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Abstract

We investigate connections between the syntactic and semantic distance of programs
on an abstract, recursion theoretic level. For a certain rather restrictive notion of
interdependency of the two kinds of distances, there remain only few and “unnat-
ural” numberings allowing for such close relationship. Weakening the requirements
leads to the discovery of universal metrics such that for an arbitrary recursively
enumerable family of functions a numbering compatible with such a metric can uni-
formly be constructed. We conclude our considerations with some implications on
learning theory.

1 Introduction

In any acceptable numbering, or Gédel numbering, of the partial recursive functions, any
non-trivial extensional property of the programs is at least as hard as the halting prob-
lem [13]. For example, functional equivalence, the equality problem, is I15-hard. On the
other hand there exist one-one numberings, or Friedberg numberings [6], leaving the equal-
ity problem as a trivial task. If both the functions and the programs are considered as
points in two respective topological spaces then choosing these topologies to be discrete
and choosing the numberings as Friedberg leads to the (trivial) continuity of the indexing
e — 1: Similar programs denote similar functions and vice versa, as similarity degen-
erates to equality in this case. One might ask what happens if less trivial topologies are
considered. We will investigate this question for the topology of pointwise convergence
defined by some specific distance measure D on functions and suitable recursive metrics
on the programs. Regarded questions, then, are of the kind: Which numberings of which
families of functions are compatible with which distance measuring on programs, in which
particular sense of being “compatible”?

In Section 2, the modeling of the situation, in particular the measure D (together with a
modification) and its relationship to some distance measure ¢ on programs, are presented
and justified. In Section 3, a particularly strong kind of mutual dependency is consid-
ered, which at least for total functions implies that as well the numbering as, conversely,
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all “choice functions” (which to recursive functions assign corresponding programs) are
continuous if regarded as mappings between the two respective spaces. This amounts
to a rather extreme type of numbering, resembling (but not coinciding with) Friedberg
numberings. A weaker, more realistic notion of relatedness is investigated from Section 4
onwards: Similar programs must denote similar functions and for similar functions there
exist similar programs. One main result, then, says that there exist universal metrics c
on programs: Any numbering of a family F' of functions can recursively be transformed
into a numbering of F' compatible with ¢. Questions about the opposite direction, “from
numberings to metrics”, are considered in Section 5. If the numbering possesses a padding
function then some corresponding ¢ can be constructed, but for certain “natural” given
distance measures it might occur that no compatible numbering can possess a padding
function. Section 6 contains connections to learning theory.

Notation and fundamentals Our notation mainly follows the books by Odifreddi [12]
and Soare [17].

IN is the set of natural numbers including 0, ¢ the set of rationals. A C IN is an
initial segment iff v € A and y < x imply y € A, for all x,y. f,g,... denote total
functions IN — IN (if not stated otherwise), p,v, ... partial functions IN — IN. dom(u)
= {x: p(x) |} is the domain of . p C v iff for all x, if p(z) | then v(z) | and p(x) = v(x).
Notions u(z) 1, p(x) = v(z) |, p(z) I# v(x) | ete. are as usual. PREC is the set of
partial recursive functions IN — IN, REC the set of (total) recursive functions IN — IV.
A partial function with finite initial segment as domain is called a string. Strings are
denoted by letters o, 7. They are often written in a way as, e.g., 010,0%,5317. A similar
notation is used for total, almost everywhere constant functions, e.g., 0202150°°.

v, Y, 9, ¢ ... denote partial functions IN x IN — IN. As usual, 1), is the function = —
(e, x). For any family F' of partial functions IN — IN, F'is contained in ¢ ift F C {1}, :
e € IN}, and is enumerated by o iff F = {4, : e € IN}. 1 is dense iff for each string o
there exists e such v, is total and extends o. 1 is one-one iff, for all e, €', 1, = 1) implies
e=¢€.

Y is called a numbering (of {1, : e € IN}) iff ¢ is partial recursive, and the indices e € IV
are called programs w.r.t. ¢». A numbering ¢ is acceptable iff for any numbering 1 there
is g € REC such that ¢, = g for all e. For e,t € IN, 1), is defined by

y i o) d=y, @ <t, and g, () is
Ver(x) = computed from x in at most ¢ steps,
T otherwise.

Notation p(x) for g : IN — IN is also used. As usual, we fix some “standard” acceptable
numbering ¢. K = {e: p.(e) |} is the halting problem of ¢.

A distance measure on IN is a total function ¢ : IN x IN — @ satisfying c(i,j) > 0,
c(i,j) = ¢(j,i), and c(i,i) = 0 for all 4,j. A topological space is defined by its set of
points, P, and collection G of open sets. The distance function ¢ generates a topolgy G
on set of points IV iff



(a) forall z € IN and r € @, r > 0, there is an open set O € G
satisfying x € O and O C {y : ¢(z,y) < r} and

(b) for all O € G and = € O there is an r > 0 such that y € O for all
y with ¢(z,y) <.

A metric (on IN) is a distance measure c¢ satisfying

c(i,j)=0 < i=jand
c(i,j) < c(i, k) + c(k,7) (triangle inequality).

A metric always generates some topology, but there are distance functions that do not.
E.g., choose ¢(i,j) = 0 if |i — j| < 2 and ¢(i,j) = 1 otherwise.

In Section 2 below, distance measures and topologies will also be regarded on the partial
functions IN — IN.

2 Topology of functions and programs

In all what follows we will use a fixed metric D for the distance of total functions, but
extending D to partial functions will lead to two different possibilities, each of them being
pursued in the further investigation. D will now be introduced and justified.

There are various ways to measure distances between total functions. Rogers [15], §15.2,
and Odifreddi [12], V.3, consider the metric (the Baire metric)

_)] 0 if f=y,
D(f.9) = { mam{x—}rl : f(z) #g(x)} otherwise
that is, only the first argument where f and ¢ disagree counts and the particular values
taken are ignored. We will adopt this choice, our justification being as follows.

e Total functions can be regarded as points in the product space IN*°. If with each
factor IN its discrete topology is associated then D generates the corresponding
product topology for the space of total functions IN — IN.

e D models pointwise convergence, i.e.,

for all f and sequences (fz), (Va)[f(z) = lilgn fr(z)] iff lilgn D(fi, f)=0.

e One might possibly prefer a distance measure D; not taking into account the par-
ticular arguments, so that, e.g., all functions 0”10*° would have the same distance
from 0°°. This would obviously be in conflict with pointwise convergence. Fur-
thermore, if — as appears natural — one additionally wanted monotonicity, i.e.,
Di(f, f") > Di(g,9') whenever |f(x) — f'(z)] > |g(x) — ¢'(x)| for all z, then the
consequence would be a constant minimal distance r > 0 between any two non-
equal functions, namely, r = D;(0°,10%). Such a metric would be topologically
equivalent to the discrete one and thus unable to express any non-trivial notion of



convergence. Thus, for our metric D, while the topology generated by D is invari-
ant under “permutation of the rows”, that is, under replacing every function f by
f o for some permutation 7, D itself is not and must use different weights for the
respective places where functions disagree.

e One might argue that only differing at infinitely many places should cause nonzero
distances between functions, in accordance with a standard level of abstraction in
recursion theory. But there are disadvantages of such a measure D,. It does not
generate the product topology on IN* and therefore does not allow for pointwise
convergence. Also, such D, hardly appears feasible w.r.t. the process of computing.
Thirdly, D, would not be compatible with general recursive operators: For ® with
O(f) = (f(0))>° we would obtain D,(0%°,10°) = 0, but Dy(P(0°),P(10°)) =
D5 (0%°,1%°) > 0.

e Metrics such as Dj(f,g) = 27%7! for the first x with f(z) # g¢(z) are equiv-
alent to D in all respects important in the following. This would also be the
case if more places where functions disagree were taken into account, as, e.g., for
Dy(f,9) = Xiwpa)tey 2~ 15 or if even the function values were considered. Using
such metrics would only complicate our proofs without noticeable benefits.

Next, regard partial functions. There are two philosophies we have to choose between.
If 1(x) 1 then this might be interpreted as (a) p(z) taking a special value “undefined”,
or (b) p(x) representing some unknown value which “might come up later in a worst
possible way”. Philosophy (a) corresponds to identifying partial functions with their
graphs (considering these “being given”) while (b) regards them as never known at the
undefined places. Thus, if u(z) 1T and v(z) 1 then according to (a) p and v agree at x,
but according to (b) they disagree at = in a strongest possible way.

We will prefer using approach (b), but, as turns out, approach (a) will unavoidably come in
at certain points, see Definition 2.3, Remarks 2.6 below. Beside more intuitive reasons for
favoring (b), our main mathematical one is that when regarding the approximations p, v
to u, v, respectively, then D(u,v) is approximated from above by the distances D(us, vs)
in the (b)-setting while the approximation might oscillate infinitely often between upper
and lower bounds in case (a). Thus, our preferred way to extend D follows the idea that
a partial function represents the collection of all total (not necessarily computable) ones
extending it:

D(u,v) = max{D(f,g) : f extends pu A g extends v}.

But additionally, a measure D* that captures view (a) will be regarded.

Definition 2.1 For partial functions p, v : IN — IN:

Dlpv) = mas{—— w1 V v TV o) b £ vl) I}

where maz()) = 0. Furthermore
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D () = maw { —— : (ula) 4 Av() D)V (u(a) T AV() D) Vo) £ vla) L

As a consequence, a function p is properly partial iff D(u, ) > 0, i.e., properly partial
functions are those having a positive self-distance, thus expressing partiality as the “inner
uncertainty” in assigning values to arguments. It follows that D ist not a metric, not
even a distance measure. All axioms of a metric are satisfied with the exception that
D(u, pp) = 0 is weakened to

D(p,v) =0 iff p, v are total and p = v.

Of course, D is a metric on total functions. As for D*, D*(u,v) = 0 iff = v, and D* is
a metric. The next proposition is immediate from Definition 2.1.

Proposition 2.2 (1) D*(u,v) < D(u,v) for all u, v, with equality iff

(v2) |7 > D*(pv) = pl@) L V() |

(2) 1If dom(p), dom(v) are initial segments then p = v or D*(u,v) = D(u,v). In partic-
ular, D*(f,g) = D(f,g) for total f,g.

(3) D(p,v) < max{D(u,p),D(p,v)}, with equality if D(u,p) # D(p,v). The corre-
sponding is true for D*.

