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Abstract. A parameterized computational problem is a set of pairs (z, k), where k is a dis- 
tinguished item called “parameter”. FPT is the class of fixed-parameter tractable problems: 
for any fixed value of k, they are solvable in time bounded by a polynomial of degree a, 
where Q is a constant not dependent on the parameter. In order to deal with parameterized 
intractability, Downey and Fellows have introduced a hierarchy of classes W[1] C W[2] . . . 
containing likely intractable parameterized problems, and they have shown that such classes 
have many natural, complete languages. In this paper we analyze several variations of the 
halting problem for nondeterministic Turing machines with parameterized time, and we 
show that its parameterized complexity strongly depends on some resources like the number 
of tapes, head and internal states, and on the size of the alphabet. Notice that classical 
polynomial-time complexity fails in distinguishing such features. As byproducts, we show 
that parameterized complexity is a useful tool for the study of the intrinsic power of some 
computational models, and we underline the different “computational powers” of some levels 
of the parameterized hierarchy. 

Mathematics Subject Classiflcation: 68Q05, 68Q25, 03D10, 68Ql5. 
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plexity. 

1 Introduction 

Parameterized complexity [2, 3, 4, 5 ,  61 is a new, powerful framework with which 
to address the different “parameterized behaviour” of many computational problems. 
Almost all natural problems have instances consisting of at least two logical items; 
many NP-complete problems [7] admit “efficient” algorithms for small values of one 
item (the parameter). For example, the NP-complete VERTEX COVER problem [7] 
admits a solving algorithm with running time bounded by 2n + 2‘ [4]. Thus, for 
small values of the parameter k, an efficient, linear time solving algorithm exists. On 
the contrary, the best known algorithm for the similar NP-complete DOMINATING 
SET problem [7] has running time in O(n’++’). Although such an  algorithm runs in 
polynomial time for any fixed k, its time requirement could be unacceptable even for 
not too large graphs G. Indeed, there seems to be a huge gap between the performance 
of one of the previous algorithms and the other: if the graph G has 100 vertices and 
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the parameter k has value 3, then the VERTEX COVER’S algorithm is roughly 500,000 
times faster than the DOMINATING SET’S one. 

A parameterized problem is said to be fized parameter  tractable [4] if it admits 
a solving algorithm whose running time on instance (I, k) is bounded by f(k) . (zIo, 
where f is an arbitrary function and a is a constant not depending on the parameter k. 
The class of fixed parameter tractable problems is denoted by FPT.  Furthermore, 
a hierarchy of classes {W[t]}, including likely fixed parameter intractable problems 
(modulo some unlikely collapse), has been defined [2]. While the “classical” complex- 
ity classes (P, N P ,  the polynomial hierarchy, and so on) are defined on the basis of 
specific models of computation (several variations of Turing machines), the definition 
of the W classes is more involved. For example, while N P  is defined as the class of 
problems which are solvable by nondeterministic polynomial-time Turing machines, 
W[t] is the closure under “fixed parameter reductions” with respect to a “kernel 
problem”. In other words, the classes of the W hierarchy do not have an immediate 
computational characterization. 

A first contribution on this subject has been established in [l] by proving that the 
problem of deciding if a nondeterministic Turing Machine M ,  having exactly one tape 
and one head, halts in a t  most some parameterized number of steps is W[l]-complete. 
The previous result provides strong evidence to the conjecture W[1] # FPT. Indeed, 
a Turing machine is such a general model of computation that it seems not possible to 
guess the result of some nondeterministic computation without looking (in the worst 
case) a t  all computation’s paths. Moreover, the result provides a characterization 
of W[1] in terms of a classical model of computation: all problems in W[1] have 
“candidate solutions” that are verifiable by a “short” computation of a simple Turing 
machine. 

In this paper, we significantly extend that result; in particular, we consider Tur- 
ing machines having many tapes and many heads, and we analyze the role played by 
several static resources (like the number of internal states and the size of the alpha- 
bet) in a bounded-length computation. In the classical setting almost all variations 
of the basic Turing machine model are polynomially-related [8], and therefore the 
classical complexity theory does not allow to separate such models. On the contrary, 
we show that parameterized complexity may be a very useful tool for such a kind 
of analysis. Indeed, we prove that different nondeterministic Turing machine models 
characterize different W classes. As a byproduct, we underline the different “compu- 
tational powers” of some levels of the W hierarchy. The computational complexity 
of the problem of deciding if a nondeterministic Turing machine accepts a string x 
with a bounded length computation (the SNTMC problem) is somewhat related to 
the intrinsic “computational power” of the corresponding Turing machine models. 
Here, for “computational power” we should mean the “ability to do something by 
using some resources”. For example, we prove that the general SNTMC problem is 
W[2]-hard, while SNTMC restricted to total Turing machines2) is W[l]-complete. Of 
course, given a non-total device, it is straightforward to fill its transition table and to 
get an “equivalent”, total device which is able to perform any task as the original one. 
But the non-total machine is more “powerful”, since it is able to perform the same 

*)A Turing machine is said to be totalif it has an applicable transition for any global configuration. 
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tasks by using a smaller transition table; indeed, the key idea of the parameterized 
reduction showing the W[2]-hardness of SNTMC consists in an "information hiding" 
trick that allows us to  keep small the number of required transitions. 

The paper is organized as follows. In Section 2 we address the formal setting of 
parameterized complexity by providing the basic definitions. In Section 3 we formally 
define the Turing machine model we use throughout the paper and the SNTMC 
problem we deal with. In Section 4 we prove the W[1]-completeness of several versions 
of the SNTMC problem: when restricted to  total machines or to  machines in which 
some of the number of heads, tapes, internal states and the size of the input are 
parameterized. In Section 5 we consider the general SNTMC problem and some 
other versions and we prove their membership to the W hierarchy and their hardness 
for W [ 2 ] .  In Section 6 we consider two restrictions of the SNTMC problem (in which 
the number of heads and, respectively, the size of the alphabet or the number of 
internal states are parameters) and we prove their membership to  FPT. Finally, in 
Section 7 we address some conclusions and we discuss some open problems. 

2 The parameterized complexity setting 

A parameterized problem is a set L C' x N, where C is a fixed alphabet. A parame- 
terized problem L is (uniformly) f ixed-parameter tractable if there is a constant cy and 
an algorithm CP such that CP decides if (2, k) E L in time f(k)lzI", where f : N - N is 
an arbitrary function. The class of fixed-parameter tractable problems is called FPT. 

Let L1 , L2 be parameterized problems. We say that L1 is (uniformly many : 1) 
reducible to L2 if there is a constant cy and an algorithm CP which transforms ( 3 : , k )  
into ( d , g ( k ) )  in time f(k)IzI", where f , g  : N - M are arbitrary functions, so that 
(z, k) E L1 if and only if (z', g(k)) E Lz. The reduction is said to  be strong if the 
function f is recursive. 

The W classes are defined in terms of decision circuits. A logical circuit is of mixed 
type if it has gates of two kinds: S m a l l  gates  (not-gates, and-gates and or-gates with 
bounded fan-in, usually fan-in 1 for not-gates and fan-in 2 for or- and and-gates), and 
Large gates (and-gates and or-gates with unbounded fan-in). 

The depth of a circuit C is the maximum number of gates (small or large) on an 
input-output path in C .  The weft  of a circuit C is the maximum number of large 
gates on an input-output path in C. A family of decision circuits F has bounded depth 
(resp. bounded w e f t )  if there is a constant A' such that every circuit in the family F 
has depth (resp. weft) at  most I<. 

Let F be a family of decision circuits (possibly having many different circuits with 
a given number of inputs). A parameterized circuit  problem is associated to  F :  

LF = { (C,  k) : C E F and C accepts an input vector of weight k}, 

where the weight of a Boolean vector 3: is the number of 1's in the vector. A parame- 
terized problem L belongs to  W[t]  if there exists a constant h such that L reduces to 
the parameterized circuit problem L F ( ~ , ~ )  for the family F ( t ,  h )  of mixed type decision 
circuits of weft at  most t and depth at  most h. Finally, a parameterized problem L 
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belongs to  W[P] if L reduces to  the circuit problem L F ,  where F is the set of all cir- 
cuits (no restrictions). Of course, FPT C W[1] c W[2] c . . .  C W[P]. Many natural 
NP-hard or NP-complete problems have been found for the W classes [6, 21. 

3 The basic Turing Machine model 

A multi-tape, multi-head Turing machine is a physical device consisting of a finite 
control (a finite subset Q of a countably infinite set 0,) and t + 1 (unidimensional) 
tapes (for some t 2 0): an input tape (tape 0) and t work tapes (tapes 1 , .  . . , t ) .  Each 
tape consists of an infinite sequence of cells indexed by integers. Each cell contains 
a symbol of a finite subset C of a countably infinite set C,. We assume that C 
always includes the blank symbol ‘0 ’ .  On any tape i (i = 0 , .  . . , t ) ,  there are h heads 
(heads 1 , .  . . , h);  every head scans one cell at a time. 

Initially, the input tape (tape 0) holds an input word z not containing blanks, while 
all the other tapes are filled by blanks. Each head on tape i ( i  = 0 , .  . . , t )  scans the 
same cell, and moreover all heads on tape 0 scan the cell containing the first symbol 
of the input word 2 (if this is not empty). We assume that,  if t > 0, the input tape 
is a read-only one and that its heads cannot go beyond the two blanks immediately 
adjacent to  z. Conversely, if t = 0, the unique tape of the Turing machine (tape 0) 
is also a work tape and, thus, it is not read-only. A machine with t = 0 and h = 1 is 
called simple.  

