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TWO CARDINALS MODELS WITH GAP ONE REVISITED
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Abstract. We succeed to say something on the identities of (µ+, µ) when µ > θ >

cf(µ), µ strong limit θ-compact or even µ limit of compact cardinals. This hopefully

will help to prove that

(a) the pair (µ+, µ) is compact and

(b) the consistency of “some pair (µ+, µ) is not compact”, however, this has not
been proved.
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Annotated Content

§0 Introduction

[We give the basic definitions.]

§1 2-simplicity for gap one

[We prove that if µ = 2<µ then the family of identities of (µ+, µ) is 2-
simple. So this applies to µ singular strong limit but also, e.g., to triples
(µ+, µ, κ), µ = 2<µ > κ.]

§2 Successor of strong limit above supercompact:2-identities

[Consider a pair (µ+, µ) with µ strong limit singular > θ > cf(µ), θ a
compact cardinal. We point out quite simply 2-identities which belong to
ID2(µ

+, µ) but not to ID2(ℵ1,ℵ0).]
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§0 Introduction

There has been much work on κ-compactness of pairs (λ, µ) of cardinals, i.e.,
when: if T is a set of first order sentences of cardinality ≤ κ and every finite subset
has a (λ, µ) mod M (i.e., ‖M‖ = λ, |PM | = µ for a fixed unary P ). Then T has a
(λ, µ)-model.

A particularly important case is λ = µ+ in which case this can be represented
as a problem on the κ-compactness of the logic L(Qcard

λ ), i.e., (Qcard
≥λ x)ϕ says that

there are at least λ element x satisfying ϕi. We deal here only with this case. See
Furkhen [Fu65], Morley and Vaught [MoVa62], Keisler [Ke70], Mitchel [M1]; for
more history see [Sh 604].

Now two cardinal theorems can be translated to partition problems: see [Sh 8],
[Sh:E17], lately Shelah and Vaananan [ShVa 790].

Restricting ourselves to pairs (µ+, µ), the identities of (ℵ1,ℵ0) were sorted out in
[Sh 74], but we do not know of the identities of any really different pair (µ+, µ), i.e.,
one for which (ℵ1,ℵ0) 9 (µ+, µ). We know of some such pairs is suitable set theory.
By Mitchel (ℵ2,ℵ1) after suitably collapsing of a Mahlo strongly inaccessible to ℵ2.
The other, when there is a compact cardinal in (cf(µ), µ) by Litman and Shelah.
So it would be nice to know (taking the extreme case).

0.1 Question: Assume µ is a singular cardinal the limit of compact and even super-
compact cardinals.
1) What are the identities of (µ+, µ)?
2) Is (µ+, µ)ℵ0-compact (equivalently µ-compact)?

Note that though we already know that there are some identities of (µ+, µ) which
are not identities of (ℵ1,ℵ0) we have no explicit example. We give here a partial
solution to 0.1(1) by finding families of such identities.

Another problem is consistency of failure of compactness.
In [Sh 604] we have dealt with the simplest case for pairs (λ, µ) by a reasonable
criterion: including no use of large cardinals. From another perspective the simplest
case is the consistency of non compactness of L(Q),Q one cardinality quantifier,

and the simplest one is Q = ∃≥µ+

. So we are again drawn to pairs (µ+, µ), that is
gap one instead of gap 2 as in [Sh 604], so necessarily we need to use large cardinals
as if, e.g., ¬0# then every such pair is compact.

0.2 Definition. 1) A partial identity1 s is a pair (a, e) = (Doms, es) where a is a
finite set and e is an equivalence relation on a subfamily of the family of the finite
subsets of a, having the property

1identification in the terminology of [Sh 8]
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b e c⇒ |b| = |c|.

The equivalence class of b with respect to e will be denoted b/e.
1A) We say s is a full identity or identity if Dom(e) = P(a).
1B) We say that partial identities s1 = (a1, e1), s2 = (a2, e2) are isomorphic if there
is an isomorphism h from s1 onto s2 which mean that h is a one-to-one function
from a1 onto a2 such that for every b1, c1 ⊆ a1 we have (b1e1c1) ≡ h(b1)e2h(b2) (so
h maps Dom(e1) onto Dom(e2)). We define similarly “h is an embedding of s1 into
s2.
2) We say that λ→ (a, e)µ, if (a, e) is an identity or a partial identity and for every
function f : [λ]<ℵ0 → µ, there is a one-to-one function h : a→ λ such that

b e c⇒ f(h′′(b)) = f(h′′(c)).

(Instead Rang(f) ⊆ µ we may just require |Rang(f)| ≤ µ, this is equivalent).
3) We define

ID(λ, µ) =: {(n, e) : n < ω & (n, e) is an identity and λ→ (n, e)µ}

and for f : [λ]<ℵ0 → X we let

ID(f) =: {(n, e) :(n, e) is an identity such that for some one-to-one function

h from n = {0, . . . , n− 1} to λ we have

(∀b, c ⊆ n)(b e c⇒ f(h′′(b)) = f(h′′(c)))}.