Let us now regard distance measures ¢ on IN and their possible compatibility with D, D*,
w.r.t. some underlying numbering. We aim at ¢ being computable. Observe the following
facts.

(1) Let ¢ be a one-one numbering of PREC and let ¢(i,7) = 0, c(i,j) = 1 if i # j.
Then ¢ is a recursive metric on IN generating the discrete topology. ¢ behaves well in
yielding similar (i.e., in this case, equal) programs to compute similar functions (up to
their possible self-distance). The price we have to pay for this desirable property is high:
As 1 is one-one, for usual operators building computable functions from simpler ones
there are no corresponding computable functions on programs, representing them on the
syntactic level.

(2) Consider the “natural” distance function on programs (represented as bit strings),
which is their Hamming distance divided by the maximum of their lengths. Then for the
acceptable numberings ¢ coming from interpreting usual programming languages such as
Basic or C there are arbitrarily similar programs 4, j with D(y;, ¢;) = D*(pi, ;) = 1:
Just expand two small programs computing the constant functions 0 and 1, respectively,
by large identical parts that will never be executed. Small changes of a program can cause
drastic changes of the computed function.

In our central definitions, we will not only consider the desired continuity of “naming”
functions by programs, but also that one in the opposite direction. @ is the set of non-
negative rationals. A scaling is a total function h : @t — Q% which is strictly increasing,
continuous from above at 0 and satisfies h(0) = 0.



Definition 2.3 For a numbering ) and a distance measure ¢ on IN, the following axioms
are regarded.

(A) (Vi J)[D(i, ¢;) < max{e(i, 5), D(Wi, ¢3), D(15,15) ]
(B) (i, )3R) [y = e A (i k) < D(ihi, )]

(C) (3 scaling h)(Vi, j)[c(i, 7) < h(D(4i, ;)]

(A% (Vi, ))[D* (Wi ¥5) < (i j)]

(B*), (C*) are as (B), (C), respectively, with D replaced with D*. Note that this is also
the case with (A), (A*), as D*(v, ¢;) = D*(1;,;) = 0.

Y, ¢ match if (A), (B), (C) are satisfied. Expressions “¢) matches ¢” and “c matches 1"
will also be used. v, ¢ are compatible if (A), (B) hold.

If h, say in (C), is recursive then by replacing the (hopefully) recursive ¢ by ¢, (i,7) =
h=*(c(i, 7)), will lead to the stronger form (Vi, j)[¢/(¢,7) < D(;,1;)]; hence the interest-
ing case is that ¢ can be found to be recursive while h can not.

Facts 2.4 (A*) implies (A), (B*) implies (B), and (C*) implies (C). If ¢ is total then (A)
and (A*), (B) and (B*), (C) and (C*) are equivalent, respectively. If ¢ is such that all
dom(1;) are initial segments then (B) and (B*) are equivalent. If ¢ is one-one and all
dom(1;) are initial segments then (C) and (C*) are equivalent. If ¢ is one-one and v, ¢
satisfy (B) then v, ¢ satisfy (C) with computable scaling h(q) = ¢; the corresponding is
true for (B*), (C*), respectively.

Proof Immediate by definitions and by Proposition 2.2. Observe that c(i,i) = 0, as ¢ is
assumed to be a distance measure. m

Remark 2.5 One might try to use the axiom (Vi, j)[D(v;, ;) < ¢(i, j)], which is stronger
than (A*). But as soon as partial functions come in, this is in conflict with ¢ being a
distance measure, namely, with ¢(i,4) = 0. Furthermore, if ¢ is an arbitrary recursive
function satisfying (Vi, 7)[D(¢i, ¥;) < ¢(i, j)] then ¢(4,7) = 0 would imply that ¢; is total,
hence if additionally (C) was satisfied then one could decide the totality of functions
in 1 by testing whether ¢(i,7) = 0. Thus that overly strong axiom would restrict our
considerations to trivial cases.

Proposition 2.6
(A) is equivalent to
Vi, j,@) [i(e) V£ ¢i(@) LA (Y < 2)li(y) b= 05) 1] = 75 < eli,))]

(
(A*) is equivalent to
(

Vi, ) (i) 4 A (2) 1) v (@al@) T A (@) ) V i) J£ (@) 1) = 5 < (i, )]
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Proof For the first statement, abbreviate ¢;(z) 1# ¢(x) L A Yy < 2)[¢i(y) = ¥;(y) |
by P;j(x). We prove that, for all ¢, 7, D(v;,¢;) < max{c(i,j), D(¢i, ¥:), D(;,;)} iff

(Vo) [H(x) = 5 < c(i,j)]. This can easily be done by distinguishing the cases

(a) D(i, ;) =0,
(b) 0% D(y;,¢5) = ;7 and ¢(a) T V¥;(a) 1,
(¢) 0# D(¢y,15) = 77 and ¢i(a) § Ai(a) |

The second statement is immediate from Definition 2.3. m

Remarks 2.7 (Continuity) Both (A) and (A*) state that similar programs compute
similar functions, with regard to distance functions (D) and (D*), respectively. Conversely,
(B), (C), (B*), (C*) are conditions of the kind that the similarity of functions implies the
similarity of programs computing them: Either for all programs (axioms (C), (C*)) or for
appropriate ones (axioms (B), (B*)).

D* is a metric, hence there is the unique topology G* on the partial functions from IV to
IN which is generated by D*. For any numbering ¢, let Gj, be the induced topology on
{te : e € IN}, and let ¢ be such that a topology H, is generated by c¢. Then one verifies:

L. If ¢, ¢ satisfy (A*) then the mapping e — 1), is continuous w.r.t. topologies H,, Gy,
This would still be true if (A*) was replaced by the weaker axiom (3 scaling h)
(Vi, 7)[D* (i, ;) < h(c(i,j))]. If ¢ is total and 1, c satisfy (A) then e — . is
continuous with respect to H, Gy,

2. If ¢, ¢ satisfy (C*) then every “program selecting” function S : {¢).:e € N} — IN,
L.e., ¥s(y,) = Y. tor all e, is continuous w.r.t. G, H.. Moreover, the mapping e — ),
is open, i.e., images of open sets are open. By Facts 2.4, these facts hold true if ¢, ¢
satisfy (C) and

e 1 is total or

e ¢ is one-one and all ¢; have initial segments as domains.

The question arises whether there is some topology G on partial functions such that,
for all ¢, ¢, (A) implies that e — 1), is continuous w.r.t. topologies H.,Gy. Such a
topology would uniformly capture philosophy (b) on partiality in such a way that axiom
(A) guarantees that approximating a program and approximating the meant function
commute. But G does not exist, as the next proposition shows. For sake of simplicity, we
will identify ¢ and the mapping e — 1, in the following.

Proposition 2.8 For any numbering ) and distance measure ¢ which generates a topolgy,
there are v, ¢ with the same properties such that

o if 1, ¢ satisfy any one of axioms (A), (B), (C) then so do v, &



e the only topology on {ﬁe :e € IN} allowing L/; to be continuous is the “indiscrete”
topology {0, {¢. : e € IN}}.

Corollary 2.9 There is a numbering ¥ of all partial recursive functions and a recursive
distance measure ¢ such that ¢, ¢ match, ¢ generates a topology, and {0,PREC} is the
only topology for which ¢ is continuous.

Proof of corollary We anticipate a result in Section 3 (Theorem 3.2): There exist a
numbering ¢ of PREC and a recursive distance measure ¢ such that 1, ¢ match and ¢
generates a topology. Then use 1, ¢ from Proposition 2.8. m

Proof of Proposition 2.8 For ¢, ¢ given, define ¥, ¢ as follows.

1/;21 = i, 777)21'-1-1(1’) 1 for all x;
¢(2i+a,2j +b) = c(i, ) for a,b € {0,1}.

In particular, ¢(2i 4+ 1,2i +a) = 0 for a € {0, 1}. For indices 2,25 we have immediately
from the definition that any one of axioms (A), (B), (C) for ¢, ¢ implies the corresponding
one for ¢, & For indices 2i+1,2j+b, (A), (B), (C) hold by definition, as D (¢ 41, Va;15) =
D(tai41,12i41) = 1. Furthermore, ¢ generates a topology if ¢ does.

Assume that ¢ generates the topology H on IN and G is any topology on {1;6 ce € IN}
such that v is continuous. We have for all i, j:

(%) é(i,j) =0 = (YO € G)[¢h; €0 & ¢ € O).

This is true because, by definition of continuity, O € G implies {e : Ve € O} € H and
second, as H is generated by ¢, {e : 1), € O} must with any i contain all j such that
¢(i,j) < r, for an appropriate » > 0. See condition (b) in the definition of generating a
topology, Section 1.

It follows that for all 7, 7, a, b, O:

Voisa €0 & E20+1,2i+a)=0, asc(i,i)=0
=4 ’LL?H-I €0 by (*)
g "7/;2j+1 €0, as 77/;2i+1 = "7/;2j+1
& 25 +1,2j+b) =0
g 122j+b € 0.

Hence O = PREC if O 4 (). m

By Corollary 2.9 there is no non-trivial topology on PREC such that (A) for v, ¢ implies
the continuity of ¢. In order to better understand the situation, observe that in the
definition of D and of axioms (A), (B), (C) the behaviour of a partial function p at places
beyond min{x : p(x) 1} is totally ignored. Define the total function f to weakly extend p
if (Vz)[;37 > D(u. ) = p(x) = f(2)]. Then



D(p,v) = max{D(f,g9) : pC f and v C g}
= max{D(f,g) : f weakly extends p and g weakly extends v}.

An important advantage of this definition is that every partial recursive function possesses
a total recursive weak extension. As a consequence, for a partial recursive p, it will
not make a difference in our subsequent considerations whether all total recursive weak
extensions of p are regarded or all total weak extensions. Thus for the rest of this section,
let IF' be either REC or the set of all total functions from IV to IN. We ask whether (A)
implies the continuity of ¢ or something similar, in an appropriate setting using weak
extensions and our given topology on IF'. There are different ways one might try.

(1) Each 1); represents some unique “unknown” weak extension f; € IF' and v is taken
to be continuous if the mapping ¢ — f; is. But unfortunately there exist 1, ¢ such
that ¢ generates a topology, ¥, ¢ match and no family {f; : ¢« € IN} where each f;
weakly extends 1; is such that the mapping 7 — f; is continuous (Theorem 2.10).