The transi t ion rule 6 specifies the behaviour of the device: it is a subset of 
Q x Ch(i+l) x Q x Chmax{t,l} x { - l , O , + l } h ( t + l )  and each element represents an 
instruct ion.  The first 1 + h(t + 1) items of any instruction encode the current state 
and the symbols currently scanned under the heads, while the remaining ones encode 
the state to  be reached by the machine, the symbols to  be written by the heads, and 
the movements of the heads. The machine halts whenever there is no rule in 6 whose 
first 1 + h(t + 1) items match its internal state and the scanned symbols. If this 
happens in a particular state denoted as qa, the input word is accepted. The Turing 
machine could also use a particular final rejecting state qr.  Of course, qo and qr are 
never in the first item of any instruction. 

In a multi-head Turing machine it may happen that several heads scan the same 
cell: as in [9] we adopt a head-concurrency rule to  be applied when such heads attempt 
to  write different symbols: the head with the lower number wins out. 

D e f i n i t i o n  1. A Turing machine M is a 3-tuple ( t ,  h ,  6 ) ,  where t + 1 represents 
the number of tapes, h denotes the number of heads per tape, and 6 is the transition 
table. 

Notice that in the above definition explicit references to  Q and C are missing. In 
fact, the subsets of Q, and C, actually used by the machine (the “working sets”) 
are implicitly defined by 6, while Q and C could include useless states and symbols. 
In the following, QM and C M  denote such working sets. When it4 is understood, we 
shall write simply C and Q. In order to  simplify the proofs, it is convenient to  make 
the assumption according to  which the blank symbol ‘0’ cannot be written on any of 
the work tapes. 

A configuration of M is a (2t+3)-tuple c = ( q ,  wo, no, 201, n l ,  . . . , wt, nt ) ,  where q 
is the current state, each w, (i = 0 , .  . . , t )  is a word over EM, and ni (i = 0 , .  . . , t )  is a 
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h-tuple of integers in ( 0 , .  . . , 1 +  Iwil}. The string wi represents the non-blank portion 
of tape i. The convention that blanks cannot be written ensures that the non-blank 
portion of each tape is contiguous. Each value nij of the h-tuple ni indicates that 
head j of tape i is scanning the nijth symbol in w i .  For a string x ,  let t[i] denote the 
ith symbol in t if 1 5 i 5 121. If i is outside the indicated range, then by definition 
t[i] denotes the blank symbol. The init ial  configuration on input x is defined to  be 
C O ( X )  = ( q o ,  t, (1,. . . , l), E ,  (0 , .  . . , O ) ,  . . . , E ,  (0 , .  . . , O ) ) ,  where qo is the start state 
and E is the empty string. 

Now we define a binary relation I-6 (or I-, if 6 is understood) on the configurations 
of 6: c /-6 c’ means the configuration c’ is obtained from c by applying an instruction 
of 6; thus, ct is a successor of c and the sequence is called a transi t ion or a s t ep .  We 
write c I-! c’ if there is a k-steps sequence 

c = CO k6 c1 I-6 ‘ ‘ .  k6 ck = c’. 

The reflexive, transitive closure of the binary relation I-6 is denoted I-: (or just I-*). 

3.1 The “short” computation problem 

In this paper we study the parameterized complexity of a computational problem 
concerning acceptor nondeterministic Turing machines. In particular, we consider 
the problem related to  the existence of “short” accepting computation paths, that 
is, accepting computation paths having bounded time. Formally, the SHORT NON- 
DETERMINISTIC TURING MACHINE COMPUTATION (in short SNTMC) problem is 
defined as follows: 

I n s t a n c e :  a (nondeterministic) Turing machine M = ( t , h , 6 )  and a word z 

P a r a m e t e r :  an integer k. 
Q u e s t i o n : is there an accepting computation path of M on input x requiring 

at most k steps? 
CAI, CHEN, DOWNEY and FELLOWS [l] proved that SNTMC is W[l]-complete 

when restricted to simple machines. In this paper we significantly extend such results 
by studying several variations of this problem. We concentrate our attention on the 
role played by various resources and we define new parameters representing the limits 
imposed on the resources. In particular we are interested in bounding: 

over EM. 

(T) the number of tapes t ,  
(H) the number of heads per tape h ,  
(C) the number of non-blank symbols JC - {O}I, 

(Q) the number of non-halting internal states I& - { q a ,  q r } l ,  
( I )  the size of the input 1x1. 

We denote the different versions by “prefixing” the name of the basic problem by, 
respectively, T, H ,  C, Q, and I. For example, C-SNTMC represents the parameterized 
problem SNTMC having both the time and the size of the alphabet C as parameters. 
Moreover, we may consider the same problems having some resources fixed to par- 
ticular values; as an example, &-SNTMC denotes the problem SNTMC such that 
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the parameter is the time k and the instances are restricted to Turing machines with 
binary alphabet. 

The common idea of many proofs is that the resources are somewhat “interchange- 
able”. For example, a Turing machine that uses many internal states can be easily 
simulated by a new Turing machine having just one internal state and an enlarged 
alphabet (a  particular cell on some tape contains a symbol encoding the internal state 
of the simulated device): we economize on the number of internal states, yet the size 
of the alphabet increases. 

However, such methods are often not applicable. For example, let us suppose that 
our goal is to simulate a single-tape, single-head Turing machine by using a single- 
tape, single-head Turing machine with just one internal state. Of course we can 
enlarge the alphabet, but this does not seem to be enough. Indeed, for example, in 
the next sections it is shown that SNTMC for simple machines with a parameterized 
number of internal states is fixed parameter tractable while we know that SNTMC 
restricted to simple machines (one tape and one head) is W[1]-complete. Thus, a 
simple machine with a bounded number of internal states has considerably less power 
than a simple machine with an arbitrarily large number of states. 

4 Cases of W[1]-completeness 

Recall the W[1]-completeness of SNTMC proved in [l] for simple machines. Our first 
theorem generalizes such a result to multi-tapes, multi-heads machines such that the 
number of heads and the number of tapes are parameters. Of course, since SNTMC 
restricted to  simple machines trivially reduces to  SNTMC for multi-tapes, multi-heads 
machines, the W[1]-hardness directly follows. Thus, the interesting part of our result 
concerns the membership to W[1]. Before proving it, we need the following lemma. 

L e m m a  1. H-10-T-SNTMC belongs t o  W[1]. 

P r o o f  (sketch). In order to show membership in W[1], it suffices to show how 
an instance ( M ,  k ,  t ,  h)  of H-10-T-SNTMC can be translated into an instance (C, k’), 
where C is a circuit with weft 1 and constant depth. We arrange the circuit so that 
the input lines are partitioned into k’ pools of variables such that exactly one line in 
each pool can be set to 1. The pools represent: 

1. the ith transition, 1 5 i 5 k (k pools); 
2. for any head j and tape 1,  the head position at time i, 1 5 i 5 k, 1 5 j 5 h,  

3. the internal state at time i, 15 i 5 k (k pools); 
4. the symbol in cell j at  time i, 1 5 i, j 5 k, 0 5 15 2 ( k 2 ( t  + 1) pools). 

0 _< 15 t (hk(t  + 1) pools); 

Thus, we take k’ = 2k+ hk(t + 1) + k 2 ( t  + 1). In order to force exactly one input to be 
set equal to 1 in each pool of input variables we add to the circuit, for each such pool 
of input variables and for each pair of variables 2 and y in the same pool, a small “not 
both” circuit representing (-2 V -y). Observe that an accepted weight k’ input vector 
must have exactly one variable set to true in each of k’ pools. Let n denote the number 
of input variables in this construction; then n = k161+ k(Q1+ kh( t  + 1) + k( t  + 1)(C(. 
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The remainder of the circuit encodes various checks on the legacy of the above 
choices. These consistency checks conjunctively determine whether the choices repre- 
sent an accepting k-steps computation of M ,  much as in the proof of COOK’S theorem, 
and they can be implemented so that each one involves only a bounded number b of 
input variables. 

We have O(nb) “checking” circuits for consistency checks involving b values. All of 
the small “not both” and “checking” circuits feed into the single large output and-gate 

0 of C. The formal description of the details is laborious but straightforward. 
We are now ready to prove the full theorem. 
T h e o r e m  1. H-T-SNTMC is W[l]-complete. 
P r o o f .  We have already noticed that the problem is trivially W[1]-hard. In order 

to prove its membership to  W[1], we reduce it to  H-10-T-SNTMC. The assertion will 
follow from Lemma 1. 

We first reduce H-T-SNTMC to H-I-T-SNTMC and then the latter problem to 

Let ( M ,  I ,  k, . . .) be an instance of H-T-SNTMC, and let us consider the determin- 
istic Turing machine T that ,  on input ( M ,  I, k, . . .), outputs the same machine M ,  a 
new input word I’ which is the truncation of x to the first k symbols, a new parameter 
value equal to k (for the bound on the input length), and all the parameters of the 
original instance. Of course, the running-time of T is linear in the size of its input. 
We have to  show that ( M ,  I, k, . . .) is a yes-instance of H-T-SNTMC if and only if 
( M ,  d, k, k, . . .) is a yes-instance of H-I-T-SNTMC. Consider that  if a computation 
path of M(I) accepts in at most k steps, then this computation path reads at  most 
k symbols of the input, and therefore there exists also a computation path of M ( d )  
which accepts in at  most k steps. Conversely, if every computation path of M(I) does 
not accept after k steps, then every computation path of M(I’) does not accept after 
k steps. 

