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Abstract

We prove that a Spector–like ultrapower extension N of a countable Solovay
model M (where all sets of reals are Lebesgue measurable) is equal to the set
of all sets constructible from reals in a generic extension M[α] where α is a
random real over M. The proof involves an almost everywhere uniformization
theorem in the Solovay model.
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Introduction

Let U be an ultrafilter in a transitive model M of ZF. Assume that an ultrapower
of M via U is to be defined. The first problem we meet is that U may not be an
ultrafilter in the universe because not all subsets of the index set belong to M .

We can, of course, extend U to a true ultrafilter, say U
′, but this may cause

additional trouble. Indeed, if U is a special ultrafilter in M certain properties of
which were expected to be exploit, then most probably these properties do not transfer
to U

′; assume for instance that U is countably complete in M and M itself is
countable. Therefore, it is better to keep U rather than any of its extensions in the
universe, as the ultrafilter.

If M models ZFC, the problem can be solved by taking the inner ultrapower.
In other words, we consider only those functions f : I −→ M (where I ∈ M is the
carrier of U ) which belong to M rather than all functions f ∈ M

I , to define the
ultrapower. This version, however, depends on the axiom of choice in M; otherwise
the proofs of the basic facts about ultrapowers (e. g.  Loś’ theorem) will not work.

The “choiceless” case can be handled by a sophisticated construction of Spec-

tor [1991], which is based on ideas from both forcing and the ultrapower technique.
As presented in Kanovei and van Lambalgen [1994], this construction proceeds as
follows. One has to add to the family of functions F0 = M

I ∩ M a number of new
functions f ∈ M

I , f 6∈ M , which are intended to be choice functions whenever we
need such in the ultrapower construction.

In this paper, we consider a very interesting choiceless case: M is a Solovay model
of ZF plus the principle of dependent choice, in which all sets of reals are Lebesque
measurable, and the ultrafilter L on the set I of Vitali degrees of reals in M,

generated by sets of positive measure.
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1 On a.e. uniformization in the Solovay model

In this section, we recall the uniformization properties in a Solovay model. Thus let
M be a countable transitive Solovay model for Dependent Choices plus “all sets are
Lebesgue measurable”, as it is defined in Solovay [1970], – the ground model . The
following known properties of such a model will be of particular interest below.

Property 1 [True in M ]

V = L(reals) ; in particular every set is real–ordinal–definable. ✷

To state the second property, we need to introduce some notation.

Let N = ωω denote the Baire space, the elements of which will be referred to as
real numbers or reals ..

Let P be a set of pairs such that domP ⊆ N (for instance, P ⊆ N
2 ). We say

that a function f defined on N uniformizes P a.e. (almost everywhere) iff the set

{α ∈ domP : 〈α, f(α)〉 6∈ P }

has null measure. For example if the projection domP is a set of null measure in N

then any f uniformizes a.e. P, but this case is not interesting. The interesting case
is the case when domP is a set of full measure, and then f a.e. uniformizes P iff
for almost all α, 〈α, f(α)〉 ∈ Pα .

Property 2 [True in M ]

Any set P ∈ M , P ⊆ N
2, can be uniformized a.e. by a Borel function. (This

implies the Lebesgue measurability of all sets of reals, which is known to be true in M

independently.) ✷

This property can be expanded (with the loss of the condition that f is Borel) on
the sets P which do not necessarily satisfy domP ⊆ N .

Theorem 3 In M, any set P with domP ⊆ M admits an a.e. uniformisation.

Proof Let P be an arbitrary set of pairs such that domP ⊆ N in M. Property 1
implies the existence of a function D : (Ord ∩ M) × (N ∩ M) onto M which is
∈-definable in M.

We argue in M . Let, for α ∈ N, ξ(α) denote the least ordinal ξ such that

∃ γ ∈ N [ 〈α,D(ξ, γ)〉 ∈ P ] .

