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NEW REALS: CAN LIVE WITH THEM, CAN LIVE WITHOUT THEM

MARTIN GOLDSTERN AND JAKOB KELLNER†

Abstract. We give a self-contained proof of the preservation theoremfor proper countable
support iterations known as “tools-preservation”, “Case A” or “first preservation theorem”
in the literature. We do not assume that the forcings add reals.

1. Introduction

Judah and Shelah [3] proved that countable support iterations of proper1 forcings pre-
serve theωω-bounding property (see 2.2 here). In his bookProper and Improper Forc-
ing [8, XVIII §3] Shelah gave several cases of general preservation theorems for proper
countable support iterations (the proofs tend to be hard to digest, though). In this paper we
deal with “Case A”.

A simplified version of this case appeared in Section 5 of the first author’sTools for your
forcing constructions[2]. This version uses the additional requirement that every iterand
adds a new real. Note that this requirement is met in most applications, but the case of
forcings “not adding reals” has important applications as well (and note that not adding
reals is generally not preserved under proper countable support iterations).

A proof of the iteration theoremwithoutthis additional requirement appeared in [5] and
was copied intoSet Theory of the Reals[1] (as “first preservation theorem” 6.1.B), but
Schlindwein pointed out a problem in this proof.2 In this paper, we generalize the proof
of [2].

We thank Chaz Schlindwein for finding the problems in the existing proofs and bringing
them to our attention.

2. The Theorem

Fix a sequence of increasing arithmetical two-place relations (Rj) j∈ω onωω. Let R be
the union of the Rj . Assume

• C ≔ { f ∈ ωω : f Rη for someη ∈ ωω} is closed,
• { f ∈ ωω : f R j η} is closed for allj ∈ ω, η ∈ ωω, and
• for every countableN there is anη such thatf Rη for all f ∈ N ∩ C

(in this case we say “η coversN”).

Definition 2.1. Let P be a forcing notion,p ∈ P.

Date: October 24, 2018.
1991Mathematics Subject Classification.03E40.
Key words and phrases.Preservation theorems, proper forcing, countable supportiteration.
†Partially supported by FWF Austrian Science Fund grant P17627-N12.
1P is proper if for all countable elementary submodelsN ≺ H(χ) containingP (χ a big regular cardinal) and

all p ∈ P ∩ N there is aq ≤ p which forces thatGP is N-generic (i.e.GP ∩ D ∩ N , ∅ for all dense subsets
D ∈ N). Such aq is calledN-generic.

2In [7], where Schlindwein gave a proof for the special case ofωω-bounding, following [8, VI]. However he
later detected another problem in his own proof [C. Schlindwein, personal communication, April 2005] and is
preparing a new version [6].
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2 GOLDSTERN AND KELLNER

• f̄ ∗ ≔ ( f ∗1 , . . . , f
∗
k ) is aP-interpretation of¯

˜
f ≔ (

˜
f1, . . . ,

˜
fk) underp, if f ∗i ∈ ω

ω,
˜
fi is

a P-name for an element ofC, and there is an decreasing chainp ≥ p0 ≥ p1 ≥ . . .

of conditions inP such thatpi forces
˜
f1↾i = f ∗1↾i & . . .&

˜
fk↾i = f ∗k ↾i.

• A forcing notionP is weakly preserving, if for all
N ≺ H(χ) countable,η coveringN, p ∈ N,

there is anN-genericq ≤ p which forces thatη coversN[GP].
• A forcing notionP is preserving, if for all

N ≺ H(χ) countable,η coveringN, p ∈ N, and
f̄ ∗, ¯

˜
f ∈ N such thatf̄ ∗ is aP-interpretation of¯

˜
f underp,

there is anN-genericq ≤ p which forces thatη coversN[GP] and moreover that
f ∗i R j η implies

˜
fi R j η for all i ≤ k, j ∈ ω.

• A forcing notion P is densely preserving if there is a dense subforcingQ ⊆ P
which is preserving.

Note that if f̄ ∗ is an interpretation, thenf ∗l ∈ C (sinceC is closed).
The simplest example is that ofωω-bounding:

Example 2.2. Set f Rn η if f (m) < η(m) for all m> n. SoC = ωω, and f Rη if there is an
n such thatf (m) < η(m) for all m > n. To cover a family of functions means to dominate
it. P is weakly preserving iff P isωω-bounding.3

This example is typical in the sense that often R describes a covering property of the
pair (V,V[G]).

The property “weakly preserving” is invariant under equivalent forcings. I.e. ifP forces
that there is aQ-generic filter overV and Q forces the same forP, then Q is weakly
preserving iff P is weakly preserving.4 The notion “preserving” however does not seem
to be invariant.5 It even seems that “densely preserving” does not imply “preserving”.
(Although we do not have an example. It is not important afterall.) One direction however
is clear:

Fact 2.3. If P is preserving and Q⊆ P is dense, then Q is preserving.

For some instances of R, weakly preserving is equivalent to preserving. Most notably
this is the case forωω-bounding (see [2, 6.5]).

For other instances of R (e.g. Lebesgue positivity, cf. [4])“P is preserving” is equivalent
to some other property which is invariant under equivalent forcings.