Clearly two-place functions are easier to understand; this motivates:

0.3 Definition. 1) A two-identity or 2-identity2 is a pair (a, e) where a is a finite
set and e is an equivalence relation on [a]2. Let λ → (a, e)µ mean λ → (a, e+)µ
where be+c↔ [(bec) ∨ (b = c ⊆ a)] for any b, c ⊆ a.
2) We defined

ID2(λ, µ) =: {(n, e) : (n, e) is a 2-identity and λ→ (n, e)µ}

we define ID2(f) when f : [λ]2 → X as

2it is not an identity as e is an equivalence relation on too small set but it is a partial identity
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{

(n, e) :(n, e) is a two-identity such that for some h,

a one-to-one function from {0, . . . , n− 1} into λ

we have {ℓ1, ℓ2}e{k1, k2} implies that ℓ1 6= ℓ2 ∈ {0, . . . , n− 1},

k1 6= k2 ∈ {0, . . . , n− 1} and f({h(ℓ1), h(ℓ2)}) = f({h(k1), h(k2)})

}

.

3) Let us define

ID⊛

2 =: {(n2, e) : (n2, e) is a two-identity and if

{η1, η2} 6= {ν1, ν2} are ⊆ n2, then

{η1, η2}e{ν1, ν2} ⇒ η1 ∩ η2 = ν1 ∩ ν2}.

4) In parts (1) and (2) we may replace 2 by k < ω (only k < |as| is interesting) and
by (≤ k).

0.4 Discussion: By [Sh 49], under the assumption ℵω < 2ℵ0 , the families ID2(ℵω,ℵ0)
and ID⊛

2 coincide (up to an isomorphism of identities). In Gilchrist and Shelah
[GcSh 491] and [GcSh 583] we considered the question of the equality between these
ID2(2

ℵ0 ,ℵ0) and ID⊛

2 under the assumption 2ℵ0 = ℵ2. We showed that consistently
the answer may be “yes” and may be “no”.

Note that (ℵn,ℵ0) 9 (ℵω,ℵ0) so ID(ℵ2,ℵ0) 6= ID(ℵω,ℵ0), but for identities for
pairs (i.e. ID2) the question is meaningful.

We can look more at ordered identities

0.5 Definition. 1) An ord-identity or order identity is an identity s such that as ⊆
Ord or just: a is an ordered set.
2) λ →or (s)µ if s is an ord-identity and for every c : [λ]<ℵ0 → µ we have s ∈
OID(c), see below (equivalently Dom(c) = [λ]<ℵ0 , |Rang(c)| ≤ µ).
3) For c : [λ]<ℵ0 < µ let OID(c) = {(a, e) : a is a set of ordinals and there is an
order preserving function f : a→ λ such that b1eb2 ⇒ c(f ′′(b1)) = c(f ′′(b2))}.
4) OID(λ, µ) = {(n, e) : (n, e) ∈ OID(c) for every c : [λ]<ℵ0 → µ we say (n, e) ∈
OID(c)}.
5) Similarly OID2, OIDk, OID≤k.

Of course,
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0.6 Claim. 1) ID(λ, µ) can be computed from OID(λ, µ).
2) Let a be a finite set of ordinals and e a function. If (a, e) is an identity, a a set
of ordinals and λ > µ, then (a, e) ∈ ID(λ, µ) iff for some permutation π of a we
have (a, eπ) ∈ OID(λ, µ) where eπ = {(b, c) : (π′′(b), π′′(c)) ∈ e}.
3) Let A be a set of ordinals, (a, e) an ord-identity and c a function with domain
[A]<ℵ0 . Then (a, e) ∈ ID(c) iff for some permutation π of a, (a, eπ) ∈ OID(c).
4) Similarly for 2-identities and k-identities and (≤ k)-identities and partial iden-
tities.

0.7 Claim. For n ∈ [1, ω) and s an ordered partial identity then there is a first
order sentence ψs such that: ψs has a (µ+n, µ)-model iff s /∈ OID(µ+n, µ).

Proof. Easy as for some first order ψ sentence if M is a (µ+n, µ)-model of ψ then
<M is a linear order of M (of cardinality µ+n) which is µ+n-like (i.e. every initial
segment has cardinality). �0.7

We define simplicity:

0.8 Definition. 1) For k ≤ ℵ0, we say (λ, µ) has k-simple identities when (a, e) ∈
ID(λ, µ) ⇒ (a, e′) ∈ ID(λ, µ) whenever:

(∗)k a ⊆ ω, (a, e) is an identity of (λ, µ) and e′ is defined by

be′c iff |b| = |c| & (∀b′c′)[b′ ⊆ b & |b′| ≤ k & c′ = OPc,b(b
′) → b′ec];

recall OPA,B(α) = β iff α ∈ A & β ∈ B & otp(α ∩ A) = otp(β ∩B).

2) We define “(λ, µ) for k-simple ordered identities”.

We can ask
0.9 Question: 1) Define reasonably a pair (λ, µ) such that consistently

⊛ ID(λ, µ) is not recursive

⊛′ ID(λ, µ) is not, in a reasonable way, finitely generated.

