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Abstract

A 3-graph consists of a vertex set together with a set of unordered triples of vertices; the
members of the latter set are called edges. A bijection from one finite subset of the vertex
set to another is called a local isomorphism of the 3-graph if it maps edges to edges and
non-edges to non-edges. A 3-graph is called homogeneous if each of its local isomorphisms
extends to an automorphism. By exploiting the classification of finite 2-transitive permuta-
tion groups which is found in the literature we show that up to isomorphism there are only

four non-trivial finite homogeneous 3-graphs and we give explicit descriptions of them.
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Chapter 1
Introduction

In this thesis we classify the finite homogeneous 3-graphs. In fact, we will show that there
are just four non-trivial finite homogeneous 3-graphs. Two of them are essentially the
projective planes over GF(2) and GF(3). The remaining two are structures closely related
to the projective lines over GF(5) and GF(32).

In order to describe the objects which concern us we first explain the notion of a structure
which has been studied extensively by mathematical logicians since the 1950’s. Let L consist
' of a finite set {R., ..., R¢} of relation symbols together with a signature (ny,...,ng), where
n; is a natural number called the arity of R;. We call L a finite relationai language. This is
~ the only sort of language we shall consider although in other contexts an infinite number of
relation symbols is often permitted as well as symbols representing functions and constants.

With L as above, an L-structure M is a (k + 1)-tuple
(M, RM,....R}M)

such that
RMCM™ (1<i<k),

ﬁhere M is a set called the universe of M and M™ denotes the n-th cartesian power of M.
The n;-ary relation RM is calied the interpretation of R; in M.
An L-structure
N=(NRY,...,RY)
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is a substructure of M if N C 3f and
R‘i\’ — R:ir{ Ny

Thus there is a one-to-one correspondence between substructures of A\ and the subsets of
M. The restriction of M to N € M. M:N_is the substructure of M on V.
Now consider an injective map F : ¥V — M. We extend F 1o the cartesian powers of N

and their power sets in the obvious fashion:
F(ﬂl,-—--,anj? = i,Féal‘:),-- . Fian')) (al!. oy € .\"1,
and
F(X)={F@):ae X} (X CN").

F is said to be an embedding of N in M if
F(RY) = RMn(F(N)™.

F is an isomorphism if it is an embedding and onto M. F is an automorphism if it is an
isomorphism and M = N.

Consider a graph such as in figure 1.1.

Figure 1.1:

a@e———9b

This graph, call it M, can be regarded as an L-structure, (M,R™M) where the universe
M is {a,b,c,d} and the language L consists of one relation whose interpretation R is
{(a,b), (b,a), (c,d), (d,c)}. Often, to simplify matters when dealing with graphs, we
consider the relation RM to be a subset of [M]?, where [M]' = {K C M : |K| = i}. Using
this convention, the relation of the above graph becomes {{a, b}, {¢,d}}:
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Now 3-graphs are kike graphs except that an edge is an unordered triple rather than
an unordered pair. To d>scribe a 3-graph within the framework of model theory we let
L be the language with one ternary relation symbol R. Then a 3-graph is an L-structure

M = (M,RM) which satisfies:
VIVyVz [Ri{x,y.z}) — (x#yryFzAz£zAR(y.z.z) A R{z.z,9))].

However, just as for graphs (which we can think of as 2-graphs in a more general setting)
because of the irreflexiveness and symmetry of the relation it is convenient for us 1o abuse
the conventions of model theory and to let R™ be a subset of [M]® instead of M3. So in
this thesis by 3-graph we will understand a structure M = (M, R}, where M is the vertez
set and RM is the edge set. With 3-graphs so defined, we define the complement M of the
" 3.graph M to be the structure (M, [M]® — RM). So the complement of a 3-graph M is

the 3-graph with the same vertex set (or universe) having edges exactly where M does not.

Figure 1.2:

Graphically, we will denote an edge of 2 3-graph as a small triangle, with lines extending
fmm‘the vertices of the triangle to the vertices belonging to the particular edge of the 3-
graph. For example, in figure 1.2, on the left we have a 3-graph on {a,b,¢,d, ¢} with edges
{a,b,e} and {b,c,d}, while on the right we have the complement of that 3-graph.

A structure M is homogeneous if any isomorphism between finite substructures of M

~.can be extended to an automorphism of M. Consider the structures in figure 1.3.



- We can check that the structure on the left is homogeneous by listing all the local isomor-
phisms, i.e., all the isomorphisms from one {finite) substructure to another, and checking
that each of them extends to an automorphism. This is tedious but presents no diffi-
culty. For example, the isomorphism {a.c) — {a.d) can be extended to the automorphism
(a,5,c,d,e) — (a,e,d, c,b). | |

However, this is not the case for the structure on the right. We check again the isomor-
phism (a.c) — (a,d}, but in this case there is no way to extend it to an automorphism of
the structure. Note that the complement of 2 homogeneous 3-graph will be homogeneous.
We let Hmg(L) denote the class of all homogeneous structures on the language L. Two
'pointsy z,y € M have the same type over a subset H of M if there is a local isomorphism
that fixes H and maps r to . 7

A complete first-order theory that admits quantifier elimination has a countable ho-
mogeneous model. Finite structures are homogeneous if and only if they admit quantifier
elimination. This tie to quantifier elimination makes homogeneous structures a topic of
interest for logicians.

Lachlan wrote a survey of the work done on homégeneous structures in [18]. We shall give
a brief overview of this work. Study of homogeneous structures has been greatly facilitated
by the work of Fraissé, [10], which shows a direct correspondence between homogeneous

structures and amalgamation classes. Considering a particular homogeneous structure often
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becomes much simpier by looking at the corresponding amalgamation class.
~ Extensive work has been done on classifying the homogeneous L-structures where L has
a single binary relation. Henson began. with his paper “A family of countable homogeneous

graphs” {13] that appeared in 1971. a classification of countable homogeneous graphs. and

- presented a number of related questions. Gardiner. in {11}, completed the classification of

the finite homogeneous graphs. and Woodrow and Lachlan completed the classification of
countable homogeneous graphs in [27] and {19).
-The countable homogeneous partially ordered sets were classified by Schmerl in [22] and

the countable homogeneous tournaments were classified by Lachlan in {17]. Cherlin has

_classified the countable homogeneous directed graphs in {5] and [6].

Classification of countably infinite homogeneous structures has relied heavily on the work

- of Fraissé. The study of these structures is generally approached by looking at the finite

structures which they, and their corresponding amalgamation classes, omit. The technique of

using amalgamation classes is not as useful when dealing with finite homogeneous structures.

- However, as the latter can be interpreted as permutation groups, there is a wide variety of

combinatorial and group theoretic arguments that can be applied. This paper depends on

the classification of finite simple groups to guarantee a full listing of the finite homogeneous

' 3—§raphs. The goal of this paper is to prove the following theorem.

Theorem 1.1 Let M be a finite, non-trivial, homogeneous 3-graph. Then the socle of
Aut (M) is one of the groups: PSL(2,5), PSL(2,9), PSL(3,2), PSL(3,3); and M is deter-
mined up to isomorphism by the socle. The cardinalities of these homogeneous 3-graphs are

6, 10, 7 and 13 respectively.

More detailed information on these structures can be found in §3.1.5, §3.1.7, Lemma 1.10
and §3.1.4.

-Given a set M., if G is a subgrouep of the symmetric group on M, then we refer to the
pair as a permutation group, denoted (M;G) or G; and we say that G acts on M. Although

G acts primarily on M we will assume that its action has beep extended to cartesian powers

of M and to all other sets constructed from the set A in a canonical fashion, e.g., [M]°,

MM (the set of functions from M into itself), etc.
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The permutation group {M:G) is transitive if there is only one orbit in the action of G
on M, that is, for all a.b € M. there exists g € G such that g(a) = b. The permutation
group (M:G) is k-transitive (k > 1) if, given any two ordered k-tuples (r,.....xy), and
(%1, - - - yx) of distinct elements of M, there is some g € G such that g(z;) =y, 1 <i < k.
Two permutation groups (M.: G} and (M,; G;) are isomorphic if there exists a bijection
- F from M, to M; such that G, = {FgF~! : g € G;}. Unless stated otherwise, isomorphic
will mean isomorphic as permutation groups. |

With a 3-grapk M, we associate the permutation group ¢ = (M;G), where G is
Aut (M), the subgroup of Sym(M) that preserves the relation RM. If Aut (M) is equal to
Sym(M), then we call M a trivial 3-graph; so a 3-graph is trivial if and only if it has either
all possible edges or has no edges.

When M is homogeneous, G must be tra.nsitivé as, for any z,y € M, there must exist
an automorphism of MM that maps z to y. In fact, as M has only a single ternary relation,
G will be 2-transitive, since, for any two ordered pairs of points, the map taking one to the
other is a local isomorphism and hence extends to an automorphism of M. So we have the

following lemma:

Lemma 1.2 If M is a homogeneous 3-graph, then the permutation group (M; Aut (M)) is

2-transttive.

It is by considering 2-transitive permutation groups that we will be able to determine all the
finite homogeneous 3-graphs. Cameron, in [4, page 5], considers the socle of a permutation
group which is defined to be the product of the minimal normal subgroups of the grohp.
He shows that, when G is a primitive permutation group acting on a finite set, the socle of
G is a direct product of iscmorphic simple groups. Many of the results we use concerning
the 2-traasitive simple groups, particularly the classical groups and their actions, are used
- without specific reference to their sources. We use the descriptions of these groups, draWn
from the existing literature, to determine if they describe the automorphism group of a
homogeneous 3-graph.

Observe that when M is a hdmogeneous 3-graph we can iecover M from the corre-
spondmg permutation group (M;G) up to complementation because G has just two orbits
on unordered triples, one of which is the edge set of M.
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In the language of design theory (see [1]), homogeneous 3-graphs are triple systems
satisfying a very strong symmetry property. For the four triple systems listed in Theorem 1.1

the respective values of A are 2, 4, 1 and 2. These triple systems are surely well known to

~ design theorists.
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1.1  An end in sight

Before we start looking for specific instances of finite homogeneous 3-graphs, we will use a
result of Cherlin and Lachlan to show that there can only be a finite number of such 3-graphs
that are non-trivial. We will use their dichotomy theorem, as well as the definitions leading
to it, from [7, pages 817-818l.

Let G = (M;G) be a finite permutation group (not necessarily one arising from a 3-
graph) and F = {H; : 1 € I} be a family of pairwise disjoint subsets of M. F is mutually
indiscernible in G if every # € Sym(UF) which fixes each H; setwise extends to a member of
G. F is mutually quasi-indiscernible if for every family {r; : : € I'} with ; € Alt(H,) (i € I)
there exists g € G such that gl H; = m; (: € I). 7

A finite permutation group (H;G) is a (twisted) coordinate system if there is a G-
invariant equivalence relation E on H such that H/E = {H; : i € I} is a finite mutually
(quasi-) indiscernible family on which G acts transitively, and |H;| > 5 (i € I). The degen-
erate case in which G = Sym(H) is allowed and even typical. The H; are the components
~of H.

Given a possibly twisted coordinate system (H; G) with components H; and k such that
0 < 2k < |H;|, define the Grassmannian permutation group:

Gre(H;G) = ({X C H : (Vi € D(IX n Hi| = k)};G).

Of course, in this equation the final occurrence of G refers to the action of G on the Grass-
mannian set {X C H : (Vi € I)(|X n H;] = k)}. Such abuses of notation will not cause
confusion since we can infer from the context on which set G is thought of as acting. In the
present case note that the action of G on the Grassmannian set is faithful.

A finite permutation group (M;G) is coordinatizable if it is isomorphic to Gri(H; G) for
some k, II, G as above. When (M G) is coordinatizable, the coordinatization is essentially
unique, as shown by the fo]lowing result, where Sbc(G) denotes the socle of G. This result

is stat- 1 without proof in [7, page 818].
Lemma 1.3 With the above notation, Soc(G) [Alt(n)]¢, where d = |I].

Proof: Forie I, let N; denote the group consisting of all ¢ € G (seen as acting on H') such-

that g fixes H — H; pointwise and induces an even permutation on H;. Sin‘ce‘ F is invariant
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as a set under G, H; 4 G. Since |H;| > 5, N; is simple and so ¥, is a minimal normal
subgroup of G.

Now consider an arbitrary, non-identity, normal subgroup ¥ of G. Choosei € I, a € H;,
and g€ N such that g(a) # a. There are two cases:
Case 1. g(a) € H;. Then g(H;) = H;. Foralln € N;,n"1g"ng € N N N;. Choosing n such
that ng(a) # gn(a), we see that N N N; # {1}. Hence N; < N.
Case 2. g(a) € H; for some j € I — {i}. Then g(H;) = H;. Choose b € H; — {a}. Let

k= g7 (9(a)g(5))g(g(a)g(b)).

Since h is a commutator, h € N. Also
= (ab)(g(a)g(b))-

Cojugating by elements of N;, we see that (cd)(g(a)g(b)) € N for all ¢,d € H; such that
¢ # d. Again, it is clear that N; < N.
We have shown that the groups N;, 7 € I, are the only minimal normal subgroups of G

which justifies our remark above. O

A finite relational structure M is coordinatizable if the corresponding permutation group

(M; Aut (M)) is coordinatizable.

Theorem 1.4 (Diéhotomy Theorem, {7], page 818) Let a finite relational language L
be fized. There is an integer m such that for every ﬁnite M € Hmg(L) and every mazimal
equivalence relation E (where E # M?) on M invariant under Aut (M) one of the following

occurs.
(A) |M/E| < m,

(B) (M/E, K) is coordinatizable, where K < Sym(M / E‘) 1s the group induced by Aut (M).

Corolla.ry 1.5 Upto :smnefph:sm there are only a finite number of non-trivial finite ho-
mogeneous 3-graphs.
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~ Proof: In the theorem fix the language L to consist of a single ternary relation. Let m
denote the integer provided by the conclusion. Consider a finite homogeneous 3-graph M
seen as an L-structure. Since M is 2-transitive the only equivalence relation E # M2, is
the identity on M. We conclude that either |M| < m or M is coordinatizable.

