in M .  There are (11 .10)/2 
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pairs in 144, and each 5se t  is generated by 10 pairs, so there would be 11/2 such 5-sets, 

which is impossible. 

So the second possibility holds, and any 3-set, which intersects Y in a doubleton and 

{a, b )  in a singleton, is an edge. Clearly, Gab acts as the symmetric group on Y ,  and there 

exists gy in the pointwise stabilizer of Y such that gy(a) = b and gu(b) = a. We now 

consider two cases. 

Case 1. G = N. Then fGabf = 6. It follows that (gy)2 = 1, the identity permutation, 

and that the pointwise stabilizer of Y u {a, b) is (1). Hence the subgroup Go of G fixing 

each point of Y and the set (a, b) is (1,gy). Since G is not the symmetric group on 144, gy 

must move an element of X. Since Go is normalized by Gab, gy moves each point of X. So 

we have a partition 

of X into three 2-sets which is Gab-invariant. Let these three 2-sets be X; = { x i ,  z:}, 

0 < i _< 2. Since Gab 2 Sg acts transitively on (X0,X1,X2), by suitably ordering the sets 

Xi we can suppose that for all g E Gab 

To finish we consider the set X(xo, 2;)- Since this set has size 6, it must intersect XI U X2.  

Since there is an element of Gab which fixes Xo and switches X1 and X2, X(xo, zb) intersects 

both Xl and X2. NOW applying gy we see that 

XI u x2 E xl.09 4)- 
And we can see that Gab acts as the symmetric group on 4x0, X1;X2]. Since Gab acts 

transitively on the blocks Xo, XI, X2, it f o b s  that any 3-subset of Xo u X1 u X2 which 

m ~ t a k  one of XO, XI, X;! is an edge. h particular, every 3-subset of Xo u X1 is an edge. 

Hence the stabilizer of the set Xo U Xf in G induces Sq on this set. Hence 24 divides IGI, 
contradiction. 

Cast? 2. !Gab/ = 12- Clearly the pointwise stabilizer Iri of {a, b )  U Y has order 2. Let 

B = jhj. Since Gab is transifrive on X, h moves each eiement of X. Therefore we get a 
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of X into three 2-sets which is Gab-invariant. As in Case 1 let these three 2-sets be Xi = 

isi, r:),  0 5 i 5 2. We now study the action of Gab on Y U {Xi : i 5 2). Since Gab/(h) r Sg 

induces the symmetric group on Y and acts transitively on Xo, XI, X2, we can align the 

blocks Xi with the elements of Y such that for all g E Gab 

Now gyhgy , (gy )2 are both in H. Therefore gy has order 2 or 4, If gy has order 4, then 

h = Since the restriction of gy to X has a Ccycle, the other two points are fixed or 

transposed. So fixes two points of X and, since h moves each point of X, (gy)2 # h. 

Therefore ( 9 ~ ) ~  = 1. It follows that h and gy commute. Hence gy preserves the partition 

(Xo, XI, X2). Zf gy switches two of {Xo, Xl, X2), then for a suitable element g E Gab, 

g-'gyggr induces a 3-cycle on {Xa, XI, X2)- This is absurd since g-lgyggy is clearly in 

H. Therefore gy fixes X; as a set for i 5 2. If gy has the same action as h on X, then 

hgy = (ab), contradiction. Now, by composing gy with h if necessary, we can suppose that 

gu = (ab)(x;z:) for some i 5 2. Conjugating gy by suitable elements of Gab we see that 

(&)(ziz:) E G for each i 5 2. Taking the product of two of these elements we get an element 

of the pointwise stabilizer of {a, b) U Y which is not in (h). This contradiction completes 

Case 2. 

Now we turn to  the other case considered in this section in which N = A7 and n = 15. 

As in the previom case no homc-geneous 3-gaphs arise. We give an ad hoc argument similar 

to that made for the case in which N = PSL(2,ll) and n = 11. However, this case turns 

out to  be a lot simpler. The only fact &om group theory which we quote here is that 

Ant(A7) is S7 acting by conjugation. Therefore G is either A7 or S7, which implies that 

IGf € {2520,5040). 

We consider a supposed homogeneous %graph M with 6 = Aut(M) and ]MI = 15. 

