
Math. Log. Quart . 43 (1997) 179 - 202

Mathematical Logic
Quarterly

@ Johann Ambrosius Barth 1997

Computation Models for Parameterized Complexity

Marco Cesati and Miriam DiIanni

Department of Computer Science, University of Rome “La Sapienza” ,
via Salaria 113, 00198 Roma, Italy’)

Abstract. A parameterized computational problem is a set of pairs (z, k), where k is a dis-
tinguished item called “parameter”. FPT is the class of fixed-parameter tractable problems:
for any fixed value of k, they are solvable in time bounded by a polynomial of degree a,
where Q is a constant not dependent on the parameter. In order to deal with parameterized
intractability, Downey and Fellows have introduced a hierarchy of classes W[1] C W[2] . . .
containing likely intractable parameterized problems, and they have shown that such classes
have many natural, complete languages. In this paper we analyze several variations of the
halting problem for nondeterministic Turing machines with parameterized time, and we
show that its parameterized complexity strongly depends on some resources like the number
of tapes, head and internal states, and on the size of the alphabet. Notice that classical
polynomial-time complexity fails in distinguishing such features. As byproducts, we show
that parameterized complexity is a useful tool for the study of the intrinsic power of some
computational models, and we underline the different “computational powers” of some levels
of the parameterized hierarchy.

Mathematics Subject Classiflcation: 68Q05, 68Q25, 03D10, 68Ql5.

Keywords: Turing machine, Computational complexity, Parameterized computational com-
plexity.

1 Introduction

Parameterized complexity [2, 3, 4, 5 , 61 is a new, powerful framework with which
to address the different “parameterized behaviour” of many computational problems.
Almost all natural problems have instances consisting of at least two logical items;
many NP-complete problems [7] admit “efficient” algorithms for small values of one
item (the parameter). For example, the NP-complete VERTEX COVER problem [7]
admits a solving algorithm with running time bounded by 2n + 2‘ [4]. Thus, for
small values of the parameter k, an efficient, linear time solving algorithm exists. On
the contrary, the best known algorithm for the similar NP-complete DOMINATING
SET problem [7] has running time in O(n’++’). Although such an algorithm runs in
polynomial time for any fixed k, its time requirement could be unacceptable even for
not too large graphs G. Indeed, there seems to be a huge gap between the performance
of one of the previous algorithms and the other: if the graph G has 100 vertices and

‘)e-rnail: (cesati, diianni}Qdsi.uniromal.it

180 Marco Cesati and Miriam Di Ianni

the parameter k has value 3, then the VERTEX COVER’S algorithm is roughly 500,000
times faster than the DOMINATING SET’S one.

A parameterized problem is said to be fized parameter tractable [4] if it admits
a solving algorithm whose running time on instance (I, k) is bounded by f(k) . (zIo,
where f is an arbitrary function and a is a constant not depending on the parameter k.
The class of fixed parameter tractable problems is denoted by FPT. Furthermore,
a hierarchy of classes {W[t]}, including likely fixed parameter intractable problems
(modulo some unlikely collapse), has been defined [2]. While the “classical” complex-
ity classes (P, N P , the polynomial hierarchy, and so on) are defined on the basis of
specific models of computation (several variations of Turing machines), the definition
of the W classes is more involved. For example, while N P is defined as the class of
problems which are solvable by nondeterministic polynomial-time Turing machines,
W[t] is the closure under “fixed parameter reductions” with respect to a “kernel
problem”. In other words, the classes of the W hierarchy do not have an immediate
computational characterization.

A first contribution on this subject has been established in [l] by proving that the
problem of deciding if a nondeterministic Turing Machine M , having exactly one tape
and one head, halts in a t most some parameterized number of steps is W[l]-complete.
The previous result provides strong evidence to the conjecture W[1] # FPT. Indeed,
a Turing machine is such a general model of computation that it seems not possible to
guess the result of some nondeterministic computation without looking (in the worst
case) a t all computation’s paths. Moreover, the result provides a characterization
of W[1] in terms of a classical model of computation: all problems in W[1] have
“candidate solutions” that are verifiable by a “short” computation of a simple Turing
machine.

In this paper, we significantly extend that result; in particular, we consider Tur-
ing machines having many tapes and many heads, and we analyze the role played by
several static resources (like the number of internal states and the size of the alpha-
bet) in a bounded-length computation. In the classical setting almost all variations
of the basic Turing machine model are polynomially-related [8], and therefore the
classical complexity theory does not allow to separate such models. On the contrary,
we show that parameterized complexity may be a very useful tool for such a kind
of analysis. Indeed, we prove that different nondeterministic Turing machine models
characterize different W classes. As a byproduct, we underline the different “compu-
tational powers” of some levels of the W hierarchy. The computational complexity
of the problem of deciding if a nondeterministic Turing machine accepts a string x
with a bounded length computation (the SNTMC problem) is somewhat related to
the intrinsic “computational power” of the corresponding Turing machine models.
Here, for “computational power” we should mean the “ability to do something by
using some resources”. For example, we prove that the general SNTMC problem is
W[2]-hard, while SNTMC restricted to total Turing machines2) is W[l]-complete. Of
course, given a non-total device, it is straightforward to fill its transition table and to
get an “equivalent”, total device which is able to perform any task as the original one.
But the non-total machine is more “powerful”, since it is able to perform the same

*)A Turing machine is said to be totalif it has an applicable transition for any global configuration.

Computation Models for Parameterized Complexity 181

tasks by using a smaller transition table; indeed, the key idea of the parameterized
reduction showing the W[2]-hardness of SNTMC consists in an "information hiding"
trick that allows us to keep small the number of required transitions.

The paper is organized as follows. In Section 2 we address the formal setting of
parameterized complexity by providing the basic definitions. In Section 3 we formally
define the Turing machine model we use throughout the paper and the SNTMC
problem we deal with. In Section 4 we prove the W[1]-completeness of several versions
of the SNTMC problem: when restricted to total machines or to machines in which
some of the number of heads, tapes, internal states and the size of the input are
parameterized. In Section 5 we consider the general SNTMC problem and some
other versions and we prove their membership to the W hierarchy and their hardness
for W [2] . In Section 6 we consider two restrictions of the SNTMC problem (in which
the number of heads and, respectively, the size of the alphabet or the number of
internal states are parameters) and we prove their membership to FPT. Finally, in
Section 7 we address some conclusions and we discuss some open problems.

2 The parameterized complexity setting

A parameterized problem is a set L C' x N, where C is a fixed alphabet. A parame-
terized problem L is (uniformly) f ixed-parameter tractable if there is a constant cy and
an algorithm CP such that CP decides if (2, k) E L in time f(k)lzI", where f : N - N is
an arbitrary function. The class of fixed-parameter tractable problems is called FPT.

Let L1 , L2 be parameterized problems. We say that L1 is (uniformly many : 1)
reducible to L2 if there is a constant cy and an algorithm CP which transforms (3 : , k)
into (d , g (k)) in time f(k)IzI", where f , g : N - M are arbitrary functions, so that
(z, k) E L1 if and only if (z', g(k)) E Lz. The reduction is said to be strong if the
function f is recursive.

The W classes are defined in terms of decision circuits. A logical circuit is of mixed
type if it has gates of two kinds: S m a l l gates (not-gates, and-gates and or-gates with
bounded fan-in, usually fan-in 1 for not-gates and fan-in 2 for or- and and-gates), and
Large gates (and-gates and or-gates with unbounded fan-in).

The depth of a circuit C is the maximum number of gates (small or large) on an
input-output path in C . The weft of a circuit C is the maximum number of large
gates on an input-output path in C. A family of decision circuits F has bounded depth
(resp. bounded w e f t) if there is a constant A' such that every circuit in the family F
has depth (resp. weft) at most I<.

Let F be a family of decision circuits (possibly having many different circuits with
a given number of inputs). A parameterized circuit problem is associated to F :

LF = { (C, k) : C E F and C accepts an input vector of weight k},

where the weight of a Boolean vector 3: is the number of 1's in the vector. A parame-
terized problem L belongs to W[t] if there exists a constant h such that L reduces to
the parameterized circuit problem L F (~ , ~) for the family F (t , h) of mixed type decision
circuits of weft at most t and depth at most h. Finally, a parameterized problem L

182 Marco Cesati and Miriam Di Ianni

belongs to W[P] if L reduces to the circuit problem L F , where F is the set of all cir-
cuits (no restrictions). Of course, FPT C W[1] c W[2] c . . . C W[P]. Many natural
NP-hard or NP-complete problems have been found for the W classes [6, 21.

3 The basic Turing Machine model

A multi-tape, multi-head Turing machine is a physical device consisting of a finite
control (a finite subset Q of a countably infinite set 0,) and t + 1 (unidimensional)
tapes (for some t 2 0): an input tape (tape 0) and t work tapes (tapes 1 , . . . , t) . Each
tape consists of an infinite sequence of cells indexed by integers. Each cell contains
a symbol of a finite subset C of a countably infinite set C,. We assume that C
always includes the blank symbol ‘0 ’ . On any tape i (i = 0 , . . . , t) , there are h heads
(heads 1 , . . . , h); every head scans one cell at a time.

