arXiv:0905.0550v1 [math.LO] 5 May 2009

STORAGE OPERATORS and V-POSITIVE TYPES in TTR TYPE

SYSTEM

Karim NOUR !
LAMA - Equipe de Logique, Université de Chambéry - 73376 Le Bourget du Lac cedex 2

Abstract In 1990, J.L. Krivine introduced the notion of storage operator to simulate ”call by
value” in the ”call by name” strategy. J.L. Krivine has shown that, using Godel translation of
classical into intuitionitic logic, we can find a simple type for the storage operators in AF'2 type
system. This paper studies the V-positive types (the universal second order quantifier appears
positively in these types), and the Gd6del transformations (a generalization of classical Gédel
translation) of TTR type system. We generalize, by using syntaxical methods, the J.L. Kriv-
ine’s Theorem about these types and for these transformations. We give a proof of this result

in the case of the type of recursive integers.

Mathematics Subject Classification : 03B40, 68Q60
Keywords : Storage operator, Head normal form, Head reduction, AF2 type system, Least
fixed point, TTR type system, Arrow type, Without-arrow type, V-positive type, L-type, G6del

transformation.

1 Introduction

The strategy of left reduction (iteration of head reduction denoted by >) has the following

advantages :

e It has good mathematical properties stated by the normalisation Theorem : if a A-term is

normalizable, then we obtain the normal form by left reduction.

e It seems more economic since we compute a A-term only when we need it.

Now, a drawback of the strategy of left reduction (call by name) is the fact that the argument of
a function is computed as many times as it is used. The purpose of storage operators is precisely
to correct this drawback.

Let F be a A-term (a function), and N the set of normal Church integers. During the computa-
tion, by left reduction, of (F')6, (where 6,, ~g n), 6, may be computed several times (as many
times as F' uses it). We would like to transform (F')8,, to (F)n. We also want this transformation
depends only on #,, (and not F'). In other words we look for some closed A-terms T' with the

following properties :

'We thank R. David, J.L. Krivine, and M. Parigot for helpful discussions.

2e-mail nour@univ-savoie.fr

http://arxiv.org/abs/0905.0550v1

e For every F, n € IN, and 0,, ~g n, we have (T)0,F ~ (F)n;
e The computation time of the head reduction (7')6,,F > (F)n depends only on 6,,.

Therefore the first definition : A closed A-term T is called storage operator for N if and only if
for every n € IN, and for every 0,, ~g n, (T')0,f = (f)n (where f is a new variable).

It is clear that a storage operator satisfies the required properties. Indeed,

e Since we have ()0, f > (f)n, then the variable f never comes in head position during the

reduction, and we may then replace f by any A-term.
e The computation time of the head reduction (7')6,F > (F)n depends only on 6,,.

We showed (see [12]) that it is not possible to get the normal form of 6,,. We then change the
definition : A closed A-term T is called storage operator for N if and only if for every n € IN,
there is a closed A-term 7, ~g n (for example 7,, = (5)"0, where s is a A-term for the successor),
such that for every 6, ~g n, (T)0,f = (f)7, (where f is a new variable).

If we take T7 = An((n)\xAy(x)Az(y)(s)2)Af(f)0, and Ty = AnAf(((n)AzAy(z)(s)y)f)0, then it
is easy to check that : for every 0,, ~g n, (11)0,f > (f)(s)"0, and (T%)0, f > (f)(s)"0. Therefore

T7 and T, are storage operators for V.

The AF'2 type system is a way of interpreting the proof rules for the second order intuitionistic
logic plus equational reasoning as construction rules for terms. In this system we have the
possibility to define the data types, the representation in A-calculus being automaticaly extracted
from the logical definition of the data type. At the logical level the data type are defined by
second order formulas expressing the usual iterative definition of the corresponding algebras of
terms and the data receive the corresponding iterative definition in A-calulus. For example, the
type of integers is the formula : N[z] = VX{Vy[X(y) — X(sy)] — [X(0) — X(x)]} (X is a
unary predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for
successor).

If we try to type a storage operator T in AF'2 type system, we naturally find the type Vz{N[z] —
[([N[z] - O) — O]} (where O is a particular 0-ary predicate symbol which represents an
arbitrary type). Indeed, if Fapo 7, : N[s"(0)], and f is of type N[s"(0)] — O, then f :
N[s™(0)] = O Fap2 (f)n : O. It is natural to have (T)0,f of type O. If Faps 6, : N[s"(0)],
then the type for T must be Va{N[z] — [(N[z] — O) — O]}.

It is easy to check that Fapo T1,Ts : V2{N[z] — [(N[z] — O) — O]}.

The type Vz{N[z] — [(N[z] — O) — O]} does not characterize the storage operators. Indeed,
if we take T' = An\f(f)n, we obtain :

e n:N[z|,f: N[x] > OFaps (f)n: O, then, Faps T : Va{N|z] — [(N[z] — O) — O]}.

e For every 6, ~g n, (I8, f > (f)0y, therefore T is not a storage operator for N.

This comes from the fact that the type Va{N|[z] — [(N[x] — O) — O]} does not take into
account the independance of 7, with #,,. To solve this problem, we must prevent the use of
the first N[z] in Va{N[z] — [(N][z] = O) — O]} as well as his subtypes to prove the second.
Therefore, we will replace the first N[x] by a new type N*[z] with the following properties :

o Fapo n: N*[s™(0)] (for example, take N*[z] = VX{Vy[F(X,y) — F(X,sy)] — [F(X,0) —
F(X,2)]}) ;

o If v : N*z],z; : Vy[F(G,y) — F(G,sy)l,y; : F(H,a) Fapa t : N[s"(0)], then Faps t' :

N[s"™(0)], where ¢’ is the normal form of ¢ ;
e There is a closed M\-term T', such that Fgpo T : Va{N*[z] — [(N[z] — O) — O]}.

A simple solution for the second property is to take a formula F(X,a) ending with a new
constant symbol. Indeed, since N|[x] does not contain this symbol, we cannot use the variables

v, z;,y; in the typing of t'. We suggest the following proposition :
N*[z] = VX{VyY[(X(y) = O) = (X(sy) = O)] = [(X(0) = O) = (X(z) = O)]}.

It is easy to chech that Fapg 11, Ts : Va{N*[z] — [(N[z] = O) — O]} (see [6] and [12]).

For each formula F' of AF2, we indicate by F'* the formula obtained by putting — in front of
each atomic formulas of F' (F* is called the Gédel translation of F').

J.L. Krivine has shown that the type Vx{N*[z] — ——N]z|} characterize the storage opera-
tors for IV (see [6]). But the A-term 7,, obtained may contain variables substituted by A-terms
Ui, ..., Uy depending on 6,. Since the A-term 7, is fSn-equivalent to n, therefore, the left re-
duction of the 7,[u1/x1, ..., um/Ty] is equivalent to the left reduction of 7, and the A-terms
U1, ..., Uy Will therefore never be evaluated during the reduction.

Taking into account the above remarks, we modify again the definition : A closed A-term T is
called a storage operator for N if and only if for every n € IN, there is a A-term 7, ~g n, such
that for every 6,, ~g n, there is a substitution o, such that (7)0, f > (f)o(r,) (where f is a new

variable).