We will show that densely preserving is preserved under proper countable support it-
erations. This is our version of the theorem known as “tools preservation” [2, Sec. 5],
“Case A” [8, XVIII §3] or the “first preservation theorem” [1, 6.1.B]:

Theorem 2.4. Assume(P0
i ,

˜
Q0

i )
i<ǫ

is a countable support iteration of proper, densely pre-
serving forcings. Then P0ǫ is densely preserving.

3 P isωω-bounding if for allP-names
˜
f ∈ ωω andp ∈ P there is aq ≤ pandg ∈ ωω such thatq 

˜
f (m) < g(m)

for all m. So if P isωω-bounding,η coversN,
˜
f ∈ N andG is N-generic, then

˜
f [G] is dominated by someg ∈ N

and therefore byη. If on the other handP is weakly preserving,
˜
f a P-name andp ∈ P, then there is aN ≺ H(χ)

containingp and
˜
f . Pick anη ∈ V coveringN. So if q ≤ p is as in the definition of weakly preserving, thenq

forces thatη dominates
˜
f .

4This is analogous (and can be shown analogously) to the following fact: P is proper (i.e. proper for all
N ≺ H(χ)) iff P is proper for allN ≺ H(χ) containing some fixedx ∈ H(χ).

5 The reason is that the notion of interpretation is not invariant. Given a forcingP and an interpretationf ∗ of
a function

˜
f < V, we can find a dense subforcingP′ ⊂ P such that for every conditionp′ of P′ there is an(p′)

such thatp′ forces thatf ∗(n(p′)) ,
˜
f (n(p′)) (here we identify theP-name

˜
f with the equivalentP′-name). Sof ∗

cannot be aP′-interpretation of
˜
f .
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Figure 1.
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Figure 2.

3. An outline of the proof

In this section, we describe the ideas used in the proof, without being too rigorous.

(A) Use names.How can we show that the countable support limit of proper forcings is
proper?

We have a countable support iteration (Pα,
˜
Qα)α<ǫ of proper forcings (ǫ limit), N ≺ H(χ)

countable, andp ∈ P∩N. We want to find aqω ∈ Pǫ which forces thatG is N-generic, i.e.
thatG ∩ D ∩ N , ∅ for all dense subsetsD ∈ N of P.

So we fix anω-sequence 0= α0 < α1 < . . . cofinal inǫ ∩ N, and enumerate all dense
open sets ofP that are inN as (Dn)n∈ω.

One unsuccessful attempt to constructqω could be the one illustrated in Figure 1: Set
p−1 ≔ p andq−1 ≔ ∅. Givenpn−1 ∈ N andqn−1, choose (inN) a pn ≤ pn−1 in Dn ∩ N and
(in V) a qn ≤ pn↾αn+1 which extendsqn−1. Setqω ≔

⋃
qn. Thenqω is N-generic, since

qω ≤ pn ∈ Dn∩N. Of course this doesn’t work, since we generally cannot find apn ≤ pn−1

in Dn such thatqn−1 ≤ pn↾αn.
What we actually do instead is the following (see Figure 2): The pn will be Pαn-names,

and theqn arePαn+1-generic overN. So instead of choosingpn ∈ Pǫ , we choose (inN) a
Pαn-name

˜
pn for an element ofPǫ such that the following is forced byPαn:

•
˜
pn ∈ Dn,

•
˜
pn↾αn ∈ Gαn, and

• if
˜
pn−1↾αn ∈ Gαn, then

˜
pn ≤

˜
pn−1.

It is clear that we can find such a name. So we first construct allthe
˜
pn (each

˜
pn is in N,

but the sequence is not). Then we constructqn ∈ Pαn+1 satisfying the following:

• qn extendsqn−1,
• qn is Pαn+1-generic overN, and
• qn is stronger than

˜
pn on the interval [αn, αn+1).6

So (by induction)qn forces that
˜
pn↾αn+1 ∈ Gαn+1 and that therefore

˜
pn+1 ≤

˜
pn. Soqω =⋃

qn forces that
˜
pn↾αn ∈ Gα (by definition of

˜
pn), that

˜
pn↾αn+1 ≥

˜
pn+1↾αn+1 ∈ Gαn+1 and

generally that
˜
pn↾αm ∈ Gαm for all m > n. Thereforeqω forces that

˜
pn ∈ Gǫ . Also, qn−1

is Pαn-generic overN, and thePαn-name
˜
pn is in N, soqω forces that

˜
pn ∈ N ∩ Pǫ and

therefore inN ∩ Dn ∩Gǫ , i.e. thatGǫ is N-generic.

(B) Interpolate approximations. First note that for everyPǫ-name
˜
f ∈ C and for every

p ∈ Pǫ we can find an approximationf ∗ of
˜
f underp. If additionally 0 < α < ǫ and

Pα adds a new real
˜
r, then we can choose the witnesses of the approximation such that

{pm↾α : m ∈ ω} ⊆ Pα is inconsistent.7 (Just letpm↾α decide
˜
r(m).)

6More formally (since
˜
pn is a name): For allαn ≤ β < αn+1, qn↾β β pn↾β ∈ Gβ & qn(β) ≤

˜
pn(β).

7We call a setA ⊆ P inconsistent, ifP forces that not every condition ofA is in G.
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p2
0

p1
0

p0
0

˜
f ∗∗

˜
ff ∗

˜
p0
α

˜
p1
α

α

˜
f↾1 = f ∗↾1 =

˜
f ∗∗↾1

p1
0 ∧

˜
p1
α 

p2
0↾α < Gα

Figure 3.

f ∗00
˜
f ∗10 ,

˜
f ∗11

˜
f0,

˜
f1,

˜
f2, . . .

