
ar
X

iv
:c

s/
06

08
03

9v
1

 [
cs

.L
O

]
 7

 A
ug

 2
00

6

The weak pigeonhole principle for function classes in S1
2

NORMAN DANNER∗ AND CHRIS POLLETT

Abstract. It is well known that S1
2 cannot prove the injective weak pigeonhole principle for

polynomial time functions unless RSA is insecure. In this note we investigate the provability of the
surjective (dual) weak pigeonhole principle in S1

2 for provably weaker function classes.

1. Introduction

The weak pigeonhole principle for a relation R(x, y) says that R does not represent an injective
map from n2 pigeons to n holes. Variants of the weak pigeonhole principle have been shown to
be connected with cryptography and circuit lower bounds in several different ways. Kraj́ıček and
Pudlák [7] have shown that if the theory S 1

2 can prove the principle for graphs of p-time functions
then the cryptographic scheme RSA is insecure. Here S 1

2 is roughly a theory which has axioms for
the symbols of arithmetic and length induction axioms for NP-predicates. The surjective (dual)
variant of the weak pigeonhole principle states there is no surjective map from n pigeons onto n2

holes.1 Jeřábek [5, §3] has shown that the surjective weak pigeonhole principle for p-time functions
is equivalent over S 1

2 to (essentially) the schema that asserts that for each fixed k > 0 that there is
a string of length 2nk that cannot be bit-recognized by any circuit of size nk. More recently, Pollett
and Danner [13] have shown that the multifunction weak pigeonhole principle for iterated p-time
relations is equivalent over S 1

2 to the existence of strings that are hard for an iterated circuit block
recognition principle. This implies that if RSA is secure then S 1

2 cannot prove superpolynomial
circuit lower bounds for multifunctions computed by iterated p-time relations. In an attempt to
make progress towards making these contingent results non-contingent, the present note investigates
whether there are any interesting classes of functions for which S 1

2 can prove the weak pigeonhole
principle.

Proofs of the pigeonhole principle usually start by assuming one has a map that violates the
pigeonhole principle, then constructing a submap that also violates the pigeonhole principle and
applying induction to get an obvious contradiction, such as an injective map of two objects into
one. The weakest theory known to prove the weak pigeonhole principle for graphs of p-time mul-
tifunctions is T 2

2 , which is defined like S 1
2 but with usual induction for NPNP-predicates. This was

shown by Maciel et al. [8, §6] following essentially this paradigm. The authors assume that they
have a multifunction mapping n2 pigeons to n holes. The pigeons are split into groups of size n and
the holes into two groups of size n/2. They then argue that either (1) all of one group of pigeons
must be mapped into the first group of holes, or (2) one can pick one pigeon from each group so
that pigeons from different groups are mapped to different holes (all in the second group). In either
case one gets a map from n pigeons to n/2 holes which is amplified to a map from n2 pigeons to
n/2 holes using the original map. This process is then iterated. The entire argument is carried

ACM Subject Classification. F.4.1.
Key words and phrases. bounded arithmetic, weak pigeonhole principle.
∗Corresponding author.
1Some authors refer to the principle that asserts that there is no bijective map from n

2 pigeons onto n holes as
the onto principle; we shall not refer to this principle or use this terminology in this paper.

1

http://arxiv.org/abs/cs/0608039v1

2 THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2

out in S 3
2 , which is conservative over T 2

2 for Σb
3 formulas (an in particular, for the weak pigeonhole

principle).
In contrast to the above technique for proving the weak pigeonhole principle, in the current

paper we use a technique that clearly illustrates the cryptographic nature of these principles. We
consider a function algebra A3 which is the closure of the terms of the language of S 1

2 under 3-
lengths bounded primitive recursion (see Definition 1). Working in S 1

2 we show that any function

in A3 omits values of the form ⌊(n#n− 1)/3⌋ from its range, where x#y = 2|x||y|. Pollett [11, 12]
has connected the algebras Am to weak theories of arithmetic, and the techniques of those papers
can be used to show that if f(x) ∈ A4, then f(x) 6= ⌊x/3⌋. In this paper we prove the much
harder statement that for any n and any a ≤ n, f(a) 6= ⌊(n#n − 1)/3⌋; in particular, f(~x) is
not a surjection from {0, . . . , n − 1} onto {0, . . . , n#n − 1} (which we will refer to as a surjection
from n onto n#n). Our technique uses a new complexity measure that we call the prefix series for
f(~x) (Definition 4) which might be useful in future work. It should be noted that S 1

2 can prove
the surjective pigeonhole principle for n onto n2 from the principle for n onto n#n. However, the
amount of iteration takes one (just barely) out of the class A3.

