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Abstract

An account of lower and upper integration is given. It is constructive
in the sense of geometric logic. If the integrand takes its values in the non-
negative lower reals, then its lower integral with respect to a valuation is a
lower real. If the integrand takes its values in the non-negative upper reals,
then its upper integral with respect to a covaluation and with domain of
integration bounded by a compact subspace is an upper real. Spaces of
valuations and of covaluations are defined.

Riemann and Choquet integrals can be calculated in terms of these
lower and upper integrals.

This is a preprint version of the article published as –
Mathematical Logic Quarterly 54 (1) (2008), pp. 109 - 123.
doi:10.1002/malq.200710028

1 Introduction

Despite being one of the most fundamental constructions of analysis, integra-
tion is remarkably protean. Even in classical mathematics one finds a range of
definitions of integration of an integrand, over a domain of integration and with
respect to a measure, with a variety of more or less complicated calculations to
cope with integrands that may be signed or even non-functional, and domains
or measures that may be infinite. One also finds lower and upper integrals.

Our aim is to give a constructive localic account, and here the complexity is
worsened by the need to choose carefully the kind of real numbers to be used.
Even if (as is localically natural) one takes Dedekind sections as the usual reals,
there is often still a need to consider upper or lower reals, i.e. like Dedekind
sections but with only the right or left parts.

Here we provide minimal primitive forms of integration, in terms of which
the others can be defined.

For lower integration, which is approximated from below, we use lower reals
throughout. The integrand takes its values as lower reals. The measure is taken
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in the form of a valuation, which values the opens continuously in the lower reals
– “continuously” means with respect to the Scott topology, so that a valuation
transforms directed joins to sups.

For upper integration, which is approximated from above, we use upper reals.
The integrand takes its values as upper reals. The measure is taken in the form
of a covaluation, which in effect values the closeds cocontinuously (transforming
directed meets to infs) in the upper reals. At the same time, we shall need a
compact bound for the domain of integration.

For both of these we find ourselves constrained to integrating non-negative
integrands, in order to avoid trying to negate lower or upper reals. However,
when we strengthen the context to one involving Dedekind reals we find we can
simplify the discussion with a form of Riemann integration.

2 Geometricity

The paper is “constructive” in a loose sense of conforming with the choice-free,
predicative reasoning of geometric logic. More precisely, it is preserved under
change of base in topos theory, along the inverse image functors of geometric
morphisms. This goes somewhat beyond pure logic, and the techniques are
explained in more detail in [Vic07] and [Vic04]; some sample applications appear
in [Vic99], [Vic05a]. This makes it intuitionistic (topos-valid), but also allows it
to conform with predicative type theory – specifically, the powerset construction
is inapplicable, since it is not geometric.

An important aspect is that although it is presented in terms of “spaces”,
and can indeed be read as referring to ordinary topological spaces in classical
mathematics, it also has a covert reading in terms of point-free topology. In
each description of a space, the points are described in effect as the models of
some geometric theory, and the geometric propositions then supply a subbase of
opens for the topology. The theory can be used to present a frame by generators
and relations, and so describes a locale.

As part of the spatial presentation, we shall commonly use symbols of set
theory (∪,∩,⊆ · · · ) with opens, rather than those of lattice theory (∨,∧,≤ · · · ).

A map f : X → Y between spaces is described by how it transforms points.
It should generally be clear how the inverse image function can be derived so
as to give a locale map. However, at a deeper level the description of the
transformation is itself geometric and can be applied to the generic point of
X in the topos of sheaves over X. Topos theory then tells us that we have a
geometric morphism between the toposes of sheaves, and hence a map between
the locales.

The work is also intended to be amenable to formulation in predicative
formal topology [Sam87], though the details have not been worked through. A
geometric theory gives an inductively generated formal topology [CSSV03] in
an obvious way, though with extra complexity due to the standard practice of
presenting with a base of opens rather than a subbase. Regarding maps, we
cannot apply in any obvious way the topos techniques using generic points.

2



Nonetheless, the process by which an inverse image function is extracted from a
point transformation described geometrically should also yield continuous maps
between the formal topologies.

3 Spaces of reals

Various kinds of real numbers will be used. We write Q for the set of rationals
and Q+ for the set of positive rationals.

Definition 1 1. A lower real is a rounded, down-closed subset of Q. Note
that this includes ∅ and Q (−∞ and ∞). If a is a lower real and q ∈ Q,
then we write q < a if q is an element of a.

2. An upper real is a rounded, up-closed subset of Q. This time, ∅ and Q
are ∞ and -∞. We write a < q if q is an element of the upper real a.

3. A Dedekind real x is a pair 〈x, x〉 where x is a non-empty lower real, x
is a non-empty upper real, and x and x are disjoint but come arbitrarily
close (or, if q < r are rationals, then either q < x or x < r).

(Here and elsewhere, we shall use symbols such as a and b for variables of
type upper and lower real respectively.)

Though classically these are all equivalent, they are still distinguished by
their implicit topologies: the Scott topology for the lower reals, the opposite
Scott topology for the upper reals (these are, respectively, the topologies of lower
and upper semicontinuity), and the usual Hausdorff topology for the Dedekind
reals. The specialization orders are, respectively, numerical order, its opposite,
and equality.

For Dedekind reals we take the common notation for intervals, with a round
bracket for an open end and a square bracket for a closed end. We can also
extend this by allowing x and/or x to be empty, thus adjoining infinities. Hence
the Dedekind real line (as a locale) is (−∞,∞) and we may extend it with an
infinity at either end, or both, writing (−∞,∞] etc.