2) Similarly for ID2(λ, µ).
3) Restrict yourself to (µ+, µ).
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§1 2-simplicity for gap one

1.1 Claim. 1) If µ is strong limit singular then ID2(µ
+, µ) is 2-simple.

2) If µ = 2<µ and c0 : [µ+]<ℵ0 → µ then we can find c∗ : [µ+]2 → µ such that:

(α) if n ∈ [2, ω) and α0, . . . , αn−1 < µ+ are with no repetitions and β0, . . . , βn−1 <
µ+ are with no repetitions and ℓ < k < n ⇒ c∗{αℓ, αk} = c∗{βℓ, βk}
then c0{α0, . . . , αn−1} = c0{β0, . . . , βn−1} and even c∗{α0, . . . , αn−1} =
c∗{β0, . . . , βn−1}

(β) if in addition α0 < α1 < . . . < αn−1 then β0 < β1 < . . . < βn−3 <
βn−2, βn−3 < βn−1.

1.2 Remark. 1) We may wonder what is the gain in 1.1(2) as compared to 1.1(1),
as if µ = 2<µ is regular then we know all relevant theory on (µ+, µ)? The answer
is that it clarifies identities of triples (µ+, µ, κ), e.g.

(a) (µ+, µ, κ), µ strong limit singular > κ ≥ cf(µ)

(b) (µ+, µ, κ), µ = µiω(κ).

2) Replacing µ+, 2 by µ+k, k + 1 ≥ 2 is similar and easier.

Proof. 1) By part (2).
2) By ⊡1 −⊡5 below the claim is easy (see details in the end).

⊡1 There is c1 : [µ+]2 → µ such that if α0 < α1 < α2 < µ+ and β0, β1, β2 < µ+

are with no repetitions and c1{βℓ, βk} = c1{αℓ, αk} for ℓ < k < 3 then at
least two of the following holds β0 < β1, β0 < β2, β1 < β2.

[Why? Let ηα ∈ µ2 for α < µ+ be pairwise distinct and for α 6= β < µ+ let
ε{α, β} = Min{ε : ηα ↾ ε 6= ηβ ↾ ε} and define the function c′1 with domain [µ+]2

by c′1{α, β} = {ηα ↾ ε{α, β}, ηβ ↾ ε{α, β}}, now |Rang(c′1)| ≤ µ holds because
µ = 2<µ. For α 6= β, let c′′1{α, β} be 1 if (ηα <lex ηβ) ≡ (α < β) and 0 otherwise
(the Sierpinski colouring). Lastly, define c1 by c1, c1{α, β} = (c′1{α, β}, c

′′
1{α, β}),

it is a function with domain [µ+]2 and range of cardinality ≤ µ and easily it is as
required.]

⊡2 for every c : [µ+]<ℵ0 → µ there is c2 : [µ+]2 → µ such that: if n ≥ 2, α0 <
α1 < . . . < αn−1 < µ+, β0 < β1 < . . . < βn−1 < µ+ and ℓ < k < n ⇒
c2{αℓ, αk} = c2{βℓ, βk} then c{α0, . . . , αn−1} = c{β0, . . . , βn−1}.
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[Why? We are given c : [µ+]<ℵ0 → µ and for each α < µ+ let fα be a one-to-one
function from α onto the ordinal |α| ≤ µ and we shall use those fα’s also later.
We define an equivalence relation E on [µ+]2

(∗) for α1 < β1 < µ+ and α2 < β2 < µ+ we have {α1, β1}E{α2, β2} iff

(a) fβ1
(α1) = fβ2

(α2) and

(b) for any n < ω and γ0 < . . . < γn−1 < fβ1
(α1) we have

c{α1, β1, f
−1
β1

(γ0), . . . , f
−1
β1

(γn−1)} = c{α2, β2, f
−1
β2

(γ0), . . . , f
−1
β1

(γn−1)}

and similarly if we omit α1, α2 and/or β1, β2.

So [µ+]2/E has cardinality ≤ µ>2 = µ and let c2 : [µ+] → µ be such that
c2{α1, β1} = c2{α2, β2} iff {α1, β1}/E = {α2, β2}/E. We now check that it is
as required in ⊡2. Let n, 〈αℓ : ℓ < n〉, 〈βℓ : ℓ < n〉 be as in ⊡2; so ℓ < k <
n ⇒ c2{αℓ, αn} = c2{βℓ, βn}, hence by (∗)(a) above (for k = n − 1) we have
ℓ < n − 1 ⇒ fαn−1

(αℓ) = fβn−1
(βℓ), call it γℓ. Let ℓ(∗) < n(∗) be such that

γℓ is maximal. Now apply (∗)(b) with αℓ(∗), αn−1, βℓ(∗), βn−2 here standing for
α1, β1, α2, β2 there and we get the desired result.]

⊡3 In ⊡2, using fα : α → µ as in its proof, we have c{α0, . . . , αn−1} =
c{β0, . . . , βn−2} also when

(∗) n ≥ 2, α0 < α1 < . . . < αn−3 < αn−2 < αn−1 < µ+, β0 < β1 < . . . <
βn−3 < βn−1 < βn−2 and ℓ < n − 2 ⇒ fαn−1

(αℓ) = fαn−2
(αℓ) and

ℓ < k < n⇒ c2{αℓ, αk} = c2{βℓ, βk}.

[Why? Just the same proof.]

⊡4 there is c4 : [µ+] → µ such that if α0 < α1 < α2 < µ+ and β0, β1, β2 < µ+

with no repetitions, c4{βℓ, βk} = c4{αℓ, αk} for ℓ < k < 3 then β0 < β1 &
β0 < β2.

