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Abstract

The stationary set splitting game is a game of perfect information of

length ω1 between two players, unsplit and split, in which unsplit chooses

stationarily many countable ordinals and split tries to continuously divide

them into two stationary pieces. We show that it is possible in ZFC to

force a winning strategy for either player, or for neither. This gives a new

counterexample to Σ2

2 maximality with a predicate for the nonstationary

ideal on ω1, and an example of a consistently undetermined game of length

ω1 with payoff definable in the second-order monadic logic of order. We

also show that the determinacy of the game is consistent with Martin’s

Axiom but not Martin’s Maximum.

MSC2000: 03E35; 03E60

The stationary set splitting game (SG) is a game of perfect information of
length ω1 between two players, unsplit and split. In each round α, unsplit either
accepts or rejects α. If unsplit accepts α, then split puts α into one of two sets
A and B. If unsplit rejects α then split does nothing. After all ω1 many rounds
have been played, split wins if unsplit has not accepted stationarily often, or if
both of A and B are stationary.

In this note we prove that it is possible to force a winning strategy for either
player in SG, or for neither, and we also show that the determinacy of SG is
consistent with Martin’s Axiom but not Martin’s Maximum [4]. We also present
two guessing principles, Cs (club for split) and Du (diamond for unsplit), which
imply the existence of winning strategies for split and unsplit, respectively (and
are therefore incompatible; see Theorems 1.5 and 1.8). These principles may be
of independent interest.
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1 Winning strategies

1.1 Strategies for split

A collection X of countable sets is stationary if for every function F : [
⋃

X ]<ω →⋃
X there is an element of X closed under F . A set X of countable sets is

projective stationary [2] if for every stationary S ⊂ ω1 the set of X ∈ X with
X ∩ ω1 ∈ S is stationary. We note that a partial order P is said to be proper if
forcing with P preserves the stationarity (in the sense above) of stationary sets
from the ground model (see [11]).

The following statement holds in fine structural models such as L. It is a
strengthening of the principle (+) used in [8]. Justin Moore has pointed out to
us that his Mapping Reflection Principle [9] implies the failure of (+). We note
also that in the statement of (+), “projective stationary” can be replaced with
“club” without strengthening the statement. We do not know if that is the case
for C+.

1.1 Definition. Let C+ be the statement that there exists a projective station-
ary set X consisting of countable elementary substructures of H(ℵ2) such that
for all X , Y in X with X ∩ ω1 = Y ∩ ω1, either every for every club C ⊂ ω1 in
X there is a club D ⊂ ω1 in Y with D ∩X ⊂ C ∩X , or for every for every club
D ⊂ ω1 in Y there is a club C ⊂ ω1 in X with C ∩X ⊂ D ∩X .

Given a partial run of SG of length α, we let Eα be the set of β < α accepted
by unsplit, and we let Aα, Bα be the partition of Eα chosen by split.

Theorem 1.2. If C+ holds then split has a winning strategy in SG.

Proof. Let X be a set of countable elementary submodels of H(ℵ2) witnessing
C+, and for each α < ω1 let Xα be the set of X ∈ X with X ∩ω1 = α. Let Z be
the set of α < ω1 such that Xα is nonempty (since X is projective stationary,
this set contains a club).

Play for split as follows. In round α ∈ Z, if unsplit accepts α, let Yα be the
set of all X ∈ Xα such that X contains a stationary subset of ω1, EX , such that
EX ∩ α = Eα. If Yα = ∅, put α ∈ Aα+1. Otherwise, since every club subset
of ω1 in every member of Yα intersects Eα, there cannot be two club subsets of
ω1 in

⋃
Yα , one disjoint from Aα and one disjoint from Bα, since some club

subset of ω1 in
⋃
Yα would be contained in both of these clubs. If any member

of Yα contains a club subset of ω1 disjoint from Aα, then put α in Aα+1, and if
any member of Yα contains a club subset of ω1 disjoint from Bα, then put α in
Bα+1. If neither case holds, put α ∈ Aα+1.