Consider the case in which M is coordinatizable. There exist an integer £ > 0 and a

permutation group (H;G) such that 2k < |H;|, 1 € I, and
(M; Aut (M) = Gri(H; G).

Consider a, b € M and let X,, X; C H be the subsets of H which correspond to a, b under
the isomorphism. I k > 1 or |I| > 1, then as a, b run through M, | X, N X,| takes at least
the values 0, 1, 2. In this case, the action of Aut (M) on M is not 2-transitive because
[Xe N X is préserved under Aut (M).

Since homogeneous 3-graphs have 2-transitive automorphism groups, ¥ = 1 and |I| = 1.
In this case the Gri(H;G) is just a set with either the symmetric group or the alternating
group acting on it. Hence Aut (M) > Alt(M). Since the language is that of a ternary
relation it is clear that Aut (M) = Sym(M). So M is trivial if it is coordinatizable. O
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1.2 Getting started

In a permutation group (M;G), for any z € M, we define the stabilizer of z, G, to be
{g € G : g(z) = z}. For any A C M, we define the stabilizer of A, G4, to be {g €
G : (Ya € A)g(a) = a}. For any A C M, we define the set stabilizer of A, G4}, to be
{g € G:g(A)= A}. A transitive permutation group (M;G) is regular if G is the identity
for :every z € M. A transitive permutation group (M; G) is primitive if it has no non-trivial

" equivalence relations that are invariant under the action of G.

Lemma 1.6 ([26], Proposition 4.4) Let (M;G) be a transitive permutation group, a €
M, and G be abelian. Then G, = {1}.

Lemma 1.7 ([28], §20) Let (M;G) be a transitive permutation group, a € M, and G, =
{1}. Then

F:g(a)—g (9€G)
is a bijection from M to G. Further, for g € G, the action of g on G induced by F, namely
FgF~, is multiplication by g on the Vleft,

Remark: If G is abelian, then in the previous lemma the action of g on G is addition of ¢

and 1s thought of as a translation.

Lemma 1.8 ([26], Theorem 8.8) Let (M;G) be a primitive permutation group, N 4 G,
and N # {1} Then (M; N) is transitive. 7

Lemma 1.9 ([2], page 7, lemma 1.3.8) Let (M;G) be a transitive permutation group
~anda € M. Then (M;G) is k-transitive if and only if (M — {a}; G,) is (k — 1)-transitive.

We will later make use of projective spaces and the groups associated with them, so
we will now make some definitions. We start with a vector space V of dimension d over a
field F. For our purposes, F will typically be GF(q), so we will give some of the definitions
referring to d and ¢, as well as for V generally.

Let V™ = V — {0} and z,y € V*. Define an équivalence relation where z and y are
equivalent if the statement (3A € F*)(z = Ay) holds. The equivalence classes so defined
'become the points of the pivjective, geometry PG(V).
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)

We can denote the equivalence class of ¢ € V™ as [z], and, under the mapping 2 ~ [z]
the image of a subspace U of V', denoted [U}], is a subspace of PG(V). It turns out that if a
subspace U has dimension k, then its image [U] has dimension £—1, and, when V' = V(d.q),
the dimension of generated projective space is d — 1, and PG(V) = PG(d - 1,q). See [2,
§2.5] for further details.

The general linear group on V, GL(V'), is the group of linear operators on V', which is
isomorphic to the group of the d x d non-singular matrices with entries from F. The special
linear group, SL(V) is the subgroup of GL(V') consisting of the elements with determinant
equai to one. To get the projective general linear group, PGL(V'), we start with GL(V)
@d divide by its center. Similarly, we get the projective special linear group PSL(V') from
SL(V).

Lemma 1.10 Let M be a homogeneous 3-graph of size > 4 and having at least one edge.
If the intersection of any two edges in M is one or fewer points, or, equivalently, if two

points are sufficient to determine an edge, then |M| =7 and M is unique.

Proof: First, we claim any two edges must meet in exactly one point. Since there exists
one edge that connects two pqints, we know that for any two points there must be an edge
connecting them. We have an edge, {a, b, c}, and a fourth point d, and there exists an edge

through ¢ and d. So we know intersecting edges do occur. Now consider figure 1.4. If we

Figure 1.4:

- b
S/K
E\/f

e

look at only (a,b,d, e}, the two sides are exactly alike. As two points determine an edge, we

-

cannot have both of these situations occuring. Since we know we do have intersecting edges

in M, the situation on the left will never occur. This establishes the claim.
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If we think of the edges as lines, then we have a structure where each line has three
points, two points determine a line, and two lines intersect in exactly one point. This is a
projective plane with lines of size three.

Suppose there are n points. Then there are n(n — 1)/6 lines, and there are (n ~ 1)/2
lines through e«ch point. We can look at a point P and a line I/, where P is not on [, as in
- figure 1.5. Every line including P must cross [, but ! contains only three points, so P can

be included in only three lines. So (n —1)/2< 3,and n < 7.

Figure 1.5:
P

yaam

If we look at the projective planes, we see that the only projective geometry having lines

of size three and order greater than three and less than eight is PG(2,2), which has seven
points. So now we will check to make sure it is homogeneous. The points of M can be
identified with elements of (GF(2))?— {(0,0,0)}, where {A, B,C} € [(GF(2))*-{(0,0,0)}]?
" is a line if A+ B+ C = (0,0,0). The ternary relation R on this geometry is defined by
R(A,B,C)& A+ B+ C =(0,0,0)in GF(2).

Let V = V(3,2). For any two bases u,, u2,u3 and vy, v2,v3 of V, the mapping u; — v;
generates a linear transformation which gives an automorphism of M. So, we start with an
isomorphism between two substructures of M. If one of these substructures contains three
vectors that are independent, then we can consider them as a basis. This basis must map to
three independent vectors in the other substructure, and this generates an automorphism.
If the substructures do not contain three independent vectors, then we can arbitrarily pick
vectors independent of the vectors we already have, until we have three, and then proceed

as before. So any isomorphism between substructures can be extended to an automorphism,
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and PG(2,2) is homogeneous. O

Take M, a finite homogeneous 3-graph with corresponding permutation group (M: ;) =

G. Recall that G is 2-transitive.
Lemma 1.11 If N, the socle of a group G, is a non-abelian simple group, then

N <G < Aut (W)

Proof: Since N is normal, the elements of G will induce automorphisms of ¥ by conju-
gation, so we need to show that distinct elements of G give distinct automorphisms of N.
We know C(N) is normal, from the normality of N, so either N < Cg(N), or Cg(N) = |,
otherwise, Cg(N) N N would yield a normal subgroup smaller than N, contradicting the
minimality of N.

The former case would imply that N is abelian, which is not the case we are considering,
's0 it must be that Ce(N)=1. |

Now suppose we have a,b € G such that for every n € N, a~'na = b~'nb. Then
ba~'nab~! = n and (ab=1)'n(ab™') = n. But then ab~' € Cg(N),s0oab™' =1 and a = b.
Thus no two distinct elements of G yield the same automorphism of N, and we can conclude

that G < Aut(N). O
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Our main instrument will be a theorem characterizing the socle of a 2-transitive permu-
tation group. The theorem that follows is a revised and expanded version of a theorem by

Burnside, {3, page 202].

Theorem 1.12 Let (M,G) be a 2-transitive finite permutation group and N be the socle of

G. There are two possibilities.

i) N is simple and non-abelian. In this case, M can be identified with a conjugacy class

of subgroups of N with G acting by conjugation.

i1) N is elementary abelian. In this case, M can be identified with N in such a way
that a fired element a € M corresponds to 0, N acts by translation, and G, acts by

conjugation.

Proof: As was mentioned above, from Cameron’s paper [4, page 5] we know that Soc(G)
is the direct product of isomorphic simple groups. I these isomorphic simple groups are
abelian, then certainly N is elementary abelian. Suppose otherwise, i.e., N is the direct
product of isomorphic non-abelian simple groups. In this case the theorm of Burnside says
that there is a normal subgroup H of G which is simple such that Cg(H) = {1}. Being
simple, H# must be a minimal normal subgroup, and since any two minimal normal subgroups
of a group wil! commute, N = H. For the rest of part i), if N is simple, then, to explore

the nature of M, we look at a mapping
¢:z—~G,NN(zeM).

N acts transitively, since N < G and (M,G) is primitive, so Gz N N # N. Suppose
G.NN = {1}. For this z, define the mapping b — n; (b € M) by letting n; be the element
of N such that ny(z) = b. There is only one possibility for ny, otherwise there is an element
of N — {1} that fixes z which contradicts g, NN = {1}. The mapping is also one-to-one and
onto. Using this bijection to identify M with N, we now have G acting on N. We observe
that G acts on N by conjugation, i.e., g(m) = gmg~! (g € G, m € N). Since the action
of G on M is 2-transitive, the action of G, on N — {1} is transitive. Hence any two elements
of N — {1} are conjugate in G. Itr follows that N is a p-group for some prime p. Hence by
[21, page 57, Theorem 4.4], N has a non-trivial center, which is a contradiction. So G, N N

is always a non-trivial subgroup of N.
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Note tkat o{g{z)) = g{G: N N)g~'. This follows from the fact that g(G, N V)¢~ must

be = subgroup of V and also a subgroup of Gy(;y. So g(G-N N)g~! < Gy N NV, and, since

'

g(G: 1 N)g~! has the same number of elements as G,y 1 .V. they must be equal.

Since Gy N N AN the mapping ¢ must have range of size greater than one. On the
otrer hand, if ¢ is not oné—to—one, then we have a G-invariant block syvstem defined on M:
we can take z,y € M to be equivalent if and only if ¢(z) = ¢(y). but this contradicts (7
beirg 2-transitive.

Now for part ii), fix a € .M, where a is arbitrary. Define the mapping b — n, (b € M)
by letting n, be the unigue element of N such that ny(a) = b. There is only one possibility
for n; since ¥V acts regﬁ]a.rly on M. Using this bijection we identify the set M with the set
N. Then N acts on M = N by translation, i.e., n{(m) = n+ m (m € N). Further, the
stabilizer G, of a in G acts on M = N by conjugation. Note that G = NG, = G, N, so the

action of G is completely determined by the known actions of N and G,. O

This theorem of Burnside is the key to the rest of our work. In Chapter 2, we show that
case ii) does not give rise to any non-trivial finite homogeneous 3-graphs. In Chapter 3, we
consider case i), and find that it gives rise to exactly four non-trivial finite homogeneous

3-graphs.




Chapter 2
Abelian Socle

We have a group G with socle ¥ = Z,x---xZ, , and we want to know if there is a
—— st

, , k times
homogeneous 3-graph M such that Aut (M) = G. If there is such M, then there is a set

of triples RM C [M}?, the edge set of M, such that G is the stabilizer of the set R™ in
Sym(M). For the rest of this section we shall suppose that we have a homogeneous 3-graph
M whose automorphism group is G, and we shall explore the structure of M.

We recall from Theorem 1:12 above that, since the socle is abelian, G acts on M in the
following way. Fix a € M, where a is arbitrary. Define b — n (b € M) by letting n; be
the unique element of N such that ny(a) = b. There is only one possibility for ns since NV
_-acts regularly on M. This bijection allows us to identify the set M with the set N. Then

N -acts on M = N by translation, i.e.,, n(m) = n + m (m € N). Further, the stabilizer G,
of a in G acts on M = N by conjugation, i.e., g(m) = gmg™! (g € G,, m € N). Since
G = NG, = G, N, knowing how ¥ and G, act on M = N we know the action of G.

We claim that the 4-ary relation S defined by

ztt+y=z+w (2.1)

is definable in M. To see this we argue as follows. First, since we are dealing with a finite
structure, a reiation on M (= N) is definable in M if and only if the relation seen as a
set of tuples is G-invariant. When z, y, z, w are moved by n € N, then n + n is added to

each side of (2.1) and the equation still holds. On the other hand, if we move z, y, z, w by

17
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g € G,, then we are applying an automorphism to .V and again {2.1) is preserved. Since
G = NG, and N and G, both preserve (2.1}, G also preserves {2.1). By essentially the
same argument we see that there is a dependence relation which is definable in .AM: the
elements a;, a;. .... axn € M are dependent if there exist A, As

0 such that

..... Am € (}F(p) not all

»

M+A+...FAn=0and Mgy + A2az + ...+ Ana,, = 0.

The dependence relation will be useful in the discussion below. We define some further
notions related to the dependence relation. First, we say that b€ M depends on A C M if
there is an independent tuple @ C A such that @b, the (m + 1)-tuple (a;,as,....a,,,b), is
dependent. Otherwise, b is said to be independent over A. Secondly, the affine closure A of
ACMis thye least set X, AC X C M._suchthatnoae M - X depends on X. It is easily

seen that this closure operation satisfies the usual axioms:
1) X C d(X),
i) c(X) = cd(cl( X))},
fii) X Cc(Y)=>c(X)Ccl(Y),
iv)becd(Xu{a})-(X)=>ae XU {b}).

The dimension of a set X is the size of the least Y C cl(X) such that cl(Y'j = cl( X). Since
_we are dealing with a vector space over GF(p) once a point is fixed, the affine closure of a
set of dimension n + 1 has size p™. | |

We will show that no homogeneous 3-graphs, otherrthan trivial ones, arise from groups
with abelian socles. For p = 2 we obtain ar outright contradiction. When p = 3 we show
that, if M is 2 homogeneous 3-graph, then either each paif in {M}? lies in a unique edge
of M, or each pair in [M}? lies in a unique edge of the complementary 3-graph. From
I.emma 1.10 this means that either M or its complement is the projective plane PG( 2,‘2).
However, the automorphism group of PG(2,2) has socle PSL(3,2) which is simp!ey and non-
abelian, contradicting the case hypothesis. Finally, when p > 3 we show that a ternary
relation is definable in M which is asvmmetric on triples of distinct elements. Again, this

contradicts our assumptions.
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21 N=Z,x---x2Z, p=2

We first consider the case where p = 2: as all the elements have order two. the relation
z+y=z+ wis equivalent to z + y + z + w = 0. We will use the latter form because it

makes the symmetry of the relation explicit.