Initially, the input tape (tape 0) holds an input word z not containing blanks, while
all the other tapes are filled by blanks. Each head on tape i (i = 0 , . . . , t) scans the
same cell, and moreover all heads on tape 0 scan the cell containing the first symbol
of the input word 2 (if this is not empty). We assume that, if t > 0, the input tape
is a read-only one and that its heads cannot go beyond the two blanks immediately
adjacent to z. Conversely, if t = 0, the unique tape of the Turing machine (tape 0)
is also a work tape and, thus, it is not read-only. A machine with t = 0 and h = 1 is
called simple.

The transi t ion rule 6 specifies the behaviour of the device: it is a subset of
Q x Ch(i+l) x Q x Chmax{t,l} x { - l , O , + l } h (t + l) and each element represents an
instruct ion. The first 1 + h(t + 1) items of any instruction encode the current state
and the symbols currently scanned under the heads, while the remaining ones encode
the state to be reached by the machine, the symbols to be written by the heads, and
the movements of the heads. The machine halts whenever there is no rule in 6 whose
first 1 + h(t + 1) items match its internal state and the scanned symbols. If this
happens in a particular state denoted as qa, the input word is accepted. The Turing
machine could also use a particular final rejecting state qr. Of course, qo and qr are
never in the first item of any instruction.

In a multi-head Turing machine it may happen that several heads scan the same
cell: as in [9] we adopt a head-concurrency rule to be applied when such heads attempt
to write different symbols: the head with the lower number wins out.

D e f i n i t i o n 1. A Turing machine M is a 3-tuple (t , h , 6) , where t + 1 represents
the number of tapes, h denotes the number of heads per tape, and 6 is the transition
table.

Notice that in the above definition explicit references to Q and C are missing. In
fact, the subsets of Q, and C, actually used by the machine (the “working sets”)
are implicitly defined by 6, while Q and C could include useless states and symbols.
In the following, QM and C M denote such working sets. When it4 is understood, we
shall write simply C and Q. In order to simplify the proofs, it is convenient to make
the assumption according to which the blank symbol ‘0’ cannot be written on any of
the work tapes.

A configuration of M is a (2t+3)-tuple c = (q , wo, no, 201, n l , . . . , wt, nt) , where q
is the current state, each w, (i = 0 , . . . , t) is a word over EM, and ni (i = 0 , . . . , t) is a

Computation Models for Parameterized Complexity 183

h-tuple of integers in (0 , . . . , 1 + Iwil}. The string wi represents the non-blank portion
of tape i. The convention that blanks cannot be written ensures that the non-blank
portion of each tape is contiguous. Each value nij of the h-tuple ni indicates that
head j of tape i is scanning the nijth symbol in w i . For a string x , let t[i] denote the
ith symbol in t if 1 5 i 5 121. If i is outside the indicated range, then by definition
t[i] denotes the blank symbol. The init ial configuration on input x is defined to be
C O (X) = (q o , t, (1,. . . , l), E , (0 , . . . , O) , . . . , E , (0 , . . . , O)) , where qo is the start state
and E is the empty string.

Now we define a binary relation I-6 (or I-, if 6 is understood) on the configurations
of 6: c /-6 c’ means the configuration c’ is obtained from c by applying an instruction
of 6; thus, ct is a successor of c and the sequence is called a transi t ion or a s t ep . We
write c I-! c’ if there is a k-steps sequence

c = CO k6 c1 I-6 ‘ ‘ . k6 ck = c’.

The reflexive, transitive closure of the binary relation I-6 is denoted I-: (or just I-*).

3.1 The “short” computation problem

In this paper we study the parameterized complexity of a computational problem
concerning acceptor nondeterministic Turing machines. In particular, we consider
the problem related to the existence of “short” accepting computation paths, that
is, accepting computation paths having bounded time. Formally, the SHORT NON-
DETERMINISTIC TURING MACHINE COMPUTATION (in short SNTMC) problem is
defined as follows:

I n s t a n c e : a (nondeterministic) Turing machine M = (t , h , 6) and a word z

P a r a m e t e r : an integer k.
Q u e s t i o n : is there an accepting computation path of M on input x requiring

at most k steps?
CAI, CHEN, DOWNEY and FELLOWS [l] proved that SNTMC is W[l]-complete

when restricted to simple machines. In this paper we significantly extend such results
by studying several variations of this problem. We concentrate our attention on the
role played by various resources and we define new parameters representing the limits
imposed on the resources. In particular we are interested in bounding:

over EM.

(T) the number of tapes t ,
(H) the number of heads per tape h ,
(C) the number of non-blank symbols JC - {O}I,

(Q) the number of non-halting internal states I& - { q a , q r } l ,
(I) the size of the input 1x1.

We denote the different versions by “prefixing” the name of the basic problem by,
respectively, T, H , C, Q, and I. For example, C-SNTMC represents the parameterized
problem SNTMC having both the time and the size of the alphabet C as parameters.
Moreover, we may consider the same problems having some resources fixed to par-
ticular values; as an example, &-SNTMC denotes the problem SNTMC such that

184 Marco Cesati and Miriam Di Ianni

the parameter is the time k and the instances are restricted to Turing machines with
binary alphabet.

The common idea of many proofs is that the resources are somewhat “interchange-
able”. For example, a Turing machine that uses many internal states can be easily
simulated by a new Turing machine having just one internal state and an enlarged
alphabet (a particular cell on some tape contains a symbol encoding the internal state
of the simulated device): we economize on the number of internal states, yet the size
of the alphabet increases.

However, such methods are often not applicable. For example, let us suppose that
our goal is to simulate a single-tape, single-head Turing machine by using a single-
tape, single-head Turing machine with just one internal state. Of course we can
enlarge the alphabet, but this does not seem to be enough. Indeed, for example, in
the next sections it is shown that SNTMC for simple machines with a parameterized
number of internal states is fixed parameter tractable while we know that SNTMC
restricted to simple machines (one tape and one head) is W[1]-complete. Thus, a
simple machine with a bounded number of internal states has considerably less power
than a simple machine with an arbitrarily large number of states.

4 Cases of W[1]-completeness

Recall the W[1]-completeness of SNTMC proved in [l] for simple machines. Our first
theorem generalizes such a result to multi-tapes, multi-heads machines such that the
number of heads and the number of tapes are parameters. Of course, since SNTMC
restricted to simple machines trivially reduces to SNTMC for multi-tapes, multi-heads
machines, the W[1]-hardness directly follows. Thus, the interesting part of our result
concerns the membership to W[1]. Before proving it, we need the following lemma.

L e m m a 1. H-10-T-SNTMC belongs t o W[1].

P r o o f (sketch). In order to show membership in W[1], it suffices to show how
an instance (M , k , t , h) of H-10-T-SNTMC can be translated into an instance (C, k’),
where C is a circuit with weft 1 and constant depth. We arrange the circuit so that
the input lines are partitioned into k’ pools of variables such that exactly one line in
each pool can be set to 1. The pools represent:

1. the ith transition, 1 5 i 5 k (k pools);
2. for any head j and tape 1, the head position at time i, 1 5 i 5 k, 1 5 j 5 h,

3. the internal state at time i, 15 i 5 k (k pools);
4. the symbol in cell j at time i, 1 5 i, j 5 k, 0 5 15 2 (k 2 (t + 1) pools).

0 _< 15 t (hk(t + 1) pools);

Thus, we take k’ = 2k+ hk(t + 1) + k 2 (t + 1). In order to force exactly one input to be
set equal to 1 in each pool of input variables we add to the circuit, for each such pool
of input variables and for each pair of variables 2 and y in the same pool, a small “not
both” circuit representing (-2 V -y). Observe that an accepted weight k’ input vector
must have exactly one variable set to true in each of k’ pools. Let n denote the number
of input variables in this construction; then n = k161+ k(Q1+ kh(t + 1) + k(t + 1)(C(.

Computation Models for Parameterized Complexity 185

The remainder of the circuit encodes various checks on the legacy of the above
choices. These consistency checks conjunctively determine whether the choices repre-
sent an accepting k-steps computation of M , much as in the proof of COOK’S theorem,
and they can be implemented so that each one involves only a bounded number b of
input variables.

We have O(nb) “checking” circuits for consistency checks involving b values. All of
the small “not both” and “checking” circuits feed into the single large output and-gate

0 of C. The formal description of the details is laborious but straightforward.
We are now ready to prove the full theorem.
T h e o r e m 1. H-T-SNTMC is W[l]-complete.
P r o o f . We have already noticed that the problem is trivially W[1]-hard. In order

to prove its membership to W[1], we reduce it to H-10-T-SNTMC. The assertion will
follow from Lemma 1.

We first reduce H-T-SNTMC to H-I-T-SNTMC and then the latter problem to

Let (M , I , k, . . .) be an instance of H-T-SNTMC, and let us consider the determin-
istic Turing machine T that , on input (M , I, k, . . .), outputs the same machine M , a
new input word I’ which is the truncation of x to the first k symbols, a new parameter
value equal to k (for the bound on the input length), and all the parameters of the
original instance. Of course, the running-time of T is linear in the size of its input.
We have to show that (M , I, k, . . .) is a yes-instance of H-T-SNTMC if and only if
(M , d, k, k, . . .) is a yes-instance of H-I-T-SNTMC. Consider that if a computation
path of M(I) accepts in at most k steps, then this computation path reads at most
k symbols of the input, and therefore there exists also a computation path of M (d)
which accepts in at most k steps. Conversely, if every computation path of M(I) does
not accept after k steps, then every computation path of M(I’) does not accept after
k steps.