We adapt the same notation for lower or upper reals by writing an arrow to
show the direction of the specialization order. Thus, for instance,

←−−−
[0,∞) denotes

the space of non-negative upper reals, excluding ∞ – concretely, the inhabited
rounded upsets of positive rationals. Similarly,

−−−→
[0,∞] comprises those rounded

downsets in Q that contain all negative rationals. Note that the interval must
be closed at the arrowhead end. This is because locales have directed joins of
points with respect to the specialization order.

Lemma 2 The map
←−−−
[0,∞) × −−−→[0,∞] → S, defined by 〈a, b〉 7→ a < b (i.e. there

is some rational p in a∩ b), gives a homeomorphism
−−−→
[0,∞] ∼= S

←−−−
[0,∞). Similarly,

we get
←−−−
[0,∞] ∼= S

−−−→
(0,∞].
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Note how in each case the exponential includes an endpoint not in the expo-
nent. For example, ∞ in

−−−→
[0,∞] corresponds to the entire space

←−−−
[0,∞) as open

in itself.
Although we have addition maps for

−−−−−→
[−∞,∞] and

←−−−−−
[−∞,∞] (and also addi-

tion and multiplication in
−−−→
[0,∞] and

←−−−
[0,∞]), we do not have subtraction. This

is obvious because a−b would be antitone in b with respect to the specialization
order. However, we do have mixed subtraction.

Definition 3 The subtraction map − :
−−−−−→
[−∞,∞] × ←−−−−−

[−∞,∞] → −−−−−→
[−∞,∞] is

defined as follows. Let a and b be lower and upper reals respectively. Then
a− b = {q − r | q < a, r > b}.

It is easy to see that, for any rational s, we have s < a − b iff s + b < a.
Note that, since ∞ in

←−−−−−
[−∞,∞] is empty, a −∞ = −∞ for all a including ∞.

similarly, (−∞)− b = −∞ for all b including −∞.
Similarly, we have − :

←−−−−−
[−∞,∞]×−−−−−→[−∞,∞] →←−−−−−

[−∞,∞].

Lemma 4 1. Suppose ai is in
−−−−−→
[−∞,∞] and bi is in

←−−−−−
[−∞,∞] (i = 1, 2).

Then
(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2).

2. Let a and c be lower reals, and b an upper real. Then a−(b−c) = (a−b)+c.

3. Let 〈x, x〉 be a Dedekind section. Then x− x = 0.
The duals (interchanging

−−−−−→
[−∞,∞] and

←−−−−−
[−∞,∞]) also hold.

Proof. Easy.

4 A space of valuations

Broadly speaking, a valuation (or evaluation) is like a measure, but defined
just on the opens. It has origins in Birkhoff’s lattice theoretic definition using
the modular law [Bir84] but can be seen more directly in the definition of the
probabilistic powerdomain [Jon89], [JP89]. For us, a valuation will always be
assumed to be Scott continuous. In detail, a valuation on a space X is a Scott
continuous function µ : ΩX → [0,∞] such that µ(∅) = 0, and for which the
modular law

µU + µV = µ(U ∪ V ) + µ(U ∩ V )

holds.
The implied use here of the Scott topology on [0,∞] shows that we are in

fact dealing with
−−−→
[0,∞], and it follows that a valuation µ is determined by the

pairs 〈p, U〉 ∈ Q×ΩX for which p < µU . To be precise, a valuation is equivalent
to a subset I of Q × ΩX such that (i) 〈p, U〉 ∈ I if p < 0, (ii) 〈p, U〉 ∈ I iff
〈p′, U〉 ∈ I for some p′ > p, (iii) 〈p,

∨↑
i Ui〉 ∈ I iff 〈p, Ui〉 ∈ I for some i (here
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as elsewhere the use of “↑” in
∨↑ denotes that the family of which the join is

taken is directed), (iv) 〈p, ∅〉 is not in I for any p ≥ 0, (v) if 〈q, U〉, 〈r, V 〉 ∈ I
then there are q′, r′ with q′ + r′ = q + r and 〈q′, U ∩ V 〉, 〈r′, U ∪ V 〉 ∈ I, and
(vi) if 〈q′, U ∩ V 〉, 〈r′, U ∪ V 〉 ∈ I then there are q, r with q + r = q′ + r′ and
〈q, U〉, 〈r, V 〉 ∈ I. Here (i) and (ii) determine a function from ΩX to the lower
reals, (iii) says that it is Scott continuous, (iv) says it is 0 on ∅ and (v) and (vi)
are the modular law.

We write VX for the space whose points are the valuations on X. The above
criteria on I are geometric in nature, and so we can consider VX to be a locale.
Explicitly, the frame ΩVX can be presented as

Fr〈[p : U ] (p ∈ Q, U ∈ ΩX) |
> ≤ [p : U ] (p < 0)

[p : U ] =
∨

p′>p

[p′ : U ]

[p :
∨↑

i
Ui] =

∨↑
i
[p : Ui]

[p : ∅] ≤ ∅ (0 ≤ p)
∨

q+r=p

([q : U ] ∧ [r : V ]) =
∨

q+r=p

([q : U ∪ V ] ∧ [r : U ∩ V ])

(0 ≤ p ∈ Q, U, V ∈ ΩX)〉.
This idea for presenting a valuation locale has already been noted in [Hec94]

for the probabilistic case (µX = 1). Note however that Heckmann assumes
p ≥ 0 in the symbol [p : U ], with the convention that 0 < 0 so that > ≤ [0 : U ]
for all U . This is introduced to ensure that the modular law is correctly dealt
with in cases where µ(U ∩ V ) = 0. The underlying problem is as follows. We
should like to define addition on lower reals as I + J = {p + q | p ∈ I, q ∈ J}. If
we are dealing with non-negative lower reals, then we can ignore the negative
rationals since they are automatically in the rounded downsets. But then the
lower real 0 is determined by the empty set I = ∅, and then the previous
definition of addition gives the wrong answer 0 + J = 0. It can be corrected
as I + J = I ∪ J ∪ {p + q | p ∈ I, q ∈ J}, or it can be saved by Heckmann’s
convention of 0 < 0 so that 0 is always included. Instead we shall here just
include all the negative rationals.