Lemma 2.1 Givenz.y, z, w € M such that z + y+ z + w = 0, if the set {z,y,z,w} has
~ any edges on it, it has all four possible edges. '

Proof: Suppose there is exactly one edge, zzw, on these four points, as in figure 2.1. We

Figure 2.1:
x R y

define a local isomorphism mapping ¢ — z, y — w, and w — y. By homogeneity this
~ isomorphism can be extended to a € Aut (3). Since z + y+ z+ w = 0 and o preserves the
rditibn S, a(z) = z. However, this introduces a new edge, zyz = a(zzw), contradicting
our assumption that there is exactly one edge on these four points.

Suppose there are éxactly two edges on {z,y,z,w}, as in figure 2.2.
Consider the local isomorphism that fixes z and interchanges z and y. Again, the induced
automorphism introduces an extra edge on the four points, resulting in a contradiction.

If we have exactly three edges, zyz, zwz, and yzw, we can use the same argument and
again get a contradiction. Thus, we can conclude that, if there are any edges at all on

~ {#,v,2,w}, all four possible edges must be present. O

Now let us start again with four points z, y, z, w such that z+y+z+w = 0 and assume
there is no edge on {z,y, z, w}. Take a point a independent over {z,y,2,w}. We will study
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Figure 2.2:

the edges on the affine closure E of {a,z,y, 2z} in M, which has size 8. We can identify the

remaining members of E as follows. Let

b=a+z+2,
c=a+z+y,
d=a+z+w.

We can see that a, b, ¢, d, 2, v, z, w are all distinct and so these are all the members of £.
We will show that up to a permutation of the points in £ and complementation there is
only one possibility for the set of edges on E. The possible edge set for E will be described
in Case 1.2 below.

The point a must have an edge with {z,y, z,w}, otherwise, a and w would each have
the same type over {z,y, 2z}, which contradicts the definability of the relation S. By the

same token we have:

Lemma 2.2 For any 3-set T C {z,y,z,w}, e point a, independent over {z,y,z,w}, must
make at least one edge with T.

We now consider various cases according to the number of edges which a makes with

{zs Y, 2, wy. )
Case 1. There are exactly two edges between a and {z,y,z,w}. From Lemma 2.2 we
may suppose without loss of generality that the two edges are azz and awy, as shown in

figare 2.3. Since azrz is an edge and a + b+ z + z = 0, by Lemma 2.1 we have all four
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Figure 2.3:

edges on {a,b,z,2}. It also follows that a + b + y + w = 0 [all edges]. Consider the 4-set
{a,z,y,2}, on which the only edge is azz. For any r € Sym({a, z, z}), the map 7 U {(y, y)}
is a local isomorphism. Note that 7 U {(y, y)} means the extension of r to {a, z, y, z} which
maps y to itself. Hence there exists 7* € Aut (M) such that 7 C ™ and 7*(y) = y, where
x C #~ indicates that the function 7 extends the function x. Since F is the affine closure
of {a,z,y,2}, n* fixes E as a set.

We now consider two subcases:

Case 1.1. The only edges between b and {z,y, z, w} are bzz and byw. Let 7 fix z and switch
a and z. Consider the image Z of the 4-set {a,b,y, w} under 7. There are four edges on Z.
Hence each of the points in Z — {z,y} makes an edgé with {z,y}. Since none of a, b, z, w
make an edge with {z, y}, the remaining points of Z must be c and d. But a+b+y+w = 0
and c+d+z+y # 0. So Z cannot be the image under 7" of {a,b,y,w}, contradiction.

Case 1.2 Otherwise’. Then b makes at least one edge with {z,y, 2, w} other than bzz and
bwy. Let m; be the local isbmorphism which fixes a, y, w and switches z and =z, and 7,
be the local isomorphism which fixes a, z, z and switches y and w. From the homogeneity
there exist 7, 73 € Aut (M) extending =, 7, respectively. Since b = a + z + z, we have

x7{b) = x3(b) = b. Now the group {#7],73) acts transitively on the set

=z, 9}, {z, v}, {z, 4}, {z, w}}.

Thus, since  makes an edge with one of these pairs, it makes an edge with each of them.
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Focusing for the moment on the edges through a, we observe that:

a+d+y+2z=0 [noedges], a+d+z+w=0 [noedges]
at+c+z+y=0 [noedges], a+c+z+w=20 [no edges],
c+d+z+2=0 [noedges], c+d+y+w=0 [noedges]

Each of the equations may be checked by sﬁbstituting for b, c, d the expressions which define
them. In each case the absence of edges follows from Lemma 2.1. For example, since ayz is
not an edge, there is no edge on {a,d,y, z}.

We also observe that the map o, which fixes b and z, and permutes z, w, and y cyclically,
is a local isomorphism and hence extends to o* € Aut (M). Sincea = b+z+2z,c = b+z+w,

and d = b+ z + y, o™ permutes a, ¢, and d cyclically. Applying o™ we get:

b+c+z+w=0[all edges], b+ c+y+ 2z=0 [all edges],
b+d+z+y=0][all edges], b+ d+ z+ w =0 [all edges].

At this point we have determined all the edges of E which intersect both {a,b,c,d} and
{z,y,z,w}. '

It remains to discover what edges, if any, there are on {a,b,c,d}. The 4-set {z,z,c,a}
spans E, and the only edge on it is {a,z,z}. Thus there is an automorphism of M which,
while fixing E as a set, permutes z, z, a cyclically and fixes ¢. Since there is an edge through
¢ and z, there is also an edge through ¢ and a in E. From our findings above, the third

point of that edge must be either b or d. So by Lemma 2.1 we have
a+b+c+d=0[all edges].

We conclude that this case determines uniquely the set of edges on F.

Case 2. There are six edges between a and {:z:, y,z,w}. Clearly, we have
a+b+z+z=0[all edges], a+b+y+ w=0 [all edges].

To obtain a contradiction suppose that b makes more than the edges bzz, byw with {z,y,z,w}.
By the same argument as in Case 1.2, b makes six edges with {z,y, z, w}. But then z and
y both form a complete 3-graph on four points with the edge abz. This is a contradiction
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of Lemma 2.1 since a+b+z+2z=0but a+b+y+ 2z # 0. Therefore there are exactly two
edges between b and {z,y,z,w}. This takes us back to Case 1.2 with the roles of @ and b

interchanged.

Case 3. There are either five edges between a and {z,y,z,w} or three edges two of which
intersect only at a. Without loss of generality we may suppose that azz, azy, and ayw are
edges, and that ezw is not. There is a local isomorphism « fixing ¢ and z and switching
y and 2. Let a™ € Aut(M) extend a. Since z+y+ 2+ w = 0, a"(w) = w. Thus

‘azw = o*(ayw) is an edge, contradiction. So this case cannot occur.

Case 4. There are four edges between a and {z,y, 2, w}. Up to a permutation of {z,y, z, w}
there are only two possibilities for the set of four edges. There must be two edges whose
intersection is @, which we may take to be azz and ayw. Now the two possibilities are
ridrisitinguished by whether the two remaining edges intersect in two points or one. In the
former case the two remaining edges may be taken to be azy and azw. This case is ruled out
by the argument of Case 3. Thus the two remaining edges which a makes with {z,y, z, w}
meet only in a. Thus without loss of generality the edges which ¢ makes with {z,y,z,w}

are arz, ayw, azy, and azw. Consider the edges between b and {z,y, 2z, w}. Since
a+b+z+4+2=0[all edges], and a+ b+ y+ w =0 [all edges],

- bzz and byw are both edges. From Case 3, b cannot make either three or five edges with
{z,y,z,w}. From Cases 1 and 2, if the number of edges between b and {z,y, z, w} were two
or six, then the number of edges between @ and {z,y, z,"w} would be six or two respectively.
We conclude that b makes exactly four edges witﬁ {z,y,z,w}. The argument for a shows
that the other two edges which b makes with {z,y, 2, w} have intersection 4. So there are
two cases:

Case 4.1. brealizes the same type as a over {z,y, z, w}. Since there are four edges on each of

“the sets {é, b,z,2}, {a,b,z,y}, the mapping (a,d,z,z) — (a,b,z,y) is a local isomorphism
and so extends to an antomorphism of M. Since a+b+z+2z=0buta+b+z+y #0,
this is a contradiction. ' '

Case 4.2. The edges between b and {z,y, z, w} are bzz, byw, byz, and bzw. There is a local

isomorphism which fixes'a and maps ¢ — 2z — w - y — z. The induced automorphism
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switches b and ¢. Thus the edges which ¢ makes with {z,y.z, w} are czy, czw. cxw, and
cyz. Sincea+d+x+w =a+d+ y+ 2z = 0, neither drw nor dyz is an edge. Since
b+d+w+2=0>b+d+x+y = 0, neither dwz nor dzy is an edge. Finally, since
c+d+z+2=c+d+y+ w = 0, neither drz nor dyw is an edge. We conclude that

there are no edges between d and {z,y, 2, w}. This contradicts Lemma 2.2.

Case 5. Otherwise. From above, if any of a, b, ¢, d makes a number of edges with
{z,y,2z,w} which is different from three, then the same is true for all of a,b,c,d. Thus
in the present case each of a, b, ¢, d makes three edges with {z,y,z,w}. On the one hand,
from Case 3 any two of the three edges which a makes with {z,y,2,w} meet in a pair. On
the other hand, from Lemma 2.2 the intersection of the three edges is a. Thus without loss
of generality we may suppose that the edges which ¢ makes with {z,y, z, w} are azy, ayz,
and azz. Since a+ b+ z+ 2 = 0, bzz is an edge and byw is not by Lemma 2.1. To obtain
a contradiction suppose that the edges which b makes with {z,y, z,w} are bzz, bzw, bzw.
(Just as a selects a triple from {z,y, z, w} so must §.) Notice that {a, b, y, w} is a 4-set with

no edges such that @ + b+ y + w = 0. Further, the edges which = makes with this 4-set
| are precisely zab, zay, and zbw. Since the last two 6f these intersect only at z, we have
a contradiction by Case 3. It follows that b realizes the same type over {z,y,z,w} as a.
Similarly, ¢ and d also realize the same type over {z,¥, z,w} as a. We may also note that
the only edges which {a,b} makes with {z,y, 2, w} are abz and abz because

a+b+z+z=a+b+y+w=0,

and azz is an edge, while ayw is not. In the same fashion all edges which meet {a,b,c,d}
in a pair are determined. In particular, between w and {a,b, c,d} there fs no edge between
w and {a,b,c,d}.

It only remains to determine the edges on {a,b,c,d}. Since a+b+c+d= 0, we have all
or none. If there are none, then w realizes the same type as a over {b, c,d}, contradiction.

Thus we have all four edges on {a,b,¢,d}.

We have shown above that up to a permutation of E there are two possibilities for the
set of edges on E found in cases 1.2 and 5 respectively. However, it is easily checked that

the permutation (ay)(bw)(cz)(dz) maps each of these edge sets into the complement of the
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other. Thus up to complementation and a permutation of E there is only one possibility
for the edge set on E. It is also clear that, if M is non-trivial, then it has affine dimension
~ greater than four because the structure on E found above is clearly not homogeneous. It is
important to observe that no 4-set in £ has exactly 2 edges on it. Hence the same is true

of M.

Fbr the rest, replacing M by M if necessary, we may suppose that there is a closed
fsubset '
E = {a,b,c,d,z,y,z,w}
~of M whose edge set is that found in Case 1.2. Let e € M — FE be arbitrary, and F denote
the affine closure of {e} U {z, 3, z, w}. There are two cases:
Case I. M[E = M{F. Then there exists f € F — E such that f and b realize the same
type over {z,y,z,w}, i.e., b and f both make edges with every pair from {z,y,z,w}. For
~every pair {u,v} from {z,y,z,w}, on {b, f,u,v} we have at least the edges buv and fuv.
Hence at least one of bfu and bfv is an edge, otherwise we would have a 4-set with exactly
two edges on it. Therefore we can choose u, v in {z,y, 2z, w} such that there are four edges
on {b, f,u,v}. Without loss of generality, there are four edges on {d, f,z,y}. From the
discussion above we héve

b+d+z+y=0 [all edges].

Henée d and f realize the same type over z + y + b, contradiction.

Casé II. Otherwise. Then the edge set on F is like that described in Case 5. In particular,
there exist f € F'—FE and a 3-set from {z, y, 2, w}, say {z, ¥, 2}, such that the edges between
f and {z,y, 2, w} are fzy, fyz, and fzz. There is a local isomorphism ¢ which fixes z, y, z
and takes b to f. Let 0™ € Aut (M) extend 0. Then o*(w) = wsincez+y+2+w=20
and S is definable. Hence f and b realize the same type over {z,y, z, w}, contradiction.

22 N=Z,x---xXZp,p>2

“We now consider the cases in which p > 2. In this situation, the relation z +z =y + 2

is non-trivial and definable. Restricted to distinct z, y, z this relation must be either the
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relation of the 3-graph or the complementary relation. Replacing M by M if necessary, we
may suppose that £ +z = y + z defines the edge set of M.

Hp=3,then x4+ = y+z is equivalent to z +y+ z = 0 which shows that the relation is
symmetric. In this case M has the property that each doubleton is included in exactly one
edge. By Lemma 1.10, M is PG(2,2). But the socle of the automorphism group of PG(2,2)
is PSL(3,2) which is simple non-abelian. So this case yields no homogeneous 3-graphs.

If p > 3, then we test to see if the relation is symmetric. We let 2z = y + z, and hence

y = 2z — z. If the relation is symmetric, then also 22 = z + y, and y = 2z — z. But then
20 —2z=2z2—1x

and z = z. So, for p > 3, if the relation is non-trivial, it is not symimetric, so it cannot be

the relation of a 3-graph.