Finally, we show that H-I-T-SNTMC reduces to H-10-T-SNTMC. Consider an in-
stance of H-I-T-SNTMC containing a nondeterministic Turing machine M = (t , h , 6),
an input word x and parameters k and n = (11. Suppose t > 0, and consider the Turing
machine M’ = (t + 1, h, 6’) that (starting from empty input) writes ~ [l] , 1[2], . . . , I[.]
on the additional work tape and then simulates M . It is easy to verify that a descrip-
tion of M’ can be derived from a description of (M,I) in a linear number of steps,
and that M , I, k, n are in a yes-instance of H-I-T-SNTMC if and only if M‘, k are in
a yes-instance of H-10-T-SNTMC. The reduction in the case t = 0 is very similar. 0

Is the behaviour of nondeterministic Turing machines having a “small” number of
internal states “easily” predictable ? The answer turns out to be negative. Indeed,
we shall prove that nondeterministic machines with just one non-terminal internal
state and two work tapes are able to solve W[1]-complete problems in parameter-
ized polynomial time, and therefore that the corresponding “short nondeterministic
computation problem” is W[1]-hard.

DOWNEY and FELLOWS [6] proved that CLIQUE (given a graph G and a para-
meter k, decide if G contains a complete subgraph of k nodes) is W[1]-complete.
Actually, CLIQUE can be considered as the “prototype” of W[1]-complete problems.

H-10-T-SNTMC.

186 Marco Cesati and Miriam Di Ianni

For our goal, it is sufficient to show that, for any instance (G,k) of CLIQUE, it is
easily derivable a two-tapes, single-head, single-state Turing machine which is able to
decide (G, k) E CLIQUE in time bounded by a function of k.

T h e o r e m 2. CLIQUE reduces l o H1-1o-Ql-T2-SNTMC.

P r o o f . Let (G, k) be an instance of CLIQUE, where G = (V, E) is a graph and k is
an integer. We show how to construct a nondeterministic single-head Turing machine
A4 = (2,1,6) such that &M = {qo,qa,qr}, and M can reach qa in k' = f(k) moves if
and only if G contains a k-clique.

Let us assume that V = { I , . . . , n}. Then CM contains the symbols 0, $, #,
and five symbols for every node i E I/. Of course we can assume that k 5 n. Since
the internal states qa and qr are final states, there is just one internal state which
performs any operations (the initial state q o) . Moreover, M has two work tapes, but
actually M uses just one tape square of the second tape.

The Turing machine M is designed so that any accepting computation path con-
sists of three phases. In the first phase, A4 nondeterministically guesses k vertices
of G and writes the corresponding symbols in the first k cells of tape 1. During the
second phase, M checks if the symbols are pairwise distinct. Thus, Phase 2 requires
the k symbols written on tape 1 to be scanned k times and it ends in O (k 2) steps.
Phase 3 verifies that the guessed vertices are a clique. As an example, we show the
transitions in 6 used during the third phase:

(~ , v , $, P o , ~ , v ' , Q o , O , + l , O) f o r v E { l , . . . , n) ,
(~ , v , d , Q o , v , d , Q o , 0,+1,0) fo rwU,wE{1 , . . . , n> , v # w , (. , w) E E ,
(0, El.', Q o , #, #, Qr, o,o, 0) for w, w E { 1, . . . , n}, w # w, (w , w) @ E ,
(O , O , d , 40 , # I d ! , Qo, 0,-1,0) for w E {1,...1n},
(O , # , W ' , Po, #,d, Po, 0,-1,0) for w E { 1 , . . . , n } ,
(O,Z),.LoII, Q o , ~ , d , Q 0 , 0 , - 1 , 0) f o r w , w € { 1 , . . . , n } , w # w ,
(O,v, v" , Qo, v , $ 1 Qo, 0, +I , 0) for w € { 1 , . . . , .I,
(0 , #,$, QO, #,#,Pa, O , O , 0).

It is easy to verify that Phase 3 terminates in O(k2) steps, that the total number of
symbols is 5n+3, and that the total number of transitions is at most 2n2+(k+7)n+2 .
Of course, M is easily derived from (G, k) in linear time in the size of G and k. It is
trivial to verify that G has a k-clique if and only if M (E) accepts and, in every case,

0

Of course, such result can be easily generalized to any fixed number of work tapes
greater than 2. By the converse, later in this paper we shall show that a single-head
machine with less than two work tapes and one non-final internal state cannot solve
a W[1]-complete problem (unless W[l]=FPT).

M (E) halts in at most 2 k 2 + 3k + 4 steps.

C o r o l l a r y 1. H1-Io-Q1-Tt-SNTMC is W[l]-complete f o r t 2 2.
P r o o f . By the trivial reduction from H1-Io-Q1-Tt-SNTMC to H-T-SNTMC,

0

We now prove that even the Hh-Io-Q,-To-SNTMC problem is W[1]-complete.

Theorem 1 and Theorem 2.

Computation Models for Parameterized Complexity 187

T h e o r e m 3. Hh-Io-Q,-To-SNTMC is W[1]-complete.
P r o o f (sketch). Of course Hh-Io-Q,-To-SNTMC belongs to W[l], because it

trivially reduces to H - T - SNTMC E W[1] (Theorem 1). Now, let us show that the
W[l]-complete HI-10-To-SNTMC problem [l] reduces to H2-Io-Q1-To-SNTMC.

Let (M A) be an instance of H1-Io-To-SNTMC, where M = (0 ,1 ,6) is a nondeter-
ministic Turing machine; let us consider the instance (M’, k’) of H2-Io-Q1-To-SNTMC
such that k’ = 2k + 1 and M‘ = (0,2,6’) is a nondeterministic Turing machine having
QMM’ = { n o , qa, qr} r l QW and, for $ 4 E M ,

C M ! = C M U { $ } U { ~ : l < i < k } U { p - : q E Q M } .

The Turing machine M‘ operates in two phases: in the first one it executes k+ 1 right-
moves with head 2, using the cell scanned under the other heads as a counter. In the
second phase M‘ simulates the machine M by using the cell scanned under head 2 as a
storage area which contains the current internal symbol of M . It is easy to verify that
M‘ can perform these tasks with just one non-terminal state. It is straightforward to
derive the details of 6’. 0

4.1 SNTMC restricted to total machines is W[l]-complete

In order to extend the W[1]-completeness result to larger classes of Turing machines,
we introduce the notion of “total” Turing machine. We say that a Turing machine is
total if i t cannot “hang up”, that is, for every combination of scanned symbols and
internal state, the transition table of the machine contains an applicable instruction.
Formally :

D e f i n i t i o n 2. A Turing machine M = (t ,h ,6) is totalif its transition relation 6
defines a total multi-valued function from the set C, x (&M-{qa, q r }) to the set
ZLmax t t

A total Turing machine has a peculiar property: its transition table has a large
number of instructions (in @ (I C (h (t + l) . IQI)). Total machines seem to have somewhat
less power than non-total ones: fix a non-total machine M and consider the total
machine M’ obtained from M by filling its transition table with all the missing in-
structions (any new instruction simply enters the reject state). Of course, M and M’
accept the same language, yet the size of M is smaller, and thus M appears to be
more powerful than M’.

We now show that SNTMC restricted to total Turing machines is still W[1]-com-
plete. Notice that the number of tapes and the number of heads per tape are arbi-
trarily large and not bounded by any parameter; later in this paper we shall show
that the same problem for non total machines is W[2]-hard, and thus not in W[1].

L e m m a 2. SNTMC restricted t o total Turing machines reduces to HI-To-SNTMC.
P r o o f (sketch). We adopt essentially the classical “multi-tape and multi-head”

to “single-tape and single-head” reduction as presented in [8], but we need some tricks
in order to achieve the fixed parameter reduction.

Let (M , 2 , k) be an instance of SNTMC, where M = (t , h, 6) is a nondeterministic
Turing machine, 6 is a total function and c E Ck. Let us assume that q = 1 Q ~ l ,
s = 1 C ~ l and d = 161. We define a nondeterministic Turing machine M’ = (0, 1,6’)

h (t + l)

x QW x {+l, 0, -l}h(t+l).

188 Marco Cesati and Miriam Di Ianni

such that M’ has (h + l) (t + 1) tracks on the tape grouped in t + 1 sets of h + 1
tracks (i.e., (h + 1) tracks for each of the M’s tapes). One track in each set records
the content of the corresponding tape of M and the other ones are blank, except for
some markers in the cells that hold the symbols scanned by the heads of M . The
finite control of M’ stores the state of M , along with a count of the number of head
markers to the right of M”s head. Moreover, the finite control of M’ stores the ht
symbols scanned by the M’s heads.

Each move of M is simulated by a sweep from left to right and then from right
to left by the head of M’. Initially, MI’S head is at the leftmost cell containing a
head marker. To simulate a move of M , M‘ sweeps right, visiting each of the cells
with head markers and recording the symbol scanned by each head of M . When M‘
crosses a head marker, it must update the count of head markers to its right. When
no more head markers are to the right, M’ has seen the symbols scanned by each
of M’s heads, so M‘ has enough information for nondeterministically guessing the
next nondeterministic move of M . Now M’ makes a pass left, until it reaches the
leftmost head marker. The count of markers to the right enables M’ to tell when it
has gone far enough. As M‘ passes each head marker on the leftward pass, it updates
the tape symbol of M “scanned” by that head marker, and it moves the head marker
one symbol left or right to simulate the move of M . Finally, M’ changes the state
of M (recorded in M”s control) to complete the simulation of one move of M . If the
new state of M is accepting, then M‘ accepts.