Finally, we show that H-I-T-SNTMC reduces to  H-10-T-SNTMC. Consider an in- 
stance of H-I-T-SNTMC containing a nondeterministic Turing machine M = ( t ,  h ,  6),  
an input word x and parameters k and n = (11. Suppose t > 0, and consider the Turing 
machine M’ = (t + 1, h,  6’) that (starting from empty input) writes ~ [ l ] ,  1[2], . . . , I[.] 
on the additional work tape and then simulates M .  It is easy to verify that a descrip- 
tion of M’ can be derived from a description of (M,I) in a linear number of steps, 
and that M ,  I, k, n are in a yes-instance of H-I-T-SNTMC if and only if M‘, k are in 
a yes-instance of H-10-T-SNTMC. The reduction in the case t = 0 is very similar. 0 

Is the behaviour of nondeterministic Turing machines having a “small” number of 
internal states “easily” predictable ? The answer turns out to  be negative. Indeed, 
we shall prove that nondeterministic machines with just one non-terminal internal 
state and two work tapes are able to  solve W[1]-complete problems in parameter- 
ized polynomial time, and therefore that the corresponding “short nondeterministic 
computation problem” is W[1]-hard. 

DOWNEY and FELLOWS [6] proved that CLIQUE (given a graph G and a para- 
meter k, decide if G contains a complete subgraph of k nodes) is W[1]-complete. 
Actually, CLIQUE can be considered as the “prototype” of W[1]-complete problems. 

H-10-T-SNTMC. 
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For our goal, it is sufficient to show that, for any instance (G,k) of CLIQUE, it is 
easily derivable a two-tapes, single-head, single-state Turing machine which is able to 
decide (G, k) E CLIQUE in time bounded by a function of k.  

T h e  o r e m  2. CLIQUE reduces l o  H1-1o-Ql-T2-SNTMC. 

P r o o f .  Let (G, k) be an instance of CLIQUE, where G = (V, E )  is a graph and k is 
an integer. We show how to construct a nondeterministic single-head Turing machine 
A4 = (2,1,6) such that &M = {qo,qa,qr},  and M can reach qa in k' = f(k) moves if 
and only if G contains a k-clique. 

Let us assume that V = { I , .  . . , n}. Then CM contains the symbols 0,  $, #, 
and five symbols for every node i E I/. Of course we can assume that k 5 n. Since 
the internal states qa and qr are final states, there is just one internal state which 
performs any operations (the initial state q o ) .  Moreover, M has two work tapes, but 
actually M uses just one tape square of the second tape. 

The Turing machine M is designed so that any accepting computation path con- 
sists of three phases. In the first phase, A4 nondeterministically guesses k vertices 
of G and writes the corresponding symbols in the first k cells of tape 1. During the 
second phase, M checks if the symbols are pairwise distinct. Thus, Phase 2 requires 
the k symbols written on tape 1 to be scanned k times and it ends in O ( k 2 )  steps. 
Phase 3 verifies that the guessed vertices are a clique. As an example, we show the 
transitions in 6 used during the third phase: 

( ~ , v , $ , P o , ~ , v ' , Q o , O , + l , O )  f o r v E { l , . . . , n ) ,  
( ~ , v , d , Q o , v , d , Q o ,  0,+1,0) fo rwU,wE{1 , . . . , n> ,  v # w ,  ( . , w ) E E ,  
(0,  El.', Q o ,  #, #, Qr,  o,o, 0) for w, w E { 1, . . . , n}, w # w, ( w ,  w) @ E ,  
( O , O , d ,  40 ,  # I d ! ,  Qo, 0,-1,0) for w E {1,...1n}, 
( O , # , W ' ,  Po, #,d, Po, 0,-1,0) for w E { 1 , . . . , n } ,  
(O,Z),.LoII, Q o , ~ , d , Q 0 , 0 , - 1 , 0 )  f o r w , w € { 1 , . . . , n } , w # w ,  
(O,v, v" , Qo,  v , $ 1  Qo,  0, +I ,  0) for w € { 1 , . . . , .I, 
(0 ,  #,$, QO, #,#,Pa, O , O ,  0). 

It is easy to  verify that Phase 3 terminates in O(k2)  steps, that the total number of 
symbols is 5n+3,  and that the total number of transitions is at most 2n2+(k+7)n+2 .  
Of course, M is easily derived from (G, k) in linear time in the size of G and k. It is 
trivial to verify that G has a k-clique if and only if M ( E )  accepts and, in every case, 

0 

Of course, such result can be easily generalized to any fixed number of work tapes 
greater than 2. By the converse, later in this paper we shall show that a single-head 
machine with less than two work tapes and one non-final internal state cannot solve 
a W[1]-complete problem (unless W[l]=FPT). 

M ( E )  halts in at most 2 k 2  + 3k + 4 steps. 

C o r o l l a r y  1. H1-Io-Q1-Tt-SNTMC is W[l]-complete f o r t  2 2. 
P r o o f .  By the trivial reduction from H1-Io-Q1-Tt-SNTMC to H-T-SNTMC, 

0 

We now prove that even the Hh-Io-Q,-To-SNTMC problem is W[1]-complete. 

Theorem 1 and Theorem 2. 
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T h e o r e m  3. Hh-Io-Q,-To-SNTMC is W[1]-complete. 
P r o o f  (sketch). Of course Hh-Io-Q,-To-SNTMC belongs to W[l], because it 

trivially reduces to  H - T - SNTMC E W[1] (Theorem 1). Now, let us show that the 
W[l]-complete HI-10-To-SNTMC problem [l] reduces to H2-Io-Q1-To-SNTMC. 

Let ( M A )  be an instance of H1-Io-To-SNTMC, where M = (0 ,1 ,6)  is a nondeter- 
ministic Turing machine; let us consider the instance (M’,  k’) of H2-Io-Q1-To-SNTMC 
such that k’ = 2k + 1 and M‘ = (0,2,6’) is a nondeterministic Turing machine having 
QMM’ = { n o ,  qa, qr} r l  QW and, for $ 4  E M ,  

C M ! = C M U { $ } U { ~  : l < i < k } U { p  - : q E Q M } .  

The Turing machine M‘ operates in two phases: in the first one it executes k+ 1 right- 
moves with head 2,  using the cell scanned under the other heads as a counter. In the 
second phase M‘ simulates the machine M by using the cell scanned under head 2 as a 
storage area which contains the current internal symbol of M .  It is easy to  verify that 
M‘ can perform these tasks with just one non-terminal state. It is straightforward to  
derive the details of 6’. 0 

4.1 SNTMC restricted to total machines is W[l]-complete 

In order to  extend the W[1]-completeness result to larger classes of Turing machines, 
we introduce the notion of “total” Turing machine. We say that a Turing machine is 
total if i t  cannot “hang up”, that is, for every combination of scanned symbols and 
internal state, the transition table of the machine contains an applicable instruction. 
Formally : 

D e f i n i t i o n  2. A Turing machine M = ( t ,h ,6)  is totalif its transition relation 6 
defines a total multi-valued function from the set C, x (&M-{qa, q r } )  to  the set 
ZLmax t t 

A total Turing machine has a peculiar property: its transition table has a large 
number of instructions (in @ ( I C ( h ( t + l ) .  IQI)). Total machines seem to have somewhat 
less power than non-total ones: fix a non-total machine M and consider the total 
machine M’ obtained from M by filling its transition table with all the missing in- 
structions (any new instruction simply enters the reject state). Of course, M and M’ 
accept the same language, yet the size of M is smaller, and thus M appears to  be 
more powerful than M’. 

We now show that SNTMC restricted to  total Turing machines is still W[1]-com- 
plete. Notice that the number of tapes and the number of heads per tape are arbi- 
trarily large and not bounded by any parameter; later in this paper we shall show 
that the same problem for non total machines is W[2]-hard, and thus not in W[1]. 

L e m m a 2. SNTMC restricted t o  total Turing machines reduces to HI-To-SNTMC. 
P r o o f  (sketch). We adopt essentially the classical “multi-tape and multi-head” 

to “single-tape and single-head” reduction as presented in [8], but we need some tricks 
in order to achieve the fixed parameter reduction. 

Let ( M ,  2 ,  k )  be an instance of SNTMC, where M = ( t ,  h,  6) is a nondeterministic 
Turing machine, 6 is a total function and c E Ck. Let us assume that q = 1 Q ~ l ,  
s = 1 C ~ l  and d = 161. We define a nondeterministic Turing machine M’ = (0, 1,6’) 

h ( t + l )  

x QW x {+l, 0, -l}h(t+l). 



188 Marco Cesati and Miriam Di Ianni 

such that M’ has ( h  + l ) ( t  + 1) tracks on the tape grouped in t + 1 sets of h + 1 
tracks (i.e., ( h  + 1) tracks for each of the M’s  tapes). One track in each set records 
the content of the corresponding tape of M and the other ones are blank, except for 
some markers in the cells that  hold the symbols scanned by the heads of M .  The 
finite control of M’ stores the state of M ,  along with a count of the number of head 
markers to  the right of M”s head. Moreover, the finite control of M’ stores the ht 
symbols scanned by the M’s heads. 

Each move of M is simulated by a sweep from left to  right and then from right 
to left by the head of M’. Initially, MI’S head is at the leftmost cell containing a 
head marker. To simulate a move of M ,  M‘ sweeps right, visiting each of the cells 
with head markers and recording the symbol scanned by each head of M .  When M‘ 
crosses a head marker, it must update the count of head markers to  its right. When 
no more head markers are to  the right, M’ has seen the symbols scanned by each 
of M’s heads, so M‘ has enough information for nondeterministically guessing the 
next nondeterministic move of M .  Now M’ makes a pass left, until it reaches the 
leftmost head marker. The count of markers to  the right enables M’ to  tell when it 
has gone far enough. As M‘ passes each head marker on the leftward pass, it updates 
the tape symbol of M “scanned” by that head marker, and it moves the head marker 
one symbol left or right to  simulate the move of M .  Finally, M’ changes the state 
of M (recorded in M”s control) to  complete the simulation of one move of M .  If the 
new state of M is accepting, then M‘ accepts. 