Let R 2 [M$ denote the edge set of M. Let a, b E M be distinct. Let X (= X(Q, b)), Y 

(= V(e,  8)) &em& {e € fW : {G, 8,  €1 f M), df - (X t' (a, b)) r ~ ~ t i v e ! y - .  TUet Gab denote 

the pointwise stabilizer of (a,&) in G. From the 2-transitivity of G on M, 
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From the 3-homogeneity of M ,  X and Y are orbits of Gab and so (XI, IYf divide \Gab/. 

Since X u Y = M - {a, b )  has size 13, it is easy to infer that one of X and Y has size 1 an$ 

the other has size 12. Without loss of generality 1x1 = 1 and lkTf = 12. But then any two 

points define an edge uniquely. which occurs non-trivially only in a structure of size 7 ,  froru 

Lemma 1.10. So M cannot be 2 hczmogeneous 3-graph. 



:gas> ayl art? asaq~ *dnofi qdmp 

3rp2lods s! ~39~ JOJ sr[ s,rzomrnq ny [v giq; sqed a41 zap!sno:, am uog3;)5: S~P ~fk 



the Himan-Sims group- In e15. p. Xf Higman describes the set- on a.h!ch the group acts 

2-transitively as: 

Here D, D' are sets of size 6, ( F )  x D')I and (D x D*)z are two copies of the cartesian 

product D x I)": and E is a set of size 90. Towards a contradiction suppose that &f is a 

homogeneous 3-graph such that M = P and such that the socie rV of G = Aut[M) has the 

action described in f1.51. 

We consider the stabilizer H = ili(o,,) in N of the set (0, a] i M. According to [IS, 

p, 781 H can be Prritren (4. T, $1- We focus on the action on {o, m) D L1 D'. The group 

& fixes O and rn and acts as the symmetric group on each of the 6-sets D and I?'. Let 

r : 0 -P D' be a bijection, and E aISO denote the isomorphism from Sym(D) onto Sym(DW) 

which it induces. kt 7 : Sg - Syzn(D) be the restriction map for D and 7' : Ss -- Sym(DM) 

be the restriction map for Dm. .A crucial point about the action of Ss is that (7')-'67 is an 

mter automorphisrn of !&. The consequence of this that we need below is that the stabilizer 

in $ of a point in D" ( D )  acts on D (Dm) as PSL(2,5) acts on the projective line over 

GF(5).. In partieuliw, we have: 

the stabilizer in & of a point in D" (D) acts btrnnsitiueiy on D (Dm) (3.17) 

Tnrning to the other generators of ~lfio,~), T stabiiizes D U D" pointwise and switches 0 

and m. Finally, # fixes O and em and switches the sets D and D". We note that S6 has 

index 4 in H. fn [I51 it is also pointed oat that 7 centradizes S6, while 4 normalizes Ss 

inducing an o m  automorphism- Thns = (4, S6), the pointwise stabilizer of (0, m), 

k Ant&). As well as this informatian about H, we note from [15, p. 7fil that N induces 

$he M symmetric p a p  Ss on B = {O, oc;) u D. 



.g(fij does not commude with g V -  Then g-'hg E ,Yh fixes D" paintwise but is not the 

identity on Dm. contradiction. So the claim is pro'cwi. 

W e  maw obtain a cmtradidion by considering what edges in M there can be an {O, x) LI 

Dull'. Without less dgeipediry. since LY induces the symmetric group on 8 = (0, x) u D, 

we may suppose that m Xripk fram S is an edge. Applying o we see that no triple from 

{O,;x;) ii D' is an edge. Cunsider a, b E D and a', b' E D', Ap&ing t, if (a. a') makes 

an edge with one of 0, x,  then it also makes an edge with the other. Further, from (3.17f, 

(a, a*) and (6, be) are in the same orbit; of L Y ~ .  So, if any pair {a, a") makes an edge 

with either Q or m, them every such pair makes an edge with bath O aad -x, Let a E D' 

make an edge with a 2-s;et from D. Fmm c3.17) every 2-set from D makes an edge with a. 

Applying Sg and Q we see that, ;lf om %set, which intersects oae of D and D' in a singleton 

and the other in a donbfskm, k aa edge, then all such $sets are edges. It follows that any 

pennutation a of (O,m) f-r D U Dn which fixes 0, m, and the partition (D,D') permutes 

the edges on the set (O,oc) U D U Dm- By %homogeneity any such prmntation r extends 

t;s an tt~taraor~,hism of M. This toatrzrdicta our 6nding above that the action of Glo,zf on 

D u Do is exactly the -a: as thaz of XdOst. 