[Why? For α < β < µ+ we let c′{α, β} = {fβ(γ) : γ < α & fβ(γ) < fβ(β)} and
let c4{α, β} = (c′{α, β}, c1{α, β}, fβ(α)) where c1 is from ⊡1 and 〈fγ : γ < µ+〉 is

from the proof of ⊡2. Clearly |Rang(c′)| ≤
∑

ζ<µ

2|ζ| = µ hence |Rang(c4)| ≤ µ3 = µ.

If αℓ, βℓ(ℓ < 3) form a counterexample, then c1{αℓ, αk} = c1{βℓ, βk} for ℓ < k < 3
hence by ⊡1 we have four cases according to which one of the inequalities βℓ <
βk, ℓ < k < 3 fail. So the proof of ⊡4 splits to three cases.

Case 0: β0 < β1 < β2.
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Trivial: the desired conclusion holds.

Case 1: β1 < β0 so β1 < β0 < β2.
Let ζℓ = fα2

(αℓ) for ℓ = 0, 1 hence ζ0 6= ζ1 as fα2
is one to one and ζℓ = fβ2

(βℓ).
Now on the one hand if ζ0 < ζ1 then c

′{α1, α2} 6= c′{β1, β2} (as ζ0 ∈ c′{α1, α2}, ζ0 /∈
c′{β1, β2}), contradiction. On the other hand if ζ1 < ζ0 then c

′{α0, α2} 6= c′{β0, β2}
(as ζ1 ∈ c′{β0, β2}, ζ1 /∈ c′{α0, α2}), a contradiction, too.

Case 2: β2 < β0.
Then at least one of β1 < β0, β2 < β1 hold contradicting ⊡1, (i.e., the case we

are in).

Case 3: β2 < β1.
By ⊡1 we have β0 < β2 < β1.
This is O.K. for ⊡4.]

⊡5 for every c : [µ+]2 → µ there is c5 : [µ+]2 → µ such that

(a) c5{α1, β1} = c5{α2, β2} ⇒ c2{α1, β1} = c2{α2, β2} where c2 is from
⊡2 (so also ⊡3)

(b) there are no α0 < α1 < α2 < µ+ and β0 < β1 < β2 < µ+ such that
fα2

(α0) 6= fα1
(α0), c5{α0, α1} = c5{β0, β2}, c5{α0, α2} = c5{β0, β1}

and c5{α1, α2} = c5{β1, β2}

(c) c5{α1, β1} = c5{α2, β2} ⇒ c4{α1, β1} = c4{α2, β2} where c4 is from
⊡4.

[Why? Let κ = cf(µ) ≤ µ and µ =
∑

i<κ

λi be such that if µ is a limit

cardinal then λi is (strictly) increasing continuous and if µ is a successor
cardinal then µ = λ+ and λi = λ for i < κ. We can find d : [µ+]2 → κ and
ḡ such that

⊛0 (i) for β < µ+, i < κ the set Aβ,i =: {α < β : d{α, β} ≤ i} has
cardinality ≤ λi and

(ii) if α < β < γ < µ+ then d{α, γ} ≤ max{d{α, β}, d{β, γ}}

(iii) ḡ is a sequence 〈gα : α < µ+〉

(iv) gα : α→ µ is one to one and
λ+i < µ & i < κ & α < β ⇒ ((gβ(α) < λ+i ) ≡

(d{α, β} ≤ i))

(v) if α < β, d{α, β} = i and λ+i = µ then gβ(α) < d{α, β}.
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[Why we can find them? By induction on β < µ+ by induction on i < µ for
α = f−1

β (i) we choose d{α, β} and gβ(α) as required.]

Define the functions c′6 and c′7 with domain [µ+]2 as follows: if α < β then
c′6{α, β} = {(t, ζ0, ζ1) : ζ0, ζ1 ≤ gβ(α), t < 2 and t = 0 ⇒ g−1

β (ζ1) < gβ(ζ2), t =

1 ⇒ gβ(ζ1) > gβ(ζ2)} and c′7{α, β} = {(t, ζ, ξ) : ζ ∈ λ+
d{α,β} ∩ Rang(gα) and

ξ ∈ λ+
d{α,β} ∩ Rang(gβ) and [λ+

d{α,β} = µ ⇒ ζ < d{α, β} & ξ < d{α, β}] and

g−1
α (ζ) < g−1

β (ξ) & t = 0 or g−1
α (ζ) = g−1

β (ξ) & t = 1 or g−1
α (ζ) > g−1

β (ξ) & t =

2}.
Now for α < β < µ+ we define c′5{α, β} ∈ Π{λ+j : j ≤ d{α, β}}, we do this by

induction on β and for a fixed β by induction i = d{α, β} and for a fixed β and i
by induction on α.
Arriving to α < β so ζ < λ+

d{α,β}, for each j ≤ d{α, β}, let (c′5{α, β})(j) be the

first ordinal ξ < λ+j such that:

⊛1 if γ < β & d{γ, β} ≤ j & (d{γ, β} = d{α, β} ⇒ γ < α) then

(c′5{α, γ})(j) < ξ.