Chapter 3
Nonabelian Simple Socle

In this section M denotes a supposed finite homogeneous 3-graph whose automorphism
group is G. N denotes the socle of G and is assumed to be non-abelian. As noted in
Theorem 1.12, since G is 2-transitive in its action on M, N is simple, N < G < Aut (N),
~ and G acts in the following way: M can be identified with a conjugacy class of subgroups of
N and G acts by conjugation. Cameron [4, page 8] lists all triples (N, n, k) such that there is
é.ﬁnite k-transitive permutation group G of degree n with socle N, but no (k+ 1)-transitive
permutation group of degree n with socle N. We have reproduced Cameron’s list below in
Table 1. The list indicates how many 2-transitive fepresentations there are in each case,
‘that is to say, how many possibilities there are for the conjugacy class of subgroups of N,

which is naturally identified with M.

27
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N n k Remarks
A,.n>5 n n  Two representations if n = 6
PSL(d,g),d>2 (¢ -1)/(g=1) 3ifd=2  (dg)#(22).(2,3)

21 d>2 Two representations if d > 2
PSU(3,9) @ +1 2 g>2
2B5(q) (Suzuki) @ +1 2 g =22t 52
2G2(q) (Ree) ¢+1 2 g = 3%t 52
PSp(2d,2) 22d=1 4 9d-1 2 d>?2
PSp(2d,2) 22d-1 _ 9d-1 2 d>?2
PSL(2,11) 11 2 Two representations
PSL(2,8) 28 2
As 15 2 Two representations | N
M;; (Mathieu) : 11 4
M;; (Mathieu) 12 3
M;, (Mathieu) - 12 5 Two representations
M, (Mathieu) 22 3
Mz3 (Mathieu) 23 4
M4 (Mathieu) 24 5
HS (Higman-Sims) 176 2 Two representations
Cos (Conway) 276 2

Table 1.

We will consider all the pairs (¥, n) which occur in Cameron’s list and check for which
of them there is a corresponding group GG whose 2-transitive permutation representation of

degree n yields a homogeneous 3-graph. The results of our search will be as follows. The

only non-trivial finite homogeneous 3-graphs are those given by the pairs:
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N =PSL(2,9), = =10,
N = PSL(3,2), n="7,

N =PSL(3,3), n=13.

As well as supplying the list of possible pairs (N, n) which is the basis of our work in this
section, Cameron [4] offers another useful piece of information. It turns out that, except
in the case in which ¥ = PSL(2,8) and n = 28, the action of N is also 2-transitive. Note
that we may ignore the alternating groups because the 3-graphs generated by their natural
“action either have all possible edges or none and thus are of no interest. We now proceed
to treat the remaining pairs (¥, n) listed in Table 1 beginning with the cases in which N is

one of the projective special linear groups.
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3.1 Linear groups

Let d > 2 and V = V(d,q) denote the vector space of dimension d over GF(q). Then
the special linear group SL(d,q) is by definition the group of all linear transformations
of V into itself which have determinant 1. The center of SL(d,q) consists of the lincar
transformations of the form v + Av, where A € GF(¢) and A? = 1. Let P = PG(d - 1,q)
denote the projective space corresponding to V' which is defined to be the set of 1-spaces of
V.. Clearly, SL(d, q) has an induced action on P. The projective special group PSL(d, q) is
defined to be the quotient of SL(d, q) by its center. An equivalent definition is obtained by
saying that PSL(d, q) is the group of permutations of P induced by SL(d, ¢) — we can check
that the elements of SL(d, q) which fix P pointwise are just the elements of the center. If
we fix a basis of V', then with respect to that basis the elements of‘SL( d,q), and hence also

those of PSL(d, q), are represented by d x d matrices over GF(q) with determinant 1.

According to Table 1, for d > 2 there are two possible 2-transitive representations of
PSL(d, q) of degree (¢® — 1)/(g — 1). These are afforded by the action on the 1-spaces of V
and the action on the (d—1)-spaces of V. From our perspective these two representations are
the same because, whether we deal with 1-spaces or (d— 1)-spaces, the resulting permutation
group is the same. The mé,pping A — (A~1)T is an automorphism of the group of d x d
matrices of determinant 1. The corresponding automorphism of PSL(d, q) interchanges the
stabilizer of a 1-space with the stabilizer of its null space. When d = 2, then d -1 = 1 and
‘the two possible representations coincide. Thus below it will be sufficient to examine the
‘action on 1-spaces, i.e., the action on P.

For any v € V — {0}, the coneéponding 1-space is (v) € P. We say that distinct pbints
(v1), --., {vk) in P are dependent or independent according as {v1,...,Vx} is dependent or

independent in V. In particular, we say that the points are collinear if
dim({vy,...,Vk)) = 2.
We note the foliowing elementary lemma.

Lemma 3.1 z} Let (ay,...,a4) and (by,...,ba) be independent d-tuples in P. There
exists a € PSL(d, q) such that afa;) = b; (1 < i < d).
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i) Letd > 2, ord =2 and q be even. Let a1, a3, a3, ay € P be distinct collinear points.

There ezists o € PSL(d, q) such that a(ay) = a1, a(az) = az, and a(az) = a4.

iii) Ifd = 2 and q is odd, then PSL(d, q) has two orbils on triples of distinct points.

From the lemma. if d = 2 and g is even, then the action of PSL(d, ) on P is 3-transitive.
Hence no non-trivial homogeneous 3-graph can arise in this case. In the other cases, because
there are only two orbits, Oy and O3 say, of N on triples of distinct points of P, the edge-set
of M must be one of these two orbits (i¢ does not matter which, of course). Thus there is
6n1y one possibility for G, namely, the group consisting of all # € Sym(P) which fix O; and
0, as sets. In particular, whenever d > 2 we can assume that the edge-set of M is the set
of all triples {e,b,c} C P such that a, b, c are collinear. Thi.;s means that the set of lines of
the projective space is invariant under G. We now proceed to consider various cases which

arise. The case in which d =2 and g > 9 will be left to the next subsection.

3.1.1 d>3
Fix a basis of ¥ and with respect to the basis let a, b, ¢, d, e be the following points of P:

((1,0,0,0)), {(0,1,0,0)), {(0,0,1,0)), {(0,0,0,1)), {(1,1,1,0)).

There are no edges on either of the 4-sets {a, b, ¢, d}, {a, b, ¢, e}. Thus, from the 3-homogeneity
of M there exists a € G which fixes a, b, and ¢, and maps d to e. Also, there exists f,
pamely ((1, 1,0, 0)), such that abf and cef are both edges. However, there is no f such that
- abf and cdf are both edges. This contradicts the invariance of the set of edges under a.

Thus no homogeneous 3-graphs arise in this case.

3.1.2 d=3,q9>3

Each line in PG(2,q) contains ¢ + 1 points. So, since ¢ > 3, we have at least five points
on each line. ,Tarké two lines, ! = ab and m = zy in the projectiver space which meet in a
~ point o. Let p be the point of intersection of the lines az and by. Now consider points ¢, d
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on [ different from e, a, b, and let :. w be the unique points on m such that pcz and pdw
are edges. as shown in figure 3.1. In the 3-graph M each of the quadruples {a. b. c. d} and
{z. y. z. &} has all four possible edges. and there are no other edges on these eight points.
From the 3- homogeneity there exists a € & which switches z and w and fixes a. b. e. d. r
and y. Clearly, a{p)} = p and so a fixes the lines pc and iy setwise. Since z is the unique
point of intersection of the lines pc and zy, a(z) = z. This contradicts a{z) = w. So, again

we gét no homogeneous 3-graphs.

313 d=3,q=2

Here we get the homogeneous 3-graph of size seven mentioned in Theorem 1.10.

314 d=3,9q=3

Here M is the projective plane over GF(3) which has 13 points. As noted above, for the
edge-set of M we may take the set of all triples {a,b,c} in P such that a, b, ¢ are collinear.
This set of edges is invariant under the group PGL(3,3) whose definition is the same as that
of PSL(3, 3) except that the iilrleat’transfoxmatioﬁs are now only required to be nonsingular

‘and not necessarily to have determinant 1. From this observation we get

R R T TTIII I /™™
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Lemma 3.2 Leta. b, c, d € P =PG(2,3) be distinct points no three of which are collinear,
and z, y, z, u be a similar quadruple. There exists a € PGL(3,3) such that a(a) = z,
a(b) =y, alc) = z, and a(d) = u.

" We now check that in this case any local isomorphism of M extends to an automorphism.

We will consider cases proceeding in increasing order of size of domain. Since Aut (M) is

" evidently 2-transitive we begin with size three.

Suppose that a — a’, b — b, c — ' is a lbcal isomorphism. From i) of Lemma 3.1, the

local isomorphism certainly extends to an automorphism of M if a, b, ¢ are not collinear.

So suppose that a, b, ¢ are collinear. Choose a point o off the line abc and let z be a third

point on the line bo, as shown in figure 3.2. There are no edges on g, c, 0, z, and b is the

__intersection of the lines ac and oz. Perform the same construction on a’, ¥, ¢ to get o’ and

z’. From our remarks above there is an automorphism that maps @, ¢, 0, z to &/, ¢/, o, '’

respectively. Since the geometry is preserved this automorphism must also map b to &'

Figure 3.2:

'~ Now we consider local isomorphisms with domain of size four. If the domain consists

of four points, no three collinear, then, from Lemma 3.2 the local isomorphism extends to

- _-an automorphism. For four points all on a line any automorphism which maps three of the

__points as required must also map the fourth pbint appropriately because the lines have size

four. For three points on a line and a fourth point off the line, we can use the same argument

as for three ﬁoints ona liné, letting the fourth point be the point o in the construction.
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Before proceeding further we need two observations. First, consider four points z, y, z, w,
no three of which are collinear. Six lines are generated by these points, as shown in fig-
ure 3.3, and the intersections of these lines give us three new points. Since each line has
four points on it, there is one additional point on each line. None of the points shown can
coincide, since each pair of lines intersects in a single point. So we have thirteen points
defined, which is all the points in the plane. We conclude that, given any five points, at
least three of them must lie on a line.

For any X C M we define dcl( X ), the definable closure of X in M to be
{ae M:g(a)=aforall ge Gx}.

For our second observation, let ¥ be a local isomo'r'phjsm ’of M with domain X UY, the
disjoint union of X and Y. Y C dcl(X), then it is sufficient to show that there is an
automorphism extending y[X. We call a subset X of M irredundant if fornoa € X is a
in dcl(X — {a}). A subset which is not irredundant is said to have redundancy. Clearly, to

- prove 3-homogeneity it suffices to consider local isomorphisms with irredundant domain.

Figure 3.3:

.

Now consider a local isomorphism whose domain is irredundant of size at least five. From

irredundancy the domain has the following character. There are three points on a line, say
a, b, c. The fourth point of that line, o say, cannot be in the domain by irredundancy. Let

z, y be two other points of the domain. If the line zy meets abe in any of the points a, b,
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¢, then the domain clearly has redundancy. Therefore zy and abc meet in 0. However, now
a is clearly in the definable closure of b, ¢, z, y. Thus there is no local isomorphism with

-irredundant domain of size greater than four.

315 d=2,q=5

In this case M is the projective line over GF(5), a structure of size six. We will show
- that N gives us a homogeneous 3-graph. Take a basis of V = V(2,5) and let the points of
P = PG(1,5) be labelled as follows:

'7 20 =((0,1)}, 0=((1,0)}, 1=((1,1)}), 2=((1,2)), 3=((L,3)), 4= ((1,4)), -
The group N = PSL(?, 5) is generated by the mappings:
i 4, i it 1, i 1/,
where the ariphmetic is modulo 5 and
i-00 =00, 1/o0 =0, and 1/0 = 00
for‘arlrl 1, 0 <7 < 4. Take the edge-set to be the orbit of {00,0,1}. Then the edges are:
oooi, 0004, 0012, 0023, 0034, 013, 023, 024, 124, 123.

Since .V acts 2-transitively, in order to show homogeneity it suffices to consider local iso-
morphisms which fix both 0 and 1. Since the perfnutation (14)(23) is in N, any local
isomorphism with domain of size 3 extends to an automorphism.

For the rest, we claim that the definable closure of any 3-set is M. To see this it suffices
to look at the edge E = {00,0,1} because the edges and non-edges are interchanged by

' = 1
the outer automorphism of N induced by conjugation by the matrix { .Now 4 is
, : 0 2

the unique point of M — E which makes an edge with co0. Also, 2 and 3 are distinguished
because 2 makes an edge with ool while 3 does not. This is sufficient.
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316 d=2,q=7

Now M is the projective line over GF(7). Following the same method as in the previous

case we fix a basis of V' = V(2,q]. In terms of the basis we label the points of M by oo,

0,1, ..., 6. Here co means ((0,1)), while i means ((1,:)) for 1 < i < 6. The orbits of

Nooo, the pointwise stabilizer of {co,0}, are {0}, {oc}, {1,2,4}, and {3,5,6}. The matrix
0 1 ' ' ' '

l' : maps oo, 0, 1 to 0, oo, 6. Thus any non-empty symmetric ternary relation on
-1 0

L

M which is N-invariant contains all triples. So no homogeneous 3-graph arises in this case.

The essential difference between this case and the last one is that —1 is a square (mod 5)

‘but not (mod 7).

3.1.7 d=2,q=9

The group PSL(2,9) is isomorphic to Ag. We find it convenient here to focus on N in its
guise as an alternating group. We will describe a 2-transitive action of Sg of degree 10.
We view Sg as the group of all permutaﬁons of the set @ = {a,b,c,d,e, f}. We label the
partitions of this set into two 3-sets by the integers 0 throﬁgh 9 as follows.
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Label Partition
0 abc | def
1 abd | cef
2 abe | cdf
3 abf - |  cde
4 acd | bef
5 ace | bdf
6 acf | bde
7 ade | bcf
8 adf - | bee
9 aef | bed

We study the induced action of G = S¢ on M = {0, 1,...,9}.
Lemma 3.3 G acts 2-transitively on M.