We have to  show that this construction is a fixed-parameter reduction. The al- 
phabet of M’ is = (EM x (0,  l}h)t+’: a symbol in a cell encodes the symbols 
in the corresponding t + 1 cells of M plus the corresponding h markers. Thus, the 
number of symbols in is s’ = 2( t t1 )hs t+1 .  An internal state of M‘ encodes the 
internal state of M ,  the number of head markers at the right of the M”s head and the 
h(t + 1) symbols scanned by the M’s heads. Thus, the number of internal states in 
Q M ~  is q’ = O(qthsh(‘+’)). For every transition in 6,  6’ has a corresponding transition. 
Moreover, we need the transitions performing the “sweeping” operations, and there- 
fore the number of transitions in 6’ is d’ = O(d+ q’s’) = O(d+ ~ ( ~ + l ) ( * + l ) 2 ( ~ + ’ ) ~ q t h )  
(observe that  the “sweeping” operations are deterministic). Let IlMll be the length 
of a description of M .  Therefore llMll 2 d(logq+thlogs) 2 qs(‘+l)h(logq+thlogs), 
because 6 is a total function. Then it is easy to verify that the length of a description 
of M’ is IIM’II = O(d‘(1ogq’ +logs’)) = O(th ( (M( (3 ) .  

It is easy to  check that M’ uses at most 6k2 steps to  simulate k steps of M .  More- 
over, observe that 1x1 = 12’1, and therefore the above reduction is a fixed-parameter 
reduction from total-SNTMC to HI-To-SNTMC. 0 

L e m m a  3 .  Hh-T,-SNTMC reduces t o  SNTMC restricted t o  total  Turing m a -  

P r o o f .  Assume that t 2 0 and h 2 1 are fixed integers. Let (M,x,k) be an 
instance of Hh-Tt-SNTMC, where M = ( t ,  h ,  6) and t E Eb. Let us define the Turing 
machine M‘ = ( t ,  h ,  6’ ) ,  where EM) = EM and Q M ~  = QM. 6‘ is the (‘closure” of 6: 
it contains all the transitions of 6, and for every (q ,  6 1 , .  . . , u h t )  E QM x Eg which is 
not a “prefix” of a transition in 6, (q ,  6 1 , .  . . , d h t ,  qr,  U I ,  . . . , dht, 0 , .  . . , O )  E 6’. Thus 
6’ is total. 

chines.  
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Let us suppose that ( M ,  c, k) is a yes-instance of Hh-Tt-SNTMC. Therefore there 
exists a deterministic computation path of M ( c )  which accepts in at  most k steps. 
By definition, the k transitions applied in such a deterministic computation path are 
in 6’ too, and thus there exists a deterministic computation path of M’(c )  which 
accepts in at  most k steps (just consider the same transitions). Now, suppose that 
( M ,  c, k) is a no-instance of Hh-Tt-SNTMC, and suppose that there exists a deter- 
ministic computation path of M’(c)  which accepts in at most k steps. Of course, the 
k transitions applied in such a deterministic computation path are in 6 too, because 
every transition in 6’ - 6 enters the final rejecting state q r .  This is a contradiction, 
because such a deterministic computation path of M’(e)  is also a legal deterministic 
computation path of M ( c ) ,  and therefore ( M ,  c, k) should be a yes-instance. 

Let s be the number of symbols in EM (and EM,), let q be the number of internal 
states in Q M  (and Q M ) ) ,  let d be the number of transitions in 6 ,  and finally let d’ 
be the number of transitions in 6’. Since we put in 6‘ at most one new transition for 
every possible “instruction’s prefix”, we have d’ 5 d + q s ~ ( ~ + ’ ) ,  and therefore (since 
by definition q 5 d and s 5 d )  d’ = O(dhtth+’) .  Now recall that  h and t are fixed 
constants, and observe that M’ is derivable from M in O(dht+h+l) steps by simply 

0 looking at  the transition table 6. 

T h e  o r e  m 4. SNTMC restricted t o  total Turing machines is W[1]-complete. 

P r o o f .  By Lemma 2 and Lemma 3, SNTMC restricted to  total Turing ma- 
chines is equivalent to  Hh-Tt-SNTMC. By Theorem 1, Hh-Tt-SNTMC is in W[1] 
(trivially Hh-Tt-SNTMC reduces to  H-T-SNTMC), and, by the W[1]-completeness 
of SNTMC restricted to  simple machines [l], Hh-Tt-SNTMC is W[1]-hard (trivially 
10-HI-To-SNTMC reduces to  Hh-Tt-SNTMC). 0 

5 Beyond W[1] 

Let us consider here the most general version of the SNTMC problem: the number 
of tapes and the number of heads per tape are arbitrarily large integers, so as the 
size of the alphabet, the number of internal states, and the size of the input word. 
What about the parameterized complexity of such a problem? In order to  show 
the membership of SNTMC to some class W[t], we should present, for any Turing 
machine M ,  input word c, and time bound k, a mixed type logical circuit of weft t 
and bounded depth able to accept a weight f(k) Boolean input if and only if M ( c )  
accepts in time at most k. But there is a difficulty: while in the H-T-SNTMC case 
(Theorem 1) the input vector of weight f(k) encodes both the k applied transitions and 
the k corresponding global configurations (so that the circuit only checks whether the 
input actually encodes a Turing machine computation), in this case we cannot adopt 
such an approach, because it does not seem possible to  encode a global configuration 
of a Turing machine with arbitrarily large number of tapes and heads into an input 
word of weight f(k). Now, the solution consists in codifying in the input only the 
applied transitions and not all the global configurations. This implies that  the circuit 
must compute on its own the global configurations and the weft grows from 1 to  k. 
Thus, the best result achieved so far is the following. 
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T h e o r e m  5. SNTMC is in W[P]. 
P r o o f  (sketch). Let A4 = ( t ,h,6) be a nondeterministic Turing machine, let 

w E C* and let k be an integer. We show how to construct a circuit C with k(61 input 
lines so that there exists a weight k input vector z such that C(z) = 1 if and only if 
there exists an accepting computation path of M ( w )  having at most k steps. 

The circuit C has a final large and-gate. The k(61 input lines are partitioned into k 
blocks T I , .  . . , T k ;  any block z has 16) input lines and encodes the transition applied 
in the i th step of the computation path. 

The circuit C has the following gates: 

For every block Ti (1 5 i 5 k) and for every state q E Q, there are two large 
or-gates gzd(i ,  q )  and g2ew(i, q ) .  The gate gzd(i ,  q )  (respectively, g2ew(i, q ) )  has in 
input the input lines of the block Ti which correspond to  the transitions having q as 
“old” (respectively, “new”) state. 

. Similarly, two large or-gates g&(i, 1, j ,  u) and g:e,.,(i, 1, j ,  m )  are defined for every 
block z (1 _< i 5 k), for every tape I E ( 0 , .  . . , t } ,  for every head j E (1,. . . , h }  and 
for every symbol u E C representing the transitions having u as “old” (respectively, 
“new”) symbol for tape 1 and head j ,  and one large or-gate g*(i, I ,  j, m),  for every 
block T,  (1  5 i 5 k), for every tape I E (0, .  . . , t } ,  for every head j E (1, . . . , h }  and 
for every move m E {+1,0, -l}, representing the transitions having m as move of the 
head j on tape 1. 

For every time i E ( 0 , .  . . , k}, for every tape I E ( 0 , .  . . , t } ,  for every head 
j E { 1, . . . , h }  and for every tape position p E (0, . . . , k}, there is a small or-gate 
pos(i, I, j ,  p). We shall enforce that pos( i ,  I ,  j ,  p )  has output 1 if and only if a t  time i 
the head j of tape I is scanning the position p .  

For every time i E ( 0 , .  . . , k}, for every tape I E (0 , .  . . , t } ,  for every tape posi- 
tion p E ( 0 , .  . . , k} and for every symbol u E C, there is a large or-gate syrnb(i, I , p ,  u). 
We shall enforce that syrnb(i, I ,  p ,  u) has output 1 if and only if at time i the cell of 
tape I in position p contains the symbol u. 

Time 0 corresponds to  the initial configuration of M(w) ;  therefore actually 
pos(0, I ,  j, p) and symb(0, I ,  p ,  u) are not gates, but hard-wired logical values (0’s and 
1’s) which encode the initial global configuration. 

The circuit C implements several consistency checks in order to  ensure that the 
input lines encode a LLlegal’l computation of M ( w ) .  In particular: 

1. At any time exactly one transition should be applied; thus for every block T; 
(1 5 i 5 k), at most one input line must be set to  1 (hence an accepting weight k 
input vector must have exactly one input line set to  1 in any block z). Therefore, 
the final and-gate has in input the output of (111 v -&), for every pair of different 
input lines ( I 1 , I z )  in the same block q, for 1 5 i 5 k. 

2. At any time i E { 1, . . . , k}, the cell on tape 1 E (0, . . . , t }  scanned under head 
j E (1,. . . , h}  must be consistent with the transition applied at  step i and the scanned 
cell at  time i - 1. Therefore, pos(i ,  1, j , p )  is defined as follows: 

( p o s ( i -  l , l l j l P )  h7T(i,i,j,0))V(Pos(i - l , l , j , P -  1) k 7 T ( ~ , L i , + 1 ) )  
v (pos(i - 1 , i ,  j ,  p + 1) A g T ( i ,  1, j ,  -1)). 
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3. At any time i E (1 , .  . . , k}, the symbol contained on tape 1 E ( 0 , .  . . , t }  in the 
cell in position p E (0,. . . , k} must be consistent with the transition applied at step i 
and the symbol contained in the same cell at time i - 1. We assumed that a multi- 
head Turing machine implements a “priority model”: if more than one head scan the 
same cell, then only the head with lowest index writes the new symbol. Therefore, 
symb(i,  l , p ,  c) is defined as follows: 

h 
(symb(i - 1, / ,  P ,  A 7 Vj=l PS(’ - 1,‘, J’, P I )  
vv3=1[gnCeew(i,~,~,c) A P O S ( ~ -  1 , 1 , ~ , ~ )  A ~ v ~ ~ ~ P o ~ ( ~ - ~ , ~ , ~ , P ) I .  