(2) Each v; represents the set [1);] = {f : f € IF, f weakly extends 1);}. Nobeling [11]
provides a notion of continuity for mappings from the points of a topological space
to sets of points of another one. In our setting, his definition says that for any open
set O" C IF the set {i : (Vf € IF)[f weakly extends 1; = f € O']} is open. But
trying to apply this definition again does not work, see Examples 2.11 below.

(3) It remains to try to replace continuity by an appropriate weaker requirement. This
at last will lead to a positive result (Theorem 2.13).

Theorem 2.10 There is a numbering ¢ and recursive distance measure ¢ such that i, c
match, ¢ generates a topology, and no mapping i — f; from IV to IF' that satisfies (Vi)
[fi weakly extends 1);] is continuous.

Proof Let ¢, ¢, ... be a computable enumeration of {g: ¢ € @,0 < ¢ < 1}, where ¢y =
0, ¢1 = 1. Define ¢g(x) = 0,91 (x) = 1,¢;(x) 1T for i > 2 and all =, and ¢(7,j) = |¢; — ¢;|
for all ¢, 5. It is easy to verify that ¢ generates a topology and v, ¢ match.

Let i — f; be as described in the theorem. Then fy = 1)y = 0® and f; = ¢, = 1*°.
Since the rational numbers are dense, there are for every e > 0 indices 7, such that
fi(0) =0, f;(0) # 0, and ¢; — e < ¢; < ¢;. It follows that c(7,j) < e while D(f;, f;) = 1.
Such a mapping is not continuous. m

Examples 2.11 (a) The numbering ¢ and distance measure ¢ from Corollary 2.9 match
and ¢ generates a topology. But the mapping which to i € IV assigns [¢;] = {f : f € FF,
f weakly extends LZZ} is not continuous in the sense of Nobelings definition. (b) A simpler
example, though not covering all of PREC, is ¢; = 0%, ¢(i,7) = 0 for all i, .

Proof (a) Let O" be any non-trivial open subset of . Then there is an index 2i such
that [1pg;] C O, 19 41(x) 1 for all x, and é(2i,2i + 1) = 0. If the mapping e — [¢),] were
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continuous then U = {e : (Vf € IF)[f weakly extends ¢, = f € O]} would be open.
For U, we have 2i € U and [¢),] C O' for all e € U. U cannot contain 2i + 1, as otherwise
O’ = IF would follow. Thus 2i € U, 2i+1¢ U, ¢é(2i,2i+ 1) =0, which contradicts to
U being open in the topology generated by ¢.

(b) Use the same argument. m

In the following definition, IF',[...], and the topology on IF' are as above, ¢ is a partial
function from IN x IN to IN.

Definition 2.12 Let a topology on IN be given. v is weakly continuous iff for every open
set O' C IF there is an open set O C IN such that for all ¢, [¢);] C O implies i € O and
[¢i] € IF'\ O" implies i ¢ O.

Obviously, continuity of the mapping i — [¢/;] in Noebeling’s sense implies weak continuity.
Weak continuity reflects the “inner uncertainty” of partial functions in such a way that it

might be impossible to discern by open sets of indices whether or not [¢;] C O', namely,
if 9;(z) 1 for too small = (so that [¢;] € O" and [¢); N O" # 0]).

Theorem 2.13 If ¢ generates a topology on IN and 1), ¢ satisfy axiom (A) then ¢ is
weakly continuous with respect to that topology.

Proof Given O', define O to be the open kernel of {i : [¢);] N O’ # 0}. O is by definition
open and i ¢ O for any i with [¢);] N O' = ). It remains to show that [¢;] € O’ implies
i€ 0.

If [1);] € O’ then there is an x such that

(%) (Vy <o)wily) I A (Vf € B)[(Vy <2)[f(y) = hily)] = f €O

If 1), is partial then take as x the first number where v; is undefined, and if v; is total then
x exists because O’ is open. We show that, for all j, ¢(i, j) < #1 implies [¢;]NO" # 0. It
then follows that there is an open ball around 7 consisting of indices in {e : [, NO'] # 0},
ie., 1€ 0.

Assume [1);]NO" = (). By (%), no total function coinciding with t; on all y < x can weakly
extend 1;. Hence there exists 2’ < x such that ¢;(y) | for all y < 2', and ¢;(2") # ¥;(2').

. .. . . 1 1
It follows from (A) in the form of Proposition 2.6 that c(i,j) > -5 > 7. ®

We conclude this section by examples that motivate our later results.

Examples 2.14 (a) Let ¢ be total and one-one. (Remember that any r.e. family of
total recursive functions can be numbered one-one [9].) Then c(i,7) = D(v;,7;) is a
recursive metric satisfying all axioms, with recursive scaling h(g) = ¢ in (C) and (C*).
(b) Let ¢ be such that all ¢; are strings, and define ¢(i,j) = 0 for all i,j. Then (B),
(B*), (C), (C*) are satisfied trivially. (A) holds iff there is one partial or total recursive
function extending all ¢;. (A*) holds iff ¢; = 1, for all 4, j.
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Example 2.15 The following will be a standard construction in subsequent proofs, using
the fact that D(1;, ;) is approximated from above by the distances D(v; 4, ;). For any
recursive s : IN x IN — IN, c(i,7) = D(¥; 4,5), ¥j,s(i,j)) is @ recursive function. ¢ satisfies
D(t, ) < ¢(i,7), hence (A*) and (A) hold. But ¢, as it stands, is not a distance
measure, since ¢(i,i) > 0 in general. Thus the case i = j will have to be dealt with
separately.

3 Matching

As example 2.14(a) has shown, matching can be easily achieved for appropriate number-
ings of “poor” families of functions, such as r.e. families of total recursive functions. What
about rich families, i.e., those containing REC? We will see that matching, even (A*),
(B*), (C*), is still possible, but a high price of becoming “unnatural” has to be paid.

Theorem 3.1 There exist a numbering v containing all total recursive functions and a
recursive distance measure ¢ such that (A*), (B*), (C*) are satisfied with a K-recursive
scaling h. Furthermore, ¢ generates a topology on IV.

Proof Let ¢ be a one-one numbering containing REC such that all ¢, have initial segments
as domains. Define U = {(e,s) : e < s A (Vy < e)[pes(y) L]} and let (eq, so), (€1, 51), - - -
be an enumeration of U. ¢ and ¢ are defined by

d)i = ¢ei
C(Z ) o 0 if € = €5

,] - D(¢ei;5i+5]’7 ¢3j75i+5j) OtherWise.

If ¢ is total then (e, s) € U for almost all s, and there is a pair (e;, s;) with e; = e, hence
Vi = ¢, = ¢e. It follows that ¢ contains REC. We show that ¢, ¢ satisfy axioms (A*),
(B*), (C*).

(A*) If €; — ej then D*(d)z;d)]) = D*(¢ei7 ¢ej) = 0 Otherwise D*(’Lpz,@/)]) S D(’Lpz,@/)]) =
D(¢e;s be;) < D sits; Pe;psits;) = (i, j). (See example 2.8.)

(B*): If ¢, = 1; then (B*) is satisfied with & = ¢, as c(i,7) = 0. If ¢y, # 1; then
D*(¢s,5) = D(4i,1;) by Proposition 2.2. There is a stage s such that D(v;,v;) =
D(tpe,, pe;) = D(¢ei,t,. Pe; ) for all £ > s and there is some k& with e, = ¢; and s, > s.
Then 77/)/6 - 77bj and C(Za k) - D(¢ei,si+sk7 ¢ek,si+sk) - D('I,/)Z, %) - D*(¢17 %)

(C*): For every z let s(z) be the first stage ¢ > x such that ¢;,(y) | for all i,y < x with
y € dom(¢;) and let r(x) = min{D(¢., per) : € < € < s(x)}. s is clearly K-recursive.
So is r, as D(¢e, ¢er) > 0 and D(¢e, ¢er) = limy D(¢ey, dpery), the latter sequence taking
values in {1, %, %, ...} and converging after finitely many steps. For r, we have r(z) > 0
and r(z) > r(x + 1) for all . Furthermore, lim, r(z) = 0. Defining h by

h(0) = 0

h(q) = max{x—_lkl:r(x)gq}—i-q for ¢ > 0

11



yields a K-recursive scaling.

Assume by way of contradiction that c(¢, j) > h(D*(¢4,1)). For x = ﬁ — 1 there is at
least one k € {i,j} such that ¢, s, (7) T while ¢, () | = ¢.,(x) . Then e, < z and
si+s; < s(x), so it follows that e;, e; < s(z). From c(i, j) > 0 we have e; # e;, say ; < e;.
Then r(z) < D(de;, ¢e;) and (with Proposition 2.2) h(D*(;, ;) = h(D(¢i, ;) =

h(D(de;, ¢e;)) > lerl = ¢(i,7) in contradiction to the assumption.

It remains to show that c generates a topology. D*, as a metric, generates the topology
G on {¢; : i € IN} where O' € G iff (Vi) € O = (Ir > 0)(V))[D*(i,¢;) < r
= ¢; € O']]. It follows by axioms (A*), (C*) that c generates the topology H with
O € H < (30" € G)O = {i:y; € O'}]. One verifies easily that from the conditions (a),
(b) that define generating a topology (see Section 1), (a) holds because of (C*) and (b)
because of (A*). m

Theorem 3.2 There exist a numbering ¢ of all partial recursive functions and a recursive
distance measure ¢ such that v, ¢ match, with K-recursive scaling in axiom (C). Moreover,
(A*) holds. ¢ generates a topology on IN.

Proof We use ¢, 1, U, ¢ as in the proof of Theorem 3.1. Let ¢ be any (e.g., acceptable)
numbering of PREC. Define 6 by

Y if () =y + 1 and ¢;(2) | >0 for all z <z
0:(x) = @e(x) if there is o' < x with ¢;(2') | =0,¢;(x" +1) [ =e
! and ¢;(z) L > 0 for all z < 2
0 otherwise

It follows from the construction that D*(6;,6;) < D*(¢5,v;) < D(¢y,v;) < D(6;,6;)
for all 4, j, in particular 6; = 6; whenever ¢; = ;.

Given any ¢,, there exists the total recursive function f with

pe(x) +1 if (V2 < 2)[e(2)
flw)=14 0 if . (2) 1 and (V2 < 2)[g(2) )
e otherwise, i.e., (3z < x)[we(2) 1]

As in the proof of Theorem 3.1, ¢ contains REC, hence there is an index ¢ with ¢; = f.
By definition of 8, 8; decodes v; in such a way that 6; = .. It follows that 6 enumerates
all partial recursive functions. We show that axioms (A*), (B), (C) are satisfied.