We now discuss the organization of the rest of the paper and give a high-level sketch of the proof.
In the next section we introduce the necessary notations from bounded arithmetic and define our
function algebras. In Section 3 we define the notion of a “prefix series.” Roughly speaking, a prefix
series for f(~x) is a representation of f(~x) as a difference of sums of prefixes of the values ~x. In
Theorem 9 we establish a bound on the length of such prefix series. In Section 4 we convert the
prefix series representation to one in which the prefixes are replaced by bits. We compute a bound
on the length of such a representation and combine it with Theorem 9 to compute a bound on
the number of times the binary representation of f(~x) can alternate between 0 and 1 (Lemmas 10
and 11). For f ∈ A3 this bound is provably lower than the number of alternations in ⌊(n#n−1)/3⌋,
allowing us to conclude that f is not a surjection from n onto n#n (Theorem 13). We conclude
with some remarks on generalizations and extensions.

2. Preliminaries

This paper assumes familiarity with the texts of either Buss [1], Kraj́ıček [6], or Hájek and
Pudlák [4]. For completeness, we review the basic notations of bounded arithmetic. The specific
bootstrapping we are following is that of Pollett [10], but yields equivalent theories to the ones in
the books just mentioned. The language L2 contains the non-logical symbols 0, S, +, ·, =, ≤, .−,
⌊12x⌋, |x|, MSP(x, i) and #. The symbols 0, S(x) = x + 1, +, ·, and ≤ have the usual meaning.

The intended meaning of x .− y is x minus y if this is greater than zero and zero otherwise, ⌊12x⌋ is
x divided by 2 rounded down, and |x| is ⌈log2(x+ 1)⌉, that is, the length of x in binary notation.
MSP(x, i) stands for ‘most significant part’ and is intended to mean ⌊x/2i⌋. Finally, x#y reads ‘x

smash y’ and is intended to mean 2|x||y|. The original formulations of bounded arithmetic do not
usually include MSP(x, i) and .−, but instead define them with formulas. One advantage to our
approach is that one can define terms in the language to do a limited amount of sequence coding,
which allows us to more directly formulate our principles in the language L2.

The bounded formulas of L2 are classified into hierarchies Σb
i and Πb

i by counting alternations
of quantifiers, ignoring sharply-bounded quantifiers, analogous to the hierarchies Σ0

i and Π0
i of the

arithmetic hierarchy. Here sharply bounded means bounded by a term of the form |t|. Formally,
a Σb

0 (Πb
0) formula is one in which all quantifiers are sharply-bounded. The Σb

i+1 (Πb
i+1) formulas

contain the Σb

i ∪ Πb

i formulas and are closed under ¬A, A → B, B ∧ C, B ∨ C, sharply-bounded

THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2 3

quantification, and bounded existential (universal) quantification, where A is Πb

i+1 (Σb

i+1) and B

and C are Σb

i+1 (Πb

i+1).
The theory BASIC is axiomatized by a finite set of quantifier-free axioms for the non-logical

symbols of L2. IND
τ consists of formulas of the form

A(0) ∧ (∀x)(A(x) → A(Sx)) → (∀x)A(ℓ(x)).

for ℓ ∈ τ where τ is collection of unary functions. Let id denote the identity function. C-IND and
-LIND (length induction) are obtained by taking A ∈ C and τ to be {id} and {|id|}, respectively
(we will write |id| for x 7→ |id(x)|, etc.). The theories T i

2 and S i
2 are axiomatized as BASIC together

with respectively Σb
i -IND and Σb

i -LIND .
We next briefly consider sequence coding and bit manipulation in our systems of arithmetic. The

term BIT (i, w) := MSP(w, i) .− 2 · ⌊MSP(w, i)/2⌋ is the i-th bit of w. The ordered pair 〈x, y〉 can
be defined as the binary string 1〈x〉1〈y〉 where 〈x〉 is the binary representation of x padded with 0’s
on the left to have length |x|+ |y| and similarly for 〈y〉. Sequences can be defined as ordered pairs
in which the first component specifies a block size and the second a concatenation of blocks. The
predicate Seq(s) that is true when s is the code of a sequence can be given a Σb

0-definition. The
function SqBd(a, b) := 64(2#a#(2(2b+1))) is a bound on the value of any sequence of length < |b|,
each of whose components is ≤ a, and β(b, w) is defined to be the b-th element of the sequence w.
β(b, w) can be defined as a term in our language, and the basic properties of SqBd and β(b, w) can
be proved using open length induction. We will use sequences of pairs extensively in this paper, so
define the term PSqBd(a, b) = SqBd(SqBd(a, 22), b) that is a bound on the value of any sequence
of pairs of length < |b| for which each component of each pair is ≤ a.

The theory S 1
2 can prove the existence of sequences and properties of sequences using length

induction if particular elements in the sequence have Σb
1-definitions. Sometimes it will be convenient

to use other principles more directly connected to sequences. It is known that S 1
2 can prove the

following Σb
1-REPL principle (see [1] or [9]):

∀x ≤ |b| ∃y ≤ aA(x, y) → ∃w ≤ SqBd(a, 2b + 1)∀i ≤ |b|
(

β(i, w) ≤ a ∧ A(x, β(i, w))
)

.

whereA is a Σb
1-formula. Using this principle, we can Σb

1-define the sequence 〈f(0, x), f(1, x), . . . , f(p(|x|), x)〉
where p is a polynomial provided we know f(i, x) is Σb

1-definable (see below). Further it can be
shown that S 1

2 can prove basic properties of this sequence. The Σb
1-REPL scheme can be used to

prove another useful scheme in S 1
2 , that of Σ

b
1-COMP

(∃w < 2|a|)(∀i < |a|)(A(i, a) ⇔ BIT (i, w) = 1).

which allows one to get a bit-string of values for a Σb
1-formula A(i, a).