We have to show that this construction is a fixed-parameter reduction. The al-
phabet of M’ is = (EM x (0, l}h)t+’: a symbol in a cell encodes the symbols
in the corresponding t + 1 cells of M plus the corresponding h markers. Thus, the
number of symbols in is s’ = 2(t t1)hs t+1 . An internal state of M‘ encodes the
internal state of M , the number of head markers at the right of the M”s head and the
h(t + 1) symbols scanned by the M’s heads. Thus, the number of internal states in
Q M ~ is q’ = O(qthsh(‘+’)). For every transition in 6, 6’ has a corresponding transition.
Moreover, we need the transitions performing the “sweeping” operations, and there-
fore the number of transitions in 6’ is d’ = O(d+ q’s’) = O(d+ ~ (~ + l) (* + l) 2 (~ + ’) ~ q t h)
(observe that the “sweeping” operations are deterministic). Let IlMll be the length
of a description of M . Therefore llMll 2 d(logq+thlogs) 2 qs(‘+l)h(logq+thlogs),
because 6 is a total function. Then it is easy to verify that the length of a description
of M’ is IIM’II = O(d‘(1ogq’ +logs’)) = O(th ((M((3) .

It is easy to check that M’ uses at most 6k2 steps to simulate k steps of M . More-
over, observe that 1x1 = 12’1, and therefore the above reduction is a fixed-parameter
reduction from total-SNTMC to HI-To-SNTMC. 0

L e m m a 3 . Hh-T,-SNTMC reduces t o SNTMC restricted t o total Turing m a -

P r o o f . Assume that t 2 0 and h 2 1 are fixed integers. Let (M,x,k) be an
instance of Hh-Tt-SNTMC, where M = (t , h , 6) and t E Eb. Let us define the Turing
machine M‘ = (t , h , 6’) , where EM) = EM and Q M ~ = QM. 6‘ is the (‘closure” of 6:
it contains all the transitions of 6, and for every (q , 6 1 , . . . , u h t) E QM x Eg which is
not a “prefix” of a transition in 6, (q , 6 1 , . . . , d h t , qr, U I , . . . , dht, 0 , . . . , O) E 6’. Thus
6’ is total.

chines.

Computation Models for Parameterized Complexity 189

Let us suppose that (M , c, k) is a yes-instance of Hh-Tt-SNTMC. Therefore there
exists a deterministic computation path of M (c) which accepts in at most k steps.
By definition, the k transitions applied in such a deterministic computation path are
in 6’ too, and thus there exists a deterministic computation path of M’(c) which
accepts in at most k steps (just consider the same transitions). Now, suppose that
(M , c, k) is a no-instance of Hh-Tt-SNTMC, and suppose that there exists a deter-
ministic computation path of M’(c) which accepts in at most k steps. Of course, the
k transitions applied in such a deterministic computation path are in 6 too, because
every transition in 6’ - 6 enters the final rejecting state q r . This is a contradiction,
because such a deterministic computation path of M’(e) is also a legal deterministic
computation path of M (c) , and therefore (M , c, k) should be a yes-instance.

Let s be the number of symbols in EM (and EM,), let q be the number of internal
states in Q M (and Q M)) , let d be the number of transitions in 6 , and finally let d’
be the number of transitions in 6’. Since we put in 6‘ at most one new transition for
every possible “instruction’s prefix”, we have d’ 5 d + q s ~ (~ + ’) , and therefore (since
by definition q 5 d and s 5 d) d’ = O(dhtth+’) . Now recall that h and t are fixed
constants, and observe that M’ is derivable from M in O(dht+h+l) steps by simply

0 looking at the transition table 6.

T h e o r e m 4. SNTMC restricted t o total Turing machines is W[1]-complete.

P r o o f . By Lemma 2 and Lemma 3, SNTMC restricted to total Turing ma-
chines is equivalent to Hh-Tt-SNTMC. By Theorem 1, Hh-Tt-SNTMC is in W[1]
(trivially Hh-Tt-SNTMC reduces to H-T-SNTMC), and, by the W[1]-completeness
of SNTMC restricted to simple machines [l], Hh-Tt-SNTMC is W[1]-hard (trivially
10-HI-To-SNTMC reduces to Hh-Tt-SNTMC). 0

5 Beyond W[1]

Let us consider here the most general version of the SNTMC problem: the number
of tapes and the number of heads per tape are arbitrarily large integers, so as the
size of the alphabet, the number of internal states, and the size of the input word.
What about the parameterized complexity of such a problem? In order to show
the membership of SNTMC to some class W[t], we should present, for any Turing
machine M , input word c, and time bound k, a mixed type logical circuit of weft t
and bounded depth able to accept a weight f(k) Boolean input if and only if M (c)
accepts in time at most k. But there is a difficulty: while in the H-T-SNTMC case
(Theorem 1) the input vector of weight f(k) encodes both the k applied transitions and
the k corresponding global configurations (so that the circuit only checks whether the
input actually encodes a Turing machine computation), in this case we cannot adopt
such an approach, because it does not seem possible to encode a global configuration
of a Turing machine with arbitrarily large number of tapes and heads into an input
word of weight f(k). Now, the solution consists in codifying in the input only the
applied transitions and not all the global configurations. This implies that the circuit
must compute on its own the global configurations and the weft grows from 1 to k.
Thus, the best result achieved so far is the following.

190 Marco Cesati and Miriam Dilanni

T h e o r e m 5. SNTMC is in W[P].
P r o o f (sketch). Let A4 = (t ,h,6) be a nondeterministic Turing machine, let

w E C* and let k be an integer. We show how to construct a circuit C with k(61 input
lines so that there exists a weight k input vector z such that C(z) = 1 if and only if
there exists an accepting computation path of M (w) having at most k steps.

The circuit C has a final large and-gate. The k(61 input lines are partitioned into k
blocks T I , . . . , T k ; any block z has 16) input lines and encodes the transition applied
in the i th step of the computation path.

The circuit C has the following gates:

For every block Ti (1 5 i 5 k) and for every state q E Q, there are two large
or-gates gzd(i , q) and g2ew(i, q) . The gate gzd(i , q) (respectively, g2ew(i, q)) has in
input the input lines of the block Ti which correspond to the transitions having q as
“old” (respectively, “new”) state.

. Similarly, two large or-gates g&(i, 1, j , u) and g:e,.,(i, 1, j , m) are defined for every
block z (1 _< i 5 k), for every tape I E (0 , . . . , t } , for every head j E (1,. . . , h } and
for every symbol u E C representing the transitions having u as “old” (respectively,
“new”) symbol for tape 1 and head j , and one large or-gate g*(i, I , j, m), for every
block T, (1 5 i 5 k), for every tape I E (0, . . . , t } , for every head j E (1, . . . , h } and
for every move m E {+1,0, -l}, representing the transitions having m as move of the
head j on tape 1.

For every time i E (0 , . . . , k}, for every tape I E (0 , . . . , t } , for every head
j E { 1, . . . , h } and for every tape position p E (0, . . . , k}, there is a small or-gate
pos(i, I, j , p). We shall enforce that pos(i , I , j , p) has output 1 if and only if a t time i
the head j of tape I is scanning the position p .

For every time i E (0 , . . . , k}, for every tape I E (0 , . . . , t } , for every tape posi-
tion p E (0 , . . . , k} and for every symbol u E C, there is a large or-gate syrnb(i, I , p , u).
We shall enforce that syrnb(i, I , p , u) has output 1 if and only if at time i the cell of
tape I in position p contains the symbol u.

Time 0 corresponds to the initial configuration of M(w) ; therefore actually
pos(0, I , j, p) and symb(0, I , p , u) are not gates, but hard-wired logical values (0’s and
1’s) which encode the initial global configuration.

The circuit C implements several consistency checks in order to ensure that the
input lines encode a LLlegal’l computation of M (w) . In particular:

1. At any time exactly one transition should be applied; thus for every block T;
(1 5 i 5 k), at most one input line must be set to 1 (hence an accepting weight k
input vector must have exactly one input line set to 1 in any block z). Therefore,
the final and-gate has in input the output of (111 v -&), for every pair of different
input lines (I 1 , I z) in the same block q, for 1 5 i 5 k.

2. At any time i E { 1, . . . , k}, the cell on tape 1 E (0, . . . , t } scanned under head
j E (1,. . . , h} must be consistent with the transition applied at step i and the scanned
cell at time i - 1. Therefore, pos(i , 1, j , p) is defined as follows:

(p o s (i - l , l l j l P) h7T(i,i,j,0))V(Pos(i - l , l , j , P - 1) k 7 T (~ , L i , + 1))
v (pos(i - 1 , i , j , p + 1) A g T (i , 1, j , -1)).

Computation Models for Parameterized Complexity 191

3. At any time i E (1 , . . . , k}, the symbol contained on tape 1 E (0 , . . . , t } in the
cell in position p E (0,. . . , k} must be consistent with the transition applied at step i
and the symbol contained in the same cell at time i - 1. We assumed that a multi-
head Turing machine implements a “priority model”: if more than one head scan the
same cell, then only the head with lowest index writes the new symbol. Therefore,
symb(i, l , p , c) is defined as follows:

h
(symb(i - 1, / , P , A 7 Vj=l PS(’ - 1,‘, J’, P I)
vv3=1[gnCeew(i,~,~,c) A P O S (~ - 1 , 1 , ~ , ~) A ~ v ~ ~ ~ P o ~ (~ - ~ , ~ , ~ , P) I .