Clearly possible. The colouring we use is c5 where for α < β < µ+ we let c5{α, β} =
(d{α, β}, gβ(α), fβ(α), c2{α, β}, c

′
5{α, β}, c

′
6{α, β}, c

′
7{α, β}, c4{α, β}), recalling c4 is

from ⊡4 and c2 is from ⊡2. Obviously, |Rang(c5)| ≤ µ and clauses (a) + (c) of ⊡5

holds. So assume α0 < α1 < α2, β0 < β1 < β2 form a counterexample to clause (b)
of ⊡5 and we shall eventually derive a contradiction.

Clearly

⊛2 (i) d{α0, α2} = d{β0, β1}, d{α0, α1} = d{β0, β2}, d{α1, α2} = d{β1, β2}

(ii) similarly for c′, c′0, c
′
1, c4.

By clause (ii) above we have d{α0, α2} ≤ max{d{α0, α1}, d{α1, α2}}, and applying
clause (ii) to β0 < β1 < β2 and using⊛2 we have d{α0, α1} ≤ max{d{α0, α2}, d{α1, α2}.

Hence d{α0, α1} = d{α0, α2} > d{α1, α2} or
2
∧

ℓ=1

[d{α0, αℓ} ≤ d{α1, α2}]; we deal

with those two cases separately.

Case 1: ε = d{α0, α1} = d{α0, α2} > d{α1, α2}.
So (see the definition of c′5, with α0, α2, α1, ε here standing for α, β, γ, j there recall-
ing that α0 < α1 < α2) we have λ+ε > (c′5{α0, α2})(ε) > (c′5{α0, α1})(ε). Similarly,
λ+ε > (c′5{β0, β2})(ε) > (c′5{β0, β1})(ε). This contradicts c

′
5{α0, αℓ} = c′5{β0, β3−ℓ}

for ℓ = 1, 2.
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Case 2: d{α0, αℓ} ≤ d{α1, α2} for ℓ = 1, 2.
Let ε = d{α1, α2}. Let ζℓ = gαℓ

(α0) for ℓ = 1, 2 so ζℓ = gβ3−ℓ
(β0) for ℓ = 1, 2. By

the assumption toward contradiction, i.e., by a demand in clause (b) of ⊡5 we have
ζ1 6= ζ2. Clearly ζℓ < λ+

d{α0,αℓ}
≤ λ+

d{α1,α2}
= λ+ε and λ+ε = µ ⇒ ζℓ < d{α0, αℓ} ≤

d{α1, α2} ≤ ε.
As c′7{α1, α2} = c′7{β1, β2} and g−1

α1
(ζ1) = g−1

α2
(ζ2) clearly g

−1
β1

(ζ1) = g−1
β2

(ζ2) and
they are well defined.

For ℓ = 1, 2 as c5{α0, αℓ} = c5{β0, β3−ℓ} by the choice of ζℓ (that is ζℓ = gαℓ
(α0))

we have gβℓ
(β0) = ζ3−ℓ so g

−1
βℓ

(ζ3−ℓ) = β0 for ℓ = 1, 2 hence g−1
β1

(ζ2) = g−1
β2

(ζ1). As

c5{α1, α2} = c5{β1, β2} we have c′7{α1, α2} = c′7{β1, β2} but ζ1, ζ2 ≤ gα2
(α1) hence

⊛3 (g−1
αℓ

(ζ1) < g−1
αℓ

(ζ2)) ≡ (g−1
βℓ

(ζ1) < g−1
βℓ

(ζ2)) for ℓ = 1, 2.

As ζ1 6= ζ2 we have g−1
α1

(ζ1) 6= g−1
α1

(ζ2).

By symmetry without loss of generality ζ1 > ζ2 so g−1
β1

(ζ1) < g−1
β1

(ζ2) iff (by

equalities above) g−1
β2

(ζ2) < g−1
β2

(ζ1) iff (the equivalence in ⊛3) g
−1
α2

(ζ2) < g−1
α2

(ζ1)

iff by the choice of ζ1, g
−1
α2

(ζ1) = α0), g
−1
α2

(ζ2) < α0 iff (as c′5{α0, α2} = c′5{β0, β1}

and ζ2 < ζ1 = gα1
(β0)), g

−1
β1

(ζ2) < β0 iff (as β0 = g−1
β1

(ζ1)), g
−1
β1

(ζ2) < g−1
β1

(ζ1), clear
contradiction.
So we have proved ⊡5.

We can now sum up, i.e.:

Proof of 1.1(2) from ⊡1 − ⊡5. We are given c0 : [µ+]<ℵ0 → µ. First we apply ⊡2

for c = c0 and get c2 : [µ+]2 → µ as there.
Second, we apply ⊡5 for c = c2 and get c5 as there. Let us check that c5 is as
required on c∗ in 1.1(2). So assume (∗)0 + (∗)1 below and (as the case n = 2 is
trivial) assume n ≥ 3 where

(∗)0 {α0, . . . , αn−1} ∈ [µ+]n and {β0, . . . , βn−1} ∈ [µ+]n and

(∗)1 ℓ < k < n⇒ c5{αℓ, αk} = c5{βℓ, βk}.