.Proof: Since G clearly acts t:ra.nsitively on M, it is sufficient to show that Gy is transitive
on M — {0}. Let i = {X,Y} be a partition of {a,b,¢c,d, e, f} into two 3-sets. It is sufficient
to show that there exists ¢ € Gp which maps {X,Y} to 1. Without loss of generality,
X N {a,b, c}l = 2. Solet X N {a,b,c} = {u,v} and X — {a,b,c} = {w}. Now let g permute
a, b, ¢ so that g(u) = a, g(v) = b, and permute d, e, f so that g(w) = d. Then g € Gy and
g,(i)‘z 1 as required. O |

We note from the proof that Ag also acts 2-transitively on M. For, when we created
g € Gy, we arbitrarily chose g(u) = a and g(v) = b. So, we can make g an even permutation,

switching the values of g() and g(v) as necessary to adjust the parity.
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If we take one part X; of a partition ¢, then, for a distinct partition j, the intersection -
of X; with one part of j, say X, will have exactly one element in it, while the intersection
of X; with Y; will have exactly two elements. Also, then |[Y;NY;| =1 and |¥;n X,| = 2. So,
from a pair of partitions 7, j, we have generated a set (X; N X;)U(¥; N Y;) that is a pair in

Q= {a,b,c,d,e, f}. More explicitly, for p = {z, j} € [M]? define F(p) to be
{eeQ:(3X €)Y €5)(XNY = {u})}.

By inspection F({0,1}) = {c,d}. From the 2-transitivity of the action on M, F maps [M)?
into [Q)2. Now |[Q)?| = 15 and |[M]?| = 45. From the 2-tramsitivity of the action on 2,
F~1(X) has the same size for all X € [Q2]2. Therefore |F~!(X)| = 3forall X. Define E to be
the equivalence relation on [M]? such that pEq if and only if F(p) = F(q). The equivalence
classes of E will have size 3. In particular, the E-class of {0,1} is {{0,1}, {5,7}, {6,8}}.

Looking at Gg the pointwise stabilizer of {0,1} we find it is generated by the permuta-
tions (ab), (ef), (ae)(cd)(df), and hence by the permutations

(49)(58)(67), (23)(56)(78), (29)(34)(57).
Define R to be the set of all p € [M]3 such that |
3g3r{(pC qUT) A (gET)].

We regard R as the edge set of a 3-graph with vertex set M. The elements of R will be
called edges. |

Lemma 3.4 i) For distinct ¢, j, k € M, {i,7,k} € R if and only if there ezistsl €¢ M
such that {i, j}E{k,1}. |

ii) If {p,q,r} is an E-class,e € R, ande C pUqU, then

(eCcqur)v(eCcrup)v(eCpUyg).

iii) If {p,q,r} is an E-class, and e € [pU q U r]?, then there are either two or four edges

an e.
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Proof: i) It is sufficient to treat the case in which ¢ = 0 and j = 1. Suppose there is
no ! € M such that {0,1}FE{k,!}. Then & € {2,3,4,9}. Since Gp acts transitively on
{2,3,4,9}, it is sufficient to check the case where k = 2, i.e. that neither the E-class of
{0,2}, nor that of {1,2} gives rise to an edge {0,1,2}. We find that the respective E-classes
of {0,2} and {1,2} are

(0,2}, (4.7}, (6.9}, ({12}, {4.5}, {8,9}}.

So we have that no equivalence class generates the edge {0,1,2}, which contradicts our
initial assumption.
ii) We can take p, ¢, r to be {0,1}, {5,7}, {6,8} since these are the pairs in the E-class ‘
| of {0'1}. Looking at Gg; we see that 5 and 7 can be switched while holding the rest of
pU qUr fixed; similarly, for 6 and 8. Thus it suffices to check that {0,5, 6} ¢ R, which
follows from the fact that {0,5}, {1, 7}, {3,9} is an E-class.
m) We have two cases. Either e contains two pairs in the E-class in entirety, or e contains
one pair, and one element from each of the remaining pairs. In the first case, e will have

four edges; in the second case, e will have two edges. O

Again, we take one part X; of a partition ¢; and a distinct partition 7, and X; with

CIXan X5l =1L 1 XinY =2, YN X;] =2, and lY; NY;| = 1. This time we will map the

- pair {i,7} to the set of three pairs {(X; N X )U(Y nY),X nYJ,Y N X;}. In short, we
define F’ : [M]? — [[Q?P by settmg F'({#,7}) equal to

{F({i,iHru {U € [QF : AX € )AY €4)(U = X nY)}.

Again we define an equivalence relation E’ on [M]? from F’, as E was defined from F. So
F'({01}) = {{a,b}, {c,d},{e, f}}.and we find that the E’ class of {0,1} is {{0,1}, {2,3}, {4,9}}.
Then define R’ from E’ as R was defined from E. In the same way as before we can show
that all the properties of E and R mentioned above hold equally for E’. The triples in R’
are called co-edges. Inspectmg the E-class and the E’-class of {0,1}, it is clear that for
ie M- {0, 1},

{0,,i}e R {0,1,i} ¢ B.
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We are now ready to show that the 3-graph M with vertex set M and edge set R Vis
homogeneous. Let f : X — Y be an isomorphism between sub-3-graphs of M. We have
to show that f extends to an automorphism of M. From 2-transitivity we can assume that
0,1 € X NY and that f(7) =i for 7 € {0, 1}. We may also assume that | X| > 2.

Case 1. |X| = 3. Let X = {0,1,z} and Y = {0,1,y}. By the duality of edges and
_ co-edges we can suppose that X and Y are edges. Therefore z,y € {5,6,7,8}. Since Gy, is

transitive on {5,6, 7,8}, we have the desired conclusion.

Case 2. | X| = 4 and there are either four or no edges on X. By the duality of edges and

co-edges we can assume that there are four edges on X. From Lemma 3.4,
X - {0' 1}s Y - {0’ 1} € {{5a7}) {618}} .

But either of the first two generators of Go; switches {5,7} and {6,8}, while the third
switches 5 and 7 keeping 6 and 3 fixed. Hence f has an extension in Gg; as required.

Case 3. Otherwise. So |X| > 4 and, if | X| = 4, then X does not have four edges on it.
We claim that there exists a 4-set Xo C X such that on Xo there are exactly two edges.
From Lemma 3.4 part iii), if X C {0,1,5,6,7,8}, then any subset of size 4 of X will have
either 4 or 2 edges, and if it has 4 edges, then it was covered by Case 2, so X exists as

claimed. For the rest, by duality we may assume that
Xn{56,7,8}#0, Xn{23,4,9}#0.

By applying an appropriate element of Gg;, we can suppose that 5 € X. By examining the
E-classes, we find that each of 2, 3, 4, 9 makes exactly one edge with {0, 1,5}; the E-classes
that generate these edges are:

{{1.,4}, {2,5}, {3,6}},

{{0,9), {26}, 3.5},
(1,2}, (4,5}, (8,9},
{{0:3}, 4.8}, (5,91},
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{{0,7}, {1,5}, {2,4}},
{{0,5}, {1,7}, {3,9}}.

The edges formed are {0, 3,5}, {0,5,9}, {1,2,5}, and {1,4,5}. So now we have our Xj as
claimed. Without loss of generality we can suppose that the two edges of X, intersect in
{0,1}. We saw above this occurs only in the case that X Qr {0,1,5,6,7,8}. Thus we can
suppose that Xo = {0,1,5,6} because Gp, induces every permutation of {5,6,7,8} which
preserves the partition {{5,7}, {6,8}}. Finally, observe that every element of M realizes a
different 1-type'ovér Xo. For instance, 7 is the unique point such that there are four edges
on XoU {7}, while 2is the unique point which makes an edge with {1, 5}, {0,6}, {5,6}, and
with no other pair from Xj. This is sufficient. '

This completes our treatment of the projective special linear groups with the exception

of the case d = 2, ¢ > 9 which is treated in the next section.
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3.2 Groups which are too small

In this section we dispose of a number of the pairs (N, k) from Table 1 by showing that
thz sapposed group G cannot be large enough to yield the amount of symmetry that a
homr ogeneous 3-graph must possess. The cases addressed here are:

N = PSL(2,8) (n = 28),

N =PSL(2,q) (r=¢q+ 1, ¢>9, and ¢ odd),

V = 2By(q) (n=¢*+1, ¢g=2%%>2)

N =2Gy(q) (n=¢+1, g=23%+153).

_n these cases no homogeneous 3-graphs arise. The first observation we need shows that

the automorphism group of a finite homogeneous 3-graph is fairly large.

Lerima 3.5 Let M be a finite homogeneous 3-graph, |M| = n, and G denote the automor-
phism group of M. Then

|Gl > (1/16)n(n — 1)(n — 2)? or |G| > (1/16)n(n — 1)*(n — 3)

accerding as n is even or odd. (Note that when n is even one of n or n — 2 is divisible by

4; similarly forn — 1 or n — 3 when n is odd.)

Prcof: Consider first the case in which n is even. Fix ag, a; € M. There a.fe n choices for
ap, and then n — 1 for a;. Let X3 be the largest orbit of the pointwise stabilizer G,,q, of
{a¢, a1} in G, and let a; € X;. Let X3 be the largest orbit of the pointwise stabilizer G544,
of {ao, a1, a2} in G and let a3 € X3. Since there are | X2) choices for ay, and | X3| choices for
a3, orovided X3 exists there are at least n(n — 1)| X;|| X3| 4-tuples in the orbit under G of
{ac, a1, az,a3). Therefore we have |G| > n(n — 1)|X2||X3|. Since there are only two orbits
of Za5a, o0 M — {ag,a,}, the larger orbit X, has size at least (n — 2)/2. Let the other be
denoted Xj. An element of M — {ag, 1,a2} can make an edge with one, neither, or both of
the pairs {ag, a2}, {a1,a2}. Hence Ggpq,q, has at most four orbits on X5 — {a;} and at most
four on X3. One of the sets X, — {a2}, X} has size > (n — 2)/2. Hence |X3| > (n ~ 2)/8.

The conclusion of the lemma is now clear when = is even. For odd n the argument is similar.

T
-
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We now turn to the particular cases. We need the following information about the

projective special linear groups:
Lemma 3.6 Let ¢ be a power of a prime.
i) |PSL(2,q)| is (¢ + 1)g(q — 1) or (1/2)(g+ 1)g(g — 1) according as q is even or odd.

i) The indez of PSL(2, q) in its automorphism group is |Aut(GF(q))| or 2-|Aut(GF(q))|

according as q is even or odd.

Part i) appears in [21, page 166]. Part ii) follow from Part i) and the previously defined
propei‘ties of PSL(2, q). '
- Consider first the case in which N = PSL(2,8) and n = 28. From Lemma 3.6 we have

|G| <(8-7-6)-3 =1008
since GF(8) has Galois group of order 3. On the other hand from Lemma 3.5 we have
|G| > (1/16) - 28 - 27 - (26) = 31941.

So we have the desired contradiction.

Next, let N = PSL(2,q) and n = ¢ + 1, where ¢ > 9 is odd. Here M may be identified
with PG(1, g) the set of 1-spaces of V(2, ¢). Now PGL(2,¢) < Aut(~N) and acts 3-transitively

on PG(1, ¢) because the matrix

0 A

where A € GF(q) — {0}, fixes ((0,1)) and ((1,0)), and maps ((1,1)) to {(1,))). Therefore
G is a proper subgroup of Aut(N), and the index of G in Aut(N) is at least 2. Let q = p*,

where p is prime. From Lemma 3.6 we have
G| < (1/2)(g + 1)g(g — 1)|Aut(GF(g))] = (k/2)(g + 1)g(g ~ 1)

On the other hand, since g is odd, from Lemma 3.5, we have

1G] > (1/16)(g + 1)g(g — 1)
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Putting these two inequalities together we observe that
F<pF=g<8k+1.
It follows that ¥ < 2 and that ¢ < 9. Since this contradicts the case hypothesis, there is

nothing to prove.

We now turn to the case of the Suzuki group. Here N = 2By(g) and | M| = qi + 1, where
g = 2%**1 > 2. From (23, p. 869], [N| = (¢* + 1)¢°(g — 1): From [24, Theorem 11, p. 139]
the group of outer automorphisms of N is isomorphic to the Galois group of GF(g). Since
q = 220t1 the latter group has order 2a + 1. Hence

IG] < (¢ + 1)¢* (g — 1)(2a + 1).

On the other hand from Lemma 3.5, we have

IGl > (1/16)(¢* + 1)(¢")(d" - 2)-

These inequalities are clearly incompatible. Thus the Suzuki groups yield no homogeneous
3-graphs.
Finally, we consider the case of the Rhee group N = 2G3(q) and [M]| = ¢* + 1, where

g = 3%¢*t! > 3. From [20, Theorem 8.5, p. 456), |N| = (¢* + 1)¢*(¢ — 1). From [20, Theorem
9.1, p. 459], the group of outer automorphisms of N is isomorphic to the Galois group of

GF(g)- We obtain a contradiction in exactly the same way as for the Suzuki groups.
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3.3 Unitary groups

The treatment of the material in this section was inspired by the mimeographed notes [16]
' of Kantor. We begin by fixing g. Let V = V(3, ¢%). For x € GF(¢?), define X to be x%. Then

: X — X is an antomorphism and 0% = ¢. The automorphism o is extended coordinatewise

- tothe vector space V.

We define a Hermitian fo;m on V by:
(a,v) = u¥1 + u272 + us3T3.

Elements of V will be written as row vectors relative to a chosen basis. However, when
vectors are combined with matrices, they will be treated as though they were column vectors.
We define ulv to mean (u,v) = 0, i.e., u;91 + uy%; + ua% = 0. For a subspace U of V,
U L denotes the subspace {v € V such that (U, v) = 0}. The subspace U is totally isotropic
if U C U+, and U is non-singularif U n U+ = {0}.

Suppose that u and v generaté a subspace of dimension 2, and that this subspace, (u, v},
is totally isotropic. The subspace {u)! is the nn]ispace of T, so we know that dim((u)*) =
dim((v)1) = 2. Since u and v maust be independent vectors, dim({u)* N (v)*) < 1. But, if
(n, v) is totally isotropic, then (u,v) C ({u)! N (v)1), but then we have a contradiction, so
it must be that a totally isotropic subspace cannot have dimension greater than 1.

_ Let GU(3, q) denote the group of all linear transformations A : V — V which satisfy:

(Au, Av) = (u,v).