4. At any time i E (2 , . . . , k}, the “old” state of the applied transition must be
equal to the “new” state of the transition applied at step i - 1. Observe that i t is
sufficient to check that for any q E Q, g$,(i - 1, q) = 1 implies gzd(i , q) = 1 , because
we are granted that for every block Ti there is at most one g id (i , q) gate and at most
one g2ew(i, q) gate having output 1 (for any block, at most one input line is set to 1).
Therefore the final and-gate has in input the output of (7 g 2 e w (i - 1, q) V gzd(i, q)) ,
for every i E (2, . . . , k} and q E Q.

5. At any time i E (0 , . . . , k - l}, the symbols contained in the scanned cells on any
tape must be consistent with the “old” symbols of the transition applied at step i+ 1.
Therefore the final and-gate has in input the output of

for any symbol c E C, time i E { i, . . . , k}, tape 1 E { 0, . . . , t } , head j E { 1, . . . , h } and
position p E (0 , . . . , k}.

6. The first transition of the computation must have qo as “old” state; therefore
the output of gzd(l ,qo) is linked to the input of the final and-gate. Moreover, the
computation must accept, and therefore the output of g$‘,(k,q,) is linked to the
input of the final and-gate (actually, the computation can accept in less than k steps;
however it is easy to add several ‘(no-operation’’ transitions having qa as both “old”
and “new” state).

It is straightforward to verify that the circuit C can accept a weight k input vector
if and only if there is a k-steps accepting computation path of M (w) . Moreover, C has
O(k2htlCllQ11612) = O(k211M(12) gates, and it is easy to construct a description of C

0

Since there seems to be no easy improvement of Theorem 5, we now look for a
W[t]-hardness result for SNTMC for t > 1. Next theorem shows that HI-SNTMC is
W[2]-hard: therefore, this problem is not in W[1], unless W[1] = W[2] (recall instead
that HI-T-SNTMC belongs to W[1], see Theorem 1).

The W[P]-hardness of HI-SNTMC is established by showing a parameterized re-
duction from a known W[2]-complete problem, namely DOMINATING SET [5]: given
a graph G = (V, E) and a positive integer k as parameter, does there exist a subset
V’ of V such that IV’I 5 k and for every vertex u E V , the neighborhood N [u] of u
(i.e., u and the set of vertices adjacent to u) contains at least one element of V’?

~ o s (i - 1,1, j , P) v -ymb(i - 1, I , P , c) v gzd(i, 1, j , 61,

in a squared number of steps in the size of M and w.

T h e o r e m 6. DOMINATING SET reduces t o HI-SNTMC.
P r o o f . Let us fix an instance (G, k) of DOMINATING SET, where G = (V, E) is

a graph and k is the parameter. In the following we assume that V = (1,. . . , n}.

192 Marco Cesati and Miriam Di Ianni

We consider the nondeterministic Turing machine M = (n + 1 , 1 , 6) with alphabet
EM ={~,#,$,L,...,E} ands ta tese t Qw = { q 0 , q 1 , q 2 , q 3 , q a } .

M is supposed to start with an empty input word, therefore the input tape 0 is
useless. M operates in four phases:

P h a s e 1. M nondeterministically writes k vertices on tape 1, using one cell of
tape 2 as a counter and internal state qo. The formal description of the transitions of
this phase is straightforward and, thus, omitted.

P h a s e 2. M fills the work tapes from 2 to n + 1 with k + 1 symbols '$', using
one cell of tape 1 as a counter. This phase is somewhat crucial, because M is not
allowed to write the blank symbol '0 ' ; therefore we must prepare a 'nice' portion of
the work tapes.

(O , i , O , . . . , O,ql,i+l,$, . . . , $,q1 ,0 ,0 ,+1 , . . . , +1) for i ~ { 1 , . . . , k-l}, - - -
n n n

(O I L , 0 , '..,a ,a ,$,$, . ~ ' , $, q 2 , O , + l , O , .. . , O) . - - -
n n n

P h as e 3. M scans the symbols on tape 1, and for every scanned vertex, write a
symbol '#' on any tape i + 1 such that v E N [i] . Eventually (when M reads a blank
on tape l) , M goes to next phase. Observe that every time M writes a symbol '#',
then it moves the corresponding head to left; therefore every transition reads always
'$' in any tape i (2 5 i 5 n + 1). On the contrary, if M doesn't write a symbol '#'
in some tape, then the corresponding head position does not change.

n

where, for every i E { 1, . . . , n},
0 if v I$ "21,

-1 if v E N [i] , and my =

(O , # , $, . " 1 ~ , ~ 2 , # , ~ , 9 2 , 0 , + ~ , ~ , " . , ~) , - -
n n n

(o,o,$, . . . , $, q z , $, $, . . . , $, q 3 , 0 , 0 , 0 , . . . , o) . - - -
n n n

P h a s e 4. M attempts to move to the right the heads on tapes from 2 to n + 1.
Next, if M reads the symbol '#' on every such tape, then it accepts.

(0 , $,$, . . . , $, 43, #,$, . . . , $, q 3 , 0 , 0 , + 1 , . . . , + I) , - - -
72 n n

(0, #, #, . ' ' 1 # > 93, #, #, . ' . , # , gar 0, 0, ,o, .;. , (y . - -
n n n

Notice that 6 contains O(nk) transitions, and these are easily derived from a
description of G in a squared number of steps in the size of V . Now we show that
M (E) accepts in at most 3k + 4 steps if and only if (G, k) is a yes-instance. Suppose
that (G, k) is a yes-instance; therefore there exists a subset V' of V with a t most k

Computation Models for Parameterized Complexity 193

elements which is a dominating set. Then, consider the computation path of M (E)
that writes on tape 1 all the elements of V’ and nothing else (if V’ contains less than k
elements, the deterministic computation guesses some vertices of V’ more than once).
Let us consider now the tape i + 1, where 1 5 i 5 n. It is easy to verify that at the
end of Phase 3, for any tape i + 1, the head is placed on the cell which is at the right
of the last ‘#’. Then, in Phase 4 , the computation path performs one right-move
and the computation path accepts. It is easy to verify that the number of steps is at
most 3k + 4.

Now, suppose that (G, k) is a no-instance; therefore for any subset V’ of V with at
most k elements, there is a vertex u E V such that N[u]nV’ = 0. We claim that M (E)
does not accept. Indeed, every computation path of M (E) guesses a subset V‘ of V
with at most k elements; therefore at the end of Phase 3, there is a tape i + 1 which
does not contain any #, since V’ cannot be a dominating set. Thus, during Phase 4,
the accepting final state cannot be reached, because M needs a t least one # in every

0

Notice that the transition function 6 of the machine M derived in the proof of the
previous theorem is not total, and indeed the main idea of the construction is avoiding
to consider the exponentially-many configurations of scanned symbols different from
all $’s and all #’s. Actually, by Theorem 4, SNTMC restricted to total Turing
machines is W[l]-complete. Moreover, the following result is easily derived.

C o r o 11 a r y 2. H1-Io-Ql-C2-SNTMC is W[2]-hard.
P r o o f . Our target is to reduce Hi-SNTMC to H1-Io-Ql-C2-SNTMC. Like in

Theorem 1, HI-SNTMC easily reduces to 10-HI-SNTMC.
Let us show that 10-HI-SNTMC reduces to Io-H1-Ql-SNTMC. Let (M,k) be

an instance of Io-H1-SNTMCl where M = (t , 1 ,6) is a single head nondeterministic
Turing machine. Then we can easily construct a nondeterministic Turing machine
M’ = (t + 1,1, 6) such that Q M f = { q o , qa, qr} n QM and there exists an accepting
computation path of M (E) with k steps if and only if there is an accepting computation
path of M ’ (E) with k steps. We simply set C M ~ = EM U { q : q E Q M } and we
arrange 6’ so that M’ uses one cell of the (additional) tape t 1 in order to encode
the internal state of M . It is straightforward to derive the details of 6’.

It remains to show that Io-H1-Ql-SNTMC reduces to Io-H1-Q1-C2-SNTMC. Let
(M , k) be an instance of Io-Hl-Q,-SNTMC, where k E N and M = (t , 1,6) . We
construct an equivalent Turing machine M’ = (t’, 1, 6‘), where t’ = t [log ICMI 1,
Q M ~ = Q M , and CMI = { 0 , 0 , l) . Let s be the cardinality of C M and u0,61, . . . , 6,-1

a fixed ordering of the symbols in EM. Let us assume that 6 0 = 0. The crucial idea
for M’ is to simulate each work tape of M (with alphabet size s) by using [logs]
work tapes of M’ (with alphabet size 2). If t > 0, then we do not care of tape 0,
because our machines work on empty inputs. In the following, we assume also that
[i] ~ denotes the sequence of symbols in {0,1} which is the binary representation for i
of length [logs l . Therefore, the notations [1]2 and [0]2 should be regarded as equiv-
alent to, respectively, 0 , . . . , O , 1 and 0 , . . . , O of length [logs l . For every transition
(0 , c i l , . . . , b i t , q , u j l l . . . , uj,, q’, 0, m l , . . . , ml) in 6, the transition table 6’ contains
(0 , [i112 , . . . [i t l z l q l [j i l z , . . . , [. h] 2 , q’, 0, m i , . . . , m i , . . . ,mi,. . . , mt . No other tran-

tape in order to successfully finish the phase.