3.63 ,EE" = 6% (Conway), n = 2T6 

"X% L the largest dinire Ztransitive permutation group which from a sporadic simple 

p a p *  -4s is the case fsr liEsnoet. all the other possible simple socfits, this goup yields no 

b~~&:meolls 3-graph. "3% explain why this is so we begin by introducing the basic notions 

d e d  fm a description of the ars~ap Ln gwtion. 

The- &%hetic of Skf is tlrart of GE(23). For i E @ we d&e QG - i = m. Variom subsets 



of Q are denoted as foIf0~-s. 

The group Mpq is defined as the group of permutations of R obtained by adjoining to 

PSL(2,23) the permutation : t t- z3/9 (z E Q). It is well known and shown in j8, $3, 

I"Ewirem If that >I2* is 5-traasi%jve but not &transitive on $2. Sow we regard P(Q), the 

power set of Q, as a vector space over GF(2), where vector addition is just the symmetric 

difference of sets- We let 43 denote the subspace spanned by the sets Ari ( i  E R). The space 

C, which tvrns out to be 12-dimensional, is called the binary Golay c d e .  Let C8 denote 

Xow we need to define the Leech lattice. Let v; (i E St) be an orthonormal basis for the 

Euclidean space R'~. For S C Q, let v~ denote CiESv;. The Leech lottice A is defined to be 

the additive subgrotrp of R~~ generateb by the vectors VQ - 4v,, and 2vc fC f Cs). The 

following characterization of A is given in [8,34, Theorem 21: 

Part A The ~ectm- (z,, 20,. . -, zrr) is in A if and only if it sat@$ each of the following 

esnditiems: 

W B Em x, y E A the scaInr produet x-y is a multiple 018, and x-x a multiple of 16.. 

mces of R% which prexwe A as a set and firr the origin. If r E Sym(Q), then we extend n 
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to a congruence of RZ4 by ~ ( v , )  = v,(;). For S C fl we define another congruence e s  of R~~ 

v; if i E S 
~ ~ ( v i )  = 

-v; i f i 9 S .  

Conway shows f8, $4, Theorem 31 that the set-stabilizer in -0 of the set 

consists of ali congruences of the form ccn, where n E and C E C, Below we shall 

denote this group by H although Conway called it N. 

Finally, we come to  the description of the simple group % and its 2-transitive repre- 

sentation. The group is the stabiiizer in 4 of the vector a = (5, lB) f A. The notation 

(5, I=) indicates the vector that has 5 as its oo-coordinate and 1 in every other place. The 

gtonp acts faithfdy and 2-transitively on the set of pairs: 

{bd E [hI2 :x+y = a, 1x1 = Irl = 21, 

whith we denote by I". There are 276 pairs in r. From [8, p- 2421, 23 of the pairs in 

I' are represented by the 23 vectors of shape (42,022) which have non-zero ao-coordinate. 

The other 253 pairs are rep iea teb  by the 253 vectors of shape (280163 with non-zero oo- 

coordinate for which the set of places at  which the vector is nomzero is a C-set. We will 

fmns attention on the V&OS of the first kind. For i E W, let b; denote the vector with 4 

in the m- aid z-places and 0 in every other place. Let ci denote a - hi- Below we use N to 

denote Cw (denoted -3 in [8]). Depending on the context we can regard N as acting either 

Towazds a contradiction suppase that there is a homogeneous bgraph M such that M 

is the set I? and N is the d e  of G = Aat(M). We define the set Z = ((b;, c;) : i E ft').Let 

G 4 q ,  Np) denow the set stabilizes of: in G, M respectively. Let e, @ denote (b; : i E SZ'), 

{G : t' E N). Since Ibi - hi! = 2 aod f& - c J =  l 3 whenever i , j  f @ me&tinr,t, the set, 



fixes v,. It foiiows that -Yfe) dso fixes the set (v; : i E $TI. From the remark above 

about the group li It is clear that the action of NIe1 is that induced by the action of hiz3 on 

Q', where MZ3 is defined as the stabilizer in M24 of 00. NOW let US consider the edges that, 

M places on the set Since iV{El is 3-transitive, we may suppose that there are no edges 

on X' at all. By homogeneity every a f Sym(r) extends to g E GIrl- Since G normalizes 