The INDτ scheme is closely connected with the following type of bounded primitive recursion:

Definition 1. (BPRτ) Let τ be a set of unary functions. f is defined from functions g, h, t and r
by τ -length bounded primitive recursion if:

F (0, ~x) = g(~x)

F (n+ 1, ~x) = min(h(n, ~x, F (n, ~x)), r(n, ~x))

f(n, ~x) = F (ℓ(t(n, ~x)), ~x)

for some r, t ∈ L2 and ℓ ∈ τ .

Let L−
2 be the language of L2 where the symbol for multiplication has been replaced with

PAD(x, y) with intended meaning x · 2|y|. As PAD is definable with an L2-term any L−
2 -term

4 THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2

can be rewritten as an L2-term. Given a class of formulas Ψ, we say an arithmetic theory T can
Ψ-define a function f if there is a formula Af in Ψ such that T proves:

(1) T ⊢ ∀x∃!yAf(x, y)
(2) N |= ∀xAf (x, f(x))

Definition 2. For a set τ of function symbols, the set Aτ is defined as follows:

(1) The function symbols of L−
2 are in Aτ along with symbols πn

i for 0 ≤ i < n (intended
interpretation: projections);

(2) If f, g1, . . . , gr ∈ Aτ and f is r-ary, then Cf,g1,...,gr ∈ Aτ (intended interpretation: the
composition of f with g1, . . . , gr);

(3) If g, h ∈ Aτ , t, r ∈ L−
2 , and ℓ ∈ τ , then Rg,h,t,r,ℓ ∈ Aτ (intended interpretation: the function

defined by ℓ-bounded primitive recursion from g, h, t, and r).

Aτ of course corresponds to a function algebra and we shall frequently informally refer to it
as such. We write Am for A{|id|m}; we shall focus primarily on these classes in all but the last
section. Pollett [9] considers these classes where the initial functions also include multiplication.
In particular, it is known that A1 corresponds to the polynomial time functions and Pollett shows
that A4 ⊂ A1 as A4 cannot define ⌊x/3⌋. When we refer to terms (formulas, etc.) over Aτ in, e.g.,
S 1
2 , we assume that the functions in τ are defined by L−

2 terms and that the defining axioms of
the functions symbols are (conservatively) added to the theory (we shall always have Aτ ⊆ A1).

Using the close connection between LIND and BPR{|id|} Buss [1] shows that the functions in A1

are precisely the functions Σb
1-defined in S 1

2 .
A couple of notations that we use frequently in this paper are:

• For ~x = x1, . . . , xk, ~x < n abbreviates x1 < n ∧ . . . ∧ xk < n.
• We will write #b(n) for n# . . .#n (b− 1 #’s).

Definition 3.

(1) For a unary function symbol f , sPHP(f)mn is the formula n < m ∧ ∃y < m∀x < nf(x) 6= y.

(2) The weak surjective pigeonhole principle for f , sWPHP(f), is the sentence ∀n.sPHP(f)n
2

n .
If A is a set of function symbols, sWPHP(A) is the set of formulas sWPHP(f) for unary
functions f ∈ A.

(3) The sentence sWPHP#(f) is ∀n.sWPHPn#n
n (f) and sWPHP#(A) is defined similarly.

Proposition 1. IfA is a set of function (symbols) closed underBPR{‖id‖}, then S 1
2 ⊢ sWPHP#(A) →

sWPHP(A).

Proof. If f0 is a surjection from 2|m| onto 22|m|, define surjections fr from 2|m| onto 22
r |m| by

setting fr+1(x) to be the result of replacing each length-|m| block y of fr(x) by f0(y). Then f‖m‖

is a surjection from 2|m| onto 2|m||m|. �

3. Prefix series representation

In this section we introduce the notion of a prefix series, which is our main technical tool for
proving the weak surjective pigeonhole principle.

Definition 4.

(1) A prefix series for M from ~m of width w and length k is a pair 〈P,N〉 of sequences such
that:
(a) P = 〈〈a0, b0〉, . . . , 〈akP−1, bkP−1〉〉 and N = 〈〈c0, d0〉, . . . , 〈ckN−1, dkN−1〉〉;

(b) M =
∑kP−1

i=0 ai2
bi .−

∑kN−1
i=0 ci2

di ;

THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2 5

(c) For all i, bi, di ≤ |w|;
(d) k = kP + kN ;
(e) For all i, either ai = 1 or there are j and y ≤ |mj| such that ai = MSP(mj , y) and

similarly for ci.
(2) A bit series for M from ~m of width w and length k is a prefix series for M from ~m of

width w and length k in which all ai’s and ci’s are 1.
(3) For terms t(~x) and w(n) let kt,w(n) be the least k such that if mi < n for all i, then there is a

prefix series for t(~m) from ~m of width ≤ w(n) and length ≤ k. Then kt,w is the w-summand

complexity of t (kt,w(n) may not be defined for all w).