- d
r logs 1 r l o g s i

194 Marco Cesati and Miriam DiIanni

sition is in 6'. It is easy to verify that it is possible to obtain a description of M'
in a linear number of steps on the length of a description of M (because {6'1 = 161).
Moreover, it is easy to see that (M , k) is a yes-instance of Io-H1-Q1-SNTMC if and

0

Since HI-SNTMC is W[2]-hard, it is natural to conjecture that even 10-To-SNTMC
is hard for W[2], because tapes and heads seem to be quite interchangeable. As an
example, given an instance of 10-Hh-To-SNTMC, it is easy to derive an equivalent
instance of Io-Hl-Th+z-SNTMC. The new machine T simulates each step of the
old one M in three phases: (1) it scans tape 1 (containing the encoding of M ' s
tape together with the head positions) and records the scanned symbols on tapes
3 , . . . , h + 2 (each such tape corresponds to a particular head); then (2) T reads at
once the symbols on tapes 3 , . . . , h + 2, it chooses a transition of M and then it
write on the same tapes the new symbols and on tape 2 the new state and head's
moves; finally, (3) T scans h times tape 1 and updates it according to the contents of
the other tapes. It should be clear that T uses a small fixed number of internal
states and that the size of its transition table is linear in the size of M . Conversely,
given an instance of Io-H1-Tt-SNTMC, it is easy to derive an equivalent instance of
Io-Ht+l-To-SNTMC; the new machine T uses t + 1 blocks of cells in its tape in order
to record the contents of the t + 1 tapes of the old machine M ; each head of T scans
a different block, and each block has exactly k cells.

However, the previous reasonings do not apply to this case, since they require that
both the number of tapes and the number of heads are fixed or parameterized. Thus,
in order to establish the hardness result, we are compelled to directly show that a
single-tape, multi-head Turing machine is able to solve an instance of a W[2]-hard
problem.

only if (M I , k) is a yes-instance of Io-H1-Ql-Cz-SNTMC.

T h e o r e m 7. lo-To-SNTMC is W[S]-hard.
P r o o f . Let (G,k) be an instance of DOMINATING SET, where G = (V ,E) is a

graph and k is the parameter. In the following we assume that V = (1,. . . , n}.
We consider the nondeterministic Turing machine M = (0, n + 2,6) with one tape,

n + 2 heads, alphabet C = (0 , $,#,I,. . . ,E} and set Q = { q o , ql,qz,q3,44, qa} of
internal states. M operates in three phases and it is very similar to the machine
described in Theorem 6. In this case, one head acts as a counter, one head is used to
guess k vertices and to examine them in order to decide if they are a dominating set,
and the remaining n heads simulate the behaviour of the head on each tape of the
machine described in the previous theorem.

P h a s e 1. M nondeterministically writes k vertices on the tape, using the cell
scanned under head 2 as a counter. In the meantime, M fills the tape at the left of
the guessed vertices with $'s.

(0 , " . ,o ,(lo,$, . . ' , $,qo ,+1 ,0 , -1 , . . . , - I) ,

(n,$,o, . ' . 1 o,qo,$,1,$, . . . ,$,Q0,+1,0,--1,. .. , --I) ,

(n,i, 0, . . . , 0 , q o , z , s , $, . . . , $, q l , +1,0, -1,. . . , -1) for v E V , i E (1,. . . , k}.

-- -
n+2 n+2 n - - -

n n n - - -
n n n

Computation Models for Parameterized Complexity 195

P h a s e 2. M scans the vertices on the tape using head 1, and for every scanned
vertex v, it moves the (i + 2)th head to the right if and only if v E N [i] (1 5 i 5 n) .
Observe that any head i + 2 (where 1 5 i 5 n) always scans a cell containing ‘$’.

(u ,$,$,..., $, q l , g , $, $,... ,$,q1,+1,0,rny ,..., m:) for v E V, - -
n n

0 if v @ “i],
+I if v E “i], where for every i E { 1, . . . , n } , my =

($,$,$,. ..,$,Ql,$,$,$, . ” , $,Q2,0 ,0 , -1 , . . . , -1) . - - -
n n n

P h a s e 3. M attempts to move to the left the heads from 3 to n + 2; then it
accepts if all heads 3, . . . n + 2 scan $’s.

($,$,$,. . . , $, q 2 , $,$,$, . . . , $, q 2 , O , O , - 1 , . . . , - 1)

($, T , $, . . . , $ 7 Q 2 , $ 7 $, $ 7 . . . , $ 1 Qa, 0, 0, 0, . . . , 0) .

for i E { I , . . . ,T-I}, - - -
n n n - - -
n n n

Observe that 6 contains O (n k) transitions, and these are easily derived from a
description of G in a linear number of steps in the size of V . Like in Theorem 6, it
can be now easily shown that M (E) accepts in at most 3k + 4 steps if and only if

0

Since To-SNTMC reduces to 10-Q,-To-SNTMC (a similar reasoning to the one

0

(G, k) is a yes-instance of DOMINATING SET.

used in Theorem 1) the following result is easily derived.
C o r o l l a r y 3. 10-Q,-To-SNTMC is W[S]-hard.

6 Tractability results

Till now we have established the parameterized intractability of several variations
of the basic “short nondeterministic computation” problem. We now consider some
parameterizations that cause the problem to become fixed parameter tractable. Our
first result concerns a machine M that (1) halts after a “small” number of steps,
(2) has a “small” number of heads and tapes, and (3) writes only symbols of a “small”
alphabet. In this case, M cannot solve too complex problems, since it can record on
the tapes just a “small” amount of information during its computations. In order to
prove such a result we first establish the following lemma.

L e m m a 4. H-10-C-T-SNTMC belongs t o FPT.
P r o o f . Let (M , k, t , h , 1x1) be an instance of 10-H-C-T-SNTMC. Then a bound

on the total number of different global configurations involved in a k-step computation
path of M on an empty input (in short, M (E)) is c = IQI . (lClk ~ k h) ” ” ” ~ * ~ ’) . Let T be
a deterministic Turing machine that, on input (M , k), simulates every computation
path of M (E) for at most c steps. If T finds an accepting configuration, then T
accepts, otherwise it rejects. It is easy to show that such a T decides every instance of
H-10-C-T-SNTMC. However, we must describe how to construct T and discuss its
running time.

196 Marco Cesati and Miriam Di Ianni

To this aim, consider an oriented graph G (with at most c vertices) encoding the
computation paths of M (E) such that every vertex represents a global configuration.
T dynamically builds this graph; whenever T adds a node to the graph, it checks if
the corresponding global configuration is an accepting one and if the corresponding
global configuration already belongs to the graph. The algorithm simulating T is
straightforward.

Every configuration of M (E) is a string of length O((t + l) (h + k)) over a suitable
alphabet. O (c 2) steps are enough for visiting G, and O(clc) steps suffice to compare
two configurations. Indeed, there can be only O(c) cells on the tape between the
encoding of the two configurations. Looking for the configurations reachable from
a given one requires O(JQ121Cl(t+1)h) steps (the maximum size of the transition ta-
ble 6 of M) . Therefore the upper bound on the running time of the algorithm is
O(klQ12~51C12(t+1)h), i.e., O(ICl(t+1)(5k+2h)lc5h(t+l)lQ17). Hence H-10-C-T-SNTMC
belongs to FPT. 0

T h e o r e m 8. H-C-T-SNTMC belongs t o FPT.
P r o o f . By Lemma 4, in order to prove the theorem we just have to show that

H-C-T-SNTMC reduces to H-10-C-T-SNTMC. The reduction is very similar to the
one shown in Theorem 1 and thus omitted. 0

We have already shown that H1-Ql-T2-SNTMC is W[1]-complete. We still don’t
know if two work tapes are necessary for such a result or, vice versa, if we can
reduce this number and still have the problem hard for W[1]. We start proving that
HI-Q-To-SNTMC reduces to HI-C-To-SNTMC, and therefore that HI-Q-To-SNTMC
belongs to FPT. Then an easy corollary is that H1-To-QI-SNTMC is also in FPT,
and therefore we find a first, partial answer to the above question.

The main idea is the following. Suppose that a simple Turing machine has to
decide if two cells do or do not contain the same symbol of the alphabet. The machine
could perform this task in a very natural way: it reads the first symbol and enters
an appropriate internal state; then it goes over the second symbol and decides. The
crucial point here is that the machine needs one different internal state for every
symbol of the alphabet. Thus, if a nondeterministic simple Turing machine M has a
bound on the length of an accepting deterministic computation and on the number of
internal states, then we can simulate it with a nondeterministic simple Turing machine
having a bounded size alphabet.

In order to prove the fixed parameter tractability of HI-To-Q-SNTMC, let us fix a
nondeterministic simple Turing machine M = (0 ,1 ,6) . Let C = be the alphabet
of M and let Q = QM be the set of internal states of M .

Now, we introduce a relation -1 on C: given two symbols u1, u2 E C, we say that
u1 -1 u2 if and only if, for every (q , r n) E Q x { + l , O , - l } ,

(3~: ~ C) (~ l , q , u : , q a , r n) € 6 (3 ~ ~ € C) (a ~ , ~ , u ~ , q a , r n) € 6 .
It is easy to verify that -1 is an equivalence relation. We denote by [u], the equiv-
alence class with respect to -1 which contains a; moreover, C/-1 is the set of all
equivalence classes with respect to -1.