Without loss of generality (by renaming)

(∗)2 α0 < . . . < αn−1.

and it is enough to prove that c0{α0, . . . , αn−1} = c0{β0, . . . , βn−1}. By clause (a)
of ⊡5 we have

(∗)3 ℓ < k < n⇒ c2{αℓ, αk} = c2{βℓ, βk}.

By clause (c) of ⊡5 we have

(∗)4 ℓ < k < n⇒ c4{αℓ, αk} = c4{βℓ, βk}.
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Hence by ⊡4 we have

(∗)5 if ℓ < k < n and ℓ < n− 2 then βℓ < βk.

[Why? Apply ⊡4 to αℓ, αℓ+1, αk; βℓ, βℓ+1, βk if ℓ+ 1 < k, and apply ⊡4 to
αℓ, αℓ+1, αℓ+2; βℓ, βℓ+1, βℓ+2 if ℓ+ 1 = k.]
So

(∗)6(i) β0 < β1 < . . . < βn−3 < βn−2 < βn−1 or

(ii) β0 < β1 < . . . < βn−3 < βn−1 < βn−2.

So clause (β) of 1.1 holds.
If (i) of (∗)6 holds, then the choice of c2, i.e., by ⊡2 and (∗)3 above we get

c0{α0, . . . , αn−1} = c0{β0, . . . , βn−1} so we are done. Otherwise we have (ii) of
(∗)6 so by clause (b) of ⊡5 we have

(∗)7 if ℓ < n− 2 then fαn−1
(αℓ) = fβn−2

(βℓ).

[Why? Apply ⊡5(b) to αℓ, αn−2, αn−1; βℓ, βn−2, βn−1.]
So by ⊡3 we get c0{α0, . . . , αn−1} = c0{β0, . . . , βn−1} finishing. �1.1

1.3 Claim. Defining ID(λ, µ), we can restrict ourselves to c : [λ]<ℵ0 → µ such
that c ↾ [λ]1 is constant if cf(λ) > µ.

1.4 Claim. 1) Assume µ = µ<µ and n ∈ [1, ω). The identities of ID(µ+n, µ) are
(n+ 1)-simple (and also OID(µ+, µ)).

Proof. As in 1.1, only easier in the additional cases. �2.1
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§2 Successor of strong limit above supercompact: 2-identities

So we know that if µ is strong limit singular and there is a compact cardinal in
(cf(µ), µ) then ID2(µ

+, µ) 6= ID2(ℵ1,ℵ0). It seems desirable to find explicitly such
2-identity.

The proof of the following does much more.

2.1 Claim. Assume

(a) sk = (k +
(

k
2

)

, esk) where the non-singleton esk-equivalence classes are the

set sets here
(

1
2

)

= 0)
{{ℓ0, ℓ2} : ℓ0 < k and for some ℓ1 ∈ {ℓ0 + 1, . . . , k − 1} we have ℓ2 =

k +
(

ℓ1
2

)

+ ℓ0} and

{{ℓ1, ℓ2} : ℓ1 < k and for some ℓ0 < ℓ1 we have ℓ2 = k +
(

ℓ1
2

)

+ ℓ0}

(b) µ is strong limit, θ a compact cardinal and cf(µ) < θ < µ.

1) sk ∈ ID2(µ
+, µ), moreover sk ∈ OID2(µ

+, µ).
2) sk /∈ ID2(ℵ1,ℵ0) for k ≥ 3 so for k = 3 we have sk = (6, es) and the non-
singleton equivalence classes, after permuting {3, 5} are {{1, 3}, {0, 4}, {0, 5}} and
{{1, 5}, {2, 3}, {2, 4}}.

Proof. Part (1) follows from subclaim 2.2(3) below and part (2) follows from 2.3
below. �2.1

2.2 Claim. Assume

(a) µ is strong limit,

(b) θ is compact and cf(µ) < θ < µ

(c) κ = cf(µ), 〈λi : i < κ〉 is increasing with limit µ

(d) c : [µ+]2 → µ

(e) d{α, β} = Min{i : c{α, β} < λi}.

1) We can find i(∗), A, f such that

(∗)(i) i(∗) < κ,A ∈ [µ+]µ
+

and f : A→ λi(∗)

(ii) for every set B ⊆ A of cardinality < θ there are µ+ ordinals γ ∈ A satisfying
(∀α ∈ B)[d{α, γ} = f(α)].



14 SAHARON SHELAH

2) In part (1) we also have: if A1 ⊆ A, |A1| ≥ in(λ)
+ and λi(∗) ≤ λ < µ, then for

some 〈γℓ : ℓ < n〉 ∈ n(λi(∗)) and B ∈ [A1]
λ for every α0 < . . . < αn−1 from B for

arbitrarily large β < λ we have ℓ < n⇒ c{αℓ, β} = γℓ.
3) sk ∈ ID2(c) where sk is from clause (a) of 2.1.

Proof. 1) Let D be a uniform θ-complete ultrafilter on µ+.
Define f : µ+ → κ by f(α) = i ⇔ {γ < µ+ : d{α, γ} = i} ∈ D, note that the

function f is well defined as D is a θ-complete ultrafilter on µ+ and θ > κ. So for
some i(∗), the set A =: {α < µ+ : f(α) = i(∗)} belongs to D and check that (∗)
holds, that is (i) + (ii) hold.
2) Define c∗ : [A]n → n(λi(∗)) such that

⊛ if α0 < . . . < αn−1 are from A then for µ+ ordinals β < µ+ we have
〈c{αℓ, β} : ℓ < n}〉 = c∗{α0, . . . , αn−1}.