The frame ΩX is used as one of the indexing sets for the generators in VX,
and this is ungeometric since frame structure is not preserved by inverse image
functors. The situation is similar to that of the powerlocale constructions, which
in [Vic04] are shown to be geometric by reducing to geometric constructions on
frame presentations by generators and relations. We shall use a similar technique
here. The proof is somewhat technical, and will not add much to the broad story
of integration. Nonetheless, it does have the consequence that the valuation
spaces can be dealt with as formal topologies: if a formal topology is given for
X, then one can be constructed, predicatively, for VX. (The corresponding
results for powerlocales are in [Vic06] and [Vic05b].)
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Proposition 5 The valuation space construction V is geometric.

Proof. By [VT04], it suffices to consider ΩX presented in a form in which
the generators form a distributive lattice L, whose lattice structure is preserved
in ΩX, and the relations are all of the form a ≤ ∨↑

i ai. We write η : L → ΩX
for the injection of generators. Now consider the frame

B = Fr〈[p : a]′ (p ∈ Q, a ∈ L) |
> ≤ [p : a]′ (p < 0)

[p : a]′ =
∨

p′>p

[p′ : a]′

[p : a]′ ≤ [p : b]′ (if a ≤ b)

[p : a]′ ≤
∨↑

i
[p : ai]′ (if a ≤

∨↑
i
ai a relation)

[p : 0]′ ≤ ∅ (0 ≤ p)
∨

q+r=p

([q : a]′ ∧ [r : b]′) =
∨

q+r=p

([q : a ∨ b]′ ∧ [r : a ∧ b]′)

(0 ≤ p ∈ Q, a, b ∈ L)〉.

Clearly there is a frame homomorphism α : B → ΩX taking [p : a]′ 7→ [p : η(a)].
If p ∈ Q, the function a 7→ [p : a]′ is monotone and respects the relations,

and so by [VT04] extends uniquely to a Scott continuous function βp : ΩX → B
with βp ◦ η(a) = [p : a]′. We show that the assignment [p, U ] 7→ βp(U) respects
the relations for ΩX and so defines a frame homomorphism β : ΩX → B. Most
of it is obvious from the definition (and Scott continuity) of βp, and the fact
that each U ∈ ΩX is a directed join of elements η(a). However, we need to take
a little more care over the modular law.

Suppose U, V ∈ ΩX, and q, r ∈ Q, p = q + r. If η(a) ⊆ U and η(b) ⊆ V then

[q : a]′ ∧ [r : b]′ ≤
∨

q′+r′=p

([q′ : a ∨ b]′ ∧ [r′ : a ∧ b]′)

≤
∨

q′+r′=p

(βq′(U ∪ V ) ∧ βr′(U ∩ V )).

The reverse direction is somewhat more intricate. Suppose we have η(c) ⊆ U∪V
and η(d) ⊆ U∩V . Replacing c by c∨d, we may assume without loss of generality
that d ≤ c. Then

η(c) = (η(c) ∩ U) ∪ (η(c) ∩ V )

=
⋃↑{η(a ∨ b) | η(a) ⊆ η(c) ∩ U, η(b) ⊆ η(c) ∩ V }.

Replacing a and b by a∨ d and b∨ d, we may assume without loss of generality
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that d ≤ a ∧ b. Then

[q : a ∨ b]′ ∧ [r : d]′ ≤ [q : a ∨ b]′ ∧ [r : a ∧ b]′

≤
∨

q′+r′=p

([q′ : a]′ ∧ [r′ : b]′)

≤
∨

q′+r′=p

(βq′(U) ∧ βr′(V )).

Now that both α and β are defined as frame homomorphisms, it is straight-
forward to show that they are mutually inverse.

Remark 6 If X is locally compact, then the Scott continuous maps from ΩX to−−−→
[0,∞] are the points of

−−−→
[0,∞]S

X

. The sublocale on which the modular law holds
can be described as the equalizer of two maps

−−−→
[0,∞]S

X → −−−→
[0,∞]S

X×SX

, described
by µ 7→ λU.λV.(µU + µV ) and µ 7→ λU.λV.(µ(U ∪ V ) + µ(U ∩ V )). The zero
law µ∅ = 0 is similar. Hence we can describe VX by equalizers as a sublocale
of
−−−→
[0,∞]S

X

. Since exponentiation of locales is trivially geometric [Vic04], this
is enough to give geometricity of V in the locally compact case. Now

−−−→
[0,∞]S

X ∼= (S
←−−−
[0,∞))S

X ∼= (SS
X

)
←−−−
[0,∞) ∼= (PX)

←−−−
[0,∞)

where PX is the double powerlocale [Vic04]. Similarly,
−−−→
[0,∞]S

X×SX ∼= (P(X +
X))

←−−−
[0,∞). Since PX is defined for arbitrary X, and since [VT04] has described a

general sense in which PX ∼= SSX

, it is plausible that those simple geometricity
arguments can also be made valid beyond the locally compact case. However, the
necessary metatheory does not appear to exist yet.