Now we define by induction the equivalence relations -2, . . . , N k over C. Let 1 be
an integer such that 1 < 1 5 k, and let (TI, 6 2 E C. We say that u1 - 1 u2 if and only
if for every (q , q’, rn, [u ’] ~ - ~) E Q 2 x {+I, 0, -1) x Z/-I-I,

Computation Models for Parameterized Complexity 197

(i) if there exists ui E [a'],-, such that (u1,q,ui,q' ,m) E 6 , then there exists

(ii) if there exists uh E [o'],-~ such that (u2,q,u&,q',rn) E 6, then there exists

It is easy to verify (by induction on 1) that every -1 is well-defined and is an equiv-
alence relation on C. The following lemmata give explicit bounds on the number of
elements of each set C / y .

uh E [u'],-~ such that (6 2 , q , uh, q', rn) E 6;

0; E [u'],-, such that (u ~ , q , u ; , q ' , m) E 6.

 emm ma 5. ~ / - 1 contains at most 231QI equivalence classes.
P r o o f . Consider a fixed (q , rn) E Q x {+l, 0, -1). We first show that (q , rn) can

distinguish a t most two equivalence classes, that is, (q , m) is a "bad" new for a t most
two symbols of C. Suppose that (q , m) separates different ul, u2,u3 E C . Therefore
we have for u1 and u2:

11) (3 4 E W ~ l , ~ , 4 , q a , r n) E 6

and

(2) (v 4 E C) (az ,q ,u ; ,~a ,m) 6 6.

Because of equation (2), for u2 and 63 we have:

(3)

most 231Q1 -1-equivalence classes on C.

(3 4 E C) (63, q , 4 , qa, m) E 6.
This is a contradiction, because equations (2) and (3) imply that u1 and 63 cannot
be separated by (q , m) . Since the number of different (q ,m) is 31Q1, there are a t

0

Let 'p : N2 - N be the following recursively defined function:

As an easy extension of the previous lemma, we can prove (by induction on I)
L e m m a 6. For any I , 1 5 1 5 k, C/-I contains at most 'p(l , lQl) equivalence

classes.
Given a simple machine M and an integer k, it is easy to derive an FPT-algorithm

computing C/-k as stated in the following lemma.
L e m m a 7. There exist two constants a , p and a deterministic Turing machine T

such that, on input (M = (0 , 1 ,6) , k), T computes C/-k an at most O(k . I&!". IClp)
steps.

P r o o f (sketch). By induction on k. By Lemma 6, to compute C/-1 it is sufficient
to consider every (u1,u2,qrrn) E C x C x Q x {+l,O,-1} to check if there exist
(ui, q , 4, qa, m), (62 ,q ,4 , qa, rn) E 6. Thus, T computes CI-1 with O(lQ141C15)
steps (recall that 6 C Q x C x Q x C x { + l , O , - 1)) . Similarly, due to the size
of C/- i , 1 5 i 5 k , and since C/N(can be computed from C/-l-1 by considering
all 4-tuples (q , q ' , rn, [a'],-,) E Q2 x {+l, 0, -1) x C/-I-1, computing C/-k requires

Let M = (0 ,1 ,6) be a nondeterministic Turing machine and let k be an integer.
Let 2 = ~ 0 x 1 . "2, E C' and 1 5 1 5 k . Then denote by x(1) the word over CI-1

O(k . /& I5 (CIS) steps. 0

198 Marco Cesati and Miriam DiIanni

such that (21 = 1 Z(I) 1 and the ith symbol of
subset of Q x CI-1 X Q x C / y x{+l,O, -1) such that

is [x i] / . Moreover, let 6(1) denote the

([u111 , q , [6 2 1 / 1 Q’, m) E 6(1) - (3 4 E [u111)(34 E [U21 /) (d , Q , 4, Q’, m) E 6.

Finally, let M(t) be the nondeterministic Turing machine (O J 1 , [a],); observe that the
alphabet of M(1) is C/-l.

Let c be a word over C* x (C x Q) x C* which encodes a global configuration of M .
For example, c = sls2 . . . s,-1 (s,, q)s,+l . . . sm encodes the global configuration such
that the symbols on the non-blank portion of the tape are s1 . . . sm, the symbol under
the head is sj and the internal state is q. For 1 5 1 5 k denote by c(I) the word in
(C / y U (C/-, x Q))* obtained by replacing every occurrence in c of a symbol s in C
with the corresponding [sII in El-,. It is easy to check that c(1) encodes a global
configuration of M(I).

Finally, M [c] denotes the nondeterministic computation of M starting from the
global configuration c . We are now able to show that the Turing machines M and
M(k) are “equivalent”.

T h e o r e m 9. For every integer k , for every simple Turing machine M , and for
every global configuration c, there is an accepting computation path of M [c] with at
most k steps if and only if there is an accepting cornputation path in M(k,[c(k)] with
at most k steps.

P r o o f . Let M be a nondeterministic simple Turing machine, and let c be a global
configuration of M . Let q be the internal state in the global configuration c, and let
u be the symbol under the head in c . We prove the theorem by induction on k and
on the length of the actual computation path.

Let us assume that k = 1. Observe that if M [c] accepts in 0 steps, then q = qa,
and therefore the theorem holds, since by definition c(k) is in the internal state q.
Thus, we can assume that q # q a . Let us suppose that there exists an accepting
computation path of M [c] with exactly one step. Therefore there exists a transition
(u, q , u’, qa, rn) E 6. By definition of $11, we have that ([uI1 , q , qaJ rn) E 6(1),
and therefore there exists an accepting computation path of M (~) [C (~)] with exactly
one step.

Now let us suppose that there is an accepting computation path of M (l) [c (l)]
with exactly one step; then there exists a transition ([uI1 , q , [u2I1 , q a , rn) E 6(1). By
definition of 6(1), there exist u‘ E [uIl and u; E [u2Il such that (u’ ,q ,ui ,qa,m) E 6.
By definition of u -1 u‘, there exists (u,q,u3,qa,rn) E 6, and therefore there exists
an accepting computation path of M[c] with exactly one step.

Suppose now that the theorem holds for k - 1. We must show that there is an
accepting computation path of M [c] with 1 5 k steps if and only if there exists an
accepting computation path of M(k)[c(k)] with exactly 1 steps. we prove the assertion
by induction on 1.

The basis 1 = 1 can be proved in the same way as the case k = 1.
Now, assume the result holds for 1- 1 5 k - 1. Suppose first that there is an l-steps

accepting computation path c t-6 c1 k6 . . . /-6 c, of M [c] . Let (0, q , u’, q’, rn) E 6 be
the first applied transition of the computation path. I t is easy to see that M [q] must

Computation Models for Parameterized Complexity 199

accept in 1 - 1 5 k - 1 steps. Then, by inductive hypothesis on I , there exists an
accepting computation path of M(k)[cl(,)] with exactly 1 - 1 steps. We have to show
that there exists a transition in 6(,) such that c (k) I- cl(k). By definition of 6(,), we
know that ([aIk , q , [a’], , q ’ , r n) E 6 (k) , and it is easy to verify that, if we apply this
transition to c (k) , then we obtain c1(k).

Finally, suppose that there exists an 1-steps (I 5 k) accepting computation path
c (k) t- ci I- . . . t- ci of M(k)[c(k)]. Let ([.Ik , q , [a& , q’, rn) E 6(,) be the first transition
of such a computation path. By definition of 6 (k) , there exist a: E [aIk and u$ E [a2Ik
such that (ui,q,aa,q’,rn) E 6. Since ui -k u, there exists u$ [u6’2]k-1 such that
(a, q , a$, q’, m) E 6, and let c1 be the global configuration after the application of this
transition. Now consider M(k-1)[~l(k-~)]. Observe that c: and cl(k-1) have the same
internal state and the same scanned position. Moreover, for almost every symbol [s] ~
in c i , the corresponding symbol in ~ l (k - ~) is [s] ~ - ~ . Indeed, every symbol [s] ~ is
in ci because the corresponding symbol in c is s, and therefore the corresponding
in [~ l] , - ~ is [s] , - ~ (by definition). The unique exception is the symbol [a2Ik in ci
which corresponds to the symbol [uy]k-l in cl(k-1); this is not really an obstacle,
because we know that as ~ k - 1 a; and ub -k 6 2 , and thus [a$],-, = [~ 2] , - ~ . Now,
consider a transition ([silk , q , [s2lk , q’, rn) E 6 (k) . By definition, there exist si E [sl],
and sk E [s& such that (s i , q , s$,q ’ , rn) E 6. But if s’ E [s] ~ , then s -,-I s’,
and therefore ([S I] ~ - ~ , q , [s ~] ~ - ~ , q’, rn) E b (k - 1) . Thus the (1-1)-steps accepting
computation path of M(k)[ci] corresponds to a (I - 1)-steps accepting computation
path of M(,-l)[~l(k-l)]. By inductive hypothesis on 1 and k, there exists an accepting
computation path of M[q] with at most 1 - 1 steps. Thus we have proved that there

0 exists an accepting computation path of M[c] with at most 1 steps.
From the previous theorem we easily derive:
C o r o 11 a r y 4. For any k E M, (M , c, k) is a yes-instance of SNTMC if and only

Therefore we finally conclude:
C o r o 11 a r y 5. HI-To-Q-SNTMC belongs t o FPT.
P r o o f . Lemma 6, Lemma 7 and Corollary 4 show the existence of a param-

eterized reduction from HI-To-Q-SNTMC to HI-To-C-SNTMC, and therefore from
0

Till now we proved that H1-Ql-Tt-SNTMC is W[1]-complete for t 2 2 and yet
HI-Q-To-SNTMC (and, thus, H1-Ql-To-SNTMC) is fixed parameter tractable. There
is still an open case, namely the parameterized complexity of H1-Ql-T1-SNTMC. The
question essentially is: are the simple machines with a “small” number of internal
states really equivalent (from a parameterized point of view) to the machines having
“small” number of internal states, one input read-only tape and one work tape? The
answer would be positive, whenever it were possible to remove from an instance of
HI-Q-TI-SNTMC the input word. Indeed, in this case the input tape would be useless,
and the equivalence would easily follow.

z f (M (k) , x (k) , k) i s a yes-instance of SNTMC.