For any function f , if we could define the term w(n) = max{|f(~x)| : ~x < n}, then w(n) itself
would be a bound on kf(~x),w: just use the binary representation of f(~x) to define a bit-series. Of

course, such a term w is problematic; our first goal is to show that for every f ∈ A3 there is in fact
a w such that kf(~x),w has a “tractable” upper bound (and in particular is defined).
Definition 5.

(1) PfxSeries(S, y, x1, . . . , xr, w, k, δ) is the predicate

S < PSqBd(x1 + · · · + xp + |w| , 2min(k,|δ|)) ∧ ∀i < min(k, |δ|)
[

∃a, b < β(i, S)
(

β(i, S) = 〈a, b〉 ∧
(

a = 1 ∨

r
∨

j=1

(

∃r < |xj| (a = MSP(xj , r))
)

)

∧ b < |w| ∧

eval(S) = y
)]

that states that S is a prefix series for y from ~x of width w and length min(k, |δ|). Here
eval is the polynomial-time function that on input 〈P,N〉 as in Definition 4(1) outputs
∑kP−1

i=0 ai2
bi .−

∑kN−1
i=0 ci2

di . Note that ∃S.PfxSeries(S, y, ~x,w, k, δ) is a Σb
1 formula. We

discuss the parameter δ below.
(2) Let t(~x), w(n), k(n), and δ(n) be terms. PfxBound t,w,k,δ is the predicate

∃n0∀n ≥ n0∀~x < n∃S.PfxSeries(S, t(~x), ~x,w(n), k(n), δ(n))

that states that for sufficiently large n, min(k(n), |δ(n)|) is an upper bound on kt,w(n) (and
in particular, kt,w(n) is defined).

(3) BitSeries(S, y,w, k, δ) is the predicate

S < PSqBd(1 + |w| , 2min(k,|δ|))
[

∀i < min(k, |δ|)∃b < |w|
(

β(i, S) = 〈1, b〉 ∧ eval(S) = y
)]

that states that S is a bit series for y of width w and length min(k, |δ|). BitBound t,w,k,δ is
defined analogously to PfxBound t,s,k,δ.

The point behind the parameter δ is to ensure that the exponentiation terms in PfxSeries and
BitSeries are bounded by L2-terms. Our goal is now the following: given an A3-function symbol f ,
find L2-terms w, k, and δ such that S 1

2 ⊢ PfxBoundf~x,w,k,δ; in other words, find a bound on the
lengths of the prefix series for f(~x). In fact, the form of k will be made explicit, and this will allow
us to take δ = n2 for all function symbols in A3. However, for some preliminary observations which
do not rely on the form of k, we must allow this parameter to vary.

Lemma 2. S 1
2 proves the following:

PfxSeries(S, y, ~x,w, k, δ) ∧ w ≤ w′ ∧ k ≤ k′ → PfxSeries(S, y, ~x,w′, k′, δ).

6 THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2

In particular, for any terms t, w, w′, k, k′, and δ,

S 1
2 ⊢ (∃n0∀n ≥ n0(w(n) ≤ w′(n) ∧ k(n) ≤ k′(n)) ∧ PfxBound t,w,k,δ) → PfxBound t,w′,k′,δ

and similarly for the bit-series predicates.

Lemma 3. For every f(~x) ∈ A1 there is an L2-term s(~x) without .− or MSP (hence monotone) such
that S 1

2 ⊢ ∀~x(f(~x) ≤ s(~x)). In particular, there is a number b such that S 1
2 ⊢ ∃n0∀n ≥ n0∀~x <

n(|f(~x)| ≤ |n|b).

Proof. The first part is proved by induction on the definition of f . The base cases are immediate
(bound x .− y and MSP(x, y) by x) and composition is handled by substitution. Suppose f is
defined as in Definition 1; the induction hypothesis gives us bounds ug, ut, and ur for g, t, and r
respectively. Then F (y, ~x) ≤ ug(~x)+ur(y− 1, ~x) and hence f(x, ~x) ≤ ug(~x)+ ur(|ut(x, ~x)| , ~x). For
the second part, prove that for any L2-term u(~x) without .− or MSP there is a number b such that

|u(~x)| ≤ |n|b for sufficiently large n and ~x < n by induction on u. For example, if u = u1#u2, then
take b = b1 + b2, where bi is the inductively-given exponent for ui. �

Lemma 4. S 1
2 ⊢ ∀x∃S.BitSeries(S, x, x, |x| , x). In particular, for every A1-term u(~x) there is a

number b such that S 1
2 ⊢ BitBoundu,|n|b,|n|b,#b(n).