If f : X → Y is a map, then we have Vf : VX → VY defined by

Vf(µ)(V ) = µ(f∗V ).

In terms of subbasics, its inverse image takes [q : V ] to [q : f∗V ], and it is clear
that this respects the relations for VX and VY . Hence the definition by points
also leads to a localic definition. We also see that V is functorial.

I am indebted to Mart́ın Escardó for pointing out the importance of the
following concept.

Definition 7 A valuation µ on X is finite if µX is a Dedekind real, i.e. an
upper real a is provided such that 〈µX, a〉 is a Dedekind section.

Note that a must be finite – as a rounded upset of postive rationals it must
be inhabited. Also, if a exists at all then it is unique.

Definition 8 The space VfX of finite valuations on X is defined as a subspace
of VX ×←−−−[0,∞). It is presented by relations

[q : X]×←−−[0, q) ≤ ∅
VX ×←−−−[0,∞) ≤ [q : X]¯←−−[0, r) (if q < r).
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{   |            }x  f(x)>r

x

f(x)

r+dr
r

Figure 1: Illustrating Choquet integration.

(Note – in a product space X×Y , the notation U¯V denotes U×Y ∪X×V .)
For 〈µ, a〉 to be in the subspace, the first relation says that we cannot have

a < q < µX, and the second that if q < r then either q < µX or a < r.
The composite map VfX ↪→ VX × ←−−−

[0,∞) → VX is monic, but not an
inclusion. To see this, consider the specialization orders. In VX we have µ v µ′

iff µU ≤ µ′U for all U . In VfX we must have, in addition, that µX = µ′X.

5 Lower integrals

We now describe how to obtain lower integrals for maps f : X → −−−→
[0,∞] with

respect to valuations µ on X. In Section 9 we shall look more closely at the
Choquet integral, defined classically (see, e.g., [AMJK04], which deals with val-
uations in a classical setting) by

∫
f dµ =

∫ +∞

0

µ([f > r]) dr

where [f > r] denotes the open set f−1(r,∞]. The essential idea behind this is
illustrated in fig. 1. From the definition it is clear that one would then expect
the following results: that if g : Y → X and µ′ is a valuation on Y , then

∫
f ◦ g dµ′ =

∫ +∞

0

µ′([f ◦ g > r]) dr =
∫ +∞

0

µ′(g−1[f > r]) dr

=
∫ +∞

0

Vg(µ′)([f > r]) dr =
∫

f dVg(µ′)

8



r =00 r1 r2 r3 rnn−1r

Figure 2: Illustrating lower integration.

and, as a consequence, ∫
f dµ =

∫
Id dVf(µ).

Definition 9 Let µ be a valuation on
−−−→
[0,∞]. We define the lower integral∫

Id dµ to be

sup{
n∑

i=1

(ri − ri−1)µ
−−−−→
(ri,∞] |

0 = r0 < · · · < rn are rationals (n ≥ 1)}.

If f : X → −−−→
[0,∞] and µ is a valuation on X, then we define the lower

integral
∫

fdµ to be
∫

Id dVf(µ).

This is illustrated in fig. 2, which shows how horizontal slabs are used to
approximate the area from below.

Note that because the rational coefficients (ri − ri−1) are all positive, the
terms in the sum are all still in

−−−→
[0,∞]. Also,

−−−→
[0,∞] has all sups of set-indexed

families. Hence the definition is valid.
One might have expected an approximation by vertical slabs along the line

of Riemann integration, giving

n−1∑

i=1

ri(µ
−−−−→
(ri,∞]− µ

−−−−−−→
(ri+1,∞]) + rnµ

−−−−→
(rn,∞].
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However, this would be illegitimate because it subtracts lower reals.
As anticipated, we see that if f : X → −−−→

[0,∞] and g : Y → X are two maps,
and µ is a valuation on Y then

∫
f ◦ g dµ =

∫
Id dVf(Vg(µ)) =

∫
f dVg(µ).

6 Covaluations

By a covaluation on a topological space X we mean in effect a valuation on the
closed subspaces, so for each open it describes the mass of its complement. We
therefore have a contravariant function ν : ΩX → [0,∞] such that ν(X) = 0,
and again we expect the modular law

νU + νV = ν(U ∪ V ) + ν(U ∩ V ).

We do not expect the mass function on closed sets to preserve directed unions,
for the same reasons as measure theory only requires countable unions to be
preserved in general – every closed set is a directed union of finite sets. However,
it is more reasonable to suppose that the mass of closed sets preserves down-
directed intersections, so we suppose ν transforms directed joins to infs. Thus
we take ν to be a Scott continuous map from ΩX to

←−−−
[0,∞].

A covaluation ν is now determined by the pairs 〈p, U〉 ∈ Q+×ΩX for which
p > µU (we write Q+ for the set of positive rationals). Then a covaluation is
equivalent to a subset I of Q+ × ΩX such that (i) 〈p, U〉 ∈ I iff 〈p′, U〉 ∈ I

for some p′ < p, (ii) 〈p,
∨↑

i Ui〉 ∈ I iff 〈p, Ui〉 ∈ I for some i, (iii) 〈p,X〉 is in I
for all p, (iv) if 〈q, U〉, 〈r, V 〉 ∈ I then there are q′, r′ with q′ + r′ = q + r and
〈q′, U ∩ V 〉, 〈r′, U ∪ V 〉 ∈ I, and (v) if 〈q′, U ∩ V 〉, 〈r′, U ∪ V 〉 ∈ I then there are
q, r with q + r = q′ + r′ and 〈q, U〉, 〈r, V 〉 ∈ I. Here (i) determines a function
from ΩX to the upper reals, (ii) says that it is Scott continuous, (iii) says it is
0 on X and (iv) and (v) are the modular law.