Corollary 8, HI-To-Q-SNTMC belongs to FPT.

T h e o r e m 10. HI-TI-Q-SNTMC reduces t o H~-Io-T~-Q-SNTMC.
P r o o f (sketch). Let (M , x, k , p) be an instance of HI-TI-Q-SNTMC, where c is

a word over the alphabet EM - (0) and T = (1, 1 ,6) is a nondeterministic Turing

200 Marco Cesati and Miriam Di Ianni

machine; its state set QM has at most p elements; tape 0 is the (read-only) input
tape, and tape 1 is a work-tape. We show how to derive from (MI x, k, p) a nonde-
terministic Turing machine M‘ = (1, 1,6’) having two tapes (one input tape and one
work tape) such that M’(E) accepts in a t most k steps if and only if M (x) accepts
in a t most k steps. By the above assump-
tions, if 1 = min{k, 1.1) + 1, then the head on tape 0 in any k-step computation path
of M scans always a cell which is in some position between 0 and 1. Recall that , for
any j E {0,1,. . . , I}, xb] denotes either the j t h symbol of t (if 1 5 j 5 lxl), or the
blank symbol 0 (if j = 0 or j > 1x1).

elements) and let C M ~ = C M . The complete description of the transition table 6’
of M‘ is the following. For every transition (u~,uz, q‘ , ui, q”, m1,rnz) E 6 with
q” 4 {qa,qr} we put in 6’ the transition (O , U Z , (q ’ , j) , rh, (q ” , j + ml) , 0,mz) for
any j E {0,1, . . . , I} such that x[j] = u1; otherwise, if q” E {qa, q r } , we put in 6’
the transition (O,u2, (q ‘ , j) , ui, q”, 0, m2). We must show that there is an accepting
computation path of MI(&) with a t most k steps if and only if there is an accepting
computation path of M (x) with at most k steps. Let c and c’ be global configurations
of, respectively, M and MI; we say that c and c‘ are corresponding if and only if

Notice that tape 0 of M’ is useless.

L~~QM’=((Q M - { Q ~ , Q ~ }) x { O , ~,...,I})U {qa,qr} (QM’ h m (i + l) (~ - 2) + 2

1. tape 0 of M contains the input z, and tape 0 of M’ contains only blanks;
2. tape 1 of M and tape 1 of M’ have the same contents;
3. the head position on tape 1 of M is equal to the head position on tape 1 of M‘;
4. the internal state of M is q’, and the internal state of M’ is (q ‘ , j) , where j

Let us consider two corresponding configurations c and c’, and let u1,uz be the sym-
bols scanned respectively on tape 0 and tape 1 of M in the global configuration c
(therefore u2 is also the symbol scanned on tape 1 of M’ in c’). We claim that there
is an accepting computation path of M [c] with exactly h steps if and only if there
is an accepting computation path of M’[c’] with exactly h steps. The proof is by
induction on the length of the computation paths.

Let us begin with h = 1. M[c] accepts in one step if and only if there exists a
transition (u1, 6 2 , q’, 6’2, qa, ml, mz) E 6, where u1 is either a blank (and then the head
position on tape 0 is 0 or 1x1+1), or a symbol of x (and then the head on tape 0 must be
in position j E { 1 , . . . , 1 -1) and the scanned cell on tape 0 must contain 61). However,
this happens if and only if there exists a transition (0, uz, (q , j) , ui, q a , 0, m2) E 6‘,
that is, if and only if there is an accepting computation path of M’[c’] with exactly
one step.

Now, let us assume that the claim holds for h - 1. We know that there is an
accepting computation path c k6 c1 k6 . . . k6 c h of M[c] with exactly h steps if
and only if there exists (61 , UZ, q’, 0’2, q” , ml , mz) E 6 which is applicable to c and
produces cl, and moreover there is an accepting computation path of M [c l] with
exactly h- 1 steps; that is (by construction of a’), if and only if there exists a transition
(O , U Z , (q ’ , j } , u ~ , (q ” , j + ml) ,O ,m~) E 6’ (where j is precisely the head position on
tape 0 in c), and (by inductive hypothesis) there is an accepting computation path
of M[c‘J with exactly h - 1 steps (ci is the configuration corresponding to c1). It is

describe the head position on tape 1 of M .

Computation Models for Parameterized Complexity 20 1

problem
SNTMC

easy to verify that the global configuration obtained by applying the transition of 6'
to c' is exactly c i , and therefore the last sentence is equivalent to state that there is
an accepting computation path of M'[c'] with exactly h steps.

It is easy to verify that it is possible to derive (M ' , k,pk) from (M , x, k , p) by using
0

Now it is easy to get our goal:
C o r o 11 a r y 6. HI-TI-Q-SNTMC belongs t o FPT.
P r o o f .

a linear number of steps in the size of the description of M and x.

By Theorem 10, HI-TI-Q-SNTMC reduces to H1-Io-T1-&-SNTMC.
Trivially, HI-10-TI-Q-SNTMC reduces to H1-Io-To-Q-SNTMC (the input tape is use-
less!), and therefore HI-TI-Q-SNTMC reduces to the fixed parameter tractable prob-
lem HI-To-Q-SNTMC (Corollary 5). 0

in hard

W[P] W[2]

7 Conclusions

I ~ - Q I - T ~
(total)

In this paper we have proved some results about the parameterized complexity of
the problem of deciding if a string x is accepted by a k steps computation of a given
Turing machine M (k being the parameter).

In the classical complexity setting, the previous problem belongs to P if M is
deterministic, and it is NP-complete if M is nondeterministic. This is the only com-
putational distinction among Turing machines, in the sense that, independently from
the number of heads, tapes and internal states, independently from the size of the al-
phabet, all deterministic Turing machines (and all non deterministic Turing machines)
are polynomially related. Conversely, we have shown that, in the nondeterministic
case, the parameterized complexity of the problem strongly depends on the above
mentioned factors, and, thus, not all nondeterministic Turing machines are equiva-
lent from a parameterized point of view.

A summary of the results proved in this paper is shown in Table 1.

wfpj wi2j
W[1] W[1]

H-T

Io-HI-Q~-Tz
Io-HI-To

W[1] W[1]

W[1] W[1]
W[1] W[1]

I HI-&-TI 1 F P T I -
Table 1. The complexity of the SNTMC problem

There are a few remarks we want to discuss about our results. First, notice that,
while Cai, Downey and Fellow's theorem about the W[l]-completeness of Io-HI-To-
SNTMC holds for simple Turing machine, for the most general model of nondeter-
ministic Turing machine we are able to prove only the membership 'to W[P]. Second,

202 Marco Cesati and Miriam Di Ianni

it seems that simple machines are the more restricted model for which the W[l]-
completeness result holds: indeed, if we introduce some further restriction, then the
problem becomes included in FPT. On the other hand, if we try to generalize it by
dropping any bound on the number of heads or tapes, then we obtain W[2]-hardness
results.

It remains as an interesting open question the exact characterization of the prob-
lem for the models described in Section 5. Another interesting open question is
whether there exists a natural resource for some Turing machine computation prob-
lem such that, if the resource is at most T , then the problem is complete for W[~(T)] .

References

[I] CAI, L., J . CHEN, R. G. DOWNEY, and M. R. FELLOWS, On the parameterized complex-
ity of short computation and factorization. To appear in the Archive for Mathematical
Logic.

[2] DOWNEY, R. G., and M. R. FELLOWS, Fixed-parameter intractability (extended ab-
stract). In: Proceedings of the 7th IEEE Conference on Structure in Complexity Theory,
Boston June 1992, pp. 36 - 49.

[3] DOWNEY, R. G., and M. R. FELLOWS, Fixed-parameter tractability and completeness.
Congressus Numerantium 87 (1992), 161 - 178.

[4] DOWNEY, R. G., and M. R. FELLOWS, Parameterized computational feasibility. In:
Feasible Mathematics I1 (P. CLOTE and 3. REMEL, eds.), Birkhauser, Boston 1994.

[5] DOWNEY, R. G., and M. R. FELLOWS, Fixed-parameter tractability and complete-
ness I: Basic results. SIAM J. Computing 24 (1995), 873 - 921.

[6] DOWNEY, R. G., and M. R. FELLOWS, Fixed-parameter tractability and complete-
ness 11: On completeness for W[1]. Theoret. Comp. Sci 141 (1995), 109 - 131.

[7] GAREY, M. R., and D. S. JOHNSON, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York 1979.

[8] HOPCROFT, J . E., and J. D. ULLMAN, Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Publ. Comp., New York 1979.

[9] LEWIS, H. R., and C. H. PAPADIMITRIOU, Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, N.J., 1981.

(Received: March 30, 1996)