N, G{rl fI' = Symt i normalizes iV{q lr. This is a contradiction because the only normal 

subgroup of Sym(I') is the alternating group on r. However, it is clear that the index of 

in S23 is more t h m  2. Thus we have the desired contradiction, 

3.6.3 The Mathieu Groups 

Having established the needed definitions in our discussion of the Conway group, we now 

conclude our discussion of the sporadic goups with the Mat hieu groups. h m  Theorem 1 of 

$3 in Conway's paper, f8j, we know that MZ4 is 5-transitive. M2j is defined as the stabilizer 

of a single point in %Iz4, and Mn as the stabilizer of two points in M24, so %fZ3 acting on 

23 points and Mz2 acting on 22 points are, respectively, 4-trmsitive and 3-transitive. Using 

information from the proof of Theorem 11 of $3, [8], we look at Mlz as the set-stabilizer of 

as nmbral in the action of Xlr on 24 pints.  The two representations of M12 arise from 

the m b r d  and its complement, both of which are quintuply transitive. Fixing in addition 

a p i n t  in the umbral, the action on the umbrd is the action of Mll on an Il-set and the 

action on the comp1ementary m b r d  is the action of MIX on a IZset, both of which are 

triply transitive. So the permutation representations mentioned by Cameron with sock 

qnal to one of these Mathien gru'ilps are at I m t  %transitive, and so are nut of interest to 

ns, 
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Appendix 

and cr mapping & : V - GE(2) satkfying 

(v,v)= 0 (V E V ) ,  

Proof: W e  choose a basis for V = V(2d + I), d, el,. . . ,ed, fl, . . . , &. On this basis, we 

define, for I < 2, j 5 d, 

and (q,fj) = 6ii- S i m  (,) is this defines it uniquely on the whole space. Define 

8 om tk basis by Q(d) = 1, Q(e;) = Q(f;-) = 0, (1 < i 5 d). Siee we are working in a field 

of aMfeZ 2, we c a t  cansides the vectors as subsets of {d, el, -. ,Q, fi, . . . ,&). Then define 

Qf a) = O if and only if the number of subsets of the form {d) or (qe) that occur in u is 

we WB EQUII~ aljl sf the s n k t s  of the fonn {d) or (el%) that occur in u + v and show 
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or (u, v) on the right side of the equation. If (d) or (e,, fi) MEUTS in only one of u, v, then 

Q(u + V) and Q(u) + Q(v) both have 1 added to them. If e; occurs in only one of u, v, 

and f; occurs in the other, then Q(u + v) and (u,v) both have 1 added to them. If (e,, f,) 

occurs in one of u. v, and only one of e;, f; occurs in the other, then both Q( u) + Q(v) and 

(u, v) have 1 added to them, so there is no change on the right hand side. If we check the 

other possible arrangements, we find they also do not add to either side of the equation, s;, 

the relationship must hold. 

Lemma 4.2 (Lemma 3.10) Let U be a subspace of V of dimension 2d - 1 not containing 

U linearly independent 

vectors satisfving eqnations 4.10, 4.11, and 4.12. Let ul , . . . , at, v, ( I  = 2d - 2k - 11, be 

vmaof~ chosen so that 0 = (q,q, - . . , ek, fk, ul, . . . , ut) a d  V = (U u (v, d)). Let W = 

(erfir - -  ..ek,fk). W e  can choose ul,. . ., u1,v to be elements of WL. For, if (ul,el) = 1, 

then we can replace by nl f fi to make (ul ,el) = 0, and for each u;,v; we can do this 

for all the basis vectors of W. 

Since every v-r of D mast, have a vector to which it is no$ orthogonal, provided that 

I > 1, we ean dind two of nl,, , ., F& which are nor mthogond to each other. $0, wit haat 1 ~ 3  

of gae&ty7 m get ey:,f ~ O I ? U  6 ax, . , that x-t f 1 = 1. We s?Z haye a& determined 

Q(e) and QQf). If Q(e] = 0, then we can assume Q(f) = 0, otbeariase we substitute e + f 
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for f ,  (Q(e + f )  = 0 by equation 4.3). So we can extend the basis provided one of Q(e) and 

Q(f) is zero. 

If 1 > 3, then we can repeat the process to get another pair el, f' such that e', f' E U 

with (e', f') = 1 and et,f' E (W U (e, f ) ) l .  Either, one of the pairs gives a pair where Q 

of each element in the pair is zero, or Q(e) = Q(f) = Q(ef) = Q(fl) = 1. In the first case, 

we take that pair to extend the basis; in the second case we extend the basis with the pair 

(e f ef,f -ket). 