˜
f ∗20 ,

˜
f ∗21 ,

˜
f ∗22

α0 α2α1

˜
p0

1

˜
p1

1
˜
p0

2

˜
p1

2

p2
0

q0

q1

. . .

p0
0

p1
0

Figure 4.

Now assume thatf ∗ is aPǫ-approximation of
˜
f witnessed by (pm

0 )m∈ω and that{pm
0 ↾α :

m ∈ ω} ⊆ Pα is inconsistent. Then we can definePα-names (
˜
pm
α )m∈ω and

˜
f ∗∗ such that the

following is forced byPα (see Figure 3):

• pm
0 ↾α ∈ Gα implies

˜
p0
α ≤ pm

0 (i.e.
˜
p0
α is stronger than the strongestpm

0 whose
restriction is inGα),
•

˜
f ∗∗ is an approximation of

˜
f witnessed by (

˜
pm
α )m∈ω.

Then (pm
0 ↾α)m∈ω witnesses thatf ∗ approximates

˜
f ∗∗:

pm
0 ↾α forces that

•
˜
pm
α forces that

˜
f ∗∗↾m=

˜
f↾mand

•
˜
pm
α ≤ pm

0 and therefore that
•

˜
pm
α also forcesf ∗↾m=

˜
f↾m.

So pm
0 ↾α∧

˜
pm
α forces

˜
f ∗∗↾m=

˜
f↾m= f ∗↾m, and since

˜
f ∗∗↾m, f ∗↾malready live inV[Gα],

˜
f ∗∗↾m= f ∗↾m is already forced bypm

0 ↾α.
So we can interpolate (or “factorize”) the interpretation (f ∗,

˜
f ) by the “composition” of

the interpretations (f ∗,
˜
f ∗∗) and (

˜
f ∗∗,

˜
f ).

(C) Approximate more and more functions better and better. In addition to all the
dense setsDn of N — as in (A) — we also list all thePǫ-names

˜
fn in N for elements of

C. We have to make sure thatqω forces that
˜
f Rη. We assume that every element ofDn

decides
˜
fm↾n for m≤ n.

We start with an approximationf ∗00 for
˜
f0 witnessed by (pm

0 )m∈ω. We assume that
{pm

0 ↾α1 : m ∈ ω} is inconsistent. We can find (inN) Pα1 names (
˜
pm

1 )m∈ω and
˜
f ∗10 ,

˜
f ∗11 (see

Figure 4) such that the following is forced:

•
˜
f ∗10 ,

˜
f ∗11 are interpretations of

˜
f0,

˜
f1 witnessed by (

˜
pm

1 )m∈ω,
• pm

0 ∈ Gα1 implies
˜
p0

1 ≤ pm
0 (i.e.

˜
f ∗10 interpolates (f ∗00 ,

˜
f0) as in (B)),

•
˜
p0

1 ∈ D1 (in particular,
˜
p0

1 decides
˜
f0↾1,

˜
f1↾1), and

• we again assume that{
˜
pm

1 ↾α2 : m ∈ ω} is inconsistent.

Because of the last item, we can iterate this construction.
Now we choose (inV) a q0 ∈ Pα1 such thatq0 ≤ p0

0↾α1 andq0 is Pα1-generic overN
and forces thatη coversN[Gα1] and thatf ∗00 R j η implies

˜
f ∗1 R j η for all m. Inductively, we

get a sequence (qn)n∈ω such thatqn ∈ Pαn+1 extendsqn−1 and forces

• Gαn+1 is N-generic andη coversN[Gαn+1],
•

˜
f ∗nm R j η implies

˜
f ∗n+1
m R j η for m≤ n and all j.

Let qω be the union of allqn. Thenqω forces the following: Form ≥ n,
˜
fn↾m =

˜
f ∗mn ↾m

(since
˜
p0

m ∈ Dm decides
˜
fn↾m). Also,

˜
f ∗nn R j η for some j ∈ ω (since

˜
f ∗nn ∈ N[Gαn]
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andη coversN[Gαn]).
˜
fn is the limit of functions

˜
f ∗mn which all satisfy

˜
f ∗mn R j η. Since

{ f ∈ ωω : f R j η} is closed,
˜
fn R j η. Also,qω is N-generic just as in (A).

(D) Decide when we areσ-complete. The proof so far relies on the fact that we can
always find approximations whose witnesses are inconsistent.

We already know that this is the case if the iteration betweenαn andαn+1 adds a new
real. Actually we just need that the iterands are “nowhereσ-complete”, i.e. that below
everyp we can find an inconsistent decreasing sequence.

If no reals are added, it might seem as we do not have anything to do (since Case A
preservation is vacuous without new reals). The problem is that the countable support
iteration of proper forcings which do not add reals can add a real in the limit. So it might
be that we are unable to use new reals in the intermediate steps (which we want to construct
inconsistent witnesses for approximations), but get new reals in the limit (which could be
a problem for preservation).

On the other extreme, if all iterands areσ-complete, then the limit isσ-complete as
well, and therefore adds no reals, so there is nothing to do.