So Rang(c∗) has cardinality ≤ (λi(∗))
n = λi(∗) hence by the Erdös-Rado theorem

there is B ⊆ A1 infinite (even of any pregiven cardinality < λ) such that c∗ ↾ [B]n

is constant.
3) Straight: in part (2) use n = 2, A1 = A and get B and 〈γ0, γ1〉 ∈ 2(λi(∗)) as

there and choose α0 < . . . < αk−1 from B. Next choose αℓ for ℓ = 0, 1, . . . ,
(

k
2

)

− 1,

choosing βℓ by induction on ℓ. If ℓ =
(

ℓ1
2

)

+ ℓ0 and ℓ0 < ℓ1 < k choose βℓ ∈ A
satisfying βℓ > αk−1 and βℓ > βm for m < ℓ such that c{αℓ0 , βℓ} = γ0, c{αℓ1 , βℓ} =
γ1.
Now let αk+ℓ = βℓ for ℓ <

(

k
2

)

, and clearly 〈αℓ : ℓ < k+
(

k
2

)

〉 realize the identity sk.
�2.2

2.3 Subclaim. 1) If s ∈ ID2(ℵ1,ℵ0), then we can find a function h : [Doms]
2/s →

ω respecting es (i.e. {ℓ1, ℓ2}es{ℓ3, ℓ4} ⇒ h{ℓ1, ℓ2} = h{ℓ3, ℓ4}) and there is a linear
order < of Doms satisfying

⊛ for any equivalence class a of e there are a0, a1 such that

(i) a0, a1 are disjoint finite subsets of Doms

(ii) if {ℓ0, ℓ1} ∈ a and ℓ0 < ℓ1 then ℓ0 ∈ a0 & ℓ1 ∈ a1

(iii) if ℓ0 6= ℓ1 are from a0 ∪ a1 and {ℓ0, ℓ1} /∈ a then h({ℓ0, ℓ1}) > h(a).

2) We can add in ⊛

(iv) if a0, a1 are distinct es-equivalence classes then for some m ∈ {0, 1} we
have [∪am]2\am is disjoint to a1−m
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(v) in ⊛ above a0, a1 can be defined as {ℓ0 : {ℓ0, ℓ1} ∈ a, ℓ0 < ℓ1}, {ℓ1 : {ℓ0, ℓ1} ∈
a, ℓ0 < ℓ1} respectively.

3) If k ≥ 3, sk from 2.1 clause (a) then sk does not belong to ID2(ℵ1,ℵ0).

Proof. 1) Remember that by 0.6 we can deal with OID(ℵ1,ℵ0). By [Sh 74] we know
what is ID(ℵ1,ℵ0), i.e., the family of identities in OID(ℵ1,ℵ0) is generated by two
operations; one is called duplication and the other of restriction (see below) from
the trivial identity (i.e. |doms| = 1) and we prove ⊛ by induction on n, the number
of times we need to apply the operations.
Recall that (a, e) is gotten by duplication if we can find sets a0, a1, a2 and a function
g such that

⊛1(a) a0 < a1 < a2 (i.e. ℓ0 ∈ a0, ℓ1 ∈ a1, ℓ2 ∈ a2 ⇒ ℓ0 < ℓ1 < ℓ2)

(b) a = a0 ∪ a1 ∪ a2

(c) g a one-to-one order preserving function from a0 ∪ a1 onto a0 ∪ a1 (so
g ↾ a0 = ida0

; let g1 = g, g2 = g−1

(d) for ℓ0 6= ℓ1 ∈ (a0 ∪ a1) we have {ℓ0, ℓ1}e{g(ℓ0), g(ℓ1)}

(e) if ℓ1 ∈ a1, ℓ2 ∈ a2 then {ℓ1, ℓ2}/e is a singleton

(f) sℓ = (a0 ∪ aℓ, e ↾ [a0 ∪ aℓ]
2) is from a lower level (up to isomorphism).

Recall that (a, e) is gotten by restriction from (a′, e′) if a ⊆ a′, e = e′ ↾ [a]2.

Now we prove the existence of h as required by induction on the level. If |Doms| =
1 this is trivial. If s is gotten by restriction it is trivial too, (as if s = (a, e), s′ =
(a′, e′), a′ ⊆ a, e′ = e ↾ a′ and h : [a]2/e is as guaranteed then we let h′({ℓ0, ℓ1}/e

′) =
h({ℓ0, ℓ1}/e) for ℓ0 < ℓ1. Easily h′ is as required). So assume s = (a, e) is gotten
by duplication, so let a0, a1, a2, g1, g2 be as in ⊛1 and let h1 be as required for
s1 = (a0∪a1, e ↾ [a0∪a1)

2) and similarly define h2 by h2{α, β} = h1{g2(α), g2(β)}.
Let n∗ = max Rang(h1) and define h : [a0 ∪ a1 ∪ a2]

2 ⇒ ω by h ⊇ h1, h ⊇ h2 and
if k ∈ a1, ℓ ∈ a2 then we let h{k, ℓ} = n∗ + 1. Now check.
2) By symmetry, without loss of generalityh(a0) < h(a1) and now m = 1 satisfies
the requirement by applying ⊛1 to the equivalence class a = a1.
3) It is enough to deal with s3. By direct checking the criterion in part (2) fails.