These linear transformations are called isometries. Relative to a basis of V' an isometry A
can be identified with 3 x 3 matrix over GF(¢?) which satisfies ATA = I. For, if A4 satisfies
this condition, then

(A, Av) = o AT(AV) = T (ATA)V = uT¥ = (u,v).

NOTETIn

The group SU(3, q) consists of the isometries of determinant 1, and PSU(3, ¢) is obtained
from SU(3, ¢) by factoring out the center. The center will consist of the scalar linear trans-
formations in ‘SU'(3 @)- The group PSU(3, ¢) acts naturally on the sabspaces of V. As long
as ¢ > 2, PSU(3, q) is a simple group and a Borel sabgroup is the stabilizer of a totally
isotropic 1-space [16, p. 9].
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According to the Main Theorem of {9}, when a group between ¥ = PSU(3.q) and
Aut (N) acts 2-transitively, the stabilizer in NV of a point is a Borel subgroup. Thus Af
can be identified with the set of totally isotropic 1-spaces of ¥. Therefore M= ¢ +1
because this is the number of totally isotropic 1-spaces. We will obtain a contradiction to
the assumption that M is 2 homogeneous 3-graph by looking at the geometry induced by
the unitary group. c

Call I a hine of M if it is a maximal subset of M such that in ¥ we have

dim(( fU:U el}))=2

A line [ of M will be the intersection of M with a line of the projective space PG (2,¢%),

so I will be uniquely determined by any two points on it.

Lemma 3.7 LetT, U be distinct totally isotropic 1-spaces of V. Then there erist d, e, and
f in V such that

T =(e), U ={f), (e.f) = (d,d) = 1, (d, &) = (d,f) = 0
Moreover, d is unique up to a scalar multiple.

This lemma follows directly from a [16, p. 8, Theorem]. From the lemma, we see that
the action of PSU(3, ¢) on the set of totally isotropic 1-spaces is 2-transitive. We can count
the totally isotropic 1-spaces in terms of the basis d,e,f. Each totally isotropic 1-space not

represented by f is represented by a vector of one of the forms:
et+af (a€GF(¢®), a+a=0) (3.1)

and
e+8f+1d (3,7Y€GF(d*), B+B#0, B+B8+17=0). (32)

There are q choices for a (the elements of GF(g)), and ¢? — g choices for 8. For each choice

of 3 there are g + 1 choices for . Thus altogether there are
1+g+(f-ag+)=¢+1

: 'tctally isotropic 1-spaces of V as noted previously. Observe that the line through {e) and
| {f} consists of (f} together with the 1-spaces represented by the vectors (3.1).
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Lemma 3.8 The set of lines of M 1s invariant under G.

Proof: Let T. U, d, e, and f be the same as in the previous lemma. Let m be the line
through 7" and U. Let H be the pointwise stabilizer of {‘T, U}in G. Let the 3 x 3 matrix A
représe‘nt an element of H NN relative to the basis d, e, f. Then Ae, Af are scalar multiples
of e, T respectively. Also, Ae, Af 1 Ad since e, f L d. Therefore e, f 1 Ad, which means
that Ad is a scalar multiple of d. Thus A is a diagonal matrix with diagonal entries x, X, p
" ‘say. Since the determinant of A is 1, we have sy = 1. Also, since Ad, Ae, and Af satisfy

the identities given in lemma 3.7, we have
(Ae, Af) = (Ae,uf) = A = 1 and (Ad, Ad) = (xd, sd) = % = 1.

Thus A = p~? and k9 = 1, so k = p?~1. We conclude that relative to the basis d, e, f

the elements of H N N are represented by the diagonal matrices

w0 0
D,=| o u9 0| (reGF(¢g)-{0}).
0 0 u

Since D,(0,1,a) = (0,479, pa), the g — 1 points of m — {T, U}, which are represented by
vectors of the form (3.1) with o # 0, form an orbit of HNN. Let us now consider the action
of D, on a point of M corresponding to a vector of the form (3.2). Inrpa.rticular, suppose
we have a fixed point of D, so that

(Du(L.B. 1) = (5= 18, 1)) = (L, 3, 7))-

Since neither 3 nor 7 is zero, these equations give u9*! = 4?9~ = 1 by comparing the ratios
of the first two coordinates and of the last two coordinates on each side. We deduce that
p® = 1,ie., D, fixes ((1,3,7)) for at most three values of y. Since there are g? — 1 possible
values for p, the orbit of {(1,3,7)) under H N N has size at least (g — 1)/3. Since ¢ > 2 by
~assumption, we deduce that (¢ — 1)/3 > ¢ — 1. Therefore m — {T, U} is the unique orbit
of HN N of size ¢ — 1. Since H N N 4 H, conjugation by any element of H induces an
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isomorphism of the permutation group (M, # N N). Thus m — {T. U’} is an orbit of H, so

the ternary relation of collinearity on M is G-invariant. O

Since a homogeneous 3-graph has only two types of triples of distinct elements and the
complementary 3-graph is also homogeneous, we may suppose that {7, U, W} is an edge of
M if and only if T, U, W are collinear. Now homogeneity fails because there are pairs of

" iines which meet in M and pairs of lines which do not.
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3.4 Symplectic groups | l

In this section we deal with the pairs (V,n) such that

N =Sp(2d,2) and n € {22¢-1 4 2471 9%-1 _9d-1} (45 9),

, Fix d > 2. We will show that this case yields no homogeneous 3-graphs. According to
the Main Theorem of [9] in this case G = N. Thus we need only study the 2-transitive
~ representations of the group Sp(2d,2) without worrying about the effect of possible outer
automorphisms. Again we rely on the notes [16] of Kantor which glve a description of the

two 2-transitive representations which exist for Sp(2d 2).

Define V = V(2d+ 1,2). Within the context of a given bilinear form (, ): V xV —
- GF(2) we define orthogonality of vectors and the related notations as we did in the case

N = PSU{3,¢q), i.e., u L v means (u, v)-O and soon.

Proofs of Lemmas 3. 9, 3.10, 3.11, and 3.12 are included in the appendix

Lemma 3.9 There ezist a symmetnc bilinear form (,):VxV—> GF (2) and a mapping
Q : V — GF(2) satisfying '

(v,v)=0 (veV), (3.3)
dm(Vt) =1, Q(v)=1 (veV*-{o}), (3.4)

and |
Qu+v)= QW)+ QW)+ (m,v) (mveV). (35)

From now on let mappings (, ):V xV — GF(2) and @ : V — GF(2) be fixed which
satisfy (3.3), (3.4), and (3.5). Further, let d denote the unique non-zero vector in V+. A
non-zero vector v is called totally singular (t.s.) if @Q(v) = 0. For any subspace U of V we
use p(¥) to denote U NUL. In particular, p(V) = {0,d}.

: m “this context the group G= Sp(2d 2) is seen as s the group of all linear transformatlons

T o7V which leave ¢ invariant in the sense that

Q(Tw)= Q(u) (neV).
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Clezrly, from the identity satisfied by @, any linear transformation which leaves Q invariant
also preserves the bilinear form. (If we were only concerned with defining the group Sp(24, 2),
the most natural definition would be to define it as the group of all linear transformations
of a +-hyperplane U of V which preserve the restriction of ( , )7 to U; +-hyperplanes are
defined below.)

A hyperplane of a vector space is a subspace having dimension one less than the vector
Spé,ce; in this case, the hyperplanes have dimension 2d. Consider two hyperplanes W and
U not containing d. W and U are in the same orbit of G if and only if there are bases

{wi:1<i<2d} and {u;:1 <7< 2d} of W and U respectively such that

Q(w;) = Q(w), (Wi:Wj) = (ui’uj) (1 <i,7<2d).

Given such bases {w; : 1 <7 < 2d} and {u; : 1 < i < 2d} there is clearly a unique T € G

the will map one basis to the other, so that Tw; = u; for each 7,1 < i < 2d. Thus to siudy

how G acts it is useful to study the kinds of bases that subspaces of V have.

Lemma 3.10 Let U be a subspace of V of dimension 2d — 1 not containfﬂg d. There ezist
vectors e, €;, f; €V (2 < i< d) such that

(enei) = (G fe) = (de) = () =0 (1<i<d 2<ik<d),  (36)
- (enf)=6; (1<i<d2<j<d), - (3.7)
Qler) = Qle;) = QE) =0 (2< j < d) @)

and such that U is one of |
(e} U {enfi:2<i<a}), (39)
({d+e}ufe,fi:2<i<d}), (3.10)
(fend+ernd+BIUfenfi:3<i<d)). (3.11)

A {2d — 1)-space (i.e., a subspace of V of dimension 2d — 1) is said to be of type 0, I or
2 according as it has the form (3.9), (3.10), or (3.11) respectively.
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Lerama 3.11 Let U be a hyperplane of V not containing d. There ezist vectors e;, f; €
V (1 <i<d) such that foralli, j,1<1, j<d,

(eiej) = (£,5) = (d,e) = (d, f) =0 | (3.12)
(en85) = 5 (3.13)
Qe)=Q(f) =0 (3.14)

arndr U zs oﬁe of the subspaces 7 |
(enfi:1<i<d), (3.15)
({d+e,d+fi}u{e,fi:2<i<d}). (3.16)

Hyperplanes of the forms (3.15), (3.16) are called +-hyperplanes and —-hyperplanes
reépectively. This terminology is natural because it turns out that the stabilizers in G
of +- and —-hyperplanes are the orthogonal groups denoted by GO*(24,2), GO~ (2d,2)
respectively. By induction on d we can verify that the number of t.s. vectors in U7t is

2?4" +2%"' _1andin U~ is 229~ — 1. Thus a hyperplane cannot be of both types.

Lemma 3.12 Let U be a (2d7- 1)-space not containing d.
i) There are ezactly two hyperplanes Uy, U; O U withd & Uy, Uy .

it) If U is of type 0, then Uy, U; are both +-hyperplanes. If U is of type 1, then one of
Uo, Uy is a +-hyperplane, and the other is a —-hyperplane. IfU is of type 2, then U,,
Uy are both —-hyperplanes.

iti) G acts 2—transiﬁvély on the +-hyperplanes, and 2—transiiively on the —-hyperplanes.

We now fix vectors e;, f; € V (1 < i < d) such that (3.12), (3.13), and (3.14) are
satisfied. Clearly, taken together with d these vectors determine a basis for V. In terms of
this basis we define ¢;, h; € G to be the unique involutions such that

g fixes f;, and both g; and h; fix all of the vectors d, e;, f;, (1 < j < d, # i). We also let
U, U~ denote the hyperplanes (3.15) and (3.16) respectively.
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Now M can be identified either with the set of +-hyperplanes or with the set of —-

hyperplanes. We consider the cases separately.

Case 1. M is the set of +-hyperp1a.nés.
Lemma 3.13 Let Uy, Uy, U € M be distinct and p(UpgNUy) C Uy. Then p(U1NU,) C Us.
Proof: From the 2-transitivity without loss of genera]ity we can take Up = UY and
Uh=g(UY)=({d+e, +1i, fi} U {e;, ;1 2 <1< d}).

Let W denote {(e;,f; : 2 < i < d). It is clear that Uy N Ur = {{fi} UW) and hence that
p(Up N Uy) = (f;). Thus our hypothesis is that U is a +-hyperplane different from Uy, Uy,
and containing f;. Let v be the unique non-zero vector in p(U;NU3). From the 2-transitivity
of +-hyperplanes Q(v) = Q(fy) = 0. Since v € U, there exists w € W such that v is one
of

w, it+w,d+e+w,d+e;+f +w.
However, since v L U/ N Uz, we have v L f;. Hence only the first two vectors listed are

possible values of v, and so v € Up as claimed. O

We define R to be the set of all triples (Up, Uy, Uz) € [M]? such that p(Upyn U;) C U,.
Notice that

p(UT Nng(UT)) = (f1),
and that f; € g;(U*t) for all 7,1 < ¢ < d. Also, for any U D (e1,f;) in M, f; & hygihi(U).

“Thus, R is a non-trivial G-invariant subset of [M]?. Supposing, towards a contradiction,

that M is a homogeneous 3-graph, we may assume that R is the set of edges of M.
We define a G-invariant equivalence relation E onr[M 12 by
{Uo, h}E{U>,U3} © [Up # Uy AUz # Uz A p(Up N UL) = p(Uz N U3).
Since
| U+, qUIE{G(U*), 00:(U*)} (1<i<d)

and since for each i, 1 < i < d, there exists ¢ € G which moves f; to f;, E is certainly

non-trivial.
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Lemma 3.14 If{Uo, (51}15{('}!2, L"ya}, then either {UO, U} = {0, U3} or {UO’ 1, (72} 18 an
edge of M.

Prc‘of: From 2-transitivity we can take Uy = U™t and U; = ¢;(U*). Suppose that
{Ud, Ui} E{Up,U}. It is sufficient to prove that U = U;. By hypothesis p(Ut NU) =
(fl‘). Since U and U* are distinct hyperplanes, dim{(U* N ) = 2d — 2. Further, since
p(UtNU) = (f;), we have

UrnU cUn{f)t = ({fi}ufe,fi:1<i<d}).

Therefore Ut N U = ({fi} U {ei,f : 1 < i < d}). By inspection the only hyperplanes
cohta.ining this last subspace but not d are the ones obtained by adjoining either e; or

d+e; to ({fi} U{e;,fi:1<i<d}). Hence U = g3(U). This completes the proof. O
We”can now derive a contradiction. We consider four distinct +-hyperplanes: Uy, Uy,
U,, Us. From the lemma
{Uo, U1} E{U,,Us} = [{Uo, Uy, Uz, Us}}® C R.
'From the assumption of homogeneity this implication is an equivalence. Now take:
Uo=U*, Uy =gi(U%), Uz = g3(U"), Us = gaga(U).

“The basis:
| d, e, § (1<i<d)

of U+ is moved by g; to
d) d+el +f1, f]a €, ﬂ (2515‘1)'

Hence
UonUy=({fi}U{e;,f:2<i<d})and p(Up N Uy) = {f;).