So what to do?
First note that we can split every forcing in aσ-complete and a nowhereσ-complete

part. However, that does not solve our problem, since we can not split the index setǫ of
the iteration intoǫ1, ǫ2 such thatPα forces that

˜
Qα is σ-complete ifα ∈ ǫ1 and nowhere

σ-complete otherwise.
For example,Q0 could add a Cohen real

˜
c, and

˜
Qn could be defined to beσ-complete

iff
˜
c(n) = 0.
So we will do the following: Given a conditionp ∈ Pǫ , there is a maximalγ ≤ ǫ such

thatPα forces that
˜
Qα is σ-complete (belowp(α)) for all α < γ. So if γ = ǫ, then the rest

of the iteration isσ-complete. Ifγ < ǫ, then we strengthenp such thatPγ forces that
˜
Qγ is

nowhereσ-complete (belowp(γ)).
We will only be interested in honest approximations, that isan approximation witnessed

by (pm)m∈ω where p0 (and therefore allpm) will know the γ where
˜
Qα stops to beσ-

complete (in the way just described).
Since in (C) the conditions

˜
pm

n arePαn-names, the correspondingγ will be a Pαn-name
as well. In the iteration at stagen, we will have to distinguish three cases:

• {
˜
pm

n−1↾αn} is inconsistent. Then continue as in (B).
• The γ corresponding to

˜
p0

n−1 is bigger thanαn but less thanǫ. Then just “do
nothing”, i.e. wait in the iteration untilαm is aboveγ and therefore the witnesses
are inconsistent.
• Otherwise, we know that the rest of the iteration isσ-complete.

Again, we do not know from the beginning which case we will useat a given stage. In
the example above, we will do nothing at stagen iff

˜
c(n) = 0 (so it will never happen that

the rest of the iteration isσ-complete).
Also, when we “do nothing”, we cannot increase the number of functions we approx-

imate. In (C), the numberk(n) of functions which we approximate in stepn wasn + 1
(
˜
f ∗n0 , . . . , f

∗n
n approximates

˜
f0, . . . , fn). So in the proof this number

˜
kn will be a Pαn-name

which is
˜
kn−1 in case “do nothing” andn+ 1 otherwise.

4. The proof

Definition 4.1. Let Q be a forcing,q ∈ Q.

• q isσ-complete inQ, if Qq ≔ {r ∈ Q : r ≤ q} isσ-complete. In this case we write
q ∈ Qσ.
• q is nowhereσ-complete inQ if there is noq′ ≤Q q such thatq′ ∈ Qσ. In this case

we writeq ∈ Q¬σ.
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• Q is decisive if everyq ∈ Q is either 1Q (the weakest element ofQ) orσ-complete
or nowhereσ-complete.8

Fact 4.2. For every P the set of conditions that are eitherσ-complete or nowhereσ-
complete is open dense. I.e. for every P there is a dense subforcing Q ⊆ P which is
decisive.

Fact 4.3. If (Pα,
˜
Qα)α<ǫ is an iteration and Pα forces that

˜
Q′′α ⊆

˜
Qα is dense (for every

α ∈ ǫ), then there are an iteration(P′α,
˜
Q′α)α<ǫ and dense embeddingsϕα : P′α → Pα

(α ≤ ǫ) such that forα ≤ β ≤ ǫ the following holds:

• If p ∈ P′
β

thenϕα(p↾α) = ϕβ(p)↾α.
• In particular ϕβ is an extension ofϕα.
• P′α forces that

˜
Q′α =

˜
Q′′α [GPα ].

9

Because of 2.3, 4.2 and 4.3 we can modify the original iteration (P0
α,

˜
Q0
α)α<ǫ of Theorem

2.4 to get an iteration (Pα,
˜
Qα)α<ǫ satisfyingPǫ is a dense subforcing ofP0

ǫ and:

Assumption 4.4. Pα forces that
˜
Qα is proper, decisive and preserving.

We will show that in this casePǫ is densely preserving,10 soP0
ǫ is densely preserving as

well, proving Theorem 2.4.
From now on we fix the iteration (Pα,

˜
Qα)α<ǫ satisfying 4.4. We also fix a regular

χ ≫ 2|Pǫ |, a countableN ≺ H(χ) containing (Pα,
˜
Qα)α<ǫ , and anη coveringN.

Definition 4.5. We will use the following notation (α ≤ β):

• For p ∈ Gα, p α ϕ meansp Pα ϕ.
• If p ∈ Gβ, r ∈ Pα and r ≤ p↾α, then we can definer ∧ p ∈ Gβ, the weakest

condition stronger thanr andp.
• Gα is thePα-generic filter overV (or its canonical name). Soβ Gα = Gβ ∩ Pα.

We setVα ≔ V[Gα].
• Pβ/Gα is thePα-name for the forcing consisting of thosePβ-conditionsp such that

p↾α ∈ Gα (with the same order asPβ).
• In Vα: If p ∈ Pβ/Gα, thenp (α,β) ϕ meansp Pβ/Gα ϕ. We also say “p (α, β)-

forcesϕ”.

Facts 4.6. Let 0 ≤ α ≤ β ≤ ǫ.

• The function Pβ → Pα ∗ Pβ/Gα defined by p7→ (p↾α, p) is a dense embedding.
• If p1 ∈ Pα and

˜
p2 is a Pα-name for an element of Pβ/Gα, then p1 α

˜
p2 (α,β) ϕ is

equivalent toβ (p1 ∈ Gβ &
˜
p2 ∈ Gβ) → ϕ.