Proof. For the first part use Σb
0-REPL to construct the sequence of pairs 〈BIT (i, x), i〉 such that

BIT (i, x) = 1, which witnesses the claim. For the second part, fix any ~x; then there is an S such that
BitSeries(S, u(~x), u(~x), |u(~x)| , u(~x)). Now take n0 and b as in Lemma 3 and apply Lemma 2. �

We call the bit series given in Lemma 4 the natural bit series for x. We need the following bound
for calculating the length of a prefix series for (the function represented by) an MSP-term:

Lemma 5. The following are provable in S 1
2 : for any ~a, any length k and any length y:

(1)
∑k−1

i=0 MSP(ai, 1) ≤ MSP(
∑k−1

i=0 ai, 1) ≤
(

∑k−1
i=0 MSP(ai, 1)

)

+ k − 1.

(2)
∑k−1

i=0 MSP(ai, y) ≤ MSP(
∑k−1

i=0 ai, y) ≤
∑k−1

i=0 MSP(ai, y) +
∑y−1

i=0 MSP(k, i).
(3) MSP(a, y) .−MSP(b, y) .− 1 ≤ MSP(a .− b, y) ≤ MSP(a, y) .−MSP(b, y).

Proposition 6. S 1
2 proves the following:

∃S′′
[(

PfxSeries(S, y, ~x,w, k, δ) ∧ PfxSeries(S′, y′, ~x,w′, k′, δ′)
)

→

PfxSeries(S′′, y + y′, ~x,w + w′, k + k′, δδ′)
]

.

The same claim holds with y + y′ replaced with y .− y′.

Proof. Working in S 1
2 , suppose y = P .− N , and y′ = P ′ .− N ′ are prefix series for y and y′ of

widths w and w′ and lengths k and k′ respectively. If N ≥ P , then y+ y′ = P ′ .−N . If N < P and
N ′ ≥ P ′, then y+ y′ = P .−N . If N < P and N ′ < P ′, then y+ y′ = (P +P ′) .− (N +N ′). In each
case, the width and length of the prefix series are at most w + w′ and k + k′ respectively. �

We shall frequently rearrange sums of differences of sums in this way to obtain prefix series; we
will not frequently point out that we are doing so.

Proposition 7. S 1
2 proves the following:

∃S′
[

PfxSeries(S, z, ~x,w, k, δ) →

PfxSeries(S′,MSP(z, y), ~x,w + |k| + ‖k‖ , k + |k| + ‖k‖ , δ |δ| ‖δ‖)
]

.

THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2 7

Proof. Suppose P .−N is a prefix series for z from ~x of width w and length k as in Definition 4(1).
From Lemma 5 and arithmetic we have that Q .− k |k| ≤ MSP(P .− N, y) ≤ Q + k |k| where

Q =
∑kP−1

i=0 MSP(ai2
bi , y) .−

∑kN−1
i=0 MSP(ci2

di). Thus there is some e ≤ k |k| such thatMSP(z, y) =
Q .− e or MSP(z, y) = Q + e. Since Q is a prefix series from ~x of width ≤ w and length ≤ k, by
Proposition 6 and Lemma 4 there is a prefix series for MSP(z, y) from ~x of width w + |k| + ‖k‖
and length k + |k|+ ‖k‖. �

We now set about showing that for m ≥ 3 and every function symbol f ∈ Am there is an L2-

term wf (n) and a number bf such that if k(n) is the term ‖n‖|n|
bf
m then S 1

2 ⊢ PfxBoundf~x,w(n),k(n),n2 .

More precisely, we will write ‖n‖|n|
b
m for the term ‖n‖#

(

#b(|n|m−1)
)

so that k(n) is an L2-term.

It is also easy to see that if m ≥ 3, then S 1
2 proves that ‖n‖|n|

b
m is bounded by 2|n|

b+1
3 , which in

turn is bounded above by
∣

∣n2
∣

∣ for sufficiently large n (where the point at which this holds depends
only on b). Thus from now on, we shall simply write PfxBoundf~x,w(n),k(n) with the bounding term

always implicitly n2. The proof is by induction on the definition of f ; we separate out the base
case into its own proposition.

Proposition 8. If f is an L−
2 -function symbol, then there is an L2-term w and a number b such

that S 1
2 ⊢ PfxBoundf~x,w(n),‖n‖b .

Proof. The proof is a straightforward analysis; most cases are handled by already-proved lemmas
and propositions. If f = 0, then wf = kf = 0 and if f = x#y then we can take w(n) = n#n and

k = 1 since fxy = 1 · 2|x||y|. If fx = |x| then an argument as in Lemma 4 applies using Lemma 3

to bound f(x) by ‖n‖b. If f(x, y) = x + y or f(x, y) = x .− y then Proposition 6 applies and if
f(x, y) = MSP(x, y) then Proposition 7 does. If f(x, y) = PAD(x, y), then a prefix series for f(x, y)

from x, y is given by x · 2|y|, which has width ≤ |n| and length 1. �

Theorem 9. Ifm ≥ 3 and f is an Am-function symbol then there is an L2-term wf and a number bf

such that S 1
2 ⊢ PfxBoundf~x,w(~x),k(n), where k(n) = ‖n‖|n|

bf
m .