We write CX for the space of covaluations on X. Again, an explicit frame
presentation for ΩCX can be given as

Fr〈[p : U ] (p ∈ Q+, U ∈ ΩX) |
[p : U ] =

∨

p′>p

[p′ : U ]

[p :
∨↑

i
Ui] =

∨↑
i
[p : Ui]

> ≤ [p : X]
∨

q+r=p

([q : U ] ∧ [r : V ]) =
∨

q+r=p

([q : U ∪ V ] ∧ [r : U ∩ V ])

(0 ≤ p ∈ Q+, U, V ∈ ΩX)〉.

Its geometricity argument is completely analogous to Proposition 5.
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If f : X → Y is a map, then we define Cf : CX → CY by Cf(ν)(V ) =
ν(f∗V ). Localically we have (Cf)∗([q : V ]) = [q : f∗V ], and this clearly respects
the relations for CX and CY . C is functorial.

Definition 10 A covaluation ν on X is finite if ν∅ is a Dedekind real, i.e. a
lower real a is provided such that 〈a, ν∅〉 is a Dedekind section.

Again, if a exists at all then it is unique. Also, ν∅ must be finite.

Definition 11 The space CfX of finite covaluations on X is defined as a sub-
space of CX ×−−−→[0,∞]. It is presented by relations

CX ×−−−→[0,∞] ≤
∨

q∈Q+

[q : ∅]×−−−→[0,∞]

[q : ∅]×−−−→(q,∞] ≤ ∅ (q ∈ Q+)

CX ×−−−→[0,∞] ≤ [q : ∅]¯−−−→(r,∞] (if 0 ≤ r < q in Q).

For 〈ν, a〉 to be in the subspace, the first relation says that ν∅ is finite, i.e.
ν∅ < q for some q. The second says that we cannot have νX < q < a, and the
third that if r < q then either r < a or νX < q.

The composite map CfX ↪→ CX × −−−→[0,∞] → CX is monic, but not an in-
clusion. To see this, again consider the specialization orders. In CX we have
ν v ν′ iff νU ≥ ν′U for all U . (Note the order reversal. But the specialization
order is in the same direction as numerical order on the covaluations considered
as valuations on closed subspaces.) In CfX we must have, in addition, that
ν∅ = ν′∅.

Proposition 12 Let X be a space. Then VfX ∼= CfX.

Proof. First we define α : VfX → CfX. For a point 〈µ, a〉 of VfX, we
define ν by νU = a − µU . The modular law follows from Lemma 4 (1), and
νX = a−µX = 0 because 〈µX, a〉 is a Dedekind section. To see that 〈ν, µX〉 is
in CfX, we have ν∅ = a− µ∅ = a− 0 = a, so 〈µX, ν∅〉 is the Dedekind section
〈µX, a〉.

Similarly, 〈ν, a〉 7−→ 〈µ, ν∅〉, with µU = a − νU , defines a map β : CfX →
VfX.

It remains to show that these are mutually inverse. For β ◦ α = Id this
amounts to showing that, for each 〈µ, a〉 in VfX, µU = µX − (a − µU), and
this follows from Lemma 4 (2) and (3). α ◦ β = Id is similar.

If µ is a finite valuation on X then we shall write µ for the corresponding
covaluation (i.e. α(µ) in the above proof). Similarly, if ν is a finite covaluation
then we shall write ν for the corresponding valuation.

11
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Figure 3: Illustrating upper integration.

7 Upper integrals

This time we describe how to obtain upper integrals for maps f : X → ←−−−
[0,∞]

with respect to covaluations ν on X. An upper integral is always going to be
an inf, and hence requires upper reals. However, to get upper bounds on the
integral from finite decompositions we find we need extra conditions. We shall
assume that X is compact.

For the same reasons as before, we in effect define
∫

fdν =
∫

Id dCf(ν), re-
ducing to the problem of integrating the identity map on

←−−−
[0,∞]. However, to

obtain finite approximations from above we find we must restrict to a compact
saturated domain of integration, for which we use the saturation (the intersec-
tion of the open neighbourhoods) of the image f(X) of f .

Definition 13 Let ν be a covaluation on
←−−−
[0,∞], and let K be a compact sub-

space of
←−−−
[0,∞]. We define the upper integral

∫
K

Id dν to be

inf{
n∑

i=1

(ri − ri−1)ν
←−−−−−
[0, ri−1) |

0 = r0 < · · · < rn are rationals (n ≥ 1), and K ⊆ ←−−−
[0, rn)}.

12



(Even if K is not saturated, the definition will give the same answer as for its
saturation.)

If f : X → ←−−−
[0,∞], with X compact, and ν is a covaluation on X, then we

define the upper integral
∫

fdν to be
∫

f(X)
Id dCf(ν).