(A*): As in the proof of Theorem 3.1, D*(v;, ;) < c(i,j), hence D*(0;,0;) < D*(¢4, ;)
< (i, ).

(B), (C) immediately follow from the corresponding parts in the proof of Theorem 3.1
together with D*(1;,¢;) < D(v3,7;) < D(6;,0;). As for (B), recall that ¢; = v, implies
0]' == 91@

As has been shown in the proof of Theorem 3.1, ¢ generates a topology. m

We turn now to necessary conditions for matching.
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Proposition 3.3 If ¢ satisfies (A), (C) with a recursive ¢ then the equality problem for
total functions in 1 is decidable. If ¢ satisfies (A*), (C*) with recursive ¢ then the equality
problem of ¢ is decidable.

Proof For total functions 1;,1; we have

Vi #¢; = c(i,j) = D(¥i, 1) > 0 by (A)
vy =1; = c(i,j) <MD, 1)) =0 by (C),

Le., 1, =1; & c(i,7) = 0. Analogously, for arbitrary v, v;,

i by = cliyg) = D" (i, 1) > 0 by (A7)
i =1 = i, ) < WMD" (i, 45)) = 0 by (C7).

So, again, ¢; =v¢; < c(i,j) =0. m

For an acceptable numbering, the complement of the halting problem is m-reducible to
equality of total functions. Hence we have

Corollary 3.4 No acceptable numbering satisfies (A), (C) with recursive c.
In this connection, recall Remarks 2.5 on the requirement (Vi, j)[D (¢, ;) < (1, 7)].

By Proposition 3.3, if ¢ matches some recursive ¢ then ¢ is similar to a one-one numbering,
and if even (A*), (C*) hold then 1 can be recursively translated into a one-one numbering
of the same functions. But if rich enough, ¥ cannot be one-one itself, as the following
Proposition shows.

Proposition 3.5 Let 1) be a numbering and ¢ recursive. If ¢, ¢ satisfy axioms (A), (C)
with recursive scaling h then v cannot contain all total recursive functions. Hence if 9 is
one-one and v, ¢ are compatible then 1 cannot contain all total recursive functions.

Proof Define a(i, j) = min{x : h(:p—l—l) < c(i,j)} if (i, j) > 0 and (i, 5) 1 if ¢(i,§) =
« is partial recursive with recursive domain {(,7) : ¢(i,j) > 0}. By (C), if ¢(i,5) >
then

() a(i,j) 4 A (Fz <o, g)W(e) TV () TV ¢ilz) L# @) 1]
Assume that ¢ contains REC. Then 1 is dense. Define strings 05,5 =0, 1,... as follows.
0y is the empty string.
osy1:  Find some i such that oy C 1, (Vo < (i, s) + $)[¢s(x) 1] and
(a) ¢(iys) > 0or
(b) (i, s) =0 A (37)[c(d; ) 0 A (Fo)[ulx) L # ¥;(x)
A (VY < x)[wz(y) ¢= ) Ul
Define 0441 (z) = ¢;(2) if ( )LV @ < ai,s)+ s and ¢ otherwise.

0.
0
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Each stage s + 1 terminates. As 1 is dense, there are infinitely many ¢ with o, C ¢; and
(VE < a(i, s) + s)[1i(z) }]. If among them no one with ¢(é, s) > 0 is found then, again by
density, for any one with c(4, s) = 0 there are j, x satisfying c(j,s) =0, ¢;(x) L # ;(z) |,
and (Vy < 2)[vi(y) L= v;(y) 1.

The strings o, grow in an unbounded way and coincide where defined, hence f = limo,
is total recursive. For each s, we obtain the following for the 7 found in stage s + 1.
If ¢(i,s) > 0 then, by (%), (Fr < ali,s))[Ys(x) T V ¢i(x) L= o5(x) | # s(x)], since
Yi(x) | for all x < afi,s). If ¢(i,s) = 0 then for the j,x found according to case (b)
in the algorithm we have ¢(j,s) = 0, D(¢;, ¢;) < #UD(%‘;%‘) < w—L,D(@bi,wj) > #1

Assuming 9,(y) | for all y < x we obtain D(v,1¢,) < x_-lu and, by (A), D(¢;, ) <

%H,D(z/)j,ws) < #1, hence D(;,¢;) < max{D(;, ¥s), D(¢j,1s)} < #1 by Proposition
2.2(3), a contradiction. Thus, 1, cannot be total if ¢(i, s) = 0.

In all, writing i(s) for the ¢ obtained in stage s + 1, we obtain that for all s, 1, is not

total or a(i(s),s) | A (v < ali(s), s))[Vs(@) TV Vi (@) L = 0441() L # Ys(x) }] and
it follows that f is not enumerated by ¢. The second statement of the proposition follows
by Facts 2.4. m

By a pseudometric we mean a distance measure ¢ that satisfies the triangle inequality
(but may fail to satisty c(i,j) =0 = i = j).

Proposition 3.6 If the numbering ) matches some recursive pseudometric ¢ then ¢ does
not contain all total recursive functions.

Proof Let 1; be total. We have by (B) that for every ¢ there is k& with ¢; = 1, and
c(i, k) < D(i, ;). By (C), c(k, j) < h(D(tx, 1)) = h(0) = 0 and the triangle inequality
yields ¢(i,7) < c(i, k) + c(k, j) = c(i, k) < D(2);,v;). Thus we have

(Vi, 7)), total = ¢(i,j) < D(¢i, ¢;)].

Let « be defined by «(i,j) = min{z :
Then it follows that for all 7, 5
(%) if (i, 7) > 0 then ®; is not total or (Jz < a7, 7))[¢i(z) T Vi(x) | # ¥(x) L.
Assume that ¢ contains REC. Strings o, are defined in a similar way as above.

0s41:  Find some 7 such that ¢(i,s) > 0,04 C ;, and (Vo < a(i, s) + s)[¢i(x) L.

Define o4, 1(z) = ¢;(z) if < ali,s) + s V os(x) .

In each stage s + 1, the search for ¢ terminates: Let iy,7; be indices of 0,0, 0,1°°,
respectively. Then by (A) and the triangle inequality, 0 < ¢(ig,i1) < ¢(ig, s) + c(i1, s),
hence ¢(ip, s) > 0 or ¢(i1,s) > 0, and for the chosen i € {ip, 41}, (i, s) |, ¥;(z) = oy(z) if
os(x) |, and (Vo < (i, s) + s)[i(z) 4] as ¢; is total.
We conclude by (x) that for all s

7 < c(i, )} if ¢(4, §) > 0 and a(i, j) T otherwise.

1 is not total or (Jz < a(i(s))) Wi (x) TV Vi () L # () 1]
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for the i = i(s) found in step s + 1. It follows that f = limso, is not contained in 1. m

We will obtain results stronger than Propositions 3.5, 3.6 in Section 6 (Theorems 6.1,
6.3, 6.4).

Proposition 3.7 (1) Let ¢ match the pseudometric c. Then ¢(i, j) = D(v;, ;) whenever
Vi, ; are total.  (2) Let ¢ and the pseudometric ¢ satisfy (A*), (B*), (C*). Then

C(Z,j) = D*(’Lpz, ’Lp]) for all Z,]

Proof (1) For total v;, v, D(v;, ;) < ¢(i,7) by (A). On the other hand, by (B), there

is k with ¢ = ¢; and (i, k) < D(¢;,v;). By (C), ¢(j, k) < h(D(1;, 1)) = h(0) =0, i.e.,
c(i, k) = 0. The triangle inequality yields c(i, j) < c(i,k) + ¢(j, k) = c(i, k) < D(4;, ;).
(2) Analogously with D replaced by D*, and arbitrary ¢;, ;. m

We summarize our necessary conditions on matching in the following

Theorem 3.8 Let the numbering 1) match some recursive distance measure ¢. Then

e The equality problem for total functions is decidable in ).
e 1) is not acceptable.

e If (C) is satisfied with computable scaling h then ) does not contain all total recur-
sive functions.

e [f ¢ is one-one then ¥ does not contain all total recursive functions.

e [f ¢ is a pseudometric then ¢/ does not contain all total recursive functions. Further-
more, c(¢,7) = D(1;, ;) if 4, 1; are total, hence D(1;, ;) can be computed from
i,j for total 1y, 1;.

In Example 2.14, a rather restricted class of numberings 1) was presented with the property
that D(1;, ;) was computable from 4, j and defining (7, j) = D(3;, ;) was possible, so
that all axioms were satisfied. A less trivial one is given by the following

Example 3.9 Let ¢ have the properties that (1) all dom(¢.) are initial segments and (2)
{(e,0) : 0 C ¢} is recursive. Then there is a one-one numbering ) enumerating the same
functions as ¢ such that D(1);, ;) can be computed from ¢, j if ¢ # j, hence by defining
c(i,j) = D(1i,v;) if i # j and ¢(7,¢) = 0 we obtain a metric that satisfies all our axioms.

Proof With A = {(e,0) : 0 C ¢.}, define E = {e : (Ve' < €)(Jo)[A(e,0) # A(€,0)]},

and let eg, e, ... be an enumeration of E. Set ¢; = ¢,,. 1 is one-one, as all dom(¢.) are
initial segments. If i # j then one can effectively find some o with A(e;, ) # Alej,0),
and the least prefix 7 of o such that A(e;, 7) # A(ej, 7). Then D(¢;, ;) = ‘ ; and ¢ can

be defined as described above. m
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Observe that the transition from ¢ to ¢ in this example is necessary. E.g., ¢ with ¢.(z) =1
if e € K, and 0 otherwise enumerates a class of total recursive functions. But the equality
problem of ¢ is not decidable, hence by Proposition 3.3 there is no recursive ¢ that
matches ¢.

4 Universal Metrics

As section 3 has shown, matching a recursive distance function — and, in fact, satisfying
axioms (A) and (C) — is only possible for a severely restricted class of numberings. This
reminds us of Rice’s theorem. The situation changes if we switch to compatibility. Our
main result in this section will be the existence of universal metrics.

Definition 4.1 A distance measure ¢* on IN is called universal iff every numbering ¢
can be recursively translated into a numbering 1 such that ¢, enumerate the same
functions, and v, ¢* satisfy axioms (A*), (B). A universal metric is a universal distance
measure which is a metric.

For a universal ¢* and for ¢ as in the definition, 1, ¢* are compatible. Also, by (A*),
Y (i.e., the mapping e — 1) is continuous with regard to the topologies generated by
c*, D*, respectively (see Remarks 2.7).