Let E be the play by unsplit in a run of SG where split has played by this
strategy, and let A and B be the corresponding play by split. Let C be a club
subset of ω1 and supposing that E is stationary, fix X ∈ X containing E, A, B
and C with X ∩ω1 ∈ E ∩C. Then if A∩C ∩X ∩ω1 = ∅, then X ∩ω1 ∈ A∩C,
and if B ∩C ∩X ∩ ω1 = ∅, then X ∩ ω1 ∈ B ∩C, which shows that C does not
witness that unsplit won this run of the game.
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The following fact, in conjunction with Theorem 1.2, shows that Martin’s
Axiom is consistent with the existence of a winning strategy for split.

Theorem 1.3. The statement C+ is preserved by forcing with c.c.c. partial
orders.

Proof. Let P be a c.c.c. forcing and let X witness C+. Let γ be a regular
cardinal greater than ℵ2 and 2|P |. Let G ⊂ P be a V -generic filter, and let

X [G] = {X [G] ∩H(ℵ2)
V [G] : X ≺ H(γ)V , X ∩H(ℵ2)

V ∈ X}.

Since every club subset of ω1 in V [G] contains one in V , in order to show that
X [G] witnesses C+ in V [G], it suffices to show that X [G] is projective stationary
there. Fix a P -name ρ for a function from [H(ℵ2)

V [G]]<ω to H(ℵ2)
V [G]. For

any countable X ≺ H(γ) with X ∩H(ℵ2) ∈ X and ρ ∈ X , X [G]∩H(ℵ2)
V [G] is

in X [G] and closed under the realization of ρ. Fix a P -name τ for a stationary
subset of ω1 and a condition p ∈ P . Let S be the set of countable ordinals
forced to be in τ by some condition below p. Then exist a countable X ≺ H(γ)
with X ∩H(ℵ2) ∈ X , X ∩ ω1 ∈ S and ρ ∈ X and a condition q below p forcing
that X [Ġ] ∩ ω1 (where Ġ is the name for the generic filter) is in the realization
of τ . By genericity, then, X [G] is projective stationary.

We do not know how to force C+, however, and use a different principle to
force the existence of a winning strategy for split.

1.4 Definition. Let Cs be the statement that there exist cα (α < ω1 limit)
such that each cα is a sequence 〈aαβ : β < γα〉 (for some countable γα) of cofinal
subsets of α of orderype ω and

• for all limit α < ω1 and all β < β′ < γα, a
α
β′ \ aαβ is finite;

• for every club C ⊂ ω1 and every stationary E ⊂ ω1 there exists an aαβ
with α ∈ E such that aαβ \ C is finite and aαβ ∩ E is infinite.

The principle Cs also holds in fine structural models such as L. The winning
strategy for split given by Cs is very similar to the one given by C+.

Theorem 1.5. If Cs holds then split has a winning strategy in SG.

Proof. Let aαβ (α < ω1 limit, β < γα) witness Cs. Play for split as follows.
In round α, α a limit, if unsplit has accepted α and if some aαβ intersects Aα

infinitely and Bα finitely, then put α in Bα+1. If some aαβ intersects Bα infinitely
and Aα finitely, then put α in Aα+1. Since the aαβ ’s (β < γα) are ⊂-decreasing
mod finite, both cases cannot occur. If neither case occurs, put α in Aα+1.