Fig. 3 shows how this is approximating from above the area under that part
of the graph that lies above a compact saturated subspace K. Note, however,
that it is not a good approximation unless ν

←−−−
[0, rn) = 0, since rnν

←−−−
[0, rn) is the

area of the infinite rectangle to the right and it lies beyond K. Fortunately, in
the case of interest for

∫
fdν, where K = f(X) ⊆ ←−−−

[0, rn), we do have

Cf(ν)
←−−−
[0, rn) = νf∗(

←−−−
[0, rn)) = νX = 0

Since
←−−−
[0,∞] is itself compact, we could in principle take K =

←−−−
[0,∞]. In that

case there are no rationals rn with K ⊆ ←−−−
[0, rn), and we see that

∫
K

Id dν = ∞
regardless of ν. Hence the upper integral

∫
fdν is only of interest when f : X →←−−−

[0,∞).
A Riemann decomposition into vertical slabs would give

n∑

i=1

ri(ν
←−−−−−
[0, ri−1)− ν

←−−−
[0, ri)),

which does not include the surplus rnν
←−−−
[0, rn). But again one sees that this is

illegitimate because it subtracts upper reals.
In general the role of K is to license us to ignore an infinite part under the

graph, at upper right. Without K, one might try to add on a term ∞ · ν←−−−[0, rn)
with the hope then that in the case of interest – where ν

←−−−
[0, rn) = 0 for sufficiently

large rn – this would give 0 as ∞ · 0. Unfortunately, however, for the upper
reals we have

∞ · 0 = ∞ · inf
ε>0

ε = inf
ε>0

(∞ · ε) = ∞.

8 Riemann integration

Suppose f : [0, 1] → R = (−∞,∞). We can define f+ = max(f, 0), f− =
−min(f, 0), so that f = f+ − f− with f+ and f− both non-negative. We shall
denote by x 7→ x and x 7→ x the maps R→ −−−−−−→

(−∞,∞] and R→←−−−−−−
[−∞,∞) giving

the lower and upper parts (i.e. the left and right parts of a Dedekind section),
so we have f± : [0, 1] → −−−→

[0,∞] and f± : [0, 1] →←−−−
[0,∞). Let λ be the Lebesgue

valuation on [0, 1], defined by

λU = sup{
n∑

i=1

(ri−qi) | the (qi, ri)s are disjoint rational intervals included in U},

13



and let λ be the corresponding covaluation.
In terms of our previous work, we should be able to define

∫ 1

0

f(x)dx =
∫

f
+
dλ−

∫
f−dλ =

∫
Id dV(f

+
)(λ)−

∫

f−[0,1]

Id dC(f−)(λ).

Our aim now is to prove that this gives the same result as Riemann integration.
Of course, once the work is done for the interval [0, 1], it can be done for any
other compact interval by scaling.

The lower Riemann integral
∫ 1

0
f(x)dx can be defined as

sup{
n−1∑

i=0

(qi+1 − qi) inf{f(x) | qi ≤ x ≤ qi+1} |

0 = q0 ≤ q1 ≤ · · · ≤ qn = 1, qi ∈ Q}.
In fact, this can be defined even if f takes its values as lower reals, for we can
define inf{f(x) | qi ≤ x ≤ qi+1} as a lower real by (for p ∈ Q)

p < inf{f(x) | qi ≤ x ≤ qi+1} if [qi, qi+1] ⊆ f−1−−−→(p,∞].

To see that this set of rationals is rounded, note that the localic Heine-Borel
theorem holds constructively. Hence if [qi, qi+1] is covered by f−1

−−−→
(p,∞] =⋃

p<p′ f
−1
−−−−→
(p′,∞], then it is covered by some f−1

−−−−→
(p′,∞]. Of course, for geo-

metricity the inclusion [qi, qi+1] ⊆ f−1
−−−→
(p,∞] has to be interpreted localically.

[Vic03] shows explicitly how bounded closed intervals such as [qi, qi+1] can be
understood as point of the Vietoris powerlocale V R, and then inclusion in an
open U is equivalent to being in an open ¤U of V R.

Similarly, the upper Riemann integral
∫ 1

0
f(x)dx is

inf{
n−1∑

i=0

(qi+1 − qi) sup{f(x) | qi ≤ x ≤ qi+1} |

0 = q0 ≤ q1 ≤ · · · ≤ qn = 1, qi ∈ Q},
and this can be defined even if f takes its values in the upper reals. Note that∫ 1

0
f(x)dx = −∫ 1

0
− f(x)dx

It is a non-trivial combinatorial calculation to prove the equivalence of these
with expressions in terms of our previous definitions. The reason is that the
Riemann integral divides the area into vertical slabs, whereas the previous def-
initions in effect divide it into horizontal slabs.

Lemma 14 Let f : [0, 1] → −−−→
[0,∞]. Then
∫ 1

0

f(x)dx =
∫

f dλ

where the left-hand integral is Riemann, and the right-hand is as in Definition 9.
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Proof. To show ≥, suppose 0 < s <
∫

f dλ <
∫

Id dV(f)(λ) with s rational.
Then there are rationals 0 = r0 < · · · < rn such that

s <

n∑

i=1

(ri − ri−1)λ(f−1−−−−→(ri,∞]).

For each i ≥ 1 we can find a finite set of disjoint rational intervals in f−1
−−−−→
(ri,∞]

such that we can replace each λ(f−1
−−−−→
(ri,∞]) in the above expression by the sum

of the sizes of those rational intervals, and still have the expression bigger than
s. On the face of it these intervals are open, but by shrinking slightly we can
assume they are closed. Let us refer to these intervals as “at level i”. We shall
also refer to (0, 1) as being at level 0. Since

−−−−→
(ri,∞] ⊆ −−−−−−→

(ri−1,∞], we can assume
without loss of generality that each of the intervals at level i is enclosed (i.e.
included) in one at level i−1. Now consider the pairs 〈q, i〉 where q is an endpoint
of an interval at level i. Thinking of these as brackets for their intervals, we can
order them so that the bracketing is properly nested. More precisely, we can
order them as 〈qj , i

′
j〉 (0 ≤ j ≤ m) so that the qjs are in ascending order, and

if 〈qj , i
′
j〉 and 〈qk, i′k〉 are the endpoints for some interval at level i′j = i′k then

all the enclosed intervals at higher levels have indexes strictly between j and k.
Now let us write

ij =
{

i′j if qj is the start of its interval
i′j − 1 if qj is the finish of its interval

so that [qj , qj+1] ⊆ f−1
−−−−−→
(rij ,∞].