Our following construction will be based on an arbitrary total recursive, one-one, and
dense numbering. Families of functions that can be numbered this way are, e.g., the
polynomials or the primitive recursive functions.

Theorem 4.2 There are recursive universal metrics. A particular one can be constructed
from any total recursive, one-one, and dense numbering p by defining ¢*(7, j) = D(pi, p;)-
Moreover, from any numbering ¢ the corresponding numbering ¢ as well as a translation
from ¢ to ¥ can be obtained uniformly in an index of ¢.

Proof We show that ¢* as defined in the theorem has the required properties.

(1) ¢* is total recursive
If i = j then ¢*(4,5) = 0. If i # j then p; # p; , ¢*(4,j) > 0. The first x with p;(z) # p;(x)

can be found effectively, hence c*(i, j) = - can be computed from i, j.

x+1
(2) Construction of 1.
Let ¢ be given. 9 as demanded is constructed in stages s, together with the sets I, of
those indices 7 for which 1); has already been defined. Odd stages are used to ensure each
1; being defined, and the even ones to guarantee that every ¢, is equal to some 1); and,
furthermore, that (B) holds. We will use a total recursive enumeration pair of all pairs of
indices such that pair takes every pair as a value infinitely often.

Stage 0: vy = ¢, [p = {0}

Stage 2s + 1:  Let ¢ be the first index such that 1; has not been defined up to stage 2s,
and let k be the first index in I, such that
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(VK € Lny)[c*(i, k) < * (3, K')].

Define: ¢; = ), Iog11 = Ios U {3}

Stage 2s +2:  For pair(s) = (e, k): If k & Iy then do nothing. Otherwise let i be the
first index not in I, satisfying

c* (7'7 k) = D(¢e,25+17 wk,2s+1) and
(VK € Iys1)[c* (1, k') > D(¢e 2541, Vr25+1)]-

Define ¢; = ¢, los10 = Ios41 U {i}

(3) Each stage terminates.

This is immediate for stages 0 and 2s 4+ 1, and for the case k & I5;,1 in stage 2s + 2.

Otherwise, assume k € Iy, in stage 2s + 2. As P 9541, Yk 2s+1 are finite functions,

D(¢e 2541, Vk2s+1) = #1 > 0 for some unique x. As p is dense, there exists an i such that
1

pi(y) = pi(y) for all y < z and p;(x) # pr(x) for all k' € Iy, i satisfies ¢*(i, k) = —5 =
D(¢6725+1, d)k,Zs—I—l) and C*(i, ]{I,) Z D(¢e,25+1; ’ka72s+1) for all £’ S Igs+1. It follows that the

search for an appropriate 7 is successful and stage 2s 4+ 2 terminates.

(4) It is immediate from the construction that ¢* is a metric, that ¢ and ¢ enumerate the
same functions, and that ¢ can be translated into 1) by a total recursive function. Also,
an index for ¢ and likewise for a translating function can be uniformly obtained from an
index of ¢.

(5) 1, c* satisfy (A*).

Assume this is false. Then there is a first stage ¢ such that, for some indices 7, 7, 3, v;
have been defined at stage t and D*(¢;, ;) > ¢*(4, j). t = 0 is impossible, hence t = 2s+aq,
a € {1,2}. Without loss of generality, v; is newly defined at stage 2s 4+ a. Because of
D*(’Lpz, ”Lp]) > 0 we have ’Lpz 7£ 77[)]', hence Jj € I?s—l—a—l-

If @ = 1 then ¢, = ¢ for some k € I;. By the minimality of 2s + 1, D*(¢;, ;) =
D* (¢, ;) < ¢*(k,7), hence ¢*(i,j) < c*(k,j) and, by Proposition 2.2 (3), c¢*(i,k) =
maz{c*(i, j),c*(k,j)} = c*(k,j), hence ¢*(i,j) < ¢*(i,k). But this contradicts to the
choice of k as taking minimal value ¢*(i, k) among all ¢*(i, k'), k' € Iy,.

Otherwise a = 2. The algorithm chooses k € I,y with ¢*(i, k) = D(¢e25+1, Yk 2541)
D(d)z;wk) Z D*(@[)Z,’ka) and C*(i,kl) Z C*(i, k) for all I{II S Igs+1. As ] S 125+1, C*(Z,])
c*(i,k). By the assumption, D*(¢;, ;) > ¢*(i,7) = max{c*(i,j),c" (i, k)} > ¢*(j,k)
(Proposition 2.2 (3)). We have

(a) (k) < D* (i, 1))

Furthermore, D*(;, ) < ¢*(i,k) < ¢*(i,7) < D*(¢;,v;), so that, by Proposition 2.2
(3), D*(¥j, ¥x) = max{D* (s, ;), D* (s, vr) } = D* (4, 1;), and together with (a):

On the other hand it follows from the minimality of stage 2s + 2 and from 7,k € I5s11
that D*(¢y, ¢x) < c*(4, k).

(6) 1, c* satisfy (B).

For the sake of clarity, rewrite (B) as

>
>
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(Vk, ) (30)[i = by A (k1) < D, 1))]-

If D(¢, ;) = 0 then ¢, = ¢;, hence (B) is satisfied with ¢ = k.

Otherwise D(1y,1;) > 0. Let e be such that ¢, = ¢;. Then k € Ir; and D(ty 2541,
Pe2541) = D(¢g, ¢c) for almost all s. For infinitely many among these s, pair(s) = (e, k).
The i chosen in any corresponding stage 2s + 2 satisfies ¢; = ¢, = ¢; and c*(k,i) =
Dy, pe) = D (g, ;). m

What are necessary conditions on a metric to be universal? One such property is stated
in the next theorem.

Theorem 4.3 With regard to a universal metric ¢*, all indices are accumulation points.

Proof Let ¢* be universal and : € IN,r € ,r > 0 be given. Let ¢ be any total, one-one,
and dense numbering, and ¢ constructed to ¢ as in Theorem 4.2. By the density of ¢
and v, there exists j such that 0 < D(¢y,v;) < r. By (B) there is k£ with ¢; =
and c¢*(i,k) < D(4,v;). By (A) and as v is total, ¢*(i, k) > D(¢s, ) = D(,v;), thus
c*(i, k) = D(¢;, ;). It follows that 0 < ¢*(i,k) < r, i.e., k is in the r-neighbourhood of i. m

For purposes of further illustration we regard some simple metrics and ask what number-
ings can be compatible with them. It turns out that conditions of density of the metric
space alone do not suffice to imply universality of the metric. We list several more or
less dense metrics, only the last of them being universal. In particular, the rationals with
their natural metric — though a standard example of a dense space — do only allow for a
quite limited class of compatible numberings.

Examples 4.4

(a) Let qo,q,... be a one-one, recursive enumeration of the non-negative rationals and
define c(¢,7) = min{l,|¢; — ¢;|}. Then any numbering 1 satisfying axioms (A*), (B)
together with ¢ enumerates one single function, i.e., ¥; = ¢; for all ¢, j.

Our further examples are based on some recursive “alphabet” ¥ C IV and total one-one
numbering p of ¥*0%°. For specific choices of ¥, p, and ¢ defined by them, we obtain
results on any ¢ satisfying (A*), (B) together with ¢ as follows.

(b) X ={1},c¢(,5) = D(pi,p;). Then 1y, 1y, ... converges to a single partial recursive
function.

(c) ¥ =1{0,1},¢(i,5) = D(pi,pj). Then some partial recursive p1 magjorizes ¢ in the sense

that (Vi,z)[¢i(x) L = w(x) |l A ¢i(z) < p(x)]. In particular, if (Vz)(3i)[¢;(x) |] then
¥ is majorized by a total recursive function.

(d) ¥ = IN,c(i,j) = D(pi,pj). Then there is no restriction to F' = {¢; : i € IN}, cis
universal.
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Proofs (a): Assume by way of contradiction that F' contains two different functions.
Then there are x,y such that the sets

I={i:i(@)d=y}, J=1{j (@) T V () | # v}

are both non-empty, I N J =0, U J=IN. Foralli € I,j € J we obtain ¢(i,j) > x+r1
by (A*). Thus the sets {¢; : ¢ € I} , {¢; : j € J} must have a positive distance from
each other and there exists some ¢, not contained in their union. This contradicts to
I1UJ=1IN.

(b): It suffices to regard the special case p; = 1°0°. Then c(i,j) = m whenever
i # j. Define f(x) = 4pq1(x). Then for alli >z +1, ¢(i,i4+1) < 7 and thus, by (A*),
(Yi(x) T At () 1)V i(z) L = s (z) J. Hence (¢i(x) T A f(2) 1) V ¢iz) = f(2) |
for all x and all + > x + 1, i.e., 1) converges pointwise to f.

(c) For any x let g(x) be the first index such that (Vo € {0,1}**1) (3 < g(z))[o C pil.
We show

() (Vo) (V) (30 < g(@)[(ix) T APy (@) 1) V i(e) L= () 1.

This is clear if 1; € {tg, ..., Yy} Assume ¥; € {t)o,..., g }. For p;, there is some
o € {0,1}**! such that p; extends o. Define i := min{k : ¢ C p;} for this 0. Then
i < g(x) by choice of g. Axiom (A*) implies (¢;(y) T A;(y) 1) V ¥i(y) L= v;(y) | for
all y with yﬁ > c(4,7) = D(pi,pj), hence for all y < z (as D(p;,p;) < #2) Thus (x)
follows.

Dt by i) = | P4 ) i

we obtain a partial recursive function majorizing all ;.

(d) In this case, p is dense and the assertion follows by Theorem 4.2. m

To refine our results we present two additional constructions: First, of some ¢ and F
such that a K-recursive enumeration of F' is compatible with ¢, but no (computable)
numbering is; and second, of some F' and a family ¢, of metrics so that for each e some
numbering v, compatible with ¢, exists, but such 1. cannot be obtained uniformly in e.

Theorem 4.5 There is a metric ¢ such that the constant functions {0°,1%°,...} pos-
sess a K-recursive enumeration compatible with ¢, in fact, one that satisfies axioms
(Vi, 5)[D (i, ¢;) < ¢(i,7)] and (B), but no (computable) numbering of them is compatible
with c.

Proof Let S be a simple set. Our metric ¢ will have the following properties:
(a) Ifi ¢ S and j # i then c(i,j) =1

(b) Ifi,j € S and r > 0 then there are an n € IN and a sequence ko, ki, ..., ky, kni1 € S
such that i = kg, j = k,q1 and c(kp, kpy1) <7 form=0,...,n.