Proof. The proof is by induction on the definition of f . The base case in which f is an L−
2 symbol

is handled in Proposition 8.
Suppose f has defining equation f~x = g(h1~x, . . . , hr~x). By the induction hypothesis we have

terms wh(n), kh(n), wg(n), and kg(n) such that S 1
2 ⊢

∧

i PfxBoundhi~x,wh,kh
∧ PfxBoundg~x,wg,kg .

Let nh be such that for all n ≥ nh there is a prefix series for hi(~x) from ~x < n of the given
width and length, and define ng similarly. Furthermore take a constant B such that if n ≥ nh

and ~x < n, then |h~x| ≤ |n|B . Take n0 large (we shall impose constraints as the proof pro-
gresses), n ≥ n0, and ~x < n. The induction hypothesis for hi gives us a prefix series Si for hi(~x)
from ~x of width wh(n) and length kh(n) (assume n0 ≥ nh). Since n0 ≥ nh we also have that

hi(~x) ≤ 2|n|
B

. Now the induction hypothesis for g gives us a prefix series Sg for g(h1(~x), . . . , hr(~x))

from h1(~x), . . . , hr(~x) of width wg(2
|n|B) and length kg(2

|n|B) (assume 2|n0|
B

≥ ng). The terms
in Sg have the form MSP(hi(~x), y)2

j for some i, y and j (the terms with coefficient 1 we leave
as they are). Replace each such term with a prefix series for PAD(MSP(hi(~x), y), 2

j−1) from ~x;
this is obtained from the inductively-given prefix series by Lemma 7 and then padding, and has

width at most wh(n) + wg(2
|n|B) and length at most kh(n) + |kh(n)| + ‖kh(n)‖. After replacing

all terms in Sg in this way and rearranging if necessary (dropping expressions that evaluate to 0)

we obtain a prefix series S for g(h1(~x), . . . , hr(~x)) from ~x of width at most wh(n) + wg(2
|n|B) and

8 THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2

length kg(2
|n|B)(kh(n)+ |kh(n)|+‖kh(n)‖). Finally, by taking n0 large enough, kg(2

|n|B) is bounded

above by ‖n‖|n|
bg+1
m , from which an upper bound on the length of the correct form is easily obtained,

completing the proof for this case.
Suppose f is defined by |·|m-bounded recursion from g, h, t, and r with intermediate function F

as in Definition 1. Let k′(n) = kh(n) + ‖n‖br . Take b and c such that for sufficiently large n

and y, ~x < n, |F (y, ~x)| ≤ |n|b and |t(x, ~x)|m ≤ |n|cm. Now take a sufficiently large n0, n ≥ n0,
~x < n, and show by length-induction on y < n that there is a prefix series for F (y, ~x) from y, ~x of

length (3k′(2|n|
b

))ykg(n). For the induction step, since F (y + 1, ~x) is defined as a composition of h
with F (y, ~x) (the case in which F (y+ 1, ~x) = r(y, ~x) is immediate) an argument as in the previous

case applies. Now taking y = |t(x, ~x)|m we obtain a prefix series of length (3k′(2|n|
b

))|n|
c
mkg(n) which

we can bound by a term of the form ‖n‖|n|
Bc+bg+1
m where B = bh+1. Similarly we obtain a bound on

the width of the prefix series for F (y, ~x) of the form yw′(2|n|
b

)wg(n) where w
′(n) = wh(n)+wr(n);

when y = |t(x, ~x)|m ≤ |n|cm, we obtain an term bounded by an L2-term in n. �

4. Bit series representation and the weak pigeonhole principle

We now extract bounds on lengths of bit series representations from bounds on prefix series
representations and use them to determine bounds on the number of times the binary representation
of f(~x) can alternate between 0’s and 1’s.

Lemma 10. For any terms t, w, k, and δ, S 1
2 ⊢ PfxBound t,w,k,δ → BitBound t,w(n)+|n|,|n|k(n),n#δ(n).

Proof. Given a prefix series for t(~x) from ~x, replace each term a2b with 1 · 2b+i1 + · · · + 1 · 2b+ir ,
where the i1, . . . , ir are exactly those i such that BIT (i, a) = 1. Since each ij ≤ |a| ≤ |x|l ≤ |n| for
some l, the resulting bit series has width at most w(n) + |n|. Since |a| ≤ |n| each term is replaced
with a summand of at most |n| terms. Since there are at most k(n) summands, the resulting bit
series for t(~x) from ~x has length at most |n| k(n). �

Given the binary expansion of a number y, a block is a substring of all 0’s or all 1’s of maximal
length. Let #B(y) denote the number of blocks in y’s binary expansion. This number can be
Σb
1-defined in S 1

2 as (#i ≤ |y|)(BIT (i, y) 6= BIT (i+ 1, y)). Here (#i ≤ |y|)B is the operator which
counts the number of i ≤ |y| such that B holds. It is known to be Σb

1-definable in S 1
2 provided B

is ∆b
1 by Buss [1].