(It follows from the choice of D that ξ(α) is well defined for all α ∈ N. ) It remains
to apply Property 2 to the set P ′ = {〈α, γ〉 ∈ N

2 : 〈α,D(ξ(α), γ)〉 ∈ P } . ✷
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2 The functions to get the Spector ultrapower

We use a certain ultrafilter over the set of Vitali degrees of reals in M, the initial
Solovay model, to define the ultrapower.

Let, for α, α′ ∈ N , α vit α′ if and only if ∃m ∀ k ≥ m (α(k) = α′(k)), (the
Vitali equivalence).

• For α ∈ N, we set α = {α′ : α′
vit α}, the Vitali degree of α .

• N = {α : α ∈ N} ; i, j denote elements of N .

As a rule, we shall use underlined characters f, F , ... to denote functions defined on
N, while functions defined on N itself will be denoted in the usual manner.

Define, in M, an ultrafilter L over N by: X ⊆ N belongs to L iff the set
X = {α ∈ N : α ∈ X} has full Lebesgue measure. It is known (see e.g. van

Lambalgen [1992], Theorem 2.3) that the measurability hypothesis implies that L

is κ-complete in M for all cardinals κ in M .

One cannot hope to define a good L-ultrapower of M using only functions from
F0 = {f ∈ M : dom f = N} as the base for the ultrapower. Indeed consider the
identity function i ∈ M defined by i(i) = i for all i ∈ N. Then i(i) is nonempty
for all i ∈ N in M, therefore to keep the usual properties of ultrapowers we need
a function f ∈ F0 such that f(i) ∈ i for almost all i ∈ N, but Vitali showed that
such a choice function yields a nonmeasurable set.

Thus at least we have to add to F0 a new function f, not an element of M,

which satisfies f(i) ∈ i for almost all i ∈ N. Actually it seems likely that we have
to add a lot of new functions, to handle similar situations, including those functions
the existence of which is somehow implied by the already added functions. A general
way how to do this, extracted from the exposition in Spector [1991], was presented
in Kanovei and van Lambalgen [1994]. However in the case of the Solovay model
the a.e. uniformization theorem (Theorem 3) allows to add essentially a single new
function, corresponding to the i-case considered above.

The generic choice function for the identity

Here we introduce a function r defined on N ∩ M and satisfying r(i) ∈ i for all
i ∈ N ∩ M. r will be generic over M for a suitable notion of forcing.

The notion of forcing is introduced as follows. In M, let P be the set of all
functions p defined on N and satisfying p(i) ⊆ i and p(i) 6= ∅ for all i. 1 (For
example i ∈ P. ) We order P so that p is stronger than q iff p(i) ⊆ q(i) for all i.

If G ⊆ P is P-generic over M , G defines a function r by

r(i) = the single element of
⋂

p∈G p(i)

1Or, equivalently, the collection of all sets X ⊆ N which have a nonempty intersection with every
Vitali degree. Perhaps this forcing is of separate interest.
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for all i ∈ N ∩ M. Functions r defined this way will be called P-generic over M.

Let us fix such a function r for the remainder of this paper.

The set of functions used to define the ultrapower

We let F be the set of all superpositions f ◦ r where2 r is the generic function
fixed above while f ∈ M is an arbitrary function defined on N ∩ M. Notice that in
particular any function f ∈ M defined on N ∩ M is in F : take f(α) = f(α) .

To see that F can be used successfully as the base of an ultrapower of M, we have
to check three fundamental conditions formulated in Kanovei and van Lambalgen

[1994].

Proposition 4 [Measurability] Assume that E ∈ M and f1, ..., fn ∈ F. Then the
set {i ∈ N ∩ M : E(f1(i), ..., fn(i))} belongs to M .

Proof By the definition of F, it suffices to prove that {i : r(i) ∈ E} ∈ M for any
set E ∈ M, E ⊆ N. By the genericity of r , it remains then to prove the following
in M : for any p ∈ P and any set E ⊆ N, there exists a stronger condition q such
that, for any i, either q(i) ⊆ E or q(i) ∩ E = ∅. But this is obvious. ✷

Corollary 5 Assume that V ∈ M, V ⊆ N is a set of null measure in M. Then,
for L-almost all i, we have r(i) 6∈ V .