4. At any time i E ( 2 , .  . . , k}, the “old” state of the applied transition must be 
equal to the “new” state of the transition applied at  step i - 1. Observe that i t  is 
sufficient to  check that for any q E Q, g$,(i - 1, q )  = 1 implies gzd(i ,  q )  = 1 ,  because 
we are granted that for every block Ti there is at most one g id ( i ,  q )  gate and at most 
one g2ew(i, q )  gate having output 1 (for any block, at most one input line is set to  1). 
Therefore the final and-gate has in input the output of ( 7 g 2 e w ( i  - 1, q )  V gzd(i, q ) ) ,  
for every i E (2, . . . , k} and q E Q. 

5. At  any time i E ( 0 , .  . . , k - l}, the symbols contained in the scanned cells on any 
tape must be consistent with the “old” symbols of the transition applied at step i+ 1. 
Therefore the final and-gate has in input the output of 

for any symbol c E C, time i E { i, . . . , k}, tape 1 E { 0, . . . , t } ,  head j E { 1, . . . , h }  and 
position p E (0 , .  . . , k}. 

6. The first transition of the computation must have qo as “old” state; therefore 
the output of gzd(l ,qo) is linked to the input of the final and-gate. Moreover, the 
computation must accept, and therefore the output of g$‘,(k,q,) is linked to  the 
input of the final and-gate (actually, the computation can accept in less than k steps; 
however it is easy to add several ‘(no-operation’’ transitions having qa as both “old” 
and “new” state). 

It is straightforward to  verify that the circuit C can accept a weight k input vector 
if and only if there is a k-steps accepting computation path of M ( w ) .  Moreover, C has 
O(k2htlCllQ11612) = O(k211M(12) gates, and it is easy to  construct a description of C 

0 

Since there seems to  be no easy improvement of Theorem 5, we now look for a 
W[t]-hardness result for SNTMC for t > 1. Next theorem shows that  HI-SNTMC is 
W[2]-hard: therefore, this problem is not in W[1], unless W[1] = W[2] (recall instead 
that HI-T-SNTMC belongs to  W[1], see Theorem 1). 

The W[P]-hardness of HI-SNTMC is established by showing a parameterized re- 
duction from a known W[2]-complete problem, namely DOMINATING SET [5]: given 
a graph G = (V, E )  and a positive integer k as parameter, does there exist a subset 
V’ of V such that IV’I 5 k and for every vertex u E V ,  the neighborhood N [ u ]  of u 
(i.e., u and the set of vertices adjacent to  u )  contains at least one element of V’? 

~ o s ( i  - 1,1, j ,  P )  v -ymb(i - 1, I , P ,  c) v gzd(i, 1,  j ,  61, 

in a squared number of steps in the size of M and w.  

T h e  o r  e m  6. DOMINATING SET reduces t o  HI-SNTMC. 
P r o o f .  Let us fix an instance (G, k) of DOMINATING SET, where G = (V, E )  is 

a graph and k is the parameter. In the following we assume that V = (1,. . . , n}. 
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We consider the nondeterministic Turing machine M = (n + 1 , 1 , 6 )  with alphabet 
EM ={~,#,$,L,...,E} ands ta tese t  Qw = { q 0 , q 1 , q 2 , q 3 , q a } .  

M is supposed to  start with an empty input word, therefore the input tape 0 is 
useless. M operates in four phases: 

P h a s e  1. M nondeterministically writes k vertices on tape 1, using one cell of 
tape 2 as a counter and internal state qo.  The formal description of the transitions of 
this phase is straightforward and, thus, omitted. 

P h a s  e 2. M fills the work tapes from 2 to n + 1 with k + 1 symbols '$', using 
one cell of tape 1 as a counter. This phase is somewhat crucial, because M is not 
allowed to write the blank symbol '0 ' ;  therefore we must prepare a 'nice' portion of 
the work tapes. 

( O , i , O  , . . . ,  O,ql,i+l,$ , . . . ,  $,q1 ,0 ,0 ,+1 ,  . . . ,  +1) for i ~ { 1 ,  . . . ,  k-l}, - - - 
n n n 

( O I L ,  0 ,  '..,a ,a ,$ ,$ , .  ~ ' , $ , q 2 , O , + l , O ,  .. . , O ) .  - - - 
n n n 

P h as e 3. M scans the symbols on tape 1, and for every scanned vertex, write a 
symbol '#' on any tape i + 1 such that v E N [ i ] .  Eventually (when M reads a blank 
on tape l ) ,  M goes to next phase. Observe that every time M writes a symbol '#', 
then it moves the corresponding head to left; therefore every transition reads always 
'$' in any tape i (2 5 i 5 n + 1). On the contrary, if M doesn't write a symbol '#' 
in some tape, then the corresponding head position does not change. 

n 

where, for every i E { 1,  . . . , n}, 
0 if v I$ "21, 

-1 if v E N [ i ] ,  and my = 

( O , # , $ ,  . " 1 ~ , ~ 2 , # , ~ , 9 2 , 0 , + ~ , ~ , " . , ~ ) ,  - - 
n n n 

(o,o,$, . . . , $ , q z , $ , $ ,  . . . , $ , q 3 , 0 , 0 , 0 , .  . . , o ) .  - - - 
n n n 

P h a s e  4. M attempts to move to the right the heads on tapes from 2 to n + 1. 
Next, if M reads the symbol '#' on every such tape, then it accepts. 

(0 ,  $,$, . . . , $ ,  43, #,$, . . . , $ , q 3 , 0 , 0 , + 1 , .  . . , + I ) ,  - - - 
72 n n 

(0,  #, #, . ' ' 1 # > 93, #, #, . ' . ,  # , gar 0, 0, ,o, .;. , (y . - - 
n n n 

Notice that 6 contains O(nk)  transitions, and these are easily derived from a 
description of G in a squared number of steps in the size of V .  Now we show that 
M ( E )  accepts in at  most 3k + 4 steps if and only if (G, k )  is a yes-instance. Suppose 
that (G, k) is a yes-instance; therefore there exists a subset V' of V with a t  most k 
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elements which is a dominating set. Then, consider the computation path of M ( E )  
that writes on tape 1 all the elements of V’ and nothing else (if V’ contains less than k 
elements, the deterministic computation guesses some vertices of V’ more than once). 
Let us consider now the tape i + 1, where 1 5 i 5 n. It is easy to  verify that at the 
end of Phase 3,  for any tape i +  1,  the head is placed on the cell which is at the right 
of the last ‘#’. Then, in Phase 4 ,  the computation path performs one right-move 
and the computation path accepts. It is easy to  verify that the number of steps is at 
most 3k + 4. 

Now, suppose that (G, k) is a no-instance; therefore for any subset V’ of V with at 
most k elements, there is a vertex u E V such that N[u]nV’ = 0. We claim that M ( E )  
does not accept. Indeed, every computation path of M ( E )  guesses a subset V‘ of V 
with at most k elements; therefore at the end of Phase 3, there is a tape i + 1 which 
does not contain any #, since V’ cannot be a dominating set. Thus, during Phase 4, 
the accepting final state cannot be reached, because M needs a t  least one # in every 

0 

Notice that the transition function 6 of the machine M derived in the proof of the 
previous theorem is not total, and indeed the main idea of the construction is avoiding 
to consider the exponentially-many configurations of scanned symbols different from 
all $’s and all #’s. Actually, by Theorem 4, SNTMC restricted to  total Turing 
machines is W[l]-complete. Moreover, the following result is easily derived. 

C o r o 11 a r  y 2. H1-Io-Ql-C2-SNTMC is W[2]-hard. 
P r o o f .  Our target is to reduce Hi-SNTMC to H1-Io-Ql-C2-SNTMC. Like in 

Theorem 1, HI-SNTMC easily reduces to  10-HI-SNTMC. 
Let us show that 10-HI-SNTMC reduces to  Io-H1-Ql-SNTMC. Let (M,k) be 

an instance of Io-H1-SNTMCl where M = ( t ,  1 ,6 )  is a single head nondeterministic 
Turing machine. Then we can easily construct a nondeterministic Turing machine 
M’ = (t + 1,1, 6) such that Q M f  = { q o ,  qa, qr} n QM and there exists an accepting 
computation path of M ( E )  with k steps if and only if there is an accepting computation 
path of M ’ ( E )  with k steps. We simply set C M ~  = EM U { q  : q E Q M }  and we 
arrange 6’ so that M’ uses one cell of the (additional) tape t 1 in order to  encode 
the internal state of M .  It is straightforward to  derive the details of 6’. 

It remains to  show that Io-H1-Ql-SNTMC reduces to  Io-H1-Q1-C2-SNTMC. Let 
( M ,  k) be an instance of Io-Hl-Q,-SNTMC, where k E N and M = ( t ,  1,6) .  We 
construct an equivalent Turing machine M’ = (t’, 1, 6‘), where t’ = t [log ICMI 1,  
Q M ~  = Q M ,  and CMI = { 0 ,  0 , l ) .  Let s be the cardinality of C M  and u0,61, . . . , 6,-1 

a fixed ordering of the symbols in EM. Let us assume that 6 0  = 0.  The crucial idea 
for M’ is to  simulate each work tape of M (with alphabet size s) by using [ logs]  
work tapes of M’ (with alphabet size 2). If t > 0, then we do not care of tape 0,  
because our machines work on empty inputs. In the following, we assume also that 
[ i ] ~  denotes the sequence of symbols in {0,1} which is the binary representation for i 
of length [ logs l .  Therefore, the notations [1]2 and [0]2 should be regarded as equiv- 
alent to, respectively, 0 , .  . . , O ,  1 and 0 , .  . . , O  of length [ logs l .  For every transition 
(0 ,  c i l , . .  . , b i t ,  q ,  u j l l .  . . , uj,, q’,  0, m l , .  . . , ml) in 6,  the transition table 6’ contains 
(0 ,  [ i112 , .  . . [ i t l z l  q l  [ j i l z , .  . . , [ . h ] 2 ,  q’, 0, m i , .  . . , m i , .  . . ,mi,. . . , mt . No other tran- 

tape in order to successfully finish the phase. 