‘Switching the roles of f, and f, we have

Ut 00U) = (fen, b, B} Ufenfi:3Si <))
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and p(U*+Nga(UT)) = (f2). Now applying g3 which maps U*, g2(U™) to U,, Us respectively
we get
U2NUz={{er,f1,fh,d+es+ 13,3} U{e, f:4<i<d})

and hence p(U; N U3) = (f2). From all this we have:
p(Uo N ) C Uz, Uz and p(Uz N Us) C Vo, Uh.

Therefore every triple from {Up, U1, U2, U3} is an edge of M. From above this implies that
{Uo, U1} E{Uz, U3} which contradicts our finding that

p(UonUh) = {f1) # (f2) = p(U2n Us).

Case 2. M is the set of —-hyperplanes. Here we follow essentially the same strategy as in
Case 1. The roles of UY and g,(U™) are played by U~ and g,(U ™). Since p(U~" N g1 (U™)) =
(d + f;), the role of f; is played by d + f;. We omit the details.
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3.5 A; and PSL(2,11)

In this section we consider the pairs (N,n):

N = PSL(2,11),n = 11, and N = A7, n = 15.

Firstly, we show that the representations of N = PSL(2,11) of degree 11 give rise to
no homogeneous 3-graphs. A 2-tramsitive representatidn of N with degree 11 is described
by Conway [8, p. 217). Applying an outer autdmorphism we get the other representation
mentioned by Cameron. We could proceed by studying the properties of this known struc-
ture. However, we choose to give an ad hoc argnﬁhent which relies mainly on exploiting the
notion of 3-homogeneity. From Lemma 3.6 we infer that |N| = 660 and that either G = N

or N has index 2 in G.

We now consider a supposed homogeneous 3-graph M with G = Aut(M) and | M| = 11.
~Let R C [M)? denote the edge set of M. Let a, b € M be distinct. Let X (= X(a,b)),Y
(= Y(a,b)) denote {c € M : {a,b,c} € R}, M — (X U {a,b}) respectively. Let G,; denote
- the pointwise stabilizer of {a,b} in G. From the 2-transitivity of G on M,

|Gl = |GI/(11-10) € {6,12}.

From the 3-homogeneity of M, X and Y are orbits of G,; ‘a.nd so |X|, |Y] divide |Ggs)-
Since X UY = M — {a,b} has size 9, it is easy to infer that one of X and Y has size 6
and the other has size 3. Without loss of generality |X]=6and |Y| =3. Let o, y1, ¥2
enumerate Y. As already noted, G,; is transitive on Y. From the symmetry of the edge
- relation, X(a,b) = X(b,a). There exists g € G which switches a and b, fixes yo, and fixes
the set {y1, 12} setwise. It follows that {a,y1,¥2} is an edge if and only if {b,3,32} is. By
symmetry we see that there are now only two possibilities: Y U {a,b} is a 5-set with no
edges at all, or each 2-set from Y makes an edge with a and with b.

In the first possibility, we have a 5-set ‘with no edges on it generated by an arbitrary
pair; @, b. Each pair in M belongs to some such 5-set, and each such 5-set is generated by
each of the 10 different pairs it contains. Two of these 5-sets cannot have a pair of points

in common, so we can count how many of these 5-sets there are in M. There are (11-10)/2




CHAPTER 3. NONABELIAN SIMPLE SOCLE

ot
o

pairs in M, and each 5-set is generated by 10 pairs, so there would be 11 /2 such 3-sets,
- which is impossible.

So the second possibility holds, and any 3-set, which intersects Y in a doubleton and
{a,b} in a singleton, is an edge. Clearly, G, acts as the symmetric group on Y, and there
exists gy in the pointwise stabilizer of ¥ such that gy(a) = b and gy (b) = a. We now

consider two cases.

Case 1. G = N. Then |G| = 6. It follows that (gy)? = 1, the identity permutation,
and that the pointwise stabilizer of Y U {a,b} is {1}. Hence the subgroup Gyp of G fixing
each point of Y and the set {a,b} is {1,gy}. Since G is not the symmetric group on M, gy
must move an element of X. Since Gp is normalized by G4, gy moves each'point of X. So
we have a partition | '

{{z,9v(z)} :z € X}
of X into three 2-sets which is Ggp-invariant. Let these three 2-sets be X; = {z;,z!},
0 <2 < 2. Since G, = S3 acts transitively on {Xo, X1, X2}, by suitably ordering the sets
X; we can suppose that for all g € Gg;

9(Xi)=X; & g(y)=y; (1,5 <2)
To finish we consider the set X (zo, zj)- Since this set has size 6, it must intersect X; U X5.

Since there is an element of G4 which fixes X and switches X; and X3, X(zo, zg) intersects

both X; and X;. Now applying gy we see that
X1 U X2 g X(.’Eo, 16)

And we can see that Ggp acts as the symmetric group on {Xg, X, X2}. Since Gap acts
transitively on the blocks Xo, X1, X3, it follows that any 3-subset of Xp U X; U X3 which
contains one of Xop, X3, X2 is an edge. In particular, every 3-subset of X U X is an edge.
Hence the stabilizer of the set Xo U X; in G induces S, on this set. Hence 24 divides |G|,
contradiction.

‘Case 2. |Ggp| = 12. Clearly the rpointwise stabilizer H of {a,b} UY has order 2. Let
H = (k). Since G, is transitive on X, 2 moves each element of X. Therefore we get a

partition

{{z,h(2)}:z € X}
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of X into three 2-sets which is Gg-invariant. As in Case 1 let these three 2-sets be X; =
{z;,z'},0 < i < 2. We now study the action of G,; on Y U{X; : i < 2}. Since Gqp/(h) = S3
induces the symmetric group on Y and acts transitively on Xg, X7, X2, we can align the

blocks X; with the elements of Y such that for all g € G,
9(X)=X;9(m)=y; (,7<2).

.- Now gyhgy; (gy)? are both in H. Therefore gy has order 2 or 4. If gy has order 4, then
h = (gy)?. Since the restriction of gy to X has a 4-cycle, the other two points are fixed or
- transposed. So (gy)? fixes two points of X and, since h moves each point of X, (gy)2 # A.
Therefore (gy)? = 1. It follows that & and gy commute. Hence gy preserves the partition
{Xo, X1, X2}. If gy switches two of {Xo, X1, X2}, then for a suitable element g € G,
9 lgyggy induces a 3-cycle on {Xp, X1, X2}. This is absurd since g~'gyggy is clearly in
H. Therefore gy fixes X; as a set for i < 2. If gy has the same action as 2 on X, then
hyy = (ab), contradiction. Now, by composing gy with A if necessary, we can suppose that
gy = (ab)(z;z!) for some i < 2. Conjugating gy by suitable elements of G,; we see that
" (ab)(ziz’) € G for each i < 2. Taking the product of two of these elements we get an element
of the pointwise stabilizer of {a,b} UY which is not in (h). This contradiction completes
Case 2.

Now we turn to the other case considered in this section in which ¥ = A7 and n = 15.
As in the previous case no homegeneous 3-graphs arise. We give an ad hoc argument similar
to that made for the case in which N = PSL(2,11) and » = 11. However, this case turns
out to be a lot simpler. The only fact from group theory which we quote here is that
Aut(A7) is S7 acting by conjugation. Therefore G is either A7 or S;7, which implies that
IG| € {2520, 5040}.

We consider a supposed homogeneous 3-graph M with G = Aut(M) and |M| = 15.
Let R C [M]? denote the edge set of M. Let a, b € M be distinct. Let X (= X(a,b)),Y
(':, Y(a,})) denote fee M:{abc}e M }, M — (X U {a,b}) respectively. Let G,; denote
the pointwise stabilizer of {a,b} in G. From the 2-transitivity of G on M,

|Gas] = 1GI/(15 - 14) € {24,48}.
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From the 3-homogeneity of M, X and Y are orbits of G, and so |X|, Y] divide |Gl
Since X UY = M — {a,b} has size 13, it is easy to infer that one of X and Y has size 1 and
the other has size 12. Without loss of generality |X| = 1 and |Y| = 12. But then any two
points define an edge uniquely, which occurs non-trivially only in a structure of size 7, from

Lemma 1.10. So M cannot be 2 homogeneous 3-graph.
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3.6 Sporadic groups
In this section we consider the pairs {\V,n) in Cameron’s list for which N is a sporadic

simple group. These are the cases:

N = My; (Mathieu) n € {11,12},
N = Mj; (Mathieu), n =12
N = M,; (Mathieu), n = 22,
N = Ma3 (Mathieu), n =23,
N = My4 (Mathieu), n =24,

N = HS (Higman-Sims), n = 176,

N = Coz (Conway), n = 276.

3.6.1 N = HS (Higman-Sims), n = 176

“We first turn to the penﬁltimate pair inrthe list. Until further notice N = HS. We consider a
2-transitive action described by Graham Higman in [15]. We will show that this group does
not correspond to any homogeneous 3-graph. At the time when [15] was written the author
was not certain that the group he described was the same as the group of D. G. Higman
and C. C. Sims [14], although both groups had the same order and were identical in many
other zéepects. Subsequently, the classification of finite simple groups was completed and it
turned out that there is only one sxmpie group of the order in question, 44,352,000. Thus

the permutation representation described by Graham Higman is indeed a representation of
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the Higman-Sims group. In {15, p. 76] Higman describes the set on which the group acts

2-transitively as:
P={0,0c}uDuD u(DxD)yu(DxD");UE.

Here D, D~ are sets of size 6, (D x D), and (D x D"); are two copies of the cartesian
product D x D”, and E is a set of size 0. Towards a contradiction suppose that M is a
- homogeneous 3-graph such that M = P and such that the socle ¥ of G = Aut(M) has the
| ;crtion described in [15]. |

We consider the stabilizer H = Nyg ) in N of the set {0,00} C M. According to [15,
p- 78] H can be written (¢, 1,S¢). We focus on the action on {0,00} U Du D". The group
Se fixes 0 and oc and acts as the symmetric group on each of Vthe 6-sets D and D". Let
€: D — D= be a bijection, and ¢ also denote thé isomorphism from Sym(D) onto Sym(D"*)
which it induces. Let 7 : S¢ — Sym( D) be the restriction map for D and v° : S¢ — Sym(D*)
be the restriction map for D". A crucial point about the action of Sg is that (y") !¢y is an
outer automorphism of Sg. The consequence of this that we need below is that the stabilizer
in Sg of a point in D* (D) acts on D (D*) as PSL(2,5) acts on the projective line over
GF(5). In particular, we have: |

the stabilizer in Sg of a point in D™ (D) acts 2-iransitively on D (D*) (3.17)

Tarning to the other generators of Nyg .}, 7 stabilizes D 1! D* pointwise and switches 0
and o. Finally, ¢ fixes 0 and cc and swit’che;s the sets D and D*. We note that Sg has
index4in H. In [15] it is also pointed out that r centralizes Sg, while ¢ normalizes Sg
inducing an outer automorphism. Thus Ngo, = (9, Sg), the peintwisé stabilizer of {0, o0},
is Aut(Se). As well as this information about H, we note from [15, p. 76] that N induces
the full symmetric group Sg on B = {0,00} U D.

Let Gyg o} denote the stabilizer in G of the sets {0,00} and D U D*. We claim that
G0} has exactly the same action on DU D™ as Nyg ). If not, let ¢ € G(oc) be
a counterexample. First note that {D,D"} is N{o,c)-invariant. Since g normalizes N,

{g(D),g(D")} is an Ny }-invariant pair of 6-sets partitioning D U D*. It is easy to see
that g(D), g(D"} are D, D" in some order. By 'cbmposing g with an element of Ny ) if
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necessary, we may suppose that g fixes {0, ¢} U D" pointwise. Now choose h € Sg such that
4(h) does not commute with g'D. Then g~ 'hg € Ny, fixes D" pointwise but is not the

identity on D”". contradiction. So the claim is proved.

We now obtain a contradiction by considering what edges in M there can be on {0,2c}U
~ puD-. Without loss of generality, since )V induces the symmetric group on B = {0.x<}uD,
we mi_\k suppose that no triple from B is an edge. Applying ¢ we see that no triple from
{ﬁ,cc} U D" is an edge. Consider a, b € D and a*, b € . Applying 7, if {a.a"} makes
an edge with one of 0, oc, then it also makes an edge with the other. Further, from (3.17),
{a,a*} and {b,b"} are in the same orbit of Np. So, if any pair {a,a"} makes an edge
with either 0 or oo, then every such pair makes an edge with both 0 and oc. Let 2 € D"
" make an edge with a 2-set from D. From (3.17) every 2-set from D makes an edge with a.
. Applying Sg and ¢ we see that, if one 3-set, which intersects one of D and D" in a singleton
and the other in a doubleton, is an edge, then all such 3-sets are edges. It follows that any
permutation ® of {0,0c} U D U D which fixes 0, oc, and the partition {D, D"} permutes
- the edges on the set {0,oc} U DU D*. By 3-homogeneity any such permutation 7 extends
toan aﬁtomorphism of M. This contradicts our finding above that the action of G(p ) on

D u D" is exactly the same as that of Niox)-

3.6.2 N = Co; (Conway), n =276
“This is the largest finite 2-transitive permutation group which arises from a sporadic simple
group. As is the case for almost all the other possible simple socles, this group yields no
bomogeneous 3-graph. To explain why this is so we begin by introducing the basic notions
peeded for a description of the group in gquestion.

For i, 0 < i < 22, we use i to denote the point (i, 1)) of the projective line P(2,23) and
oo to denote the remaining point {{1,0)). At the same time we think of 2,0 <i < 22 as an
element of GF(23). Following Conway’s notation in [8] let

' Q={i:0<i<23}u{oc}, @ =0~ {oc}.

The arithmetic of @ is that of GF(23). For i € ' we define oc — i = oc. Various subsets
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of @ are denoted as follows.
Q={z*:2€GF(23)}, N=Q-Q.

Neo=9, Nj={n-i:neN} (ie Q).