• If D is an (open) dense subset of Pβ, then D∩ Pβ/Gα is a Pα-name for an (open)
dense subset of Pβ/Gα.

If
˜
p is a Pα-name for an element ofPβ/Gα, thenα

˜
p (α,β) ϕ does not imply that

˜
p[Gα] (which is an element ofPβ and therefore ofV) forcesϕ in V (as element ofPα). I.e.
V � (α

˜
p (α,β) ϕ) does not implyα (V �

˜
p β ϕ).

We will use the following straightforward technical facts:

Lemma 4.7. Let 0 ≤ α ≤ γ ≤ β ≤ ǫ. Pα forces:

(1) If p ∈ Pβ/Gα, q ∈ Pγ/Gα, and q (α,γ) p↾γ ∈ Gγ, then we can define p′ =
q∧(p↾β\γ) in Pβ/Gα such that p′↾γ = q and p′↾ξ (α,ξ) p′(ξ) = p(ξ) for γ ≤ ξ < β.
If q ≤ p↾γ then q∧(p↾β\γ) ≤ p, and if p2 ≤ p1 then q∧(p2↾β\γ) ≤ q∧(p1↾β\γ).

8Of course it is possible to have 1Q ∈ Qσ or 1Q ∈ Q¬σ.
9WhereGPα ≔ {p ∈ Pα : (∃p′ ∈ GP′α )ϕα(p′) ≤ p} is the canonicPα-generic filter overV.
10Note that we do not claim thatPǫ is preserving.
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(2) If p0 ≥ p1 ≥ . . . is a decreasing sequence in Pγ/Gα, and for everyα ≤ ζ < γ
we have p0↾ζ (α,ζ) p0(ζ) ∈

˜
Qσ
ζ
, then there is a pω ≤ p0 ∈ Pγ/Gα such that

pω (α,γ) pm ∈ Gγ for all m ∈ ω. (Here we actually use that Pα is proper.)

Proof. To show (1), setA≔ dom(q) ∪ (dom(p) \ α). Note thatA ∈ V. Fix a Pα-name for
p. Define forξ ∈ A (in V) p′(ξ) = q(ξ) if ξ < γ, and forξ ≥ γ let p′(ξ) be p(ξ) provided
that p↾ξ ∈ Gξ (1

˜
Qξ otherwise).

(2) is similar: There is aA ∈ V countable inV such thatA ⊇
⋃

m∈ω dom(pm) (sincePα
is proper). Fix aPα-name (inV) for the sequence (pm)m∈ω.

Now definepω in V: Setpω↾α ≔ p0↾α. Forα ≤ ζ < γ, ζ ∈ A definepω(ζ) ∈
˙
Qζ to be

a lower bound of{pm(ζ) : m ∈ ω} if such a lower bound exists, andp0(ζ) otherwise. �

From now on, to distinguish betweenPβ-names andPα-names for someα < β, we
denotePβ-names (inV as well asPα-names for such names) with a tilde under the symbol
(e.g.

˜
τ) and we denotePα-names forVα objects that are notPβ-names (but could bePβ

conditions) with a dot under the symbol (e.g.
˙
τ). In particular we write (Pα,

˙
Qα)α<ǫ .

Definition 4.8. Let α ≤ β ≤ ǫ. Work in Vα.

• (pm)m∈ω is an honest (α, γ, β)-sequence, if
– pm ∈ Pβ/Gα,
– pm+1 ≤ pm,
– α ≤ γ ≤ β,
– for all α ≤ ζ < γ, p0↾ζ (α,ζ) p0(ζ) ∈

˙
Qσ
ζ
,11

– pm↾γ = p0↾γ for all m.
– if γ < β, thenp0↾γ (α, γ)-forces that

p0(γ) ∈
˙
Q¬σγ , and

{pm(γ) : m ∈ ω} ⊆
˙
Qγ is inconsistent.

• Let k be a natural number,̄f ∗ = ( f ∗i )i<k a k-sequence of elements ofωω, and

˜
f̄ = (

˜
fi)i<k a k-sequence ofPβ-names of elements ofC.

We say “f̄ ∗ is an honest (α, γ, β)-approximation of
˜
f̄ witnessed by (pm)m∈ω” if

(pm)m∈ω is an honest (α, γ, β)-sequence andpm (α,β)
˜
fi↾m = f ∗i ↾m for all m ∈ ω

andi < k.
• “ f̄

∗ is an honest (α, β)-approximation of
˜
f̄ underp” means that there is aγ and

a (pm)m∈ω such thatp0 ≤ p and f̄
∗ is an honest (α, γ, β)-approximation of

˜
f̄ wit-

nessed by (pm)m∈ω.

Lemma 4.9. Letα ≤ ζ ≤ β ≤ ǫ. Pα forces:

(1) If (pm)m∈ω is an honest (α, γ, β)-sequence, then(pm↾ζ)m∈ω is an honest
(α,min(ζ, γ), ζ)-sequence.

(2) Assume that p is an element of Pβ/Gα, k a natural number,(
˜
fi)i<k a k-sequence of

Pβ-names for elements ofC, and D a dense subset of Pβ/Gα. Then there are p′ ≤ p
in D and( f ∗i )i<k such that( f ∗i )i<k is an honest(α, β)-approximation of(

˜
fi)i<k under

p′.