- d 
r logs 1 r l o g s i  
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sition is in 6'. It is easy to verify that it is possible to obtain a description of M' 
in a linear number of steps on the length of a description of M (because {6'1 = 161). 
Moreover, it is easy to see that ( M , k )  is a yes-instance of Io-H1-Q1-SNTMC if and 

0 

Since HI-SNTMC is W[2]-hard, it is natural to conjecture that even 10-To-SNTMC 
is hard for W[2], because tapes and heads seem to be quite interchangeable. As an 
example, given an instance of 10-Hh-To-SNTMC, it is easy to derive an equivalent 
instance of Io-Hl-Th+z-SNTMC. The new machine T simulates each step of the 
old one M in three phases: (1) it scans tape 1 (containing the encoding of M ' s  
tape together with the head positions) and records the scanned symbols on tapes 
3 , .  . . , h + 2 (each such tape corresponds to a particular head); then (2) T reads at  
once the symbols on tapes 3 , .  . . , h + 2, it chooses a transition of M and then it 
write on the same tapes the new symbols and on tape 2 the new state and head's 
moves; finally, (3) T scans h times tape 1 and updates it according to the contents of 
the other tapes. It should be clear that T uses a small fixed number of internal 
states and that the size of its transition table is linear in the size of M .  Conversely, 
given an instance of Io-H1-Tt-SNTMC, it is easy to derive an equivalent instance of 
Io-Ht+l-To-SNTMC; the new machine T uses t + 1 blocks of cells in its tape in order 
to record the contents of the t + 1 tapes of the old machine M ;  each head of T scans 
a different block, and each block has exactly k cells. 

However, the previous reasonings do not apply to this case, since they require that 
both the number of tapes and the number of heads are fixed or parameterized. Thus, 
in order to establish the hardness result, we are compelled to directly show that a 
single-tape, multi-head Turing machine is able to solve an instance of a W[2]-hard 
problem. 

only if ( M I ,  k) is a yes-instance of Io-H1-Ql-Cz-SNTMC. 

T h e o r  e m 7. lo-To-SNTMC is W[S]-hard. 
P r o o f .  Let (G,k) be an instance of DOMINATING SET, where G = (V ,E)  is a 

graph and k is the parameter. In the following we assume that V = (1,. . . , n}. 
We consider the nondeterministic Turing machine M = (0, n + 2,6)  with one tape, 

n + 2 heads, alphabet C = (0 ,  $,#,I,. . . ,E} and set Q = { q o ,  ql,qz,q3,44, qa} of 
internal states. M operates in three phases and it is very similar to the machine 
described in Theorem 6. In this case, one head acts as a counter, one head is used to 
guess k vertices and to examine them in order to decide if they are a dominating set, 
and the remaining n heads simulate the behaviour of the head on each tape of the 
machine described in the previous theorem. 

P h a s  e 1. M nondeterministically writes k vertices on the tape, using the cell 
scanned under head 2 as a counter. In the meantime, M fills the tape at the left of 
the guessed vertices with $'s. 

( 0 , " .  ,o ,( lo,$, . . ' ,  $,qo ,+1 ,0 , -1 , . . .  , - I ) ,  

(n,$,o, . ' .  1 o,qo,$,1,$, . . . ,$,Q0,+1,0,--1,. .. , --I) ,  

(n,i, 0, .  . . , 0 , q o , z , s ,  $, . . . , $ ,  q l ,  +1,0, -1,. . . , -1) for v E V ,  i E (1,. . . , k}. 

-- - 
n+2 n+2 n - - - 

n n n - - - 
n n n 
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P h a s e  2. M scans the vertices on the tape using head 1, and for every scanned 
vertex v, it moves the (i + 2)th head to the right if and only if v E N [ i ]  (1 5 i 5 n) .  
Observe that any head i + 2 (where 1 5 i 5 n)  always scans a cell containing ‘$’. 

(u ,$,$ ,..., $ , q l , g , $ , $  ,... ,$,q1,+1,0,rny ,..., m:) for v E V, - - 
n n 

0 if v @ “i], 
+I if v E “i], where for every i E { 1, . . . , n } ,  my = 

($,$,$,. ..,$,Ql,$,$,$ , . ” ,  $,Q2,0 ,0 , -1 ,  . .  . , -1) .  - - - 
n n n 

P h a s e  3. M attempts to move to the left the heads from 3 to n + 2; then it 
accepts if all heads 3, . . . n + 2 scan $’s. 

($,$,$,. . . , $ , q 2 ,  $,$,$, . . . , $ , q 2 , O , O , - 1 , . .  . , - 1 )  

($, T , $, . . . , $ 7  Q 2 ,  $ 7  $, $ 7  . . . , $ 1  Qa, 0, 0, 0, . . . , 0 ) . 

for i E { I , .  . . ,T-I}, - - - 
n n n - - - 
n n n 

Observe that 6 contains O ( n k )  transitions, and these are easily derived from a 
description of G in a linear number of steps in the size of V .  Like in Theorem 6, it 
can be now easily shown that M ( E )  accepts in at  most 3k + 4 steps if and only if 

0 

Since To-SNTMC reduces to 10-Q,-To-SNTMC (a similar reasoning to the one 

0 

(G, k) is a yes-instance of DOMINATING SET. 

used in Theorem 1) the following result is easily derived. 
C o r o l l a r y  3. 10-Q,-To-SNTMC is W[S]-hard. 

6 Tractability results 

Till now we have established the parameterized intractability of several variations 
of the basic “short nondeterministic computation” problem. We now consider some 
parameterizations that cause the problem to become fixed parameter tractable. Our 
first result concerns a machine M that (1) halts after a “small” number of steps, 
(2) has a “small” number of heads and tapes, and (3) writes only symbols of a “small” 
alphabet. In this case, M cannot solve too complex problems, since it can record on 
the tapes just a “small” amount of information during its computations. In order to 
prove such a result we first establish the following lemma. 

L e m m a 4. H-10-C-T-SNTMC belongs t o  FPT. 
P r o o f .  Let ( M ,  k, t ,  h ,  1x1) be an instance of 10-H-C-T-SNTMC. Then a bound 

on the total number of different global configurations involved in a k-step computation 
path of M on an empty input (in short, M ( E ) )  is c = IQI . ( lClk ~ k h ) ” ” ” ~ * ~ ’ ) .  Let T be 
a deterministic Turing machine that, on input ( M ,  k), simulates every computation 
path of M ( E )  for at most c steps. If T finds an accepting configuration, then T 
accepts, otherwise it rejects. It is easy to show that such a T decides every instance of 
H-10-C-T-SNTMC. However, we must describe how to construct T and discuss its 
running time. 
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To this aim, consider an oriented graph G (with at most c vertices) encoding the 
computation paths of M ( E )  such that every vertex represents a global configuration. 
T dynamically builds this graph; whenever T adds a node to the graph, it checks if 
the corresponding global configuration is an accepting one and if the corresponding 
global configuration already belongs to the graph. The algorithm simulating T is 
straightforward. 

Every configuration of M ( E )  is a string of length O((t + l ) (h  + k)) over a suitable 
alphabet. O ( c 2 )  steps are enough for visiting G, and O(clc) steps suffice to compare 
two configurations. Indeed, there can be only O(c) cells on the tape between the 
encoding of the two configurations. Looking for the configurations reachable from 
a given one requires O(JQ121Cl(t+1)h) steps (the maximum size of the transition ta- 
ble 6 of M ) .  Therefore the upper bound on the running time of the algorithm is 
O(klQ12~51C12(t+1)h), i.e., O(ICl(t+1)(5k+2h)lc5h(t+l)lQ17). Hence H-10-C-T-SNTMC 
belongs to FPT.  0 

T h e  o r e  m 8. H-C-T-SNTMC belongs t o  FPT. 
P r o o f  . By Lemma 4, in order to prove the theorem we just have to show that 

H-C-T-SNTMC reduces to H-10-C-T-SNTMC. The reduction is very similar to the 
one shown in Theorem 1 and thus omitted. 0 

We have already shown that H1-Ql-T2-SNTMC is W[1]-complete. We still don’t 
know if two work tapes are necessary for such a result or, vice versa, if we can 
reduce this number and still have the problem hard for W[1]. We start proving that 
HI-Q-To-SNTMC reduces to HI-C-To-SNTMC, and therefore that HI-Q-To-SNTMC 
belongs to FPT. Then an easy corollary is that H1-To-QI-SNTMC is also in FPT,  
and therefore we find a first, partial answer to the above question. 

The main idea is the following. Suppose that a simple Turing machine has to 
decide if two cells do or do not contain the same symbol of the alphabet. The machine 
could perform this task in a very natural way: it reads the first symbol and enters 
an appropriate internal state; then it goes over the second symbol and decides. The 
crucial point here is that the machine needs one different internal state for every 
symbol of the alphabet. Thus, if a nondeterministic simple Turing machine M has a 
bound on the length of an accepting deterministic computation and on the number of 
internal states, then we can simulate it with a nondeterministic simple Turing machine 
having a bounded size alphabet. 