The AF2 type system is satisfactory from an extensional point of view : one can construct
programs for all the functions whose termination is provable in the second order Peano arith-
metic. But from an intensional point of view the situation is very different : we cannot always
obtain the simple (in term of time complexity, for instance) programs we need. For example
we cannot find a A-term of type VaVy{N|z], N[y] — N[min(z,y)]} (min is a binary function
symbol defined by equations) in AF2 type system that computes the minimum of two Church

integers in time O(min) 3

SR. David gives a A-term of type N,N — N (N = VX{[X — X] — [X — X]}) in F type system that
computes the minimum of two Church integers in time O(min.Log(min)). The notion of storage operators plays

an important tool in this constraction (see [2]).

The TTR type system is an extension of AF2 based on recursive definitions of types, which
is intented to solve the basic problems of efficiency mentioned before. In TT R we have a log-
ical operator u of least fixed point. If A is a formula, C' an n-ary predicate symbol which
appears and occurs positively in A, x1,...,x, first order variables, and ¢y, ...,%, terms, then
uCxy..tyA < t1,..,t, > is a formula called the least fixed point of A in C calculated over
the terms tq,...,t,. The interded logical meaning of the formula puCxq..x,A < t1,..,t, > is
K(ty,...,ty), where K is the least X, such that X (z1,...,2,) +— A. TTR allows to define the
multisorted term algebras as least fixed points. For example the type of recursive integers is
the formula : N"[z] = uCz[VX{Vy[C(y) — X(sy)] — [X(0) = X (2)]}] < z > (X is a unary

predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for successor).

In this paper we study the types D of TTR, and the transformations *, for which we have the
following result : if Fprr T : D*— —=D, then for every A-term t with Fprgr t : D, there are
A-terms 7 and 7/ such that 7 ~g 7/, Frrr 7/ : D, and for every 6; ~g t, there is a substitution
o, such that (T)0.f = (f)o(1) (where f is a new variable).

We prove 4 that, to obtain this result, it suffies to assume that :
e The universal second order quantifier appears positively in D (V-positive type) °.
e The transformation * satisfies the following properties :

-If A=C(ty,...,ty), then A*= A ;
-If A = X(ty,...,tp), then A*= Fx[t1/z1,....,tn/2n] < X1,..., X, > where Fx is a

formula ending with | and having 1, ..., x,, X1, ..., X, as free variables ;
- (A — B)*= A*— B*;

- (Vo A)*= Yz A*.

- (VXA)R=VX,. X, A%

- (

uCxy..xnA < t1, ..ty >)*= pCry..xy A¥< t, .., ty >.

We give the proof of this result in the case of the type of recurcive integers.

2 Basic notions of pure A-calculus

Our notation is standard (see [1] and [5]).
We denote by A the set of terms of pure A-calculus, also called A-terms.

Let t,u,uq,...,u, € A, the application of ¢ to u is denoted by (t)u. In the same way we write

4J.L. Krivine and the author proved independely the same result for AF2 type system (see [7] and [12]).
>This types were studied by some authors (in particular R. Labib-Sami), and have remarkable properties (see

(8])-

(t)uy...up, instead of (...((¢)uy)...)un.

The S-reduction (resp. [-equivalence) is denoted by t =45 u (resp. t ~g u).

The set of free variables of a A-term ¢ is denoted by Fu(t).

The notation t[uy /x1, ..., un /2, represents the result of the simultaneous substitution of A-terms
U1, ..., Uy to the free variables z1, ..., 2, of ¢t (after a suitable renaming of the bounded variables
of t).

With each normal A-term, we associate a set of A-terms STE(t) by induction :

if £ = Ax1.. AZn (y)t1...tm, then STE(t) = {t}U |J STE(t).
1<i<m
Let us recall that a A-term t either has a head redex [i.e. t = Ax1...Az,(Azu)vv;...vy, the head

redex being (Azxu)v], or is in head normal form [i.e. t = Az1... 2, (2)v0]1...0p].

The notation ¢ = ¢ means that ¢ is obtained from ¢ by some head reductions, and we denote
by n(t,t'), the number of steps to go from ¢ to ¢'.

A A-term t is said to be solvable if and only if the head reduction of ¢ terminates.

We define an equivalence relation ~ on A by : u ~ v if and only if there is a ¢, such that u > t,
and v = t. In particular, if v is in head normal form, then u ~ v means that v is the head

normal form of w.

Theorem 2.1 ([6]). If t =, then for every uy, ..., u, € A :

1) there is av € A, such that (t)uy...u, = v, (")ui...up = v, and n((t)uy...up, v) = n((t)ug.... upn, v)+
n(t,t).

2) tlur /a1, oy un /2] = ur/x1, . un/zyn], and n(tuy /oy, . un /2], g /21, o un f2]) =
n(t,t).

Remark. Theorem 2.1 shows that to make the head reduction of (t)u;...u, (resp. tlui/x1, ..., un/xy]),
it is equivalent (same result, and same number of steps) to make some steps in the head reduction

of t, and then make the head reduction of (#')uy...u, (resp. t'[uy/x1, ..., un/xy]).

3 Basic notions of typed A-calculus

3.1 The AF2 type system

The types will be formulas of second order predicate logic over a given language.

The logical symbols are L (for absurd), — and V (and no other ones).

There are individual variables : z,y, ... (also called first order variables) and n-ary predicate
variables (n = 0,1,...) : X,Y,... (also called second order variables).

The terms and the formulas are up in the usual way.

The formula Fy — (Fy — (... = (F,, = G)...)) is denoted by Fi, Fs, ..., F,, = G, and F —1 is
denoted by —F'. The formula Vv;...Vv, F' is denoted by Vv F, and the sentence ”v is not free in

A” means that for all 1 <i < n, v; is not free in A.

If X is a unary predicate variable, ¢t and ¢’ two terms, then the formula VX[Xt — Xt'] is
denoted by t = t/, and is said to be equation. A particular case of t = t' is a formula of
the forme t[uy/z1, ..., un/Tn] = t'[ur /a1, .cyun/xn] or t'ur/xy, ..yun/xy] = tluy /a1, oy un /2],
U1, ..., U, being terms of the language.

After, we denote by E a system of function equations.

A context I' is a set of the form x7 : Aq,...,z, : A, where x1, ..., 2, are distinct variables and
Ay, ..., A, are formulas.

We are going to describe a system of typed A-calculus called second order functional arithmetic
(shortened in AF2 for Arithmétique Fonctionnelle du seconde ordre). The rules of typing are

the following :
(1) Tyx: Abape x @ A.
(2) If ',z : BFapot:C, then ' Fqpo Azt : B — C.
B)UTkpgpau:B—C,and I'Fapov: B, then T' Fgpo (u)v : C.
(4) UT Fypat: A, and = does not appear in I', then I' F4p9 ¢ : VX A.
(5) T Fypa t: Vz A, then, for every term u, I'Fapo t : Alu/x].
(6) fT'Fypat: A, and X does not appear in I', then I' -4 po ¢ : VX A.
(7) U T Fypa t: VXA, then, for every formula G, I'Fypo t : A[G/ X (21, ..., zp)] (%)

(8) f T' Fape t : Alu/z], then T' Fapo t : Av/x], u = v being a particular case of an

equation of E .
(*) A[G/X (x1,...,zp)] is obtained by replacing in A each atomic formula X (¢1,...,t,) by
G[t1/x1, ..., tn /zy]. To simplify, we write sometimes A[G/X] instead of A[G/X (x1,...,x,)].