Proof By the proposition, the set I = {i : r(i) ∈ V } belongs to M. Suppose that,
on the contrary, I ∈ L. Then A = {α : α ∈ I} is a set of full measure. On the other
hand, since r(i) ∈ i, we have A ⊆

⋃
β∈V β, where the right–hand side is a set of null

measure because V is such a set, contradiction. ✷

Proposition 6 [Choice] Let f1, ..., fn ∈ F and W ∈ M. There exists a function
f ∈ F such that, for L-almost all i ∈ N ∩ M, it is true in M that

∃ x W (f1(i), ..., fn(i), x) −→ W (f1(i), ..., fn(i), f(i)) .

Proof This can be reduced to the following: given W ∈ M, there exists a function
f ∈ F such that, for L-almost all i ∈ N ∩ M ,

∃ x W (r(i), x) −→ W (r(i), f(i)) (∗)

in M.

2To make things clear, f ◦ r(i) = f(r(i)) for all i .
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We argue in M . Choose p ∈ P. and let p′(i) = {β ∈ p(i) : ∃ xW (β, x)}, and
X = {i : p′(i) 6= ∅}. If X 6∈ L then an arbitrary f defined on N will satisfy (∗),
therefore it is assumed that X ∈ L. Let

q(i) =





p′(i) iff i ∈ X

p(i) otherwise

for all i ∈ N; then q ∈ P is stronger than p. Therefore, since r is generic, one may
assume that r(i) ∈ q(i) for all i.

Furthermore, DC in the Solovay model M implies that for every i ∈ X the
following is true: there exists a function φ defined on q(i) and such that W (β, φ(β))
for every β ∈ q(i). Theorem 3 provides a function Φ such that for almost all α

the following is true: the value Φ(α, β) is defined and satisfies W (β,Φ(α, β)) for all
β ∈ q(α). Then, by Corollary 5, we have

for all β ∈ q(r(i)) , W (β, Φ(r(i), β) )

for almost all i. However, r(i) = i for all i. Applying the assumption that r(i) ∈ q(i)
for all i, we obtain W (r(i), Φ(r(i), r(i)) ) for almost all i. Finally the function
f(i) = Φ(r(i), r(i)) is in F by definition. ✷

Proposition 7 [Regularity] For any f ∈ F there exists an ordinal ξ ∈ M such
that for L-almost all i, if f(i) is an ordinal then f(i) = ξ .

Proof To prove this statement, assume that f = f ◦ r where f ∈ M is a function
defined on N in M .

We argue in M . Consider an arbitrary p ∈ P. We define a stronger condition p′

as follows. Let i ∈ N. If there does not exist β ∈ p(i) such that f(β) is an ordinal,
we put p′(i) = p(i) and ξ(i) = 0. Otherwise, let ξ(i) = ξ be the least ordinal ξ such
that f(β) = ξ for some β ∈ p(i). We set p′(i) = {β ∈ p(i) : f(β) = ξ(i)} .

Notice that ξ(i) is an ordinal for all i ∈ N. Therefore, since the ultrafilter L is
κ-complete in M for all κ, there exists a single ordinal ξ ∈ M such that ξ(i) = ξ

for almost all i .

By genericity, we may assume that actually r(i) ∈ p′(i) for all i ∈ N ∩ M. Then
ξ is as required. ✷

The ultrapower

Let N = UltL F be the ultrapower. Thus we define:

• f ≈ g iff {i : f(i) = g(i)} ∈ L for f, g ∈ F ;

• [f ] = {g : g ≈ f } (the L-degree of f );
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• [f ] ∈∗ [g] iff {i : f(i) ∈ g(i)} ∈ L ;

• N = {[f ] : f ∈ F}, equipped with the above defined membership ∈∗ .