Let E be the play by unsplit in a run of SG where split has played by this
strategy, and let A and B be the corresponding play by split. Let C be a club
subset of ω1 and supposing that E is stationary, fix aαβ with α ∈ E such that
aαβ \ C is finite and aαβ ∩ E is infinite. Then if A ∩ aαβ is finite, then α ∈ A ∩ C,
and if B ∩ aαβ is finite, then α ∈ B ∩ C, which shows that C does not witness
that unsplit won this run of the game.
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A partial order P is said to be strategically ω-closed if there exists a function
f : P<ω → P(P ) such that whenever 〈pi : i ≤ n〉 is a finite descending sequence
in P , f(〈pi : i ≤ n〉) is a dense subset below pn and, whenever 〈pi : i < ω〉 is a
descending sequence in P such that for each n there exists a j with

pj ∈ f(〈pi : i ≤ n〉),

the sequence has a lower bound in P . It is easy to see that strategic ω-closure
is equal to the property that for every countable X ≺ H((2|P |)+) and every
(X,P )-generic filter g contained in X there is a condition in P extending g.

Let us say that a set a captures a pair E,C if a \ C is finite and a ∩ E is
infinite. Given A ⊂ ω1, let C(A) be the partial order which adds a club subset
of A by initial segments. We force Cs by first adding a potential Cs-sequence by
initial segments, and then iterating to kill off every counterexample.

We refer the reader to [11] for background on countable support iterations
of proper forcing.

Theorem 1.6. Suppose that CH and 2ℵ1 = ℵ2 hold. Let P̄ = 〈Pη, Q
∼

η : η < ω2〉
be a countable support iteration such that P0 is the partial order consisting of
sequences 〈cα : α < δ limit〉, for some countable ordinal δ, such that each cα is a
sequence 〈aαβ : β < γα〉 (for some countable ordinal γα) of cofinal subsets of α of
ordertype ω, deceasing by mod-finite inclusion (and P0 is ordered by extension).
Suppose that the remainder of P̄ satisfies the following conditions.

• For each nonzero η < ω2 there is a Pη-name τη for a subset of ω1 such
that if (τη)Gη

(where Gη is the restriction of the generic filter to Pη) is
stationary in the Pη extension and there exists a club C ⊂ ω1 in this
extension such that no aαβ with α ∈ τGη

captures the pair τGη
, C, then Q

∼
η

is C(ω1 \ (τη)Gη
) (and otherwise, Q

∼
η is C(ω1)).

• For every pair E,C of subsets of ω1 in any Pη-extension (η < ω2), if E is
stationary in this extension and C is club and no aαβ with α ∈ E captures
E,C, then there is a ρ ∈ [η, ω2) such that if E is stationary in the Pρ

extension, then Q
∼

ρ is C(ω1 \ E).

Then P̄ is strategically ω-closed, and Cs holds in the P̄ -extension. Furthermore,
in the P̄ extension, ✸(S) holds for every stationary S ⊂ ω1.

Proof. Let X be a countable elementary submodel of H((2|P̄ |)+) with P̄ ∈ X ,
let g be an X-generic filter contained in P̄ ∩X . Let γX∩ω1

be the ordertype of
X ∩ω2, and for each β < γX∩ω1

, let ηβ be the βth member of X ∩ω2. For each

β < γX∩ω1
, let aX∩ω1

β be a cofinal subset of X ∩ ω1 of ordertype ω such that,
letting gη denote the restriction of g to Pη,

• for all β′ < β < γX∩ω1
, aX∩ω1

β \ aX∩ω1

β′ is finite;

• aαβ is eventually contained in every club subset of ω1 in X [gηβ
] and in-

tersects infinitely every stationary subset of ω1 in every X [gηβ′
], β′ ∈

[β, γX∩ω1
).

4



It remains to see that we can extend g to a condition whose first coordinate is
given by adding cX∩ω1

= 〈aαβ : β < γX∩ω1
〉 to the union of the first coordinates

of the elements of g, and whose ηth coordinate, for each nonzero η ∈ X ∩ ω2 is
the condition given by the union of {X ∩ ω1} and the set of realizations of the
ηth coordinates of the members of g. We do this by induction on η, letting g′η
be our extended condition in Pη.