Whenever we obtain the typing I' - 4ro ¢t : A by means of these rules, we say that "the A\-term
t is of type A in the context I', with respect to the equation of E ”.

Theorem 3.1 (/5],[9]).
1) Conservation Theorem: IfT'Fapat: A, andt —pt', then T Fapa t' : A,
2) Strong normalization: If T'Fapo t: A, then t is strongly normalizable.

3.2 The TTR type system

Let X be a predicate variable or predicate symbol, and A a type of AF2.

We define the notions ” X is positive in A” and ” X is negative in A” by induction :

- If X does not appears in A, then X is positive and negative in A ;

-If A= X(t1,...,tn), then X is positive in A, and X is not negative in A ;

-If A= B — C, then X is positive (resp. negative) in A if and only if X is negative (resp.

positive) in B, and X is positive (resp. negative) in C' ;

-If A =VuB, and v # X, then X is positive (resp. negative) in A if and only if X is

positive (resp. negative) in B.

We add to the second order predicate calculus a new logic symbol u, and we allow a new con-
struction for formulas : if A is a formula, C' an n-ary predicate symbol which appears positively
in A, x1,...,x, first order variables, and t1,...,t, terms, then puCzy...z, A < t1,...,t, > is a
formula called the least fixed point of A in C calculated over the terms t1, ..., t,.

We extend the notions ” X is positive in a type” and ” X is negative in a type” by the following
way : X is positive (resp. negative) in pCzx;..xpA < t1,...,t, > if and only if X is positive
(resp. negative) in A.

We extend the definition of the substitution by assuming that C,z1,...,x, are bounded in the
formula pCxy...x A < ty,...,t, >.

We define on these formulas a binary relation C by : A C B if and only if it is obtained by using

the following rules :

ACA BCPB

(az)AC A (_>)A’—>BQA—>B’
A[G/v] C B AcnB
(19)@ (1) Via) 3 =vop @
A C Blv/y] ACD DCB
T Blurn TaeE

() DpCxy..xmyD < 21,y 2 > JC(21, ooy 2m)][t1 /%15 ooy tin 2] C pCxyocpy D < tq, .yt >

(,u’g) uCxy..xyy D <ty ...ty >C D[uCxy..xpyD < 21, .., 2 > [C (21, ooy 2m)|[t1/ X1, ooyt /T

DIE/C(x1,...;zm)] C E
wCry..x;D < ty,....ty >C Elt1/T1, .oyt /T

(1g)

(1) G is a formula if v is a second order variable, and a term if v is a first order variable.
(2) v is not free in A.

(3) v = w is a particular case of an equation of E .

(ta) and (py) are the rules of factorisation and development of a fixed point.

(fg) expresses the fact that pCxy...xpmD < t1,...,t,, > is a least fixed point.

We are going to describe a system of typed A-calculus called theory of recursive types (shortened
in TTR for Théorie des Types Récursifs) where the types are formulas of language. The rules
of typing are the following :

- The typing rules (1),...,(8) of AF2 type system.

I'tprpt:A ACB
I'tprrt: B

I |_TTR t: Va;l...me[C(xl, ...,a:m) — E] — Vxl...Va:m[D — E]

Crhrrr V)t V. Ve [pCry ... D < 21, ...y Ty, >— E]
where C is not free in F and G, and Y is the Turing’s fixed point.

- (9)

- (Y)

The rule (Y') expresses also the fact that uCx;...x,,, D < t1, ..., t,;, > is a least fixed point.

Theorem 3.2 ([12],]18]).

1) Conservation Theorem IfT' Frrrt: A, andt —gt', then T Frrr t' @ A.

2) Strong normalization If T bprp t @ A without using the rule (Y'), then t is strongly normaliz-
able.

3) Weak normalization If T bprg t: A, and if all least fized points of A are positives, then t is

normalizable.

The TTR?® type system is the subsystem of TT'R where we only have propositional variables
and constants (predicate variables or predicate symbols are of arity 0). So, first order variables,
function symbols, and finite sets of equations are useless. With each predicate variable (resp.
predicate symbol) X, we associate a predicate variable (resp. a predicate symbol) X of TT R®
type system. For every formula A of TTR, we define the formula A® of TTR® obtained by
forgetting in A the first order part. If I' = x1 : Aq,...,x, : A, is a context of TT R, then we
denote by I'°, the context 1 : AY, ...,z : AY of TTR®. We write I' Fprpe t : A if t is tyable in
TTR? of type A in the context T'.

Theorem 3.3 IfI'Fprrt: A, then I'® Fprpe t: A°.
Proof By induction on the length of the derivation I' Fppp t: A. O

Theorem 3.4

1) Conservation Theorem IfT' Fprgo t: A, andt —gt', then T Fprge t' 1 A.

2) Strong normalization If ' bprgre t @ A without using the rule (Y'), then t is strongly normal-
1zable.

3) Weak normalization If T bprge t : A, and if all least fixed points of A are positives, then t is

normalizable.

Proof We use Theorems 3.2 and 3.3. O

Remark We cannot if the reverse of 2)-Theorem 3.2 is true, but the A-term

t = Ax(A\y((z)(y) A\xx) (y) \eAyz)\x(x)x (which is strongly normalizable, and untypable in AF?2
type system (see [3])) is typable in TTR type system. Indeed, if we take B = uC (VXX — C),
we check easily that Fprpe t: [B — (B — B)] — B.

4 Properties of TT R type system

4.1 Permutations Lemmas

Lemma 4.1 1) The typing rules (5), (7), and (8) are admissible.

2) In the typing, we may replace the succession of n times (C) and m times (4) (resp. (6)), by
the succession of m times (4) (resp. (6)) and n times (C).

3) If T bppg t @ B s derived from T Fppr t @ A, then we may assume that we begin by the
applications of (4), (6), and next by (C).

Proof Easy. O

Lemma 4.2 1) If A C B, then, for every sequence of terms and/or formulas G, A[G/v] C
B[G/v], and we use the same proof rules.
2) If T bppr t @ A, then, for every sequence of terms and/or formulas G, I'|G/v] Fprg t :

A[G/v], and we use the same typing rules.
Proof By induction on the length of the derivation A C B (resp. I' Fpprt: A). O

Corollary 4.1 If T,z : Atprr (z)uy...u, : B, then :

n =0, and there is vg not free in A and ', such that VvgA C B,

or

n > 1, and there are types C;,B; (i = 1,...,n) and vi(i = 1,n) not free in A and T, such that
VvopACCy —» B, VWiB; CCii1 > B 1<i<n—-1,VuwB, CB,and ',z : Abprgp u; : C;
1<t <n.

Proof By induction on n. O

Lemma 4.3 1) If X is positive (resp. megative) in D, and A C B, then D[A/X] C D[B/X]
(resp. D[B/X]| C D[A/X]).
2) We may eliminate the rule (i,).

Proof 1) By induction on D.
2) By rule (ug), we have A[uCxy..xpA < Y1,y Yn > /C (Y1, ooy Yn)] C puCxy.2pA < 21, .0y Ty >,

then, by 1), A[A[uCx1..2nA < y1,...,yn > /C(Y1,...,yn)]/C(2z1,...;xn)] C AlpuCxy..xpnA <
Z1,...,y > /C(x1,...,2y)], and, by using the rule (p4), we obtain pCzi..2,A < t1,...,t, >C
AlpCrxy..kn A < y1, ey Yn > [C(Y1y ooy Yn)|[t1/ 21, oyt /0] O

4.2 Without-arrow types and arrow types

Definitions

1) A type A is said to be without-arrow type if and only if A does not contain any arrow.