�2.3

The following is like 2.1 with µ just limit (not necessarily a strong limit cardinal)
so
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2.4 Claim. Assume

(a) s′n ∈ OID2 is (2n+ n2, es′
n
) where the non-singleton es′

n
-equivalence classes

are
{{ℓ0, 2n+ nℓ0 + ℓ1} : ℓ0, ℓ1 < n} and
{{n+ ℓ1, 2n+ nℓ0 + ℓ1} : ℓ0, ℓ1 < n}

(b) µ is a limit cardinal, µ > θ > cf(µ) and θ is a compact cardinal

(c) s′′n ∈ OIDn is (2n+22n, es′′
s
) where the non-singleton es′′

n
-equivalence classes

are: for m < n, η ∈ m2, i = 0, 1 let aiη = {{ℓi, 2
n+

(

2n

ℓ0

)

+ℓ1} : ℓ0, ℓ1 < 2n and

for some ν0, ν1 ∈ n2 we have ηˆ〈0〉 E ν0, ηˆ〈1〉 E ν1 and ℓ0 = Σ{ν0(j)2
j :

j < n} and ℓ1 = Σ{ν1(j)2
j : j < n}}.

1) s′n ∈ ID2(µ
+, µ), moreover s′n ∈ OID2(µ

+, µ) similarly for s′n.
2) s′n /∈ ID2(ℵ1,ℵ0) for n ≥ 2, similarly for s′′n.

Proof. 1) Like the proof of 2.2 using [Sh 49] (or just [Sh 604, §5]) instead of the
Erdös-Rado theorem.
2) Otherwise there is (a, e) ∈ ID2(ℵ1,ℵ0) and an embedding h of s′n into (a, e) and
by 0.6 without loss of generality h is order preserving and (a, e) ∈ OID2(ℵ1,ℵ0).
Now

(∗)1 if ℓ0 < n, ℓ1 < n and ℓ = 2n+ nℓ0 + ℓ1 then h(ℓ0) < h(ℓ).
[Why? Choose ℓ′1 < n, ℓ′1 6= ℓ1 and ℓ′ = 2n + nℓ0 + ℓ′1, so ℓ 6= ℓ′ and
{ℓ0, ℓ}es′

n
{ℓ0, n+ ℓ′} hence {h(ℓ0), h(ℓ)}, {h(ℓ0), h(ℓ

′)} are e-equivalent and
h(ℓ) 6= h(ℓ′). But on (a, e) we know that if {m0, m1}e{m0, m2} then m2 <
m1 < m0 and m2 < m0 < m1 are impossible (see 2.5(2) below) so we are
done.]

(∗)2 if ℓ0 < n, ℓ1 < n and ℓ = 2n+ nℓ0 + ℓ1 then h(ℓ1) < h(ℓ).
[Why? Like (∗)1.]

Now we apply 2.3(1) + (2) above so s′n /∈ ID2(ℵ2,ℵ1). The conclusion about s′′n
follows. �2.4

2.5 Observation. 1) If k ≥ 2, s = (n, e) ∈ OID2(µ
+, µ) then we can find s′ = (n′, e′)

in fact n′ = 2n− 1 such that:

(i) e′ ↾ [n]2 = e

(ii) s′ ∈ ID(µ+, µ)

(iii) for every c : [µ+]<ℵ0 → µ there is c′ : [µ+]<ℵ0 → µ refining c (i.e. c′(u1) =
c′(u2) ⇒ c(u1) = c(u2)) such that: if h : {0, . . . , 2n − 2} → µ+ is one to
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one and satisfies u1e
′u2 ⇒ c′(h′′(u1)) = c′(h′′(u2)) then h ↾ {0, . . . , n − 1}

is increasing.

2) There is c : [µ+]2 → µ such that:
if α, β, γ are distinct and c{α, β} = c{α, γ} then α < β & α < γ.

3) We can replace in (1), (µ+, µ) by (λ, µ) if there is s = (n, e) ∈ ID(λ, µ) such
that for some c : [λ]<ℵ0 → µ such that

⊛ if h : n→ λ induces es then h(0) < h(1).

Proof. 1) Define e′ : u1e
′u2 iff u1eu2 ∨ u1 = u2 ∨

∨

ℓ<n−1

(u1 = {ℓ, n + ℓ + 1} &

u2e{ℓ, ℓ+ 1}) ∨
∨

ℓ<n

(u2 = {ℓ, n+ ℓ+ 1} & u1e{ℓ, ℓ+ 1}). Now use (2).

2) Let fα : α → µ be one to one and let <∗ a dense linear order on µ+ with
{α : α < µ} a dense subset. Now choose c1 : [µ+]2 → µ such that α < β ⇒ α ≤∗

c1{α, β} <
∗ β and c : [µ+]2 → µ be α < β ⇒ c{α, β} = pr(fβ(α), c1{α, β}) for

some pairing function pr.
3) Similar to part (1) only |Doms

′ | is larger. �2.5
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