For each η ∈ ω2 ∩ X , there is a Pη-name σ ∈ X for a club subset of ω1

such that if, in the Pη-extension (τη)Gη
is stationary and there exists a club C

such that τGη
, C is not captured by any aαβ with α ∈ (τη)Gη

, then σGη
is such

a C. However, the realizations of τη and σ by g are captured by aX∩ω1

o.t.(η∩ω2)
, so

g′η forces that τGη
, σGη

is captured by aX∩ω1

o.t.(η∩ω2)
. It follows that g′η forces that

either Q
∼

η is C(ω1), or X ∩ ω1 is not in τGη
. In either case, the union of the

members of g ∩Q
∼

η be can extended to a condition in Q
∼

η by adding {X ∩ ω1}.

To see that ✸(S) holds for every stationary S ⊂ ω1 in the P̄ extension, fix
such an S in the Pα extension for some α < ω2. Since P̄ is (ω,∞) distributive,
there exists in this extension a set 〈eδβ : δ, β < ω1〉 such that for every δ < ω1

and every x ⊂ δ there are uncountably many β such that eδβ = x. Then, letting

T ∈ P(ω1)
V [Gα] be the set such that the realization of Q

∼
α is C(T ), Q

∼
α adds a

✸ sequence 〈bδ : δ ∈ S〉 defined by letting bδ be eδβ , where the βth element of T
above β is the first element of the generic club for Q

∼
α above δ. To see that this

is a ✸ sequence, note that since S is stationary in the P̄ extension, there are
stationarily many elementary submodels X of any sufficiently large H(θ)V [G] in
this extension with X ∩ ω1 ∈ S. Then X ∩ (G/Gα) is a (X ∩ V [Gα], P̄ /Pα)-
generic filter which can be extended to a condition in P̄ /Pα by adding X∩ω1 to
each coordinate, and extended again to make any element of T \ ((X ∩ ω1) + 1)
the least element of the generic club for Q

∼
α above X ∩ ω1. That 〈bβ : β ∈ S〉 is

a ✸ sequence then follows by genericity.

Section 2 shows that proper forcing does not always preserve the existence
of a winning strategy for split.

1.2 A strategy for unsplit

In this section we show that it is consistent for unsplit to have a winning strategy
in SG. We do this via the following guessing principle.

1.7 Definition. Let Du be the statement that there exists a diamond sequence
〈σα : α < ω1〉 such that for every E ⊂ ω1 there is a club C ⊂ ω1 such that
either

∀α ∈ C((E ∩ α = σα) ⇒ α ∈ E)

or
∀α ∈ C((E ∩ α = σα) ⇒ α 6∈ E).

Theorem 1.8. If Du holds then unsplit has a winning strategy in SG.
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Proof. Let 〈σα : α < ω1〉 witness Du. Play for unsplit by accepting α if and
only if σα = Aα. At the end of the game, the set of α such that σα = Aα is
stationary, and there is a club C such that either for all α in C, if σα = Aα,
then α is in A, or for all α in C, if σα = Aα, then α is in B. In either case, split
has lost.

Our iteration to force Du employs the same strategy as the iteration for Cs.
We first force to add a ✸-sequence 〈σα : α < ω1〉 by initial segments, and we
then iterate to make this sequence witness Du, iteratively forcing a club through
the set of α < ω1 such that σα 6= E ∩α or α ∈ E for each E ⊂ ω1 such that the
sets {α ∈ E | σα = E ∩ α} and {α ∈ ω1 \ E | σα = E ∩ α} are both stationary.

More specifically, we have the following. Given a sequence Σ = 〈σα : α < ω1〉
such that each σα is a subset of α, and given E ⊂ ω1, let A(Σ, E) be the set of
α ∈ E such that σα = E ∩α, and let B(Σ, E) be the set of α ∈ ω1 \E such that
σα = E ∩ α.