2) Each without-arrow type A contains a unique atomic formula X (¢4, ...,t,). We denote X by
At(A). We distinguish between two kinds of without-arrow types :

- A without-arrow type A is said to be of kind 1 if and only if A¢(A) is free in A.

- A without-arrow type A is said to be of kind 2 if and only if At(A) is bounded in A.

Lemma 4.4 1) If A is a without-arrow type of kind 1, and A C B, then B is a without-arrow
type of kind 1, and At(A) = At(B).
2) If A is a without-arrow type of kind 2, then, for every type B, we have A C B.

Proof 1) By induction on the length of the derivation A C B.

2) Easy. O

Definition A type A is said to be arrow type if and only if A contains at least an arrow.
Lemma 4.5 If A is an arrow type, and A C B, then B is an arrow type.

Proof By induction on the length of the derivation A C B. O

Corollary 4.2 Let A be an atomic formula. If U'Fprrt: A, then t does not begin by A. Other
words, if I' Fprr Axu : B, then B is an arrow type.

Proof If ¢ begins by A, then there are E, F, and v, such that Vv(E — F) C A, therefore, by
Lemma 4.5, A is an arrow type. O
Definition For every arrow type A, we define the type Rep(A) as follows, by induction on A :
-Rep(E—F)=FE — F;
- Rep(YvB) = YuRep(B) ;

- Rep(uCxy...xn B < ty,...,ty >) =
Rep(B)[pCxy..xnB < Y1y ooy Yn > [C (Y1, s yn)][t1 /21,5 ooy b /0]

Lemma 4.6 If A is an arrow type, then :
1) there are G, D and v such that Rep(A) =Vv(G — D).
2) A C Rep(A), and Rep(A) C A.

10

Proof By induction on A. O

Remark. The Lemma 4.6 means that if A is an arrow type, then Rep(A) is an ”equivalent”
type to A of the form Vv(G — D). In the rest of the paper, we denoted G by A, and D by Ajy.

Lemma 4.7 Let A, B be two types, and X, X' two predicate variables or predicate symbols, such
that X' is not free in A.

1) If X is positive in A, and X' is positive in B, then X' is positive in A[B/X].

2) If X is positive in A, and X' is negative in B, then X' is negative in A[B/X].

3) If X is negative in A, and X' is positive in B, then X' is negative in A[B/X].

4) If X is negative in A, and X' is negative in B, then X' is positive in A[B/X].

Proof By induction on A. O

Lemma 4.8 Let A be an arrow type.
1) If X is positive (resp. megative) in A, then X is positive (resp. negative) in Rep(A).
2) If G is a sequence of terms and/or formulas, then Rep(A|G/v]) = Rep(A)[G/v].

Proof 1) We argue by induction on A. The only non-trivial case is the one where A =
uCzy..xpnB < ty,..,t, >. If X is positive (resp. negative) in A, then X is positive (resp.
negative) in B. By the induction hypothesis, we have X is positive (resp. negative) in Rep(B),
therefore, by Lemma 4.7, X is positive (resp. negative) in Rep(A).

2) By induction on A. O

Theorem 4.1 Let A, B be two arrow types, such that Rep(A) =Vv(Ay, — Aq) and Rep(B) =
W (By — Bg). If A C B, then there is a sequence of terms and/or formulas G, such that
By C Ay[G/v], and A4|G/v] C By.

Proof We argue by induction on the length of the derivation A C B. Let us look at the rule

used in the last step. The only non-trivial cases are :

- (tr) : then A € D,and D C B. If Rep(D) = Vv”(Dy — Dg), by the induction hypothesis,
there are sequences G and G” such that D, C Aj[G/v], A4[G/v|C Dy, B, C D4[G” /v”],
and Dy[G”/v”]C By. It is clear that we may assume that v” is not free in A, and Ay,
therefore, by Lemma 4.2, we have B, C A4[G/Vv][G”/v”], and A4|G/V][G” /v”]C By. Let

G’ = G[G”/v”], then By C A,[G'/v], and A4[G'/v]|C By.

- (Md) : then A = D[MC:El:EkD < Y1, Yk > /C(ylw"vyk)][tl/:Elv"7tk/xk]7 and B =
pCzy..xpD < tq,...,tp >. Therefore, by Lemma 4.8, Rep(A) = Rep(B), A; = B, and
Bg = Ag, and so By C Ay, and Ay C By.

11

- (pg) : then A = pCuxy..xp,D < ty,....t, >, B = E[ti/x1,....t5/zi), and D[E/C(x1,...,x1)] C
E. Therefore Rep(D) = ¥v(Dy — Dg) with

Dg[qul...ka < Y1y Y > /C(yl, ...,yk)][tl/xl, ..,tk/xk] = Ag,

Dy[pCxy..xpxD < y1,.ce, yi > JC(Y1, -y Y)|[t1 /21, s i /28] = Ag, and

Rep(E) = VV’(EQ — Eg) with Eg[tl/iltl, o tr /K] = Bg, Eglt1/T1, ..., tx /2] = Bq.

By the induction hypothesis, there is a sequence G, such that E;, C D,[E/C(z1, ..., z)]|[G/V]
, and Dg[E/C(x1,...,21)][G/V]C E4. C is positive in D, therefore, by Lemma 4.8, C' is
negative in Dy, and C is positive in Dy.

DIE/C(x1,....,x)] C E, then uCzy... 2D < y1,...,yx >C Ely1/x1, ..., yx/2zx], and, by 1)-
Lemma 4.3, Eg C Dg[puCzy.. 2D < y1, ...,y > /C(y1, ..., yx)][G/Vv] , and

Dy[puCxy...xxD < y1, ...,y > /C(y1, .-, yr)]|[G/V]C Eq, and so, by Lemma 4.2,
Eglt1/z1, . ti /] C© Do[uCrrarD < y1,esyr > [CY1, s yr)|[G/ V][t /21, ooyt /7],
and Dg[pCzy.. oD < y1, ...y Y > /C(y1, -, y)G/V][t1 /21, o tn/20] C Eqlt1/1, ...t /xk].
Let G' = Glt1/x1, ..., tg/xg], then By C AJ[G'/v],and A4[G'/v]C By. O

Corollary 4.3 Let B be an atomic formula. If T,x : A — B bppg (¥)uy...u, : C, thenn =1,
and T2z : A— Bbtrrgruy: A.

Proof By Corollary 4.1, we have Vv(A - B) C F - G, ' : A - BbFprrru; : F, and v is
not free in I and A — B. Therefore, by Theorem 4.1, FF C A, and B C G, then ',z : A —
Bbtrrrup : A. If n > 1, then VWG C H — J, and v’ is not free in I' and A — B. Therefore
VYv/'B C H — J, and VVv'B is a without-arrow type of kind 1. A contradiction. O

Lemma 4.9 If 1 : A1,...,xp : Ay Frrr t 1 A, B € A; 1 < i < n, and A C B, then
r1:B1,...,xn: By Frrrt: B.

Proof We argue by induction on t. The only non-trivial cases are :

- If t = Azvw, then a1 : Ay, .o,z : Apyz: Ebprgpu: F,V(E — F) C A, and v is not
free in F and A; 1 < j < n. We may assume that v is not free in ¥ and B; 1 < j < n.
By the induction hypothesis, we have z1 : Bi,...,z, : Bp,x : E Fpprp u : F, and so
x1:Bi,...,xn : By Frrrt: B.