Lemma 11. S 1
2 proves the following:

∀wδ∀k∀S < PSqBd(1 + |w| , 2min(|k|,|δ|))
[

BitSeries ′(S, eval (S), w, |k| , δ) → (#B(eval(S)) ≤ 2 |k| + 1)
]

where BitSeries ′ is the part of the definition of BitSeries (Definition 4(3)) in brackets. In other
words, the binary expansion of a number represented by a bit-series of length |k| has at most 2 |k|+1
blocks.

Proof. Fix w and δ; we prove this Πb
1 claim by length-induction on k. If k = 0 then eval(S) =

0 and the claim is immediate, so assume the claim is true for k and that BitSeries ′(S,w, k +

1, δ). Then eval(S) = eval(S′) ± 2j for some S′ satisfying S′ < PSqBd(1 + |w| , 2min(k,|δ|)) and
BitSeries ′(S′, eval(S′), w, k, δ), so the induction hypothesis applies to S′. It is now a matter of
exhausting cases on whether eval(S) = eval(S′) + 2j or eval(S) = eval(S′) .− 2j and BIT (j −

THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2 9

1, eval (S′)), BIT (j, eval (S′)), and BIT (j+1, eval (S′)) to show that #B(eval(S)) ≤ #B(eval(S
′))+

2, from which the claim follows. �

Theorem 12. For any f ∈ A3, S 1
2 ⊢ ∃n0∀n ≥ n0.sPHP

n#n
n (f).

Proof. Combining Theorem 9 with Lemmas 10 and 11 we have that for sufficiently large n, if ~x < n

then #B(f(~x)) ≤ 4 |n| ‖n‖|n|
b
3 for some fixed number b. Now S 1

2 proves that |n|b3 ≤ ⌊‖n‖ /2⌋ for
sufficiently large n and that ⌊|a| /2⌋ ≤ |MSP(a, ⌊|a| /2⌋)| for any a; combining these, we have that

‖n‖|n|
b
3 ≤ 2|n|

b+1
3 ≤ 2⌊‖n‖/2⌋ ≤ 2|MSP(|n|,⌊‖n‖/2⌋)| ≤ 2MSP(|n| , ⌊‖n‖ /2⌋).

Thus we conclude that #B(f(~x)) ≤ 8 |n|MSP(|n| , ⌊‖n‖ /2⌋). Thus |#B(f(~x))| ≤ 3 + ‖n‖ +

⌊‖n‖ /2⌋ ≤ 3 + ⌊3 ‖n‖ /2⌋. On the other hand, S 1
2 proves that if a = ⌊ (n#n)−1

3 ⌋ then #B(a) ≥

MSP(|n|2 − 1, 3) (first show that n#n− 1 is a string of all 1’s, then analyze the grade-school algo-

rithm for division to show that ⌊n#n−1
3 ⌋ = 101010 . . .; this can be done with open length-induction).

Thus |#B(a)| ≥
∣

∣

∣
|n|2 − 1

∣

∣

∣
−3 ≥ 2 ‖n‖−3. If ‖n‖ ≥ 3 then |#B(f(~x))| ≤ ⌊3 ‖n‖ /2⌋+3 < 2 ‖n‖−3 ≤

|#B(a)|, so we conclude that a 6= f(~x). �

Finally, we note that the value n0 in Theorem 12 can be calculated explicitly. That is, in each
argument of this and the previous section in which the conclusion is of the form S 1

2 ⊢ ∃n0∀n ≥ n0 . . .,
we could have instead computed a closed term N and shown S 1

2 ⊢ ∀n > N . . . (adding N into the
formalism would have entailed making our already-unpleasant notation even worse). Thus we can
improve Theorem 12 as follows:

Corollary 13. S 1
2 ⊢ sPHP#(A3).

Proof. Fix f ∈ A3. As just discussed, there is a closed term N such that S 1
2 ⊢ ∀n ≥ N.sPHPn#n

n (f).

Since N is a closed term, for each M < N there is an explicit proof in S 1
2 of sPHPM#M

M (f), and

hence we conclude that S 1
2 ⊢ sPHP#(f). �

5. Generalizations and extensions

Analyzing the details of the above proofs, we can determine the properties of |id|3 that are

required in order to generalize the result to function classes τ . The key point is that (|n|3)
b ∈ o(‖n‖):

Theorem 14. Let τ consist of unary functions ℓ such that:

(1) For every ℓ ∈ τ there is a constant N such that S 1
2 ⊢ ∀n ≥ N(|n|3 ℓ(n) ≤ ⌊‖n‖ /2⌋).