From (a), (b), the assertion follows:
Let ag, aq,... be a K-recursive enumeration, without repetition, of the complement of S.
Define the K-recursive enumeration v of the constant functions by
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o |07 ificS
ol (n+ D)™ ifi=a,.

If ¢; # 1; then at least one of 7,7 is not in S and ¢(7,7) = 1 by (a). Furthermore,
D(4;,v;) = 1 in this case. Hence c(i,j) = D(1;,v;) whenever v; # 1);, so that
D(, ;) < ¢(i,j) and (B) follow. (Remember that here, as all ¢; are total, (A) or
(A*) is (Vi, §)[D(s, ) < ¢(i,7)].) Assume that some (computable) numbering ¢ of the
constant functions, compatible with ¢, would exist. Then ¢; = ¢; for all 4, j € S: By (b),
there is a chain i = kg, k1,. .., kn, kny1 = J such that c(ky,, kpyr) < 1 for m =0,...,n;
by (A), then, D(éx,,, br,.,,) = 0, since the distance between constant functions is either
0 or 1; hence ¢; = ¢;. For i € S, then, the infinite r.e. set {j : ¢;(0) # ¢;(0)} is a subset
of the complement of S, in contradiction to the assumption that S is simple.

Construction of ¢:

Let R be some infinite recursive subset of S. Define v to be partial recursive and one-one
with dom(v) = S\ R, range(v) = IN. v can be extended to a computable and one-one
partial function p from IN to @ such that dom(u) = S, range(n) = {q: ¢ € @,q > 0},
and for all z € S, x € R implies p(x) ¢ IN. Define

0 ifi=7
c(i,j) = § min{l,|u(i) — p(j)|} ifi,j€Sandi#j
1 otherwise.

¢ is a metric: The triangle inequality is satisfied. So is the condition ¢(i,j) =0 & i = j:
If i = j then ¢(i,7) = 0 by definition, and if ¢ # j then, by definition of u, c(i,j) =
(i) = ()] > 0 or (i, j) = 1.

¢ is recursive: If ¢ = j then ¢(i,j) = 0. If i # j and 4,j ¢ R then ¢(i,j) = 1: This is by
definition the case if i ¢ S or j ¢ S, and for i,7 € S we obtain u(i) € IN, u(j) € IN,
p(i) # (), hence min{l, |u(i) — n(j)|} = 1. If i € R,j ¢ R then compute n € IN with
n < (i) < n+1. There are exactly two indices k, k" such that u(k) = n and p(k') = n+1.
Then c(i, k) = p(i)—n, c(i, k") = n+1—pu(i), so that ¢(7, j) can be computed by comparing
j with & and k'. Last, if 4,5 € R then u(i) |, p(j) J, and min{1, |u(i) — u(j)|} can be
directly evaluated.

Proof of (a), (b):

(a) is immediate from the definition of ¢. As for (b), let i, j,r be given. There is a chain

of non-negative rationals qo, . .., ¢n+1 such that gy = i, ¢,1 = j, and |¢n — @my1| < r for
m = 0,...,n. As range(u) contains all non-negative rationals as elements, ¢, = p(kp,)
for some k,,, for each m = 0,...,n+ 1. p is one-one, hence ky = 7,k,1 = j. Moreover

(k) kmy1) = min{1, |gm — Gmia]} < 7. m

Theorem 4.6 There is a uniformly recursive family of metrics ¢, such that, for each e,
the class of all constant functions possesses a recursive numbering ¢¢ compatible with ¢,
but it is impossible to obtain such numberings uniformly in e.

Proof The proof of Theorem 4.5 is modified in such a way that the new requirements are
met. Define sets
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R = {4n:ne€ N}
Se = {2n:neN}U{s:e€ K\ K}.

Thus in addition to the even numbers, S, contains those odd numbers s of stages in the
enumeration of K for which K;(e) # K(e). The sets S, are r.e. uniformly in e. Defining
¢e as in the proof of Theorem 4.5 but with S, instead of S, and repeating the argument
from there, we conclude that, for all e and any numbering ¢¢ compatible with c,, ¢f = ¢5
for all 7,5 € S..

Let a, be the first stage s such that K (e) = K(e). Then, for each e, the numbering ¢
of the constant functions, defined by

e = g if i =2(a.+j)+1
L 0 otherwise

is compatible with c,.

It remains to show that for no family of numberings ¢¢ with these properties it is possible
to uniformly compute an index of ¢¢ from e. Assume the contrary for {¢¢ : e € IN}. Then
g with g(e) = min{k : ¢%(0) # ¢5,1(0)} is recursive. As ¢f = ¢ for all 4, j € S, , g(e) or
g(e) + Lis not in S,. Thus by definition of the sets S, we obtain that K);1(e) = K(e)
for all e, so that K would be recursive. m

5 From Numberings to Metrics

The previous section dealt with the question: Given a metric ¢, which numberings are
compatible with ¢? In particular ¢ can be universal or, on the other hand, allow only
for quite special numberings. We will now consider the reverse question, namely, look
for metrics compatible with given numberings. As will turn out, acceptable numberings
always possess compatible recursive metrics. We need the following topological result.

Fact 5.1 Let T'= (IV, E) be a tree with recursive set £ C IV x IN of edges and let ¢ be
any computable function from F to {¢:q € @,0 < ¢ < 1}. Then ¢ can be extended to a
recursive metric on INV.

Proof Begin by defining ¢(j,i) = ¢(4,j) whenever (i,j) € F and ¢(i,i7) = 0 for all ¢. If
t # j then identify the unique sequence ag, ay, ..., a,+1 of nodes which without repetition
connects i to 7, i.e.,

g =1, A1 =]
(Vm € {0,....,n})[(am,tms1) € E V (ami1,am) € E|
(Vm,m' € {0,...,n+1})[m#m = an # amw).
Define ¢ (i,7) = c(ag, a1) + c(ay, az) + ... + c(an, apy1) and c(i, j) = min{c(i,j), 1}.

¢ is recursive and extends the original ¢ on the edges. c¢(i,7) = ¢(j,i) as the respective
sequences from ¢ to 7 and from j to ¢ differ from each other only by the ordering of their

21



elements. ¢(i,7) =0 < i = j is immediate. As for the triangle inequality, consider the
two sequences that connect ¢ to & and k to j, respectively. Then the desired sequence
connecting 7 to j is obtained by concatenating the two former ones and removing all
loops. It follows that ¢/(,j) < (i, k) + ¢/(k,j), and an easy calculation yields c(7, j) =
min{1,d (i,7)} < min{l,d (i, k)} +min{l,d(k,5)} = c(i, k) + c(k,j). m

Theorem 5.2 Every numbering that possesses a padding function is compatible with a
suitable recursive metric, in fact, axioms (A*), (B) can be satisfied. In particular, every
acceptable numbering is compatible with a recursive metric.

Proof Using some standard pairing function, we may assume that our padding func-
tion h is a “double padding” which strictly increases w.r.t. compressed triples: h :
IN* — IN, {e,a,b) < hle,a,b), (e,a,b) < (¢/,a’,b') implies h(e,a,b) < h(e',a’,b'). Thus,
Uh(eap) = Ve and range(h) is recursive. There exists the total recursive function g with

() = j it j & range(h)
g\ e if j =h(e,a,b) (for any a,b).

Define

E={(0,7): 7 & range(h),j # 0}y U{(i, h(e,i,b)) : e,i,b € IN}.

E is recursive and, by choice of h, determines a tree with root 0 and set of nodes IV.
Observe that for every i and e there are infinitely many j with (i,j) € E and 9; = ..
Define ¢ on E by

c(i,j) = D(¥i 4, ¥g(i).5)

and extend c to a recursive metric on IN x IV according to Fact 5.1. We show that ¢, c
satisfy the requirements in the theorem.

Axiom (A*): (A*) holds trivially if ¢ = j, so assume ¢ # j. Consider the unique sequence
i = ag,0y,...,0,+1 = J as in the proof of Fact 5.1. For each m, 0 < m < n, we

have D(Va, ams1> Volamer)ames) = DWans> Vgamsr)) = D(Wan,Vans,). By the triangle
inequality for D and as D(v;,1;) < 1:

D* (s, )

IN

D (v, v;)

n

mm{l, Z D(wama %m+1)}

m=0

min{lv Z D(wam,amﬂv wg(am+1),am+1 )}

m=0

= min{l, i c(am, Amy1) }

m=0

= ¢(i,7).

VAN

IN
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Axiom (B): If D(1;, ;) = 0 then ¢; = 1);, and k = i is the desired index. If D(t;, ;) > 0
then there is a stage s such that D(v;,v¢;:) = D(v;, ;) for all t > s. Choose b such
that h(j,i,0) > s, and k = h(j,4,0). Then ¢, = v; and c(i,k) = D(Vix, gy k) =
D(Yi g, Yik) = D(i,10;). m

Observe that from Theorem 5.2 we obtain again the result (Theorem 4.2) that an arbitrary
numbering ¢ can be effectively translated into some 1 enumerating the same family of
functions, such that there exists a recursive metric which with 1 satisfies (A*), (B). Just
define 1y = ¢., where (...) is a standard pairing function, and apply Theorem 5.2.

The following example shows that possessing a padding function is by far not a necessary
condition for a numbering to be compatible with an appropriate recursive metric, the
contrary can be true in a rather radical way.

Example 5.3 Consider F' = {0°1°° : i € IN} and the recursive metric ¢ where c(i, j) = 0
if i = j and m otherwise. Then for ¢ with ¢; = 0°1% we have ¢(i, j) = D(¢;,v;) =
D*(1;,15), so that all axioms in Definition 2.3 hold. But # is the only numbering of F
which with ¢ satisfies (A). Hence ¢ forces any compatible numbering of F' to be one-one

and forbids having a padding function.

Proof c(i, j) = D(¢;,¢;) = D*(;, ;) is immediate. Let ¢ be any numbering of {0°1% :
i € IN} which is different from ¢ and let m be minimal with the property that there
exists ¢ # m with ¢; = 0™1°°. Then by the minimality of m, ¢ > m for any such ¢. There
exist n > m and j > m with ¢; = 0"1%°. Then min{s,j} > m and c(4,j) = m <
L = D(0™1%°,0"1%°) = D(¢;, ¢;). As all functions in ¢ are total, it follows that ¢, ¢ do

m+1 : ]
not satisfy axiom (A). m

Y in this example, being total, is a “poor” numbering. Remember Proposition 3.5: A
one-one numbering containing all total recursive functions cannot be compatible with a
recursive distance measure.