- If t = (Y)u, then YvVyi..Vyn[pCyr..ymE < y1, .., ym >— D]) C A, x1 : Ay, ...,xp ¢
Ay, Frrr w o Yy1..Yym[C (Y1, -, ym) — D] — Yy1..Vynu[E — D], C is positive in E, C
is not free in D, and v is not free in 4; 1 < j < n. We may assume that v, C' are not
free in B; 1 < j < n. By the induction hypothesis, we have z1 : By,...,x, : By brrr v :
Yy1.Yym|[C (Y1, -y Ym) = D] = Yy1..¥Yym[E — D], and so x1 : By,...,xn : By Frrr (Y)u :
A. O

12

5 V-positive types

5.1 Properties of V-positive types

Definition We define two sets of types, the set Q% of V-positive types, and the set Q= of

V-negative types in the following way :
- If A is an atomic type, then A € QT, and A € Q™ ;
ST eQf,and T~ € Q , then, T- =TT cQF,and TT - T~ € Q™ ;
-IfTT € QF, then VaT™ € QT ;
-IfTT € QF, then VXTT € QF ;
-IET € Q7 then VT~ € Q™
-IfT~ €Q7, and X is not free in T, then VXT~ € Q- ;

-IfTT € QF, 24, ..., 2, first order variables, t1,...,t, terms, C an n-ary predicate symbol

which appears and is positive in 7", then uCzy...x, T < t1,....t, >€ QF.

Remarks

1) A least fixed point is not a V-negative type.

2) If Tt € QF, then all least fixed points of T'* are positives. Therefore, by 3)-Theorem 3.2, if
I'bprrt: T, then t is normalizable.

Lemma 5.1 Let T, 7'~ € Q~, TT,T"" € QF, and X a predicate variable or predicate symbol.
1) If X is positive (resp. nmegative) in T, then T~[T"~/X] € Q (resp. T-[T"t/X] € Q™).

2) If X is positive (resp. negative) in TT, then T[T /X]| € QF (resp. T[T~ /X] € QF).

3) If T[F/X] € QF (resp. TIF/X])€Q™), thenT € QF (resp. T € Q™).

Proof 1), 2) By induction on T~ and 7.
3) By induction on 7. O

Definition With each type T of TTR, we associte the set Fve(T') of free predicate variables

and free predicate symbols of T'.

Theorem 5.1 Let T~ € Q~, and TT € Q.
1) If T~ C A, then A€ Q7, and Fuva(A) C Fua(T7).
2) If BCTT, then B € QF, and Fvy(B) C Fug(T).

Proof We argue by induction on the length of the derivations T~ C A, and B C T'". Let us
look at the rule used in the last step.

13

1) The only non-trivial case is (uq).

Then T~ = T'[uCxy..x, T < Y1, s Yn > /C (Y1, s yn)][t1/21, oy tn/2y], and

A= pCuxy..x,T" < ty,..,t, >. Since T~ € Q, then, by Lemma 5.1, uCx1...2,T" < y1,..., Yyn >€
Q~, which is impossible.

2) The only non-trivial cases are :
- (pq) : then B = D[uCzy...xnD < Y1, .oy Yn > /C Y1y o, Yn)][t1/%1, ooy tr /Ty, and TT =

uCxy..xpD < ty,....,t, >. Since T'€ QF, then D € Q7, and so, by Lemma 5.1, B € QF,
and Fuvg(B) = Fug(D) — {C} = Fuo(TT).

- (pg) : then B = pCuy...x, D < ty,...,t, >, TT = E[t1/x1,....t, /2], and D[E/C(z1, ..., zy)]
E. Since TT € Q7, then E € QF, and, by the induction hypothesis, D[E/C(z1, ..., x,)] €
Qt, and Fuve(D[E/C(x1,...,xy)]) € Fva(E). By Lemma 5.1, we have D € QF, and
Fuy(D) — {C} C Fua(D[E/C(x1,...,xp)]) C Fuo(E), and so B € QF, and Fuve(B) =
Fuy(D) — {C} C Fua(D[E/C(x1, ..., 2)]) C Fvo(E) = Fug(TT). O

5.2 The TTR, type system

We define on the types of TTR a binary relation Cy by the following way :
A Cy B if and only if A C B, and in the proof we use only the weak version of (Vig) :

(VZHO) VoA g(] B

where G is a term if v is an individual variable, and G is a predicate variable or a predicate

symbol having the same arity of v if v is a predicate variable.

Lemma 5.2 If A Cy B, then, for every sequence of terms and/or formulas G , A[G/v] Cy

B[G/v], and we use the same proof rules.
Proof Same proof as 1)-Lemma 4.2. O

Lemma 5.3 Let A be an arrow type, and Rep(A) =Vv(A; — Aq).
1) If AeQ (resp. A€ Q) then Ay € QF, and Ag € Q (resp. Ay € Q7, and Az € QF).
2) A Coy Rep(A), and Rep(A) Cp A.

Proof By induction on A. O
Lemma 5.4 If T-cQ~, Tt cQF, and T~ CT+, then T~ Co T™.

Proof By induction on the length of the derivation 77— C 7. O

Definition We denote by TT Ry, the TTR type system whithout the rules (5), (7), (8) and by
replacing the rule (C) by :

14

N

Fl—TTROt:A ACyB

C
(_0) FFTTRO t:B

Theorem 5.2 Let Ay,..., A, € Q , T =a1: Ay, ...,2p : Ay, A€ QF, and t a normal \-term.
IfI'Frrrt: A, then I FrrR, t + A, and in this typing each variable is assigned of a V-negative

type, and each u € STE(t) is typable of a V-positive type.

Proof We argue by induction on t.

-Ift=x;1<i<mn, then Vv4; C A, and v is not free in I". Since A; € Q~, then
VvA; € Q7, and, by Lemma 5.4, VvA; Cy A. Therefore I' Frrpg, t : A.

-If t = Azu, then T,z : Blppg u: C, Vv(B — C) C A, and v is not free in I". Since
Vv(B — C) is an arrow type, then, by Lemma 4.5, A is an arrow type. If Rep(A) =
VW' (Ay — Ag), then, by 1)-Lemma 5.3, A4, € Q7, and Ay € Q. By Theorem 4.1,
there is a sequence G, such that A, C B[G/v| , and C[G/v|C A;. By 2)-Lemma 4.2,
we have I,z : B[G/v]Frrr v : C[G/c] , and, by Lemma 4.9, I,z : Ay Frrr u @ Ag.
By the induction hypothesis, we have I,z : Ay Frrr, u @ Ag,and so, by 2)-Lemma 5.3,
I'trrR, t: A

-Ift = (x)ur..up 1 < i <mandk # 0, then VvoA; C Cy — By, VvjB; € Cj11 — Bj
1<7<k—1,VviB; € Awhere vg,...,vig arenot freein I', and I' Fprg uj : C; 1 < j < k.
By Theorems 4.1, 5.1, and Lemmas 4.4, 5.4, we have

— Ai = WhAl, Al = Cf - WiBY, By =Cl Wi Bl 1<j<k-1,CleQt
and VViB; € Q7 1 < j <k.