Theorem 1.9. Suppose that CH + 2ℵ1 = ℵ2 holds, and let P̄ be a countable
support iteration 〈Pα, Q

∼
α : α < ω2〉 such that P0 is the partial order consisting

of sequences 〈σβ : β < γ〉, for some countable ordinal γ, such that each σβ is
a subset of β, ordered by extension. Let Σ be the sequence added by P0 and
suppose that the remainder of P̄ satisfies the following conditions.

• Each Q
∼

α is either C(ω1) or C(ω1 \ B(Σ, E)) for some E ⊂ ω1 such that

A(Σ, E) and B(Σ, E) are both stationary.

• For every E ⊂ ω1 in any Pα-extension (α < ω2) there is a γ ∈ [α, ω2)
such that if A(Σ, E) and B(Σ, E) are both stationary in the Pγ extension,
then Q

∼
γ is C(ω1 \B(Σ, E)).

Then P̄ is strategically ω-closed, and in the P̄ -extension, Du holds. Further-
more, in the P̄ extension, ✸(S) holds for every stationary S ⊂ ω1.

Proof. The iteration P̄ is clearly strategically ω-closed, since for any countable
X ≺ H((2|P̄ |)+) and any (X, P̄ )-generic filter g contained in X , one can extend
g to a condition by making σX∩ω1

unequal to the realization by g of any name
in X for a subset of ω1, and adding X ∩ ω1 to all the clubs being added by the
Q
∼

α’s, α ∈ X ∩ ω2. It is clear also that in the P̄ -extension there is no E ⊂ ω1

such that A(Σ, E) and B(Σ, E) are both stationary.
To see that at least one of A(Σ, E) and B(Σ, E) is stationary for eachE ⊂ ω1,

we first note the following.

Claim 1. Suppose that E ⊂ ω1 is a member of the Pα extension, for some
α < ω2, and A(Σ, E) is stationary in this extension. Then A(Σ, E) remains
stationary in the P̄ extension.

Note that A(Σ, E) has countable intersection with B(Σ, F ), for every F ⊂
ω1. Fix X ≺ H(((2|P̄ |)+)V )V [Gα] (where Gα is the restriction of the generic
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filter G to Pα) with X ∩ω1 ∈ A(Σ, E) and A(Σ, E) ∈ X . Then any (X, P̄ /Pα)-
generic filter contained in X can be extended to a condition by adding X ∩ ω1

to the clubs being added at every stage of P̄ after the first.
Similar reasoning shows the following two facts, which complete the proof

that Σ witnesses Du in the P̄ extension.

Claim 2. Suppose that E ⊂ ω1 is a member of the Pα extension, for some
α < ω2, and not a member of the Pγ extension, for any γ < α. Then A(Σ, E)∪
B(Σ, E) is stationary in the Pα extension.

To see Claim 2, let τ be a Pα-name for a subset of ω1 which is forced
to be unequal to any such subset in any Pγ extension, for any γ < α. Fix

X ≺ H(((2|P̄ |)+))V with τ ∈ X . Let g be an (X,Pα)-generic filter, and note
that the realization of τ↾(X ∩ ω1) by g is different from the realizations of
ρ↾(X ∩ ω1) by g for any Pγ-name ρ ∈ X for a subset of ω1, for any γ ∈ X ∩ α.
It follows that adding the realization of τ↾(X ∩ ω1) by g to the union of the
first coordinate projection of g gives a condition in P0 forcing that X ∩ ω1 is
not in any Σ(B, ρGγ

), for any for any Pγ-name ρ ∈ X for a subset of ω1, for
any γ ∈ X ∩α. Therefore, we can add X ∩ω1 to the clubs being added in every
other stage of P̄ in X ∩ α, and get a condition extending every condition in g.

Claim 3. Suppose that E ⊂ ω1 is a member of the Pα extension, for some
α < ω2, and A(Σ, E) is nonstationary in this extension. Then B(Σ, E) remains
stationary in the P̄ extension.

This is similar to the previous claims, noting that every subsequent stage
of P̄ forces a club though the complement of a set with countable intersection
with B(Σ, E).