6 Connections to Learning Theory

There are connections between numberings and Gold-style learning theory [3], [4], [7].
In particular, Wiehagen and Jung [18], [19] gave characterizations of the basic notions of
learning theory in terms of numberings. Kummer [8] characterized in terms of numberings
those enumerable classes of total functions which are co-learnable.

The fundamental notion of learning in the limit (“explanatory learning”, or just “Ex”)
goes back to Gold [7]: A machine M learns a class F' of total recursive functions iff for all
f € F, the function n — M(f(0)f(1)...f(n)) assigns to almost all n the same number
e, which is an index of f with respect to some given acceptable numbering ¢. Note that
M can be chosen total without losing any learning power, just by postponing any new
guess and repeating the old one until the computation in question has terminated. M
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finitely learns F iff for all f € F there is m such that M(f(0)...f(n)) =7 forn <m
and M(f(0)...f(m)) = e, where e is an index of f.

Theorem 6.1 If 1), ¢ satisfy axioms (A) and (C) via a recursive scaling h then the class of
all total functions in v is Ex-learnable. In particular, v cannot contain all total recursive
functions. As a consequence, if ¢ is one-one and v, ¢ are compatible then the class of
total functions in v is Ex-learnable, ¢ cannot contain all total recursive functions.

Proof For any i let g(i) be a program for the function
@q(iy(w):  Search for some j such that c(i,7) = 0 and (Vz < 2)[1);(2) 1]; output 1;(x).

Let a be defined by a(i,j) = min{x : h(=7) < c(i,7)} if ¢(i,j) > 0, and a(i,j) T
otherwise. Given some total recursive function as input, the learner produces a list R of
“removed indices”. For any current stage of R, g(i) is put out, where i = min{z : v ¢ R}.
The machine then searches for some input string o already present and for j, such that
(a) «¢(i,7) > 0,0(x) | for all x < (i, j), and (Vo < a(i,5))[¢;(z) | = o(x)] or
(b) there is some = € dom(c) such that ¢, (z) | # o(x),

and when successful, includes ¢ in R.

Let f be the input function. Then no index of f can be listed in R: If ¢ is listed in R
according to case (a) then there is ¢; with ¢(, j) > 0 and (Vo < (4, j))[v;(x) | = f(x)].
By (C), h(D(¢y,%;)) > ¢(i,7) > 0, hence there is an = < «(7,j) such that ¢;(z) 1
V i(x) L # f(x). If i is included in R by (b) then there are j,z with ¢(i, j) =0, ¢;(2) |
for all 2 < x and ¢;(z) # f(z). It follows by (A) that either v;(z) { = 1;(2) for all z < x
and hence 1;(z) | # f(x), or ¢;(2) 1 for some z < z. Thus, in both cases ¢; # f.

If f is contained in 1 then the output sequence will converge to some g(i) where i ¢ R,
©g) (@) = f(x) for all x € dom(py@)). Furthermore, c(i, j) = 0 for all indices j of f. For
any such j and any z, @4) on argument x will output ¢;(x) if computing ¢, has not
terminated (by some j') beforehand, hence py;) is total. In all, the learner converges to
an index of f. It follows that {t, : e € IN, 1, total} is Ex-learnable.

The last part of theorem follows by Proposition 2.4. m

As Gold [7] has shown, such a class cannot contain all total recursive functions. But
remember Theorems 3.1, 3.2: ¢ can contain REC (and, in fact, can enumerate all of
PREC and matching can be achieved) if the scaling in (C) is allowed to be K-recursive. As
Theorem 6.3 will show, even this becomes impossible if ¢ is required to be a pseudometric.
But first, we demonstrate that the scaling being recursive is in fact a critical property.

Example 6.2 The class F' = {f : f € REC, range(f) finite, Ynaosrange(s)) = f} is BEx-
learnable, but for no numbering ) containing F' and no recursive distance function ¢, (A)
and (C) are satisfied with recursive scaling h.

Proof The algorithm mapping o to max{c(x) : o(x) |} is clearly an Ex-learner for F.
Assume by way of contradiction that v, ¢ satisfy (A), (C) with recursive h and that v

24



contains F'. We will uniformly in ¢ construct functions ¢g;) such that (Vi)[@yu) € F| and
(Vi, 5)[@g() # 10s]. By the recursion theorem, for e with @ = @y(e), pe € F and ©e 1s not

in 1.

Given i, g(7) is such that ¢4; = lim, o, where the strings o, are defined as follows.
oo = max{2,i}
Os+1 -

With dom(o,) = {0,...,z}, define z := min{y : y > z A h(yﬁ) < 3} Search for j, ;'
such that

(Vy < 2)[i(y) L =os(y) A ¥p(y) L= 0s5(y)]
Vyle<y<z = ¢y) L=0]
Vylz<y <z = Pply) L=1].

Then define

. :{ Vi (0) ... ¢(z) ife(s,f) > (s, j)
st Vi (0) .. .pjr(x) if (s, 7) < c(s,]).

The search terminates: There are k, k' > max{2,i} such that ¢ = 0,0 %k, pp =
o517k, Then ¢, i € F and, by the assumption, there are j, j' so that 1}, ¢, extend
050777, 041777 respectively.

Obviously, ¢4 = lim, o, exists and is total. We show that (Vs)(Jy)[os(y) I A (¥s(y) T

V Ys(y) L # 05(y))], so that gy # s for all s follows. Regarding the definition of o4
above, we only discuss the case c(s 7) > c(s,7'), the other one being analogous.

Case 1: ¢(s,j) > 13- By (C), MD(¢s, 1)) > c(s,7), hence D(¢y, 1) > 5. Since
Yi(y) | forall y <z, ¥s(y) T Vos(y) L # ¥i(y) | for some y < z. Case 2: ¢(s,j) < ﬁ
Assuming (2 + 1) | leads to ¢s(2z + 1) # ¥j(z+ 1) V ¢s(2 + 1) # (2 + 1) If
e.g., ¥s(z +1) # (2 + 1) then, by construction, D(s,1);) = ﬁ, D()s, 1) < Z+3,
D(y;,v;) < #2 < ler37 c(s,j) < +2, in contradiction to (A). We proceed analogously
for ,(z + 1) # (2 + 1). It follows that ¢s(z +1) 7. =

We now prove the theorem announced above.

Theorem 6.3 Let ¢» be a numbering and c a recursive pseudometric such that v, c match.
Then the class of all total functions in v is Ex-learnable.

Proof Let g be defined as in the proof of theorem 6.1: To compute ¢yi)(x), search for
k with ¢(i,k) = 0 and (Vz < x)[¢x(2) }]; output ¢,(z). The learner M proceeds in a
similar way as there, enumerating a list R of removed indices. For any current stage of
R, ¢(7) is put out, where i = min{x : x ¢ R}. i is included in R if an input string o and
an index j are found such that ¢;(z) | = o(x) for all € dom(o) and c(i, j) > =

lo|+1°
If f = 4; then i is never removed Assume there were o, j with ¢;(z) | = o(x) = ¢;(z) for
all z € dom(o) and ¢(i,j) > \a\+1 By (B), there is k& with ¢, = v; and c(k, j) < D(1;, ¢;).
By (C), c(i,k) = 0. By the triangle inequality, c(i,j) < c(i, k) + c(k,j) = c(k,j) <

25



D(i,45). As thi(x) L= 1;(x) | for all @ < |o|, D(¢i,9;) < 1777 This contradicts to
c(i,5) > -

If ¢(4,7) > 0 for some j with ¢); = f then ¢ is at some time removed.

Assume that the process has converged to i ¢ R and that v; = f. Then c(i,j) = 0.

We show that o,;) = f. By construction, the amalgamation ;) is total. For any
x, the k found in the computation of ¢, (x) satisfies c(i,k) = 0 and ,(z) | for all

z < z. Hence D(¢y, V) < x+r1 , ¢(j, k) < c(i, k) +c(i,j) = 0, and by (A), D(¢;, ) <
ma:r({c)(j, k), D(1,05), Dk, Yx)} = D (¢, thr) < 5. It follows that t;(x) = ()
Py(i)(T). W

The converse of Theorem 6.3 is false, as will follow from Theorem 6.4 below. Here, a
class F' of total recursive functions is called reliably Ex-learnable iff it is Ex-learnable via
a machine M which for any total input function f either converges to a program of f or
else diverges, i.e., changes its hypotheses infinitely often.

Theorem 6.4 Let ¢/ be a dense numbering and ¢ a recursive pseudometric such that v, c
match. Then the class of total functions in v is reliably Ex-learnable.

Corollary 6.5 There are Ex-learnable classes F' of total recursive functions such that no
numbering ¢ which contains F' can match any recursive pseudometric c.

Proof of Corollary There exist dense classes F' of total recursive functions which are
Ex-learnable, but not reliably Ex-learnable [3], [10], [20]. m

Proof of Theorem 6.4 A modification ¢ of 1 is defined as follows. To compute ¢;(x),
search for some j such that c(i,j) < 2$+2, Vy < 2)[¢i(y) 4= v(y) 1], and (Vy <
20 + 2)[¢;(y) 1]; put ¢i(z) = 9;(x). Every ¢; has an initial segment as its domain,
furthermore ¢; is total if ¢); is.

If 1); is total then ¢; = 1;: By way of contradiction, let :1: be minimal with ¢;(x) # 1;(z).
We have ¢;(x) = 9;(x) for some j with ¢(i,j) < 2x+2, Vy < 2)[¥j(y) = ¢ily) =
Yi(y)], and (Vy < 2z + 2)[¢;(y) 1]. As ¢ is dense, ¢ contains a total function g such
that g(y) = ¢,(y) for all y < 2z + 2. By (B) there is an index k with ¢, = ¢ and
c(j, k) < D(¥5,9) < 55 Together Wlth c(i,J) < 575 we conclude ¢(i, k) < =5 by the
triangle inequality, hence D (¢, %) < 17 by (A). It follows that ¢;(z) = ¢k(x) = ¥;(x)

in contradiction to the assumption.