- Cj g O;[GO/VE)]---[Gj—l/VE_l] s VC&B;[GO/V:)]...[Gj_l/V‘g_l] g Bj 1 § j § k‘, and
WPV B [Go /... [Gi1/Vie_1]Co A.

Since I' Frrr uj © C; 1 < j < k, then I' brrg uj @ Cf[Go/vgl...[Gj-1/vj_4], and, by
the induction hypothesis, I' Frrr, u; : Cj[Go/Vg)...[Gj-1/Vj_4]. It is easy to check that
r l_TTRO t: B,’C[Go/v{)]...[Gk_l/v{(_l], then

I'brrpy t: VVkVVkB]/g[Go/VE)]...[Gk_l/Vi(_l], and I' Fprp, t: A. O

6 Godel transformation

6.1 |-typesof TTR

Definition Let A be a type of TT R. We say that A is an |-type if and only if A is obtained
by the following rules :

- 1 is an L-type.

15

- If Ais an |-type, then B — A is an 1-type for every type B.
- If Ais an |-type, then YvA is an |-type for every variable v.

- If Ais an L-type, C an n-ary predicate symbol which appears and is positive in A,
x1, ...,y first order variables, and ti,...,t, terms, then uCzi...x,A < t1,...,t, > is an

L-type.
Lemma 6.1 If A is an L-type, and A C B, then B is an L-type.
Proof By induction on the length of the derivation A C B. O

Lemma 6.2 Lett be a normal A\-term, Aq,....,A, € Q~, A€ QF, L does not appear in the types
Ay, Ap, A, and By, ..., By, are L-types. If ' =x1 : A1,...;xn : Apyy1 : Bly oo, Ym @ B FrrR
t: A, then Iy - Al, ey Ly, 0 An |_TTR t:A.

Proof We argue by induction on t.
- If t is a variable, thent =z; 1 <i<nort=y; 1 <i<m.

— The case t = x; is trivial.

— If t = y;, then VvB; C A and v is not free in I'. Since B; is an 1-type, then, by
Lemma 6.1, A is an L-type, and | appears in A. A contradictoire.

- It t = Ayt then T zpyy @ Apey brrr ¢ 2 D, Vv(Apy1 — D) C A, v is not
free in I. Since A € Q%, then, by Theorem 5.1, we have 4,41 € 7, D € QF, and
Fuy(Vv(Ap41 — D)) C Fuy(A). Therefore L does not appear in A,+1 and D. By
the induction hypothesis, we have x1 : A1, ...z, @ Ap,Tpi1 : Ape1 Frrr t 0 D, and so
x1: A, .. xy s Ay Frrr t s Al

-If t = (z)uy...up, k > 1, then two case can be see :

— Ifz =y; 1 <i < m, then, by Corollary 4.1, we have VvoB; C C1 — D1, Vv;D; C
Ciy1 & Djy1 1 <i < k—1,VviD, C A, where vo,..., vk are not free in A and
I'yand I' Frrg u; - C; 1 < j < k. Since B; is an L-type, then, by Lemma 6.1, D;
1<j<kand A are |-types, and | appears in A. A contradictoire.

— If z = x; 1 < i < n, then, by Corollary 4.1, we have VvoA; C C; — Dy, Vv;D; C
Cjv1 = Djy1 1 < j < k-1, VD, C A, where vg, ..., vk are not free in A and
Iyand I' Fprg wj 0 C5 1 < j < k. Since A; € 27, then, by Theorem 5.1, we have
C; € Qt, D e Q" 1 < j <k, and Fuo(Cj)JFva(Dj) C Fue(4i) 1 < j < k.
Therefore L does not appear in C; 1 < j < k. By the inductive hypothesis, we have
r1 A,y Apbrrruy 1 Cp 1 < j <k,andso xy: Ay, .. xn Ay et t AL O

16

6.2 Gobdel transformations

Definition With each predicate variable X, we associate a finite no empty set of predicate
variables Vy = { X1, ..., X, } having the same arity of X, such that : if X # Y then Vx N Vy = 0.
With each n-ary predicate variable X, and with each sequence of individual variables x1, ..., z,,

we assosiate a formula F'x such that :
- F'x is an L-type ;
- F'x does not contain any predicate symbol ;
- the free variables of F'x are among x1, ..., , and the elements of V.
For each formula A, we define the formula A* by the following induction way :
-If A=C(ty,...,tn), and C' is a predicate symbol, then A*=A.
-If A= X(t1,...,tn), and X is a predicate variable, then A*=Fx[t1/x1, ..., tn/x1].
-If A= B — C, then A*=B*— C*.
- If A =VaB, then A*=VxB*.
-If A=VXB, then A*=VX,..VX,B* where Vx = {Xy,..., X, }.
-If A= puCxy...xyD < tq,...,t, >, then A*=puCxy..2,D*< tq,...,t, >.

A* is called the G6édel transformation of A.

Remark. In order to show that the above transformation is well defined, we need to prove the

following Lemma :

Lemma 6.3 Let C' be a predicate variable or a predicate symbol, and A a type of TTR. If C' is

positive in A (resp. megative in A), then C' is positive in A* (resp. negative in A*).
Proof By induction on A. O

Lemma 6.4 1) If A Cy B, then A* Cy B*, and we use the same proof rules.
2) IfT' Frrg, t: A, then T prR, t © A%, and we use the same typing rules.

Proof By induction on the length of the derivation A Cy B (resp. I' Fprg, t: A). O
Corollary 6.1 Let D € QT, and t a normal M\-term. If Fprrrpt: D, then Fprrt: D*

Proof By induction on the length of the derivation Fr7r ¢t : D, and we use Theorem 5.2 and
Lemma 6.4. O

17

7 Storage operators

7.1 Definition of storage operators

Definitions

1) Let T be a closed A-term, and D,E two closed types of TTR (resp. TTR®). We say
that T is a storage operator for the pair of types (D, F) if and only if for every A-term ¢
with Frrr ¢ @ D (resp. Frrge t : D), there are A-terms 7, and 7/ such that © ~g 7/,
Frrr 11 @ E (vesp. brprre 71 @ E), and for every 0, ~g t, (T)0:f = (f)mlti/z1, ... tn/Tn],
where Fu(ry) = {f,z1,...,x,} and t1, ..., t, are A-terms which depend on 6,.

2) If D = E, we say that T is a storage operator for the type D.

Examples The type of recursive integers is the formula :
N"[z] = uNz®(N,z) < x >
where
O(N,z) =VX{Vy(Ny — Xsy), X0 — Xz}

(s is a unary function symbol for successor and 0 is a constant symbol for zero).

For each integer n, we define the recursive integer m by induction : 0 = AMfAzxz and n +1 =
AfAz(f)n. Let N be the set of recursive integers.

We have N = {t / t is a closed normal A\-term / Frrgt: N"[s"(0)], n > 0} (see [19]).

Let 5 = AnAfAz(f)n. It is easy to check that 5 is a A-term for successor, and Fprgr 3 :
Vy(N"[y] — N"[sy]).

Define

Ty = (Y)H where H = AxA\y((y)\2(G)(2)2)d, G = AzAy(z)\z(y)(8)z, and § = A\f(f)0 ;

Ty = M\v(v)pTp where 7 = MdAf(f)0, and p = Ayrz(G)(y)z7z,

then, for every 0, ~g 7, (T;)0,f = (f)(5)"0 (i =1, 2).

Therefore, for every n > 0, Ty and T are storage operators for N"[s™(0)].