The proof that ✸(S) holds for every stationary S ⊂ ω1 in the P̄ extension
is (literally) the same as in the proof of Theorem 1.6.

Note that that the iterations P̄ in Theorems 1.6 and 1.9 are strategically
ω-closed.

1.3 Σ2
2 maximality

The statements that split and unsplit have winning strategies in SG are each Σ2
2

in a predicate for NSω1
, and they are obviously not consistent with each other.

Woodin (see [6]) has shown that if there is a proper class of measurable Woodin
cardinals, then there exists in a forcing extension a transitive class model of ZFC
satisfying all Σ2

2 sentences φ such that φ + CH can be forced over the ground
model. The results here show that this result cannot be extended to include a
predicate for NSω1

. This was known already, in that ✸∗ (in the sense of [7]) and
“the restriction of NSω1

to some stationary set is ℵ1 dense” were both known to
be consistent with ✸ (the second of these is due to Woodin, uses large cardinals
and is unpublished, though a related proof, also due to Woodin, appears in [3]).
Our example is simpler and doesn’t use large cardinals; it also gives (we believe,
for the first time) a counterexample consisting of two sentences each consistent
with “✸(S) holds for every stationary set S ⊂ ω1.”
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1.4 A determined variation

There are many natural variations of SG. We show that one such variation is
determined.

Theorem 1.10. Let G be the following game of length ω1. In round α, player
I puts α into one of two sets E0 and E1, and player II puts α into one of two
sets A0 and A1. After all ω1 rounds have been played, II wins if one of the
following pairs of set are both stationary.

• E0 ∩ A0 and E0 ∩A1

• E1 ∩ A0 and E1 ∩A1

Then II has a winning strategy in G.

Proof. Let B00, B01, B10 and B11 be pairwise disjoint stationary subsets of
ω1. In round α, if α is in Bij , let II put α in Ai if I put α in E0 and in
Aj otherwise. Then after all ω1 many rounds have been played, suppose that
Ai ∩ E0 is nonstationary. Then Bi0 and Bi1 are both contained in E1 modulo
NSω1

, which means that E1 ∩ A0 and E1 ∩ A1 are both stationary. Similarly,
if Ai ∩ E1 is nonstationary then B0i and B1i are both contained in E0 modulo
NSω1

, which means that E0 ∩ A0 and E0 ∩ A1 are both stationary.

2 Indeterminacy from forcing axioms

The axiom PFA+2 says that whenever P is a proper partial order, Dα (α < ω1)
are dense subsets of P and σ1, σ2 are P -names for stationary subsets of ω1,
there is a filter G ⊂ P such that G ∩ Dα 6= ∅ for each α < ω1, and such that
{α < ω1 | ∃p ∈ G pα̌ ∈ σi} is stationary for each i ∈ {1, 2}. Theorems 1.6
and 1.9 together show that PFA+2 implies the indeterminacy of SG. Further-
more, a straightforward argument shows that the following statement implies
the nonexistence of a winning strategy for unsplit in SG, where Add(1, ω1) is the
partial order that adds a subset of ω1 by initial segments : for any pair σ1,σ2 of
Add(1, ω1)-names for stationary subsets of ω1, there is a filter G ⊂ Add(1, ω1)
realizing both σ1 and σ2 as stationary sets. This statement is trivially subsumed
by PFA+2, but also holds in the collapse of a sufficiently large cardinal to be
ω2, and thus is consistent with CH.

The axiom Martin’s Maximum [4] says that whenever P is a partial order
such that forcing with P preserves stationary subsets of ω1 and Dα (α < ω1)
are dense subsets of P , there is a filter G ⊂ P such that G ∩ Dα 6= ∅ for each
α < ω1.

Theorem 2.1. Martin’s Maximum implies that SG is undetermined.