Proof. We just show (2). Work inVα.
Let α ≤ γ < β be minimal such thatp↾γ 6(α,γ) p(γ) ∈

˙
Qσγ . If there is no suchγ, set

γ = β andp2 = p. Otherwise pick anr ≤ p↾γ in Pγ/Gα such thatr (α,γ) p(γ) ∈
˙
Q¬σγ , and

setp2 = p∧ r.
Pick p′ ≤ p2 in D.
Let f̄ ∗ approximate

˜
f̄ witnessed byp′ = q0 ≥ q1 ≥ . . . (in Pβ/Gα). According to

Lemma 4.7(2) there is aqω ∈ Pγ/Gα such thatqω ≤ p′↾γ andqω (α,γ) qm↾γ ∈ Gγ for all
m. If γ < β, we can assume thatqω decides whether{qm(γ) : m ∈ ω} is consistent.

11if ζ < dom(p), thenp(ζ) is defined to be 1Qζ . In this casep(ζ) ∈ Qσ
ζ

means thatQζ isσ-complete. So it is

possible thatγ ≥ α + ω1, this is no contradiction to countable support.
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Setrm = qω ∧ (qm↾β \ γ), cf. 4.7(1).
Assumeγ < β andqω forces consistency, i.e.qω (α,γ) s ≤ rm(γ) for all m. Thenqω

forces that there is an inconsistent sequences= s0 ≥ s1 ≥ . . . (sinces ∈ Q¬σγ ). Modify rm

such thatrm↾γ = qω  rm(γ) = sm. �

Induction Lemma 4.10. Assume that q∈ Pα and that the following are in N:
α ≤ β ≤ ǫ, the Pα-names

˙
p,

˙
k,

˙
f̄ ∗ = (

˙
f ∗i )i∈

˙
k and the Pβ-name

˜
f̄ = (

˜
fi)i∈

˙
k for elements of

C.
Assume that q forces

•
˙
f̄ ∗ is an honest(α, β)-approximation of

˜
f̄ under

˙
p (in particular

˙
p ∈ Pβ/Gα),

• Gα is N-generic andη covers N[Gα].

Then there is a q+ ∈ Pβ such that q+↾α = q and q+ forces

•
˙
p ∈ Gβ,

• Gβ is N-generic andη covers N[Gβ],
•

˙
f ∗i R j η implies

˜
fi R j η for all i ∈ k, j ∈ ω.

We prove the lemma by induction onβ. Forα = β there is nothing to do. We split the
proof into two cases:β successor andβ limit.

Proof for the caseβ = ζ + 1 successor.Let
˙
pm bePα-names for witnesses of the approxi-

mation.
First assume thatq ∈ Gζ (i.e. q ∈ Gζ ∩ Pα = Gα) and work inVζ . Setp−1 = 1Pβ . Let

−1 ≤ m∗ ≤ ω be the supremum of{m :
˙
pm↾ζ ∈ Gζ}.

Case 1:m∗ = ω. In this case set̄f ∗∗ ≔
˙
f̄ ∗ andr ≔ p0(ζ) ∈

˙
Qζ . Note that

˙
pm(ζ) 

˙
Qζ

˜
fi↾m= f ∗∗i ↾m, i.e. f̄

∗∗ is an interpretation of̄
˜
f (with respect to

˙
Qζ) underr =

˙
p0(ζ).

Case 2:m∗ < ω. Find a
˙
Qζ-interpretationf̄

∗∗ of
˜
f̄ underr =

˙
pm∗(ζ) ∈

˙
Qζ (use the fact

the
˙
Qζ is preserving). Note thatf ∗∗i ↾m∗ = f ∗i ↾m∗.

Now fix (in V) Pζ-names
˙
f̄ ∗∗ and

˙
r for this f̄

∗∗ andr (we do not care how these names
behave ifq < Gα). Then we get

q α
˙
pm↾ζ (α,ζ)

˙
f ∗∗i ↾m=

˙
f ∗i ↾m for all i <

˙
k.

So by fact 4.9.(1),q forces that
˙
f̄ ∗ is an honest (α, ζ)-approximation of

˙
f̄ ∗∗ under

˙
p↾ζ.

By the induction hypothesis there is anN-genericq+ ∈ Pζ which forces that
˙
p0↾ζ ∈ Gζ ,

η coversN[Gζ ] and of course that
˙
Qζ is proper and preserving. Assumeq+ ∈ Gζ and work

in Vζ . Since
˙
Qζ is preserving and̄f ∗∗ is an approximation of

˜
f̄ underr, there is anN[Gζ ]-

genericq′ ≤ r which forces thatη coversN[Gζ ][G(ζ)]. Let (in V)
˙
q′ be a name for this

˙
q, and setq++ ≔ q+ ∧

˙
q′. This q++ is as required. (To see thatq++ 

˙
p ∈ Gβ, note that

q+  (
˙
p↾ζ ∈ Gζ &

˙
q′ ≤

˙
p(ζ)).) �

Proof for the caseβ limit. Choose a cofinal, increasing sequence (αn)n∈ω in β∩N such that
α = α0.

Let (Dn)n∈ω enumerate a basis of the open dense subsets ofPβ that are inN, and (
˜
gn)n∈ω

all Pβ-names inN for elements ofC. We may assume thatD0 = Pβ, Dn+1 ⊆ Dn and that
everyp ∈ Dn+1 decides

˜
gm↾n for 0 ≤ m≤ n as well as

˙
k and

˜
fi↾n for 0 ≤ i ≤

˙
k.