Typing of T3

We use in the typing the Gédel transformation with Vx = {X}, and Fx = -X(xy,...,zy) for

every second order variable X of arity n.
e We have bppg 0: N7[0], then Fprg 6 1 == N"[0].

e We have bprr 5 : Vy(N"[y] — N"[sy]), then
x:—==N"[yl,y: =N"[sy],z: N'ly] Frrr (y)(3)z :L ; hence :
x: -~ N"[yl,y : ~N"[sy] Frrr (x)Az(y)(5)z :L ; therefore :
Frrr G Vy(-—N"[y] = ~=N"[sy]).

18

e We have y : ®*(N,z) brrr vy : Vy(Ny — ——N"[sy|), -~ N"[0] = —=—N"[z] ; thus :
x:Ve(Nz — == N"[z]),y : D*(N,x),z : Ny Frrr (G)(z)z : == N"[sy] ; therefore :
xz:Ve(Nz — == N"[z]),y : D*(N,z) Frrr A\2(G)(x)z : Vy(Ny — == N"[sy]) ; hence
x :Ve(Nz — = N"[z]) Frrr Ay((y)A\z(G)(2)z)d : Ve (P*(N,x) — ——N"[x]) ; therefore :
trrr H :Ve(Nx — ——N"|[z]) — Vo (®*(N,z) — -~ N"[z]).

And finally Fppg Ty : Ve{N"*[z] - == N"[z]}.
Typing of 15

We use in the typing the Gédel transformation with Vy = {X, X'}, and

Fx = X (21, ..., 2p), X' (21, ..., x,) =L for every second order variable X of arity n.

Let R = VXVy{(X,X — —-=N"[0], X - ——=N"[y]),X — —-—=N"[sy]}, D = R — ——N"[0], and
Flz] = R,D,R — ——N"[x].

o brrr AMf(f)0: ==N"[0] ; therefore : Fprpr 7: X — —=N7"[0], and Fprg 7 : R — —=—N"[0].

e By the previous typing, we have Fprr G : Vy(=—N"[y] — == N"[sy]) ; hence :
y: X, X — -=N"[0,X — —-=N"[yl,z : X Frrr (G)(y)zrz : == N"[sy| ; therefore
Frrr o R
e Check that ®*(\zF[z]/N,x) C F[x].
O*(A\zFlz]/N,z) =
VXVX'{Vy(Fly], Xsy, X'sy —1),(X0,X'0 1) = (Xz, X'z —1)};
therefore by specifying Xz by R, and X'z by =N"[z] ; we obtain :
O*(\xFx]/N,z) C Vy(F[y], R,~N"[sy] —L1),(R,~N"[0] -L1) = (R,~N"[x] —L1). We
need to check that R C Vy(Fly], R,~N"[sy] —L), this is absolutely true.
Therefore N™*[z] C F[z] and v : N"*[z| Fprrr v : R, D, R — ——N"[x] ; then :
v: N"™*[x] bprr (v)prp : == N"[z] ; and finally Frprg T : Va{N"*[z] - -—=N"[z]}.

7.2 General Theorem

Theorem 7.1 Let D, E be two V-positive closed types of TTR, such that 1L does not appear in
E. Iftprr T : D* — ——FE, then T is a storage operator for the pair (D, E).

Proof It is a consequence from the following Theorem :

Theorem 7.2 Let D, E be two V-positive closed types of TTR®, such that L does not appear in
E. Iftrrr T : D* — ——FE, then T is a storage operator for the pair (D, E).

Indeed:

19

Lemma 7.1 1) If T € QF (resp. T € Q™) then T° € QF (resp. T® € Q7).
2) For each Gddel transformation * of TTR, there is a Gddel transformation ¥ of TTR® such
that : for every type D of TTR, D* = D°¥.

Proof 1) By induction on 7.
2) ¥ is the restiction of * on the types of TTR®. O

Let t be a normal A-term, such that Fppr t : D. If bppg T @ D*— ——E, then, by The-
orem 3.3, bprre T : D* — ——=E°. By 2)-Lemma 7.1, there is a Gd6del transformation
¥ such that Fprre T : D®¥ — ——=FE°. Therefore, there are A-terms 73 and 7/, such that
T ~p 7/, Frrre T ¢ E°, and (T)tf > (f)mlti/z1,....tn/xyn]. By 2)-Corollary 6.1, we have
Frrrt: D* then f: —Ebtppr (T)tf : L, and f: ~FE bFprr (f)7e[t1/x1, . tn/xn] i L. Therefore
f:=Ebtprrr (f)74 L, and, by Corollary 4.1, Fprpr 7/ : E. O

We give the proof of Theorem 7.2 in a particular case.

Let N = uNVX{N — X, X — X}|, and * the G&del transformation with Vx = {X}, and
Fx = —=X(x1,...,2,) for every second order variable X of arity n.

We will prove that : If Fppre T : N™*— ——=N", then T is a storage operator for N".

Because of : if t is a closed normal A-term with F7rre t @ N7, then t = 7 for a certain integer
n, and it is suffies to prove that : If Fppre T : N"*— == N7, then, for every n > 0, there is an

m > 0 and 7 ~g m, such that, for every A-term 6,, ~3 7, there is a substitution o, such that

(T)0nf ~ (f)o(T).

Lemma 7.2 If IV =T,z : N"*pprge (®)uy...up : L, then n = 3, and there is a type G, such
that F/ l_TTR° ui - N *— _\G, P/ |_TTR<> ug _\G, and P/ |_TTR<> us - G.

Proof By Corollary 4.1, we have VvoN"™*C Ay — By, VviB; € Ajx1 — Bizs1 1 < i <n—1,
VvnB, CL, vq,...,vy are not free in N™* and I', and I bFppge u; @ A; 1 < ¢ < n. Since
VvoN"*C Ay — By, then, by Theorem 4.1, there is a formula F, such that A; € N"*— —F
and -F — —F C By. We have also Yv1B; C Ay — By, then Vvi(—F — —F) C Ay — By,
and, by Theorem 4.1, there is a sequence of formulas Fy, such that Ay C —F[F1/vy] and
—F[F1/v1]C Bs. Now, since YvaBs C A3 — B3, we have Vva(—F[F1/v1]) C A3 — Bs, and, by
Theorem 4.1, there is a sequence of formulas Fa, such that A3 C F[F1/v1,Fa/va] and 1L C Bs.
By Corollary 4.1, we have n = 3. Let G = F[F1/v1,F3/v3a]. Since vi,va are not free in N™*
and I', we deduce I'' Fprge uy : N™*— =G, IV Fprge ug : =G, and IV Fprge ug : G. O

Let n > 0.

20

Definition An n-special application # is a function from {0,1,...,n} to A with the following
properties : 6(0) = 0 and O(m + 1) = A fpu Az (frn)0(m) 0 <m <n —1.

Lemma 7.3 For every 6, ~g m, there is an n-special application 0, such that 6(n) = 6,.

Proof Easy. O

Definitions

1) Let 0 < m < n and U= U, 1, Um 2, Um 3, -y Un—1,1, Un—1,2, Un—1,3 & sequence of A-terms. We
denoted by x,, 4, a constant which does not appear in u.