In order to prove the fixed parameter tractability of HI-To-Q-SNTMC, let us fix a 
nondeterministic simple Turing machine M = (0 ,1 ,6) .  Let C = be the alphabet 
of M and let Q = QM be the set of internal states of M .  

Now, we introduce a relation -1 on C: given two symbols u1, u2 E C, we say that 
u1 -1 u2 if and only if, for every ( q , r n )  E Q x { + l , O , - l } ,  

(3~: ~ C ) ( ~ l , q , u : , q a , r n )  € 6  ( 3 ~ ~ € C ) ( a ~ , ~ , u ~ , q a , r n )  € 6 .  
It is easy to verify that -1 is an equivalence relation. We denote by [u], the equiv- 
alence class with respect to -1 which contains a; moreover, C/-1 is the set of all 
equivalence classes with respect to -1. 

Now we define by induction the equivalence relations -2, . . . , N k  over C. Let 1 be 
an integer such that 1 < 1 5 k, and let (TI, 6 2  E C. We say that u1 - 1  u2 if and only 
if for every ( q ,  q’, rn, [ u ’ ] ~ - ~ )  E Q 2  x {+I, 0,  -1) x Z/-I-I, 
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(i) if there exists ui E [a'],-, such that (u1,q,ui,q' ,m) E 6 ,  then there exists 

(ii) if there exists uh E [o'],-~ such that (u2,q,u&,q',rn) E 6,  then there exists 

It is easy to verify (by induction on 1 )  that every -1 is well-defined and is an equiv- 
alence relation on C. The following lemmata give explicit bounds on the number of 
elements of each set C / y .  

uh E [u'],-~ such that ( 6 2 ,  q ,  uh, q', rn) E 6; 

0; E [u'],-, such that ( u ~ , q , u ; , q ' , m )  E 6. 

 emm ma 5. ~ / - 1  contains at most 231QI equivalence classes. 
P r o o f .  Consider a fixed ( q ,  rn) E Q x {+l, 0, -1). We first show that ( q ,  rn) can 

distinguish a t  most two equivalence classes, that is, ( q ,  m) is a "bad" new for a t  most 
two symbols of C. Suppose that ( q ,  m) separates different ul, u2,u3 E C .  Therefore 
we have for u1 and u2: 

11) ( 3 4  E W ~ l , ~ , 4 , q a , r n ) E 6  

and 

(2) ( v 4  E C) ( az ,q ,u ; ,~a ,m)  6 6. 

Because of equation (2), for u2 and 63 we have: 

(3) 

most 231Q1 -1-equivalence classes on C. 

( 3 4  E C) (63, q , 4 ,  qa,  m) E 6. 
This is a contradiction, because equations (2) and (3) imply that u1 and 63 cannot 
be separated by ( q , m ) .  Since the number of different (q ,m)  is 31Q1, there are a t  

0 

Let 'p : N2 - N be the following recursively defined function: 

As an easy extension of the previous lemma, we can prove (by induction on I )  
L e m m a  6. For any I ,  1 5 1 5 k, C/-I contains at most 'p(l , lQl) equivalence 

classes. 
Given a simple machine M and an integer k, it is easy to derive an FPT-algorithm 

computing C/-k as stated in the following lemma. 
L e m m a  7. There exist two constants a ,  p and a deterministic Turing machine T 

such that, on input ( M  = ( 0 ,  1 ,6 ) ,  k), T computes C/-k an at most O(k . I&!". IClp) 
steps. 

P r o o f  (sketch). By induction on k. By Lemma 6, to compute C/-1 it is sufficient 
to consider every (u1,u2,qrrn) E C x C x Q x {+l,O,-1} to check if there exist 
(ui, q ,  4, qa,  m), (62 ,q ,4 ,  qa, rn) E 6. Thus, T computes CI-1 with O(lQ141C15) 
steps (recall that 6 C Q x C x Q x C x { + l , O , - 1 ) ) .  Similarly, due to the size 
of C/- i ,  1 5 i 5 k ,  and since C/N(  can be computed from C/-l-1 by considering 
all 4-tuples ( q ,  q ' ,  rn, [a'],-,) E Q2 x {+l, 0, -1) x C/-I-1, computing C/-k requires 

Let M = (0 ,1 ,6)  be a nondeterministic Turing machine and let k be an integer. 
Let 2 = ~ 0 x 1 .  "2, E C' and 1 5 1 5 k .  Then denote by x(1) the word over CI-1 

O(k . /& I5  (CIS) steps. 0 
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such that (21 = 1 Z(I) 1 and the ith symbol of 
subset of Q x CI-1 X Q  x C / y  x{+l,O, -1) such that 

is [ x i ] / .  Moreover, let 6(1) denote the 

([u111 , q ,  [ 6 2 1 /  1 Q’, m) E 6(1) - ( 3 4  E [u111)(34 E [U21 / )  (d ,  Q ,  4, Q’,  m) E 6. 

Finally, let M(t)  be the nondeterministic Turing machine ( O J 1 ,  [a],); observe that the 
alphabet of M(1) is C/-l. 

Let c be a word over C* x (C x Q) x C* which encodes a global configuration of M .  
For example, c = sls2 . . . s,-1 (s,, q)s,+l . . . sm encodes the global configuration such 
that the symbols on the non-blank portion of the tape are s1 . . . sm, the symbol under 
the head is sj and the internal state is q. For 1 5 1 5 k denote by c(I) the word in 
( C / y  U (C/-, x Q))* obtained by replacing every occurrence in c of a symbol s in C 
with the corresponding [sII in El-,. It is easy to check that c(1) encodes a global 
configuration of M(I).  

Finally, M [ c ]  denotes the nondeterministic computation of M starting from the 
global configuration c .  We are now able to show that the Turing machines M and 
M(k)  are “equivalent”. 

T h e  o r e  m 9. For every integer k ,  for every simple Turing machine M ,  and for 
every global configuration c,  there is an accepting computation path of M [ c ]  with at 
most k steps if and only if there is an accepting cornputation path in M(k,[c(k)] with 
at most k steps. 

P r o o f  . Let M be a nondeterministic simple Turing machine, and let c be a global 
configuration of M .  Let q be the internal state in the global configuration c, and let 
u be the symbol under the head in c .  We prove the theorem by induction on k and 
on the length of the actual computation path. 

Let us assume that k = 1. Observe that if M [ c ]  accepts in 0 steps, then q = qa,  
and therefore the theorem holds, since by definition c(k) is in the internal state q. 
Thus, we can assume that q # q a .  Let us suppose that there exists an accepting 
computation path of M [ c ]  with exactly one step. Therefore there exists a transition 
(u, q ,  u’, qa, rn) E 6. By definition of $11, we have that ([uI1 , q ,  qaJ rn) E 6(1), 
and therefore there exists an accepting computation path of M ( ~ ) [ C ( ~ ) ]  with exactly 
one step. 

Now let us suppose that there is an accepting computation path of M ( l ) [ c ( l ) ]  
with exactly one step; then there exists a transition ([uI1 , q ,  [u2I1 , q a ,  rn) E 6(1).  By 
definition of 6(1), there exist u‘ E [uIl and u; E [u2Il such that (u’ ,q ,ui ,qa,m) E 6. 
By definition of u -1 u‘, there exists (u,q,u3,qa,rn) E 6, and therefore there exists 
an accepting computation path of M[c]  with exactly one step. 

Suppose now that the theorem holds for k - 1.  We must show that there is an 
accepting computation path of M [ c ]  with 1 5 k steps if and only if there exists an 
accepting computation path of M(k)[c(k)] with exactly 1 steps. we prove the assertion 
by induction on 1. 

The basis 1 = 1 can be proved in the same way as the case k = 1. 
Now, assume the result holds for 1- 1 5 k -  1. Suppose first that there is an l-steps 

accepting computation path c t-6 c1 k6 . . . /-6 c,  of M [ c ] .  Let (0, q ,  u’, q’, rn) E 6 be 
the first applied transition of the computation path. I t  is easy to see that M [ q ]  must 
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accept in 1 - 1 5 k - 1 steps. Then, by inductive hypothesis on I ,  there exists an 
accepting computation path of M(k)[cl(,)] with exactly 1 - 1 steps. We have to show 
that there exists a transition in 6(,) such that c ( k )  I- cl(k). By definition of 6(,), we 
know that ([aIk , q ,  [a’], , q ’ , r n )  E 6 ( k ) ,  and it is easy to verify that,  if we apply this 
transition to c ( k ) ,  then we obtain c1(k). 