Let
˙
γ0 and (

˙
pm

0 )m∈ω bePα0-names for witnesses of the approximation in the assumption.
Setq−1 ≔ q,

˙
k0 ≔

˙
k and

˙
f̄ ∗0 ≔

˙
f̄ ∗.

Given
˙
kn, we set

˜
f̄ n = (

˜
f n
i )i<

˙
kn ≔ (

˜
f0, . . . ,

˜
f
˙
k−1,

˜
g0, . . . ,

˜
g

˙
kn−

˙
k).
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By induction onn ≥ 1 we can construct the followingPαn-names inN:
(
˙
pm

n )m∈ω a sequence of conditions inPβ/Gαn,

˙
γn an ordinal,

˙
kn a natural number≥

˙
kn−1,

˙
f̄ ∗n = (

˙
f ∗ni )i<

˙
kn a

˙
kn-sequence of functions fromω toω,

such that (forn ≥ 1) Pαn forces that
˙
p0

n−1↾αn ∈ Gαn implies12

• ¯
˙
f ∗n is an honest (αn,

˙
γn, β)-approximation of¯

˜
f n witnessed by (

˙
pm

n )m∈ω,
• One of the following cases holds:

˙
An

˙
γn−1 < αn. Then there is a maximalm∗ ≥ 0 such that

˙
pm∗

n−1↾αn is in Gαn. Then
we set

˙
kn ≔ n+

˙
k and choose

˙
p0

n ≤
˙
pm∗

n−1 ≤ p0
n−1, p0

n ∈ Dn.

˙
Bn

˙
γn−1 = β. (In this case the rest of the iteration isσ-complete and all

˙
pm

n−1 are
identical.) Set

˙
kn ≔ n+

˙
k and choose

˙
p0

n ≤ p0
n−1 in Dn.

˙
Cn αn ≤

˙
γn−1 < β. (Then all

˙
pm

n−1↾αn are identical and therefore inPαn/Gαn.) In
this case we “do nothing”, i.e. we setpm

n ≔ pm
n−1,

˙
kn ≔

˙
kn−1 and

˙
f̄ ∗n ≔

˙
f̄ ∗n−1.

All we need for this construction is 4.9(2). Note that in all three cases
˙
p0

n ≤
˙
p0

n−1; in case

˙
An or

˙
Bn

˙
p0

n ∈ Dn and therefore
˙
p0

n (αn,β)
˜
f n
i ↾n =

˙
f ∗n↾n for i < n. In case

˙
Bn,

˙
γn is again

β, in case
˙
Cn,

˙
γn =

˙
γn−1. In all three cases,f ∗n is an honest (αn, γn, αn+1)-approximation

witnessed by (
˙
pm

n ↾αn+1)m∈ω.
To see this, we just have to show that

˙
pm

n ↾αn+1 (αn,αn+1)
˙
f ∗n+1
i ↾m =

˙
f ∗ni ↾m. Assume

Gαn+1 containspm
n ↾αn+1. Then inVα+2, caseAn+1, Bn+1 or Cn+1 holds. In each case we

can extendGαn+1 to a Pβ-generic filterGβ containing
˙
pm

n+1. Then (by case distinction)Gβ
contains

˙
pm

n as well, i.e.
˙
f ∗ni ↾m=

˜
fi↾m=

˙
f ∗n+1
i ↾m.

Next we construct (by induction onn ≥ 0) qn ∈ Pαn+1 such thatqn↾αn = qn−1 andqn

forces:

• Gαn+1 is N-generic andη coversN[Gαn+1],
•

˙
p0

n↾αn+1 ∈ Gαn+1,
•

˙
f ∗ni R j η implies

˙
f ∗n+1
i R j η for i ∈

˙
kn, j ∈ ω,

• (
˙
f ∗n+1
i )i<

˙
kn+1 approximates (

˙
f ∗n+2
i )i<

˙
kn+1 witnessed by (

˙
pm

n+1↾αn+2)m∈ω.

We can do this simply by applying the induction lemma iteratively: Givenqn−1, we
chooseqn using 4.10 as induction hypothesis, settingα ≔ αn, β ≔ αn+1, q ≔ qn−1,
q+ ≔ qn,

˙
p≔

˙
p0

n,
˙
k≔

˙
kn,

˙
f̄ ∗ ≔

˙
f̄ ∗n, ¯

˜
f ≔

˙
f̄ ∗n+1.

Now qβ ≔
⋃

qαn is as required: AssumeGβ is aPβ-generic filter overV containingqβ.
We write pm

n for
˙
pm

n [Gβ] =
˙
pm

n [Gαn] etc.

• p0
n ∈ Gβ for all n:

qm 
˙
p0

m−1↾αm ∈ Gαm for all m. Thereforep0
m ≤ p0

m−1 for all m. So form > n,
qm 

˙
p0

n↾αm ∈ Gαm. Thereforep0
n↾αm ∈ Gαm for all m, i.e. p0

n ∈ Gβ.
• γn = γn−1 unlessγn−1 < αn (i.e. caseAn holds).
•
⋃

n∈ω kn = ω, and infinitely often caseAn or caseBn holds:
If γm = β for somem, then caseBn holds (andkn = n) for all n > m. Whenever

αm+1 ≤ γm < β (i.e. caseCm+1 holds), then for somen > m (the smallestn such
thatαn > γm) caseAn holds and thereforekn = n.
• Gβ is N-generic.