2) Let 6 be an n-special application. The n-special substitution Sy is the function on the set A

defined by induction :
- If u = x, then Sy(z) = x ;
- If w = Azv, then Sp(u) = AySp(v[y/x]) where y & Fv(0(n)) ;
- If uw = (v)w, then Sp(u) = (Se(v))Sp(w) ;

- If u = 2z u,then

S@(u) = 9(m)[59(um,1)/fm, S@(um,2)/xma ooy S@ (un—l,l)/fn—h S@(un—lﬂ)/xn—l]-

An n-special substitution is the application Sy associated to a some n-special application 6.

Lemma 7.4 Let {U; = Vi}i<i<, be a sequence of head reductions such that :
Vi = (@mu)uiugus 0 <m < n, [Uip1r = (U1)Tm—1,u1,us,us,ut3 if m # 0, and Uipr = (u2)us if
m = 0/, and Sy an n-special substitution. For every 1 <i <r, Sp(Uy) ~ Sp(V;).

Proof We argue by induction on 1.

The case i = 0 is a consequence of Theorem 2.1.

Assume that is true for i, and prove it for 7 + 1.

If Vi = (zmu)urugus 0< m < n, then

So(Vi) = (6(m)[So(wm,1)/ fms So(wm,2/)Tm, ., So(un—1,1)/ frn—1, So(tn-1,2)/Tn-1])
So(u1)Se(u2)Se(us).

- If m # 0, then H(m) -)\fm_lA:rm_l(fm_l)H(m — 1),
and Sp(V;) ~ (Se(u1))0(m — 1)[So(um—1,1)/ frm—1, So(Wm—12)/Tm-1, --.,
So(un—1,1)/fn=1,0(tn-1,2)/n-1])Se(u3) = Sp(Uis1).

-Ifm = 0, then O(m) = AfAzzx, and Sp(V;) ~ (AfAxx)Sp(u1)Se(u2)Se(us) ~ (Sp(uz))Se(us) =
So(Uit1)-

21

By the induction hypothesis we have Sy(Uy) ~ Sp(V;), then Sy(Uy) ~ Sp(U;t1), and, by Theo-
rem 2.1, Sg(Ul) ~ SQ(VZ'_H). (]

Definition A context I' = f : =N, Zp ug: N, Ty uy: N7 o, Ziny gt N7 where 0 < mj < n,

1 < j <s, is called n-good.

Lemma 7.5 There is a sequence of head reductions {U; > Vi <i<, such that :
-Uy = (T)anf and V, = (f)T where 7 ~g 1 for some | >0 ;

- Vi = (@mu)uiuguz 0 <m < n, and

Uit1 = (U1)Tm—1,u1,u0,us,utt3 if m # 0, and U1 = (u2)uz if m =0 ;

- For every 1 <14 < r, there is an n-good context I'; such that I'; Frrre V; L.

Proof Since Fppre T @ N"™— —==N", then x, : N™* f : =N" bppre (T)x,f :L, and, by
Corollary 4.3 and Lemma 7.2, we have (T)x, f = Vi where Vi = (f)7 or V] = (x,)ujugus.
Assume that we have the head reduction Uy > Vi, and Vi, # (f)7. Then Vi = (@ u)uiusus
0 < m < n, and, by the induction hypothesis, there is an n-good context I'y, such that I'y, Frrgre
(Tmu)uiugug L. By Lemma 7.2, there is a type G, such that I'y Frrpe up @ N™— =G,
Ty Fprgre ug - =G, and Ty Fprpe ug @ G.

-Ifm= 0, let Uk+1 = (UQ)’LLg. Let Fk—i—l = Fk. We have Fk+1 l_TTRO Uk L.

-Ifm #0, let Ugr1 = (W1)@Tm—1,u;1 ug,us,utts. The variable y,—1 4, us,us,u 1S N0t used before.
Indeed, if it is, by Lemma 7.4, the A-term (7")7f is not solvable. That is impossible because
f =N bFprre (T)if : L. Therefore T'ky1 = Tk, Zym—1,u1 usus,u: N'F is an n-good context
and I'yy1 Frrgpe Ugyq L.

By Corollary 4.3 and Lemma 7.2, we have Ugyq = Vipiq where Viyy = (f)7 or Ve =
(xsv)v1v203 0 < s < n.

This constraction always terminates. Indeed, if not, by Lemma 7.4, the A-term (T)7f is not
solvable. That is impossible because f : =“N" Fppre (T)7f : L.

Therefore there is r > 0 and an n-good context I, such that V;. = (f)7 and T, Fppgre V. : L. By

Lemma 6.2, we have 7 ~g [for some [> 0. O

Let 0, be a A-term such that 6,, ~g 7. By Lemma 7.3, let § be an n-special application such
that 6(n) = 0,. Let Sy the n-special substitution associated to §. By Lemma 7.4, we have for
every 1 <i <7, (T)0,f ~ Sp(V;). In particular, for i = n, (T")0,,f ~ Sg((f)T) = (f)Se(7). Then

T is a storage operator for N". O

22

References

[1]

H. BARENDREGT. The lambda calculus: Its Syntax and Semantics.
North Holland, 1984.

R. DAVID. The Inf function in system F.
Theorical Computer Science, 135 (423-431), 1994.

P. GIANNINI and S. RONCHI. Characterization of typing in polymorphic type discipline.
LICS, Edinboug (61-70), 1988.

J.L. KRIVINE. Lambda calcul, évaluation paresseuse et mise en mémoire.
Informatique Théorique et Applications, Vol. 25,1, p. 67-84, 1991.

J.L. KRIVINE. Lambda calcul, types et modéle.
Masson, Paris, 1990.

J.L. KRIVINE. Opérateurs de mise en mémoire et traduction de Gddel.
Archive. Math. Logic 30. (241-267), 1990.

J.L. KRIVINE. Mise en mémoire (preuve générale).
Manuscript,1991.

R. LABIB-SAMI. Typer avec (ou sans) types auziliéres.
Manuscript, 1986.

D. LEIVANT. Reasonning about functional programs and complexity classes associated with
type disciplines.
In 24th Annual Symposium on Foundations of Computer Science, volum 44 (460-469), 1983.

D. LEIVANT. Typing and computation properties of lambda expressions.
Theorical Computer Science, 44 (51-68), 1986.

J. MITCHELL. Polomorphic type.
Information and Computation, 76 (2/3), (211-249), 1988.

K. NOUR. Opérateurs de mise en mémoire en lambda-calcul pur et typé.
These de doctorat, Université de Savoie, 1993.

K. NOUR. Strong storage operators and data types.
Archive. Math. Logic 34. (65-78), 1995.

K. NOUR. Opérateurs propres de mise en mémoire.
C.R.A.S. Paris, t. 317, Série I, p. 1-6, 1993.

23

[15] K. NOUR. Preuve syntazique d’un théoréme de J.L. Krivine sur les opérateurs de mise en
mémoire.

C.R.A.S. Paris, t. 318, Série I, p. 201-204, 1994.

[16] K. NOUR. Opérateurs de mise en mémoire et types V-positifs.
Submitted to publication in Thearetical Informatics and Applications, 1993.

[17] K. NOUR and R. DAVID. Storage operators and directed lambda-calculus.
Journal of Symbolic Logic (to appear).

[18] M. PARIGOT. Programming with proofs : a second order type theory.
ESOP’88, LNCS 300, (145-159), 1988.

[19] M. PARIGOT. On representation of data in lambda calculus.
To appear in LNCS.

[20] M. PARIGOT. Recursive programming with proofs.
Theoritical Computer Science, 94 (335-356), 1992.

24