Then

s <

n∑

i=1

(ri − ri−1)
∑

ij≥i

(qj+1 − qj)

=
m−1∑

j=0

(qj+1 − qj)
ij∑

i=1

(ri − ri−1) =
m−1∑

j=0

(qj+1 − qj)rij

≤
m−1∑

j=0

(qj+1 − qj) inf{f(x) | qj ≤ x ≤ qj+1}

≤
∫ 1

0

f(x)dx.

To show ≤, suppose s <
∫ 1

0
f(x)dx. Then we can find 0 = q0 ≤ q1 ≤ · · · ≤

qm = 1, with each qj ∈ Q, such that

s <

m−1∑

j=0

(qj+1 − qj) inf{f(x) | qj ≤ x ≤ qj+1}.
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We can then find r′j ∈ Q such that s <
∑m−1

j=0 (qj+1 − qj)r′j and r′j < inf{f(x) |
qj ≤ x ≤ qj+1}, i.e. [qj , qj+1] ⊆ f−1

−−−−→
(r′j ,∞]. Let 0 < r1 < · · · < rn be the

positive elements amongst the r′js, with r′j = rij
if r′j > 0. If r′j ≤ 0 then we

put ij = 0 and write r0 = 0. Then s <
∑m−1

j=0 (qj+1 − qj)rij
and a reversal of

the argument above shows that s <
∫

Id dV(f)(λ).

Lemma 15 Let f : [0, 1] →←−−−
[0,∞). Then

∫ 1

0

f(x)dx =
∫

f dλ

where the left-hand integral is Riemann, and the right-hand is as in Defini-
tion 13.

Proof. For ≤, suppose
∫

fdλ =
∫

f [0,1]
Id dC(f)(λ) < t. Then there is some

sequence of rationals 0 = r0 < · · · < rn (n ≥ 1), with f [0, 1] ⊆ ←−−−
[0, rn), such that

n∑

i=1

(ri − ri−1)C(f)(λ)
←−−−−−
[0, ri−1) < t.

It follows that we can find rationals si (1 ≤ i ≤ n) with C(f)(λ)
←−−−−−
[0, ri−1) < si

and
∑n

i=1(ri − ri−1)si < t. Now

C(f)(λ)
←−−−−−
[0, ri−1) = λ(f−1←−−−−−[0, ri−1)) = 1− λ(f−1←−−−−−[0, ri−1))

and so 1− si < λ(f−1
←−−−−−
[0, ri−1)).

For each i ≥ 1 we can find a finite set of disjoint closed rational intervals
(“at level i”) in f−1

←−−−−−
[0, ri−1) such that the sum of their sizes is > 1− si. Since←−−−−−

[0, ri−1) ⊆
←−−−
[0, ri), we can assume without loss of generality that each of the

intervals at level i − 1 is enclosed in one at level i. The process is like that in
Lemma 14, except that now the enclosing intervals are at higher levels instead of
lower. Again we get a sequence of rationals 0 = q0 ≤ q1 ≤ · · · ≤ qm−1 ≤ qm = 1
with [qj , qj+1] ⊆ f−1

←−−−−
[0, rij ).
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Then 1− si <
∑

ij≤i−1(qj+1 − qj), so

t >

n∑

i=1

(ri − ri−1)si

≥
n∑

i=1

(ri − ri−1)


1−

∑

ij≤i−1

(qj+1 − qj)




= rn −
m−1∑

j=0

(qj+1 − qj)
n∑

i=ij+1

(ri − ri−1)

= rn −
m−1∑

j=0

(qj+1 − qj)(rn − rij
)

= rn(1− qm + q0) +
m−1∑

j=0

(qj+1 − qj)rij

≥
m−1∑

j=0

(qj+1 − qj) sup{f(x) | qj ≤ x ≤ qj+1}

≥
∫ 1

0

f(x)dx.

For ≥, suppose
∫ 1

0
f(x)dx < t. Then we can find 0 = q0 ≤ q1 ≤ · · · ≤ qm = 1,

with each qj ∈ Q, such that

t >

m−1∑

j=0

(qj+1 − qj) sup{f(x) | qj ≤ x ≤ qj+1}.

We can then find r′j ∈ Q such that t >
∑m−1

j=0 (qj+1 − qj)r′j and r′j > sup{f(x) |
qj ≤ x ≤ qj+1}, i.e. [qj , qj+1] ⊆ f−1

←−−−
[0, r′j). Let r be an upper bound of the r′js

with [0, 1] ⊆ f−1
←−−
[0, r), let r0 = 0 and let ri (1 ≤ i ≤ n) be the distinct values of

the r′js and r, in ascending order, with r′j = rij . Then by the above calculation,
t >

∑n
i=1(ri − ri−1)si where

si = 1−
∑

ij≤i−1

(qj+1 − qj).

We find ∑

ij≤i−1

(qj+1 − qj) ≤ λ(f−1←−−−−−[0, ri−1)),

and then reversing the argument above gives t >
∫

f [0,1]
Id dC(f)(λ).
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Theorem 16 Let f : [0, 1] → (−∞,∞). Then
∫ 1

0

f(x)dx =
∫

f
+

dλ−
∫

f− dλ

and ∫ 1

0

f(x)dx =
∫

f+ dλ−
∫

f− dλ.