(2) For every ℓ1, ℓ2 ∈ τ , there is ℓ3 ∈ τ and a number N such that S 1
2 ⊢ ∀n ≥ N(ℓ1(n)+ ℓ2(n) ≤

ℓ3(n)).
(3) For every ℓ1, ℓ2 ∈ τ , there is ℓ3 ∈ τ and a number N such that S 1

2 ⊢ ∀n ≥ N(ℓ1(n)ℓ2(n) ≤
ℓ3(n)).

Then S 1
2 ⊢ sPHP#(Aτ).

Proof. The proofs estimating the lengths of the prefix series carry through mutatis mutandis, with

the new bound on the length being ‖n‖ℓ(n) for some ℓ ∈ τ ; the second two hypotheses are used
in the composition and τ -bounded recursion cases of Theorem 9. The proof of Theorem 12 relies

on the fact that ‖n‖|n|
b
3 ≤ 2⌊‖n‖/2⌋. Now we need ‖n‖ℓ(n) ≤ 2|n|3ℓ(n) ≤ 2⌊‖n‖/2⌋, which is the first

hypothesis. �

10 THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2

Of course, we can add any functions to the algebra Aτ provided that the conclusion of Theorem 9

still holds. In particular, if S 1
2 proves that for sufficiently large n and ~x < n, g(x) ≤ 2‖n‖

ℓ(n)
then

the natural bit series for g(~x) satisfies the conclusion, so any such functions can be added to Aτ ;
we leave it to the reader to precisely formulate the corresponding theorem.

Clote [2] gives several interesting function-algebra characterizations of various complexity classes.
Most of these rely on so-called concatenation recursion on notation and one other recursion scheme.
The function f is defined from g, h0, and h1 by concatenation recursion on notation if

f(0, ~x) = g(~x)

f(2n, ~x) = sh0(n,~x)(f(n, ~x)), provided n 6= 0

f(2n+ 1, ~x) = sh1(n,~x)(f(n, ~x))

Clote then shows that, for example, the log-space functions are exactly the closure of L−
2 un-

der composition, concatenation recursion on notation, and sharply-bounded recursion on notation
(called doubly-bounded recursion on notation by Clote and Takeuti [3]). This latter scheme defines
a function f in terms of given functions g, h0, h1, and b by

f(0, ~x) = g(~x)

f(2n, ~x) = h0(n, ~x, f(n, ~x)), provided n 6= 0

f(2n+ 1, ~x) = h1(n, ~x, f(n, ~x))

f(n, ~x) ≤ |b(n, ~x)|

It is easy to see that the scheme of weak bounded recursion on notation preserves the property

that for sufficiently large n and ~x < n, f(~x) ≤ 2‖n‖
ℓ(n)

. Thus, if the techniques of this paper
could be extended to handle concatenation recursion on notation (for which |f(~x)| may now grow
linearly in |n|), one could hope to prove some version of the weak pigeonhole principle for these
small complexity classes.

References

[1] S. R. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
[2] P. Clote. Computation models and function algebras. In Handbook of computability theory, volume 140 of Stud.

Logic Found. Math., pages 589–681. North-Holland, Amsterdam, 1999.
[3] P. Clote and G. Takeuti. First order bounded arithmetic and small Boolean circuit complexity classes. In Feasible

Mathematics II (Ithaca, NY, 1992), volume 13 of Progr. Comput. Sci. Appl. Logic, pages 154–218. Birkhäuser
Boston, Boston, MA, 1995.

[4] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1993.

[5] E. Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann. Pure App. Logic,
129(1–3):1–37, 2004.

[6] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1995.

[7] J. Kraj́ıček and P. Pudlák. Some consequences of cryptographical conjectures for S1
2 and EF. Inform. and

Comput., 140(1):82–94, 1998.
[8] A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole principle. J. Comput. System Sci.,

64(4):843–872, 2002. Special issue on STOC 2000 (Portland, OR).
[9] C. Pollett. Arithmetic Theories with Prenex Normal Form Induction. PhD thesis, University of California, San

Diego, 1997.
[10] C. Pollett. Structure and definability in general bounded arithmetic theories. Ann. Pure Appl. Logic, 100(1-

3):189–245, 1999.
[11] C. Pollett. Multifunction algebras and the provability of PH↓. Ann. Pure Appl. Logic, 104(1-3):279–303, 2000.
[12] C. Pollett. On the bounded version of Hilbert’s tenth problem. Arch. Math. Logic, 42(5):469–488, 2003.

THE WEAK PIGEONHOLE PRINCIPLE FOR FUNCTION CLASSES IN S1
2 11

[13] C. Pollett and N. Danner. Circuit prinicples and weak pigeonhole variants. To appear in Theoretical Computer
Science.

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06549

E-mail address: ndanner@wesleyan.edu

214 MacQuarrie Hall, Department of Computer Science, San Jose State University, One Washing-

ton Square, San Jose CA 95192

E-mail address: pollett@cs.sjsu.edu

	1. Introduction
	2. Preliminaries
	3. Prefix series representation
	4. Bit series representation and the weak pigeonhole principle
	5. Generalizations and extensions
	References