Let D ∈ N be dense. ThenD ⊇ Dm ∈ N, and for somen ≥ m, caseAn or case
Bn holds. Thereforep0

n ∈ N ∩ Dn ∩Gβ, andDn ⊆ Dm.
• We setf∞i ≔

˙
f l
i [Gβ] for somel sufficiently large (i.e.l such thatkl > i).

So (f∞0 , f
∞
1 , . . . ) = ( f0, . . . , fk−1, g0, g1, . . . ).

• If kn > i andl > n, then f ∗ni R j η implies f ∗li R j η.
• If kn > i, then f ∗n R j η implies f∞i R j η.

12or: αn−1 p0
n−1↾αn (αn−1,αn)
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Recall that{ f : f R j η} is closed. For everym there there is anl > m such that
caseAl or Bl holds, i.e. f ∗li ↾l = f∞i ↾l, and by the last itemf ∗li R j η.
• η coversN[Gβ].

Let g ∈ N[Gβ] ∩ C. Then for somei, g = f∞i . Pick ann such thatkn > i. Since
η coversN[Gαn] and

˙
f ∗ni ∈ N[Gαn],

˙
f ∗ni R j η for somej ∈ ω.

This ends the proof of the limit case. �

Note that the iteration lemma applied to the caseα = 0 does not immediately give the
preservation theorem 2.4, since we only get preservation for honest approximations. This
turns out to be no problem, however. Let us recall the structure of the proof:

Assume that (P0
α,

˙
Q0
α)α∈ǫ is a proper countable support iteration such thatP0

α forces that
Q0
α is densely preserving for allα.

• DefineP0
α-names

˙
Q1
α so thatP0

α forces thatQ1
α is a dense subforcing ofQ0

α and
preserving (we can do that by the definition of densely preserving).
• DefineP0

α-namesQ2
α so thatP0

α forces thatQ2
α is a dense subforcing ofQ1

α and
decisive (we can do that by Fact 2.3).Q2

α is still preserving by Fact 4.2.
• Let (Pα,

˙
Qα) be the countable support iteration as in Fact 4.3, obtainedfrom Q2

α.
In particularPα forces thatQα is decisive and preserving (so we can apply the
induction lemma), andPα can be densely embedded intoP0

α for all α ≤ ǫ.
• SetP′ ≔ {1Pǫ } ∪ {p ∈ Pǫ : (∃γ ≤ ǫ) (γ = ǫ ∨ p↾γ γ p(γ) ∈ Q¬σ) &

(∀α < γ)p↾α α p(α) ∈ Qσ}.
P′ is a dense subforcing ofPǫ and therefore ofP0

ǫ . We assign to everyp ∈ P′\{1P′}

the (unique) correspondingγ(p). If q ≤ p, thenγ(q) = γ(p).
• We claim thatP′ is preserving (this finishes the proof of the iteration theorem).

Assume that (inP′) f̄
∗ interprets

˜
f̄ witnessed by (pm)m∈ω. We have to show that

there is an honest witness (pm
1 )m∈ω such thatp0

1 ≤ p0.
– If all pm are 1P, then

˜
f̄ is the standard name for̄f ∗ and there is nothing to do.

So letm∗ be the smallestm such thatpm∗
, 1P. Setγ = γ(pm∗).

– There is apω in Pγ such thatpω ≤ pm↾γ for all m. Setpm
1 ≔ pω ∧ pm. (So if

γ = ǫ, thenpm
1 = pω for all m.)

– If γ < ǫ, we can assume thatpω decides whether the set{
˙
pm(γ) : m ∈

ω} is consistent. If it decides positively, then we redefine
˙
pm

1 (γ) to be any
inconsistent sequence in

˙
Qγ stronger than all

˙
pm(γ).

– The resulting sequence (pm
1 )m∈ω witnesses that̄f ∗ is an honest approximation

of
˜
f̄ .

References

[1] Tomek Bartoszynski and Haim Judah.Set Theory: On the Structure of the Real Line. A K Peters, Wellesley,
MA, 1995.

[2] Martin Goldstern. Tools for Your Forcing Construction.In Haim Judah, editor,Set Theory of The Reals,
volume 6 ofIsrael Mathematical Conference Proceedings, pages 305–360. American Mathematical Society,
1993.

[3] Haim Judah and Saharon Shelah. The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals
and preservation theorems for forcing).The Journal of Symbolic Logic, 55:909–927, 1990.

[4] Jakob Kellner and Saharon Shelah. Preserving preservation. The Journal of Symbolic Logic, 70, 3:914–945,
2005. math.LO/0405081.

[5] Miroslav Repicky. Goldstern-Judah-Shelah preservation theorem for countable support iterations.Funda-
menta Mathematicae, 144:55–72, 1994.

[6] Chaz Schlindwein. Understanding preservation theorems: omega-omega bounding. preprint, see
http://arxiv.org/math.LO/0505645 .

[7] Chaz Schlindwein. A short proof of the preservation of the ωω-bounding property.MLQ Math. Log. Q.,
50(1):29–32, 2004.

[8] Saharon Shelah.Proper and Improper Forcing. Perspectives in Mathematical Logic. Springer, 1998.



NEW REALS 11

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße
8–10/104, 1040 Wien, Austria

URL: http://www.tuwien.ac.at/goldstern
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