The group My4 is defined as the group of permutations of Q obtained by adjoining to
PSL(2,23) the permutation £ : z — 2%/9 (z € Q). Tt is well known and shown in [8, §3,
Theorem 1] that M, is 5-transitive but not 6—traﬁsifive on 2. Now we regard P(Q), the
pdwer set of 2, as a vector space over GF(2), where vector addition is just the symmetric
difference of sets. We let C denote the subspace spanned by the sets N; (i € Q). The space
C, which turns out to be 12-dimensional, is called the binary Golay code. Let Cg denote
the set of all 8-sets {(or octads) belonging to C. A 12-set b:longing to C is called an umbral

Now we need to define the Leech lattice. Let v; (i € 2) be an orthonormal basis for the
Euclidean space R?*. For § C Q, let vg denote ;.5 vi. The Leech lattice A is defined to be
the additive subgroup of R?* generated by the vectors vq — 4v,, and 2v¢ (C € Cg). The

following characterization of A is given in [8, §4, Theorem 2]:
Theorem 3.15 :

Part A The vector (o,Zo,---,T22) 15 in A if and only if it satisfies each of the following
conditions:
i) the coordinates z; are all congruent modulo 2 to m, say;
ii) the set of i for which z; takes any given value modulo 4 is a C-set;

iti} the coordinate-sum is congruent to 4m modulo 8.
Part B For x, y € A the scalar product x-y is a multiple of 8, and x-x a multiple of 16.

Let us define the length |x| of x € A as (x-x)/16.

Conway defines the group -0 (pronounced “dotto”) as the group of all Euclidean congru-
ences of R?* which preserve A as a set and fix the origin. f 7 € Sym(f2), then we extend =
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to a congruence of R?? by =(v;) = V=(i)- For § C Q we define another congruence ¢s of R?
by

Vi if ¢ € S
eg(v,-) =
—v; ifig8§.

Conway shows [8, §4, Theorem 3] that the set-stabilizer in -0 of the set
{{V,‘, —V{}': i€ Q} 5

consists of all cohgruences of the form e¢cw, where # € Moy and C € €. Below we shall

denote this group by H although Conway called it V.

Fina.lly, we come to the description of the simple group Cos and its 2-transitive repre-
sentation. The group is the stabilizer in -0 of the vector a = (5,12%) € A. The notation
- (5,1%) indicates the vector that has 5 as its co-coordinate and 1 in every other place. The

group acts faithfully and 2-transitively on the set of pairs:
{{x.y}eAP :x+y=a, |x|=y| =2},

which we denote by I'. There are 276 pairs in . From [8, p- 242), 23 of the pairs in
T’ are represented by the 23 vectors of shape (42,0%2) which have non-zero oo-coordinate.
The other 253 pairs are represented by the 253 vectors of shape (280'¢) with non-zero co-
coor&inate for which the set of places at which the vector is non-zero is a C-set. We will

focus attention on the vectors of the first kind. For i € ¥, let b; denote the vector with 4
| in the co- and i-places and 0 in ev;ery‘ other place. Let ¢; denote a—b;. Belowf we use N to
denote Cos (denoted -3 in [8]). Depending on the context vie can regard N as acting either

onAoronT.

Towards a contradiction suppose that there is a homogeneous 3-graph M such that M
is the set I and N is the socle of G = Aut(M). We define the set = = {{b;,¢;} :i € 'Q"}.Let
G (=), N{=) denote the set stabilizers of Zin G, N respectively. Let ©, & denote {b; : i € '},
{e; : i € ). Since |b; — b;| = 2 and |b; — ¢} = 3 whenever i, j € Q' are distinct, the set
{9, &} is N(=j-invariant. Thus Nie) has index at most 2 in N(=;. Since

Y bi=4a+ 72,
e
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N{e) fixes v,. It follows that ¥ gy also fixes the set {v;:i € ¥'}. From the remark above
about the group H it is clear that the action of N(g; is that induced by the action of M3 on
V', where My is defined as the stabilizer in Mz4 of co. Now let us consider the edges that
M places on the set I'. Since Nz is 3-transitive, we may suppose that there are no edges
on I' at all. By homogeneity every ¢ € Sym(T') extends to g € G{r}. Since G normalizes
N, G(r}IT = Symi: ; normalizes Ny !IT. This is a contradiction because the only normal
subgroup of Sym(T') is the aiternating group on I'. However, it is clear that the index of

M,z in S,z is more than 2. Thus we have the desired contradiction.

3.6.3 The Mathieu Groups

Having established the needed definitions in our discussion of the Cbnway group, we now
conclude our discussion of the sporadic goups with the Mathieu groups. From Theorem 1 of
§3 in Conway’s paper, [8], we know that M4 is 5-transitive. My is defined as the stabilizer
of a single point in Ma4, and My, as the stabilizer of two points in My4, so My3 acting on
23 points and M3 acting on 22 points are, respectively, 4-transitive and 3-transitive. Using
information from the proof of Theorem 11 of §3, [8], we look at M;; as the set-stabilizer of
an umbral in the action of M3z4 on 24 points. The two représentatibns of M, arise from
the umbral and its complement, both of which are quintuply transitive. Fixing in addition
a point in the umbral, the action on the umbral is the action of M;; on an 11-set and the
action on the complementary umbral is the action of M;; on a 12-set, both of which are
triply trasmsitive. So all the pérmdtation rej)résentations mentioned by Cameron with socle
equal to one of theserMathieu groups are at least 3-transitive, and so are not of interest to

as.




Chapter 4

Appendix

Lemma 4.1 (Lemma 3.9) There ezist a symmetric bilinear form (, ): V x V — GF(2)
and a mapping Q : V — GF(2) satisfying

(v,v)=0 (veV), (4.1)
dm(V*) =1, Q(v)=1 (veV*-{0}), (42)

apd 7
Q(u+v)=Q(u) +Q(v)+(u,v) (a,veV). (4.3)

Proof: We choose a basis for V = V(24 + 1), d,el,...,eé,fl,...,fd. On this basis, we
define, for 1 < 1,5 <d,

(eiej) = (B.f) = (d,e&;) = (d,£) =0

and (e;,f;) = §;;. Since (,) is bilinear, this defines it uniquely on the whole space. Define
Q on the basis by @(d) =1, Q(e;) = Q(£) =0, (1 < ¢ < d). Since we are working in a field
of order 2, we can consider the vectors as subsets of {d,e;,...,eq,T;,...,f;}. Then define
@(u) = 0if and only if the number of subsets of the form {d} or {e;,f;} that occur in u is
even. ,

- Now we need to check that Q(u+ v) = Q(u) + @(v) + (u,v) (u,v € V). To do that,
we will count all of the subsets of the form {d} or {e;,f;} that occur in u + v and show
that, for each of thesé‘ there is precisely one corresponding 1 added to either Q(u) + Q(v)
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or (u,v) on the right side of the equaxion.' If {d} or {e,,f;} occurs in only one of u, v, then
Q(u+ v) and Q(u) + Q(v) both have 1 added to them. If e; occurs in only one of u,v,
and f; occurs in the other, then ¢(u + v) and (u,v) both have 1 added to them. If {e;, f;}
occurs in one of u, v, and only one of e;, f; occurs in the other, then both Q(u) + Q(v) and
(u,v) have 1 added to them, so there is no change on the right hand side. If we check the
other possible arrangements, we find they also do not add to either side of the equation, so

the relationship must hold. O

Lemma 4.2 (Lemma 3.10) Let U be a subspace of V of dimension 2d — 1 not containing
d. There ezist vectors e, e;, f; € V (2 <1< d) such that

(e, &) = (5, ) =(d, &) = (d,f;) =0 (1<i<d, 2<5,k<d), (4.4)
(ei,F;) =6;; (1<i<d,2<j<d), (4.5)
Q) =Q(e;)=Q(f))=0 (2<j<d) (4.6)

and such that U is one of
{{ei}u{e;,fi:2<i< d}), (4.7)
({d+ei}ufe;,fi:2<i<d}), (4.8)

({er,d+e2,d+ £} U e £ :3 < i< d)). (4.9)

Proof: Suppose we have already obtained e,,...,e,fi,...,fx € U linearly independent
vectors satisfying equations 4.10, 4.11, and 4.12. Let u,,...,u;,v, (I = 2d - 2k - 1), be
vectors chosen so that U = (ey,fi,-..,ex, fi, u1,..., ) and V = (U U {v,d}). Let W =
{e1, 11, ..., e T;). We can choose uy,...,u;, Vv to be elements of W+. For, if (u;,e;) = 1,
then we can replace w; by u; + f; to make (u;,e;) = 0, and for each u;,v; we can do this
for all the basis vectors of W.

Since every vector of U must have a vector to which it is not orthogonal, provided that
I > 1, we can find two of uy, . .., ny which are not orthogonal to each other. So, without loss

of generality, we get e,f among u;, ..., such that {(e,f} = 1. We still have not determined

Q(e) and Q(f). I Q(e) = 0, then we can assume Q(f) = 0, otherwise we substitute e + f
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for f, (Q(e + f) = 0 by equation 4.3). So we can extend the basis provided one of Q(e) and
Q(f) is zero.

If { > 3, then we can repeat the process to get another pair €,f’ such that ',f € U
with (¢/,f') = 1 and €,f' € (W U (e, f))*. Either, one of the pairs gives a pair where Q
of each element in the pair is zero, or Q(e) = Q(f) = Q(e’) = Q(f') = 1. In the first case,
we take that pair to extend the basis; in the second case we extend the basis with the pair
{ete,f+e). | | |

* Now, if we are able to get d — 1 pairs in the basis, where Q(e;) = Q(f;) = 0, then we will
have one vector left, call it u. All the other vectors in our basis must be orthogonal to u, so
(u,v) = 1. If @Q(u) = 0, then we take u as the last vector in our basis, and U is of type 4.7.
If Q(u) = 1, then we take u +d as the last vector and U is of type 4.8. If we could not get
the last pair e, f to have Q(e) = Q(f) = 0, then we take d + e,d + f as our last pair. Now
if the last vector u has Q(u) = 0, then we take u as the last vector in the basis, and U is of
type 4.9. If Q(u) = 1, then we have to take u + d as the last vector, but, if that happens,

we could have taken e + u,f + u as the last pair in our basis, which again is a case where

Uis of type 4.8. O

Lemma 4.3 (Lemma 3.11) Let U be a hyperplane of V not containing d. There exist
vectors e;, §; €V (1 <1< d) such that for all ¢, j,1<14, j<d,

(ei.€;) = (£.1) = (d, &) = (d,£) =0, (4.10)
(e ) = 6, (4.11)
Qe:)=Q(f:) =0 (4.12)

and U is one of the subspaces
| (esnfi:1<i<d), (4.13)
{d+en,d+fi}ufe fiz2<i<d)). (4.14)

Proof: The proof of Lemma 4.3 praceeds similarly to the proof of Lemma 4.2, only it is

simpler, since U in this case has an even number of basis vectors, so they pair off nicely.
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Again. we start with an independent set satisfying the conditions we want, and in the same
manner as before, we add pairs to it to form our basis for U.

Once we have d — 1 pairs in our basis for U, where Q(e;) = Q(f;) = 0, then we will have
one pair of vectors left, call them e, f. All the other vectors in our basis must be orthogonal
to e, so (e,f) = 1. If Q(e) = 0 and Q(f) = 0, then we take e,f as the last pair in the
basis; if @Q(e) = 0 and Q(f) = 1, then we take e,e + f as the last pair in the basis; and if
| Q(e) = 1 and Q(f) = 0, then we take e + f,f as the last pair in the basis. In any of these
‘three cases, U will be a subspace of the form 4.13. If both Q(e) = 1 and Q(f) = 1, then we
take d + e,d + f as the last pair in our basis and U is a subspace of the form 4.14. O

Lemma 4.4 (Lemma 3.12) Let U be a (2d — 1)-space not containing d.
i) There are ezactly two hyperplanes Uy, Uy 2 U withd & Uy, U, .

i) If U is of type 0, then Uy, U; are both +r—hyper'planes. If U is of type 1, then one of
~ Uo, Uy 15 a +-hyperplane, and the other is a —-hyperplane. If U is of type 2, then Up,
U; are both —-hyperplanes.

1) G acts 2-*ransitively on the +-hyperplanes, and 2-transitively on the —-hyperplanes.

~Proof: i) and ii) Suppose U = ({e} U {e;,f; : 2 < i < d}). Thereisanf eV, not in U,
f # d, such that (e,f) =1, f € ({e;, f; : 2 < i < d}}*, and Q(f) = 0. We can assume that if
this basis of U is extended to a subspace of V not including d, the extension will be by one
of the vectors f,re +f,d+f,ord +e+ 1. The first two cases yield the same 2d-space, and
we let e; = e and f; = f; the second two cases yield a second 2d-space, and we let ) = e
and f; =d + e + f. So we have two possible +-hyperplanes.

Suppose U = ({d + e} U {e;,f; : 2 < i < d}). Again, we have f as in the previous
situation. If U is extended by forbyd 4 e+ f,thenlet ey =d+e+fand f; = f, and we
have a +-hyperplane. If U is extended by e+ f or by d + f then let ; = e and §; = {, and
we have a —hyperplane.

Suppose U = {{e,d+ &,d + '} U {e;,f; : 3 < i < d}). This time f € ({€/,f} U {e;, 1 :
3<i<d))L. HUis extended by f or by e+ 1, let e =e’, fi=f,es=e,and f; = {,
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and we have a —-hyperplane. If U is extended byd + forbydt+e+f,lete; =€/, f) = f,

e; = e, and f, = d + e+, and we have a different —-hyperplane.

iii) Let Uy, U; and U}, U] be two pairs of distinct +-hyperplanes. Let W = Uy N U; and
W' = U{ n U]. Both W and W’ have dimension 2d — 1, and, by ii), they are both of type
0, as they each have two distinct extensions that are +-hyperplanes. We know there is a
g € G that maps the basis of W to the basis of W’, and that will also map the extension U
of W to the extension ) of W’. Now, since U; is the unique second extension of W that is
in V' and does nct include d and Uj is similarly the unique second extension of W’, g must

map U, to U{ as well. The proof for —-hyperplanes is similar. O
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