Finally, suppose that there exists an 1-steps ( I  5 k) accepting computation path 
c ( k )  t- ci I- . . . t- ci of M(k)[c(k)]. Let ([.Ik , q ,  [a& , q’, rn) E 6(,) be the first transition 
of such a computation path. By definition of 6 ( k ) ,  there exist a: E [aIk and u$ E [a2Ik 
such that (ui,q,aa,q’,rn) E 6. Since ui -k u, there exists u$ [u6’2]k-1 such that 
(a, q ,  a$, q’, m) E 6,  and let c1 be the global configuration after the application of this 
transition. Now consider M(k-1)[~l(k-~)]. Observe that c: and cl(k-1) have the same 
internal state and the same scanned position. Moreover, for almost every symbol [ s ] ~  
in c i ,  the corresponding symbol in ~ l ( k - ~ )  is [ s ] ~ - ~ .  Indeed, every symbol [ s ] ~  is 
in ci because the corresponding symbol in c is s, and therefore the corresponding 
in [ ~ l ] , - ~  is [ s ] , - ~  (by definition). The unique exception is the symbol [a2Ik in ci 
which corresponds to the symbol [uy]k-l in cl(k-1); this is not really an obstacle, 
because we know that as ~ k - 1  a; and ub -k 6 2 ,  and thus [a$],-, = [ ~ 2 ] , - ~ .  Now, 
consider a transition ([silk , q ,  [s2lk , q’, rn) E 6 ( k ) .  By definition, there exist si E [sl], 
and sk E [s& such that ( s i , q , s$ ,q ’ , rn )  E 6. But if s’ E [ s ] ~ ,  then s -,-I s’, 
and therefore ( [ S I ] ~ - ~  , q ,  [ s ~ ] ~ - ~  , q’, rn) E b ( k - 1 ) .  Thus the (1-1)-steps accepting 
computation path of M(k)[ci] corresponds to a ( I -  1)-steps accepting computation 
path of M(,-l)[~l(k-l)]. By inductive hypothesis on 1 and k, there exists an accepting 
computation path of M[q] with at  most 1 - 1 steps. Thus we have proved that there 

0 exists an accepting computation path of M[c]  with at  most 1 steps. 
From the previous theorem we easily derive: 
C o r o 11 a r  y 4. For any k E M, ( M ,  c, k )  is a yes-instance of SNTMC if and only 

Therefore we finally conclude: 
C o r o 11 a r  y 5. HI-To-Q-SNTMC belongs t o  FPT. 
P r o o f .  Lemma 6, Lemma 7 and Corollary 4 show the existence of a param- 

eterized reduction from HI-To-Q-SNTMC to HI-To-C-SNTMC, and therefore from 
0 

Till now we proved that H1-Ql-Tt-SNTMC is W[1]-complete for t 2 2 and yet 
HI-Q-To-SNTMC (and, thus, H1-Ql-To-SNTMC) is fixed parameter tractable. There 
is still an open case, namely the parameterized complexity of H1-Ql-T1-SNTMC. The 
question essentially is: are the simple machines with a “small” number of internal 
states really equivalent (from a parameterized point of view) to  the machines having 
“small” number of internal states, one input read-only tape and one work tape?  The 
answer would be positive, whenever it were possible to remove from an instance of 
HI-Q-TI-SNTMC the input word. Indeed, in this case the input tape would be useless, 
and the equivalence would easily follow. 

z f ( M ( k ) , x ( k ) , k )  i s  a yes-instance of SNTMC. 

Corollary 8, HI-To-Q-SNTMC belongs to FPT.  

T h e  o r e  m 10. HI-TI-Q-SNTMC reduces t o  H~-Io-T~-Q-SNTMC. 
P r o o f  (sketch). Let ( M ,  x, k , p )  be an instance of HI-TI-Q-SNTMC, where c is 

a word over the alphabet EM - ( 0 )  and T = (1, 1 ,6)  is a nondeterministic Turing 
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machine; its state set QM has at  most p elements; tape 0 is the (read-only) input 
tape, and tape 1 is a work-tape. We show how to derive from (MI x, k,  p )  a nonde- 
terministic Turing machine M‘ = (1, 1,6’) having two tapes (one input tape and one 
work tape) such that M’(E) accepts in a t  most k steps if and only if M ( x )  accepts 
in a t  most k steps. By the above assump- 
tions, if 1 = min{k, 1.1) + 1, then the head on tape 0 in any k-step computation path 
of M scans always a cell which is in some position between 0 and 1. Recall that ,  for 
any j E {0,1,. . . , I}, xb] denotes either the j t h  symbol of t (if 1 5 j 5 lxl), or the 
blank symbol 0 (if j = 0 or j > 1x1). 

elements) and let C M ~  = C M .  The complete description of the transition table 6’ 
of M‘ is the following. For every transition (u~,uz, q‘ ,  ui, q”, m1,rnz) E 6 with 
q” 4 {qa,qr}  we put in 6’ the transition ( O , U Z ,  ( q ’ , j ) ,  rh, ( q ” , j  + ml) ,  0,mz) for 
any j E {0,1, .  . . , I} such that x[j] = u1; otherwise, if q” E {qa,  q r } ,  we put in 6’ 
the transition (O,u2, ( q ‘ , j ) ,  ui, q”, 0, m2). We must show that there is an accepting 
computation path of MI(&)  with a t  most k steps if and only if there is an accepting 
computation path of M ( x )  with at most k steps. Let c and c’ be global configurations 
of, respectively, M and MI; we say that c and c‘ are corresponding if and only if 

Notice that tape 0 of M’ is useless. 

L~~QM’=(( Q M - { Q ~ , Q ~ } ) x { O , ~,...,I})U {qa,qr} (QM’ h m ( i + l ) ( ~ - 2 ) + 2  

1. tape 0 of M contains the input z, and tape 0 of M’ contains only blanks; 
2. tape 1 of M and tape 1 of M’ have the same contents; 
3. the head position on tape 1 of M is equal to the head position on tape 1 of M‘; 
4. the internal state of M is q’, and the internal state of M’ is ( q ‘ , j ) ,  where j 

Let us consider two corresponding configurations c and c’, and let u1,uz be the sym- 
bols scanned respectively on tape 0 and tape 1 of M in the global configuration c 
(therefore u2 is also the symbol scanned on tape 1 of M’ in c’). We claim that there 
is an accepting computation path of M [ c ]  with exactly h steps if and only if there 
is an accepting computation path of M’[c’] with exactly h steps. The proof is by 
induction on the length of the computation paths. 

Let us begin with h = 1. M[c]  accepts in one step if and only if there exists a 
transition (u1, 6 2 ,  q’, 6’2, qa, ml,  mz) E 6, where u1 is either a blank (and then the head 
position on tape 0 is 0 or 1x1+1), or a symbol of x (and then the head on tape 0 must be 
in position j E { 1 , . . . , 1 -1 )  and the scanned cell on tape 0 must contain 61). However, 
this happens if and only if there exists a transition (0, uz, ( q , j ) ,  ui, q a ,  0,  m2) E 6‘, 
that is, if and only if there is an accepting computation path of M’[c’] with exactly 
one step. 

Now, let us assume that the claim holds for h - 1. We know that there is an 
accepting computation path c k6 c1 k6 . . .  k6 c h  of M[c]  with exactly h steps if 
and only if there exists (61 , UZ, q’, 0’2,  q” ,  ml ,  mz) E 6 which is applicable to  c and 
produces cl, and moreover there is an accepting computation path of M [ c l ]  with 
exactly h-  1 steps; that is (by construction of a’), if and only if there exists a transition 
( O , U Z ,  ( q ’ , j } , u ~ ,  ( q ” , j  + ml) ,O ,m~)  E 6’ (where j is precisely the head position on 
tape 0 in c), and (by inductive hypothesis) there is an accepting computation path 
of M[c‘J with exactly h - 1 steps (ci is the configuration corresponding to c1). It is 

describe the head position on tape 1 of M .  
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problem 
SNTMC 

easy to verify that the global configuration obtained by applying the transition of 6' 
to c' is exactly c i ,  and therefore the last sentence is equivalent to state that  there is 
an accepting computation path of M'[c'] with exactly h steps. 

It is easy to verify that it is possible to derive ( M ' ,  k,pk) from ( M ,  x, k , p )  by using 
0 

Now it is easy to get our goal: 
C o r o 11 a r  y 6. HI-TI-Q-SNTMC belongs t o  FPT. 
P r o o f .  

a linear number of steps in the size of the description of M and x. 

By Theorem 10, HI-TI-Q-SNTMC reduces to H1-Io-T1-&-SNTMC. 
Trivially, HI-10-TI-Q-SNTMC reduces to H1-Io-To-Q-SNTMC (the input tape is use- 
less!), and therefore HI-TI-Q-SNTMC reduces to the fixed parameter tractable prob- 
lem HI-To-Q-SNTMC (Corollary 5). 0 

in hard 

W[P] W[2] 

7 Conclusions 

I ~ - Q I - T ~  
(total) 

In this paper we have proved some results about the parameterized complexity of 
the problem of deciding if a string x is accepted by a k steps computation of a given 
Turing machine M (k being the parameter). 

In the classical complexity setting, the previous problem belongs to P if M is 
deterministic, and it is NP-complete if M is nondeterministic. This is the only com- 
putational distinction among Turing machines, in the sense that,  independently from 
the number of heads, tapes and internal states, independently from the size of the al- 
phabet, all deterministic Turing machines (and all non deterministic Turing machines) 
are polynomially related. Conversely, we have shown that,  in the nondeterministic 
case, the parameterized complexity of the problem strongly depends on the above 
mentioned factors, and, thus, not all nondeterministic Turing machines are equiva- 
lent from a parameterized point of view. 

A summary of the results proved in this paper is shown in Table 1. 

wfpj wi2j 
W[1] W[1] 

H-T 

Io-HI-Q~-Tz 
Io-HI-To 

W[1] W[1] 

W[1] W[1] 
W[1] W[1] 

I HI-&-TI 1 F P T  I - 
Table 1. The complexity of the SNTMC problem 

There are a few remarks we want to discuss about our results. First, notice that,  
while Cai, Downey and Fellow's theorem about the W[l]-completeness of Io-HI-To- 
SNTMC holds for simple Turing machine, for the most general model of nondeter- 
ministic Turing machine we are able to prove only the membership 'to W[P]. Second, 
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it seems that simple machines are the more restricted model for which the W[l]- 
completeness result holds: indeed, if we introduce some further restriction, then the 
problem becomes included in FPT. On the other hand, if we try to generalize it by 
dropping any bound on the number of heads or tapes, then we obtain W[2]-hardness 
results. 

It remains as an interesting open question the exact characterization of the prob- 
lem for the models described in Section 5. Another interesting open question is 
whether there exists a natural resource for some Turing machine computation prob- 
lem such that, if the resource is at most T ,  then the problem is complete for W[~(T) ] .  
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