The learning machine again proceeds by collecting forbidden indices in the list R. For any
current stage of R, h(7) is put out, where i = min{z : * ¢ R} and h is a one-one recursive
translation of ¢ into ¢. ¢ is included in R if for some input string o already present

(a)  (30)lgi(x) L # o(w) ] or
(b)  (F2)(Fj)le(i,j) = g A (Vy < 22+ 2)[Y(y) L= o(y) ).
Let f be the input function.
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If f = 4, then 7 is never included in R. ¢ can certainly not be included in R by (a),
as ; = ¢;. Assume i were included in R by (b). For the j found, there is k with
VY = and c(k, 7) < D(v4, 1), by (B). Furthermore, ¢(7, k) = 0 by (C), so that (7, ) <
c(i, k) + c(k, j) < D(1;,1;) follows, hence D(i;,1;) > 5= for the = found in (b). This

contradicts to (Vy < 2z +2)[i(y) L =0o(y) = f(y)] in?g)%

It remains to show that each ¢ with ¢; # f will at some time be removed. This is immediate
if (3z)[pi(z) L # f(x)], by (a). Otherwise, ¢; is partial, dom(¢;) = {y : y < x} for some =,
and (Vy < 2)[¢;(y) L = f(y)]. By definition of ¢;(x), there is no j such that ¢(7, j) < ﬁ,
(Vy < 2)[¢i(y) = ¥;(y) }] and (Vy < 2z + 2)[¢);(y) }]. But as ¢ is dense, there exists j

with (Vy < 2z + 2)[¢);(y) L= f(y)]. This j also satisfies (Vy < 2)[¢;(y) L= ¢i(y)]. It
follows that ¢(i,5) > since otherwise ¢;(x) would be defined. Thus, i is included in

R by (b).

In all, for any input f, the learning algorithm either converges to the program h(i) for
¢; = f or else diverges, as all indices 7 are successively removed and h is one-one. m

_1
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In our next theorem, we consider recursively enumerable families of total recursive func-
tions. It follows from Kummer [8] and from our characterization in part (a) below that,
for such a family F', every numbering of F' possesses a compatible pseudometric iff F' is co-
learnable with respect to these numberings. Here, F' is co-learnable w.r.t. the numbering
Y of F if, for all f € F, there is e such that {M(f(0)...f(n)) :n e IN} = (INU{?})\{e}
and ¢, = f. Furthermore (Kummer [8]), F' is finitely learnable iff F' is effectively discrete,
i.e., uniformly in an index of a numbering, from any numbering ) of F' and any 7 a string
o can be effectively determined such that o T ¢; A (Vj)lo T ¢; = ¢; = ¢;]. An
equivalent definition for F' being effectively discrete is that there is a recursively enumer-
able set {5 : i € IN} of strings (where h € R and § is a canonical numbering of the
finite functions) such that (Vf € F)(3i)[0nsy T f A (Vg € F)[dns) T g = f = g]], and
(Vf,g € F)(Vi)[(Onay E f A by © g) = f = g]. Using a result by Selivanov [16],
Freivalds, Kinber, and Wiehagen [5] proved that a family F of total recursive functions is
effectively discrete iff the equality problem for functions in F' is uniformly decidable w.r.t.
numberings of F'. Theorem 6.6(b) extends this characterization.

Theorem 6.6 Let F' be a recursively enumerable class of total recursive functions.

(a) The following statements are equivalent:

— Every numbering of F' has a recursive equality problem.

— For every numbering ¢ of F' the pseudometric dy,, where dy (4, j) = D (¢4, 1),
is computable.

— For every numbering of F', there is a compatible distance measure.
(b) The following statements are equivalent:

— F'is effectively discrete.

— The equality problem of numberings of F' is uniformly recursive with respect
to the numberings.
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— The pseudometrics dy, are uniformly computable w.r.t. indices of numberings
Y of F.

— For every numbering of F', there uniformly exists a compatible recursive dis-
tance measure.

Proof (a) If the equality problem of ¢ is recursive then dy, is a recursive pseudometric
and satisfies all axioms in Definition 2.3, as all 1; are total. It remains to show that,
conversely, if some 1 enumerating F' possesses a recursive compatible distance measure
then the equality problem of ¢ must be recursive. This will be done in two steps: We
show that (1) if 1) possesses such ¢ then F' is discrete (with respect to D) and (2) it then
follows that equality in 1) is recursive.

Ad (1). Assume that F' is not discrete and w.l.o.g. let 0°° be an accumulation point. Let
B be any r.e., non-recursive set. We will construct a numbering ¢ of F' such that, for all
07,
(x) 4,J€EBNi#] = 1;#; and

1¢ B & 1 =0%.
Then assume that there would exist a recursive distance measure ¢ compatible with .
By (A), (B), (Vi,j)i #5 N j € B = c(i,5) = D(¥i,v;)], as j is the only index for
;. It follows that B would be recursive: Fix some ¢ ¢ B. Given j, if ¢(i,j) = 0 then
D(¥s,95) = 0, j & B. If ¢(4,j) > 0 then test whether (3x)[=5 > ¢(4,7) A ¢;(z) > 0]. If
so then v; # 0,7 € B. If not then ¢(i, j) > D(4;,v;), hence j ¢ B.
Construction of . We may assume that F' is given by a one-one numbering ¢, and
po = 0°°. Let B be represented as B = |J; B; where By is recursive and infinite, and
B C B,.;. In our construction, indices e for ¢ will become marked as “used” and (some)
indices ¢ for ¢ as “defined”.

Initialization: v¢;(x) = 0 for all 4,z with i & B,; mark 0 as “used”. (Thus ¢; = 0% = ¢,
is readily defined if i ¢ B, without ¢ being marked as “defined”.)

Enumerate B. For any ¢ € B appearing, if 7 is not marked as “defined” so far, look for
the first e such that e is not marked “used” and ¢, extends the initialization of ;. (No
proper extending is necessary if i € By.) ¢, exists since 0 is an accumulation point.
Define v; = ¢, mark i as “defined” and e as “used”. Furthermore, for all ¢’ < e that
are not marked “used”, find elements ¢/ € By not already marked “defined” and define
in a one-one manner ¥; = ¢.; mark those i’ as “defined” and €' as “used”. (This is to
guarantee that every ¢, becomes contained in 1).)

By construction, 1 satisfies (k).

Ad (2). We make use of a result by M. Kummer (Lemma 8 in [8]). A set A is said to be
a weak representative for ¢ if

(1) A is recursively enumerable,

() (Vi) (F7) & A A ¢ = il
(111) (Vi)[if there are infinitely many j with ¢); = ¢; then at least one of them is in A].
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Kummer’s result is that if ¢ has a weak representative then the equality problem of 1
is recursive. We show that from our assumptions on 1 above the existence of a weak
representative follows.

Define A to be the set of all indices 7 such that

(V5 <0)(32)[4; (x) # i(x)] and
(35 > )i, g) =0V (c(i,5) > 0 A (Vo < Z55)[Whil@) = ¢5(2)])].

A is obviously r.e. As for (11), take some 7. If there is j # ¢ with 1); = ¢; then because
of the first condition, one of 7,7 is not in A. Otherwise 7 is the only index of v; and by
(A), (B), c(i,j) = D(1;, ;) for all j. In particular, for all j > i, ¢(4,5) = D (1, ;) > 0,
and ¢;(z) # ¢;(z) for v = ﬁ — 1, so that ¢ does not satisfy the second condition,
hence i ¢ A. In both cases, (11) holds. At last to show (111), consider any i,j such
that j > i and ¢; = ;. If ¢(i,j) = 0 then ¢ is enumerated in A. If ¢(i,7) > 0 then
(Vo < - ” )[%( ) = ¥j(x)] and 7 is also enumerated in A.

(b) If F is effectively discrete then clearly the equality problem of numberings of F
is uniformly decidable in an index of the numbering. Also, analogously to part (a), it
follows from the uniform recursiveness of equality in F' that the pseudometrics dy can
be computed uniformly in an index of 1. Each d, together with 1 satisfies all axioms
in Definition 2.3. It remains to show that if there uniformly exist compatible distance
measures for the numberings of F' then F' is effectively discrete.

Let {¢°: e € IN} (that is, the corresponding universal function) be an acceptable num-
bering of the two-place p.r. functions. By assumption, there is a partial recursive v such
that if ¢° is a numbering of F' then v(e) | and ¢, = #"® is the characteristic function
of equality in ¢°. The function h appearing in the definition of effective discreteness is
obtained from a fixed, one-one numbering 1 of F'. We define a recursive functlon f enu-
merating a family ¢/, i € IN, of numberings. ¢]+1 = 1p; for all ¢, 7. qﬁo is defined
separately where, by the recursion theorem, we may use f in the definition.

D (z) = () if (0,0 +1) T or 0 < cpae(0,i+1) | < A5 If this is true for

all « then ¢£(i) = 1;. Otherwise there is the first © = s; such that cq),,; (0,7 + 1) | and
cr)(0,1+1) =0 or cp(0,2+1) > o . Look for the first j # i such that ¢;(z) = ()
for all < s;. If such a j is found, define ¢ (x) = 1;(x) for all x > s;, otherwise
&1V () 1 for all 7 > s;.

No qﬁof(i) can be total. Assume that qﬁof(i) would be total because s; has never been found.
Then ¢! = ¢,. It follows that ¢/® is a numbering of F, hence cr@ (0, + 1) | and
0 < cppy(0,i4+1) < #1 for all =, which is impossible. Second, assume that s; has been

found and qﬁof(i) would be total. Then ¢£(i) = ¢, for some j # i, again ¢/ () enumerates
F and cp)(0,2 4+ 1) | ¢p4)(0,i + 1) = 0 is impossible by (A), as % # ;. Hence
Cf(z)(oaZ + ]-) > Siil anda by choice of %; Cf(z)(OJZ + 1) > D(¢0(Z ¢’L+1) (B) there
would exist some k with gb{( ¢Z+1 and c(;(0, k) < D(gbO ¢z—|—1) which is impossible

as ¢ is one-one and cy(;)(0,i 4 1) > D(¢(’;(i), qﬁszl))

Thus, for all i, gbO ) is a string. Given z the algorithm to find s; terminates and h(i) is
defined to be the canomcal index of gbO
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The measures dy, in Theorem 6.4 are pseudometrics. It is not possible, in general, to
find metrics compatible with the numberings . Consider ¢ with ¥y = ¢¥; = 0> and
Y; = 0°1%° for i > 1. Then for any pseudometric ¢ compatible with v, ¢(i,j) = ]ﬁ for
i <1andj> 1. It follows by the triangle inequality that ¢(0,1) < ]% for all j, that is,
that ¢(0,1) = 0.
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