Proof. It is standard that
∫ 1

0
and

∫ 1

0
preserve sums in the integrand, and

so ∫ 1

0

f(x)dx =
∫ 1

0

f+(x)dx +
∫ 1

0

− f−(x)dx.

By Lemma 14,
∫ 1

0
f+(x)dx =

∫ 1

0
f

+
(x)dx =

∫
f

+
dλ. Also,

∫ 1

0

− f−(x)dx = 0−
∫ 1

0

f−(x)dx

= 0−
∫

f− dλ

using Lemma 15.
The other equation follows by considering

∫ 1

0
− f(x)dx.

9 Choquet integration

In Section 5 we motivated our lower integral through a Choquet definition∫
g dµ =

∫ +∞
0

µ([g > r]) dr. In [AMJK04] this is used as definition of lower
integral where g : X → [0,∞) is bounded, lower semicontinuous and µ is a
continuous valuation. The integral on the right is intended to be Riemann in-
tegration, but a generalization of Lemma 14 would suggest replacing this by a
lower integral

∫
µ([g > −]) dλ. We now show that the equation of the Choquet

definition then does indeed hold.
If g : X → −−−→

[0,∞] and r is an upper real, then µ([g > r]) is a lower real
and so we can interpret µ([g > −]) as a map

←−−−
[0,∞) → ΩX → −−−→

[0,∞]. The
space

←−−−
[0,∞) has a Lebesgue valuation λ – in fact this is nothing other than the

homeomorphism S
←−−−
[0,∞) → −−−→

[0,∞]. Hence
∫

µ([g > −]) dλ can be defined as a
lower integral.

Proposition 17 Let g : X → −−−→
[0,∞] and let µ be a valuation on X. Then∫

g dµ =
∫

µ([g > −]) dλ.

Proof. We must show that
∫

Id dVg(µ) =
∫

Id dV(µ([g > −]))(λ).
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Note that

V(µ([g > −]))(λ)(q,∞] = λ((µ([g > −]))−1(q,∞]).

Treating this as a rounded downset of positive rationals, it follows that

r < V(µ([g > −]))(λ)(q,∞] ⇐⇒ q < µ([g > r]) = Vg(µ)(r,∞].

Now suppose t <
∫

Id dVg(µ). We can then find rationals 0 = r0 < r1 <

· · · < rn and qi < Vg(µ)(ri,∞] (1 ≤ i ≤ n) such that t <
∑n

i=1(ri − ri−1)qi.
Since Vg(µ)(ri,∞] increases as i decreases, we may assume that q0 ≥ q1 ≥
· · · ≥ qn. We may also omit any terms for which qi ≤ 0, and hence assume that
qn > 0. Now

n∑

i=1

(ri − ri−1)qi =
n∑

i=1

riqi −
n−1∑

i=0

riqi+1 =
n−1∑

i=1

ri(qi − qi+1) + rnqn.

Reversing the sequence of qis, and omitting duplicate elements, we find this is
less than or equal to

∫
Id dV(µ([g > −]))(λ).

Now suppose we have t <
∫

Id dV(µ([g > −]))(λ). We can then find ratio-
nals 0 = q0 < q1 < · · · < qn and ri < V(µ([g > −]))(λ)(qi,∞] (1 ≤ i ≤ n) such
that t <

∑n
i=1(qi − qi−1)ri. More or less by reversing the argument above, we

find that t <
∫

Id dVg(µ).

10 Conclusions

In any constructive localic treatment of analysis, the question arises of what
versions of the reals to use. The constructive issue is that of analysing whether
a real is approximated from below (in the lower reals

−−−−−→
[−∞,∞]), from above (in

the upper reals
←−−−−−
[−∞,∞]) or both (in the Dedekind reals R = (−∞,∞)). In

integration this affects both the measure and the integrand. We have defined
lower and upper integrals for which the integrand (in both cases required to be
non-negative) takes its values in the lower and upper reals respectively. For the
lower, the measure is a valuation (on opens), while for the upper the measure
is a covaluation (essentially a valuation on closed subspaces), with a compact
bound needed for the range of integration. Using these we can then recover
lower and upper Riemann integrals of maps from [0, 1] to R, and also a form of
Choquet integration.

A significant issue in a localic treatment is that of continuity: Is integration
continuous in its various ingredients? For the valuation (or covaluation) we have
defined spaces V(X) and C(X) whose points are the valuations and covaluations
on X. (The locale V(X) has already appeared in a slightly different form
in [Hec94].) Then continuity with respect to these is captured by expressing
integration as a map from V(X) or C(X). However, continuity with respect to
the integrand has not been discussed. On the face of it we need a function space
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RX (where R is an appropriate variant of the reals), which can exist only if X
is locally compact. Escardó (private communication) has given an argument to
show how, in the case where X is locally compact, continuity with respect to
the integrand can be derived from Proposition 17.

We conjecture that there is a more general account of this continuity. If X

is not locally compact then SX does not exist, but SSX

does – it is the double
powerlocale PX [VT04]. We may then hope to capture the space RRX

in the
case R =

−−−→
[0,∞] ∼= S

←−−−
[0,∞) by saying RX = S

←−−−
[0,∞)×X (or would do, if it existed),

so
RRX

= S
←−−−
[0,∞)×S

←−−−
[0,∞)×X ∼= (SS

←−−−
[0,∞)×X

)
←−−−
[0,∞) ∼= (P(

←−−−
[0,∞)×X)

←−−−
[0,∞).

In this context we expect to show integration as a map from valuations to
functionals in such a way as to give, in the locally compact case, a map from
VX ×RX to R.
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