Now, if we are abIe to get d - 1 pairs in the basis, where Q(e;) = Q(f;) = 0, then we will 

have one vector left, call it u. All the other vectors in our basis must be orthogonal to u, so 

(u,v) = 1. If Q(u) = 0, then we take u as the last vector in our basis, and U is of type 4.7. 

If Qfu) = 1, then we take n + d as the last vector and U is of type 4.8. If we could not get 

the last pair e ,  f to have Q(e) = Q(f) = 0, then we take d + e, d + f as our last pair. Now 

if the last vector u has Q(u) = 0, then we take u as the last vector in the basis, and U is of 

type 4.9. If Q(u) = 1, then we have to take u + d as the last vector, but, if that happens, 

we could have taken e + u, f + u as the last pair in our basis, which again is a case where 

U is of type 4.8. D 

Lemma 4.3 (Lemma 3.11) Let U be a hyperplane of V not cmtaining d. There exist 

he_;) = (6,fj) = (dye;) = (d, c) = 0, (4.10) 

P-E The proof of Lemma 4.3 proceeds similarly to the proof of Lemma 4-2, only it is 

simpler. since U in this case has a even number of basis vectors, so they pair off nicely. 



Again, we start with an independent set satisfying the conditions we want, and in the same 

manner as before, we add pairs to it to form our basis for U .  

Once we have d- 1 pairs in our basis for G,  where Q(e;) = Q(f,) = 0, then we will have 

one pair of vectors left. call them e, f. All the other vectors in our basis must be orthogonal 

to e, so j e , f )  = 1- If Q(e) = 0 and Q(f) = 0, then we take e, t as the last pair in the 

basis; if Q(e) = 0 and Q(f) = 1, then we take e , e  + f as the last pair in the basis; and if 

Q(e) = 1 and Q(f) = 0, then we take e + f ,  f as the last pair in the basis. In any of these 

t h r e  cases, U will be  a subspace of the form 4.13. If both Q(e) = 1 and Q(f) = 1, then we 

take d + e, d + f as the last pair in our basis and U is a subspace of the form 4.14. R 

Lemma 4.4 (Lemma 3.12) Let U be a (2d - 1)-space not containing d. 

i) There are ezactiy two hyperplanes Uo, Ul 2 U with d $! Uo, Ul . 

a'•÷) If U is of type 0, then Uo, Ul are both +-hyperplanes. If U is of type I ,  then one of 

Go, Crl is a f -hyperplane, and the other is a --hyperplane. If IJ is of type 2, then Uo,  

Ul arr hot& --hyperplanes. 

iiz) G acts %fmnsitively on the +-hyperplanes, and 2-tmnsitively on the --hyperplanes. 

Proof: i) and ii) Snp- U = ({el U (ei, -fl- : 2 < i 5 d ) ) .  There is an f E V, not in U ,  

f # d, such that (e,f) = 1, f E ({e;,fi : 2 5 i 5 and Q(f) = O. We can assume that if 

this basis of U is extended to a subspace of V not including d, the extension will be by one 

of xhe vectors f, e + f, d + f, or d 9 e + b. The first two cases yield the same 2d-space, and 

we let q = e and fi = the second two cases yield a second Zd-space, and we let el = e 

and 4 = d + e + f. Scr we ham two possible +-hyperplanes- 

Suppose i[i = ((d + e) Ll (ei,f : 2 < i < d)). Again, we have f as in the previous 

situation. fftrisextended byf o r b y d + a + f , t h e n l e t e l  = d + e + f  andfi = f ,  and we 



and ~e have a --hyperplane. If U is extended by d + f or by d + e -+ f ,  let el = e', fi = f', 

e2 = e, and f = d i- e ir f,  and we have a different --hyperplane. 

iiij Let &, U1 and tr:& Lri be two pairs of distinct +-hyperplanes. Let W = GO n lil and 
W' = fi'; f i  6';. Both W and W' have dimension 2d - 1, and, by ii), they are both of type 

0, as they each have two distinct extensions that are +-hyperplanes. We know there is a 

g E G that maps the basis of W to the basis of W', and that will also map the extension Uo 

of FV to the extension Ufi of W'. Now, since U; is the unique second extension of W that is 

in %- and does nct include d and U,' is similarly r he unique second extension of Mi', g must 

map Ul to as well. The proof for --hyperplanes is similar. 0 
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