Proof. Fix a strategy Σ for unsplit in SG, and let E, A, and B be the result
of a generic run of SG where unsplit plays by Σ (the partial order consists of
countable partial plays where unsplit plays by Σ, ordered by extension). If the
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complement of E has stationary intersection with every stationary subset of
ω1 in the ground model, one can force to kill the stationarity of E in such a
way that the induced two step forcing preserves stationary subsets of ω1 and
produces a run of SG where unsplit plays by Σ and loses. If the complement
of E does not have stationary intersection with some stationary F ⊂ ω1 in the
ground model, then there is a partial run of the game p and a name τ for a club
such that p forces that E will contain F ∩ τG. Then there exists in the ground
model a run of SG extending p in which unsplit plays by Σ and loses: split picks
a pair of disjoint stationary subsets F0, F1 of F , and plays so that

• for every α < ω1, some initial segment of the play forces some ordinal
greater than α to be in τ ,

• whenever unsplit accepts α ∈ F , split puts α in A if α ∈ F0 and puts
α ∈ B if α ∈ F1.

Now fix a strategy Σ for split in SG, and generically add a regressive function
f on ω1 by initial segments. Let Eα = f−1(α) and let Aα, Bα be the responses
given by Σ to a play of Eα by unsplit. Note that each Eα will be stationary.

Suppose that there exist an α < ω1 and stationary sets S, T in the ground
model such that (S∩Eα)\Aα and (T ∩Eα)\Bα are both nonstationary. Then
there is a condition p in our forcing (i.e., a regressive function on some countable
ordinal) such that p forces that (S ∩ Eα) ⊂ Aα and (T ∩ Eα) ⊂ Bα, modulo
nonstationarity (and so in particular S and T have nonstationary intersection).
Let τ be a name for a club disjoint from (S ∩ Eα) \ Aα and (T ∩ Eα) \ Bα.
Extend p to a filter f (identified with the corresponding function) realizing τ
as a club subset of ω1, at successor stages extending to add a new element to
the realization of τ , and at limit stages (when for some β < ω, f↾β has been
decided and f(β) has not, and β is forced by f↾β to be a limit member of the
realization of τ) extending so that f(β) = α if and only if β ∈ S. Then the run
of SG corresponding to f−1(α) is winning for unsplit, since the corresponding
set Bα is nonstationary.

If there exist no such α, S, T , there is a function h on ω1 such that each
h(α) ∈ {Aα, Bα} and the forcing to shoot a club through the set of β such that
f(β) = α ⇒ β ∈ h(α) preserves stationary subsets of the ground model. Then
Martin’s Maximum applied to the corresponding two step forcing produces a
run of SG (the run for any f−1(α) which is stationary) where split plays by Σ
and loses.

Theorem 2.1 leads to the following question.

2.2 Question. Does the Proper Forcing Axiom imply that SG is not deter-
mined?

The following question is also interesting. The consistency of the ℵ1-density
of NSω1

(relative to the consistency of ADL(R)) is shown in [13].

2.3 Question. Does the ℵ1-density of NSω1
decide the determinacy of SG?

9



3 MLO games

The second-order Monadic Logic of Order (MLO) is an extension of first-order
logic with logical constants =, ∈ and ⊂ and a binary symbol < as the only
non-logical constant, allowing quantification over subsets of the domain. Every
ordinal is a model for MLO, interpreting < as ∈.

Given an ordinal α, an MLO game of length α is determined by an MLO
formula φ with two free variables for subsets of the domain. In such a game,
two players each build a subset of α, and the winner is determined by whether
these two sets satisfy the formula in α.

Büchi and Landweber [1] proved the determinacy of all MLO games of length
ω. Recently, Shomrat [12] extended this result to games of length less than ωω,
and Rabinovich [10] extended it further to all MLO games of countable length.
The stationary set splitting game is an example of an MLO game of length ω1

whose determinacy is independent of ZFC.
We thank Assaf Rinot for pointing out to us the connection between SG and

MLO games.
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