Theorem 8 N is an elementary extension of M via the embedding which associates
x∗ = [N × {x}] with any x ∈ M. Moreover N is wellfounded and the ordinals in
M are isomorphic to the M-ordinals via the mentioned embedding.

Proof See Kanovei and van Lambalgen [1994]. ✷

Comment . Propositions 4 and 6 are used to prove the  Loś theorem and the property
of elementary embedding. Proposition 7 is used to prove the wellfoundedness part of
the theorem.

3 The nature of the ultrapower

Theorem 8 allows to collapse N down to a transitive model N̂; actually N̂ = {X̂ :
X ∈ N} where

X̂ = {Ŷ : Y ∈ N and Y ∈∗X} .

The content of this section will be to investigate the relations between M, the initial
model, and N̂, the (transitive form of its) Spector ultrapower. In particular it is
interesting how the superposition of the “asterisk” and “hat” transforms embeds M

into N̂ .

Lemma 9 x 7−→ x̂∗ is an elementary embedding M into N̂, equal to identity on
ordinals and sets of ordinals (in particular on reals).

Proof Follows from what is said above. ✷

Thus N̂ contains all reals in M. We now show that N̂ also contains some new
reals. We recall that r ∈ F is a function satisfying r(i) ∈ i for all i ∈ N ∩ M.

Let a = [̂r ]. Notice that by  Loś [r ] is a real in N, therefore a is a real in N̂ .

Lemma 10 a is random over M .

Proof Let B ⊆ N be a Borel set of null measure coded in M; we prove that a 6∈ B.

Being of measure 0 is an absolute notion for Borel sets, therefore B ∩M is a null set
in M as well. Corollary 5 implies that for L-almost all i, we have r(i) 6∈ B. By
 Loś, ¬ ([r ] ∈∗B∗) in N. Then a 6∈ B̂∗ in N̂. However, by the absoluteness of the
Borel coding, B̂∗ = B ∩ N̂, as required. ✷

Thus N̂ contains a new real number a. It so happens that this a generates all
reals in N̂ .
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Lemma 11 The reals of N̂ are exactly the reals of M[a] .

Proof It follows from the known properties of random extensions that every real in
M[a] can be obtained as F (a) where F is a Borel function coded in M. Since a

and all reals in M belong to N̂, we have the inclusion ⊇ in the lemma.

To prove the opposite inclusion let β ∈ N̂∩N. Then by definition β = [̂F ], where
F ∈ F. In turn F = f ◦ r , where f ∈ M is a function defined on N ∩ M. We may
assume that in M f maps reals into reals. Then, first, by Property 2, f is a.e. equal
in M to a Borel function g = Bγ where γ ∈ N ∩ M and Bγ denotes, in the usual
manner, the Borel subset (of N

2 in this case) coded by γ. Corollary 5 shows that
we have F (i) = Bγ(r(i)) for L-almost all i. In other words, F (i) = Bγ∗(i)(r(i)) for
L-almost all i. By  Loś, this implies [F ] = B[γ∗]([r ]) in N, therefore β = Bγ(a) in

N̂. By the absoluteness of Borel coding, we have β ∈ L[γ, a], therefore β ∈ M[a] .✷

We finally can state and prove the principal result.

Theorem 12 N̂ ⊆ M[a] and N̂ coincides with L
M[a](reals), the smallest subclass

of M[a] containing all ordinals and all reals of M[a] and satisfying all the axioms
of ZF .

Proof Very elementary. Since V = L(reals) is true in M, the initial Solovay model,
this must be true in N̂ as well. The previous lemma completes the proof. ✷

Corollary 13 The set N ∩ M of all “old” reals does not belong to N̂ .

Proof The set in question is known to be non–measurable in the random extension
M[a]; thus it would be non–measurable in N̂ as well. However N̂ is an elementary
extension of M, hence it is true in N̂ that all sets are measurable. ✷
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