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PROPER AND PIECEWISE PROPER FAMILIES OF REALS

VICTORIA GITMAN

Abstract. I introduced the notions of proper and piecewise proper families

of reals to make progress on a long standing open question in the field of

models of Peano Arithmetic about whether every Scott set is the standard

system of a model of PA. A Scott set is a family of reals closed under ∆1

definability and satisfying weak Konig’s Lemma. A family of reals X is proper

if it is arithmetically closed and the quotient Boolean algebra X/Fin is a proper

partial order. A family is piecewise proper if it is the union of a chain of proper

families of size ≤ ω1. I showed that under the Proper Forcing Axiom, every

proper or piecewise proper family of reals is the standard system of a model

of PA. Here, I explore the question of the existence of proper and piecewise

proper families of reals of different cardinalities.

1. Introduction

One of the central concepts in the field of models of Peano Arithmetic is the
standard system of a model of PA. The standard system of a model of PA is the
collection of subsets of the natural numbers that arise as intersections of the defin-
able sets of the model with its standard part N. The notion of a Scott set captures
three key properties of standard systems.

Definition 1.1. X ⊆ P(N) is a Scott set if

(1) X is a Boolean algebra of sets.
(2) If A ∈ X and B is Turing computable from A, then B ∈ X.
(3) If T is an infinite binary tree coded by a set in X, then X has a set coding

some path through T .

In 1962, Scott showed that every standard system is a Scott set and the partial
converse that every countable Scott set is the standard system of a model of PA
[?]. The question of whether every Scott is the standard system of a model of
PA became known in the folklore as Scott’s Problem. In 1982, Knight and Nadel
extended Scott’s result to Scott sets of size ω1 [?]. They showed that every Scott
set of size ω1 is the standard system of a model of PA. It has proved very difficult
to make further progress on Scott’s Problem. My approach, following Engström [?]
and suggested several years earlier by Hamkins, Marker, etc., has been to use the
set theoretic techniques of forcing and the forcing axioms.

We can associate with every family of reals X, the poset X/Fin which consists
of the infinite sets of X under the ordering of almost inclusion. Engström in [?]
introduced the use of this poset in connection with Scott’s Problem. A family of
reals is arithmetically closed if whenever A is in it and B is arithmetically definable
from A, then B is also in it. The arithmetic closure of X is an essential ingredient in
the constructions that make the posets X/Fin useful in investigating properties of
uncountable models of PA (for details of the constructions, see [?]). For this reason,
whenever we view a family of reals as a poset we will always assume arithmetic
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closure. A family X is proper if it is arithmetically closed and the poset X/Fin is
proper. A family X is piecewise proper if it is the union of a chain of proper families
each of which has size ≤ ω1. I showed in [?] that under the Proper Forcing Axiom
(PFA), every proper or piecewise proper family of reals is the standard system of
a model of PA. I will give an extended discussion of properness and the PFA in
Section 2.

Throughout the paper, I equate reals with subsets of N. It is easy to see that
every countable arithmetically closed family of reals is proper and P(N) is proper
as well (see Section 3). Every arithmetically closed family of size ≤ ω1 is trivially
piecewise proper since it is the union of a chain of countable arithmetically closed
families. It becomes much more difficult to find instances of uncountable proper
families of reals other than P(N). Also, it was not clear for a while whether there
are piecewise proper families of of size larger than ω1. My main results are:

Theorem 1.2. If CH holds, then PV (N)/Fin remains proper in any generic ex-

tension by a c.c.c. poset.

Theorem 1.3. There is a generic extension of V by a c.c.c. poset, which contains

continuum many proper families of reals of size ω1.

Theorem 1.4. There is a generic extension of V by a c.c.c. poset, which contains

continuum many piecewise proper families of reals of size ω2.

2. Proper Posets and the PFA

Proper posets were invented by Shelah, who sought a class of ω1 preserving
posets that would extend the c.c.c. and countably closed classes of posets and
be preserved under iterations with countable support. The Proper Forcing Axiom
(PFA) was introduced by Baumgartner who showed that it is consistent by assuming
the existence of a supercompact cardinal [?]. This remains the best known upper
bound on the consistency of PFA.

Recall that for a cardinal λ, the setHλ is the collection of all sets whose transitive
closure has size less than λ. Let P be a poset and λ be a cardinal greater than 2|P|.
Since we can always take an isomorphic copy of P on the cardinal |P|, we can assume
without loss of generality that P and P(P) are elements of Hλ. In particular, we
want to ensure that all dense subsets of P are in Hλ. Let M be a countable
elementary submodel of Hλ containing P as an element. If G is a filter on P, we say
that G is M -generic if for every maximal antichain A ∈ M of P, the intersection
G∩A∩M 6= ∅. It must be explicitly specified what M -generic means in this context
since the usual notion of generic filters makes sense only for transitive structures
and M is not necessarily transitive. This definition of M -generic is closely related
to the definition for transitive structures. To see this, let M∗ be the Mostowski
collapse of M and P∗ be the image of P under the collapse. Let G∗ ⊆ P∗ be the
pointwise image of G ∩M under the collapse. Then G is M -generic if and only if
G∗ is M∗-generic for P∗ in the usual sense.

Later we will need the following important characterization of M -generic filters.

Theorem 2.1. If P is a poset in M ≺ Hλ, then a V -generic filter G ⊆ P is

M -generic if and only if M ∩Ord = M [G] ∩Ord. (See, for example, [?], p. 105)

Definition 2.2. Let P ∈ Hλ be a poset and M be an elementary submodel of Hλ

containing P. Then a condition q ∈ P is M -generic if and only if every V -generic
filter G ⊆ P containing q is M -generic.
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Definition 2.3. A poset P is proper if for every λ > 2|P| and every countable
M ≺ Hλ containing P, for every p ∈ P ∩M , there is an M -generic condition below
p.

When proving that a poset is proper it is often easier to use the following equiv-
alent characterization which appears in [?] (p. 102).

Theorem 2.4. A poset P is proper if there exists a λ > 2|P| and a club of countable

M ≺ Hλ containing P, such that for every p ∈ P ∩ M , there is an M -generic

condition below p.

Countably closed posets and c.c.c. posets are proper and all proper posets pre-
serve ω1 [?].

Definition 2.5. The Proper Forcing Axiom (PFA) is the assertion that for every
proper poset P and every collection D of at most ω1 many dense subsets of P, there
is a filter on P that meets all of them.

The Proper Forcing Axiom decides the size of the continuum. It was shown in
[?] that under PFA, continuum is ω2.

3. Proper and Piecewise Proper Families

Let X be a family of reals. Define the poset X/Fin to consist of the infinite sets
in X under the ordering of almost inclusion. That is, for infinite A and B in X, we
say that A ≤ B if and only if A ⊆Fin B. Observe that X/Fin is forcing equivalent
to forcing with the Boolean algebra X modulo the ideal of finite sets. A familiar
and thoroughly studied instance of this poset is P(ω)/Fin. For a property of posets
P, if X is an arithmetically closed family of reals and X/Fin has P, I will simply
say that X has property P. An important point to be noted here is that whenever
a family X is discussed as a poset, I will always be assuming that it is arithmetically

closed. Recall that the reason for this is the need for arithmetic closure of X in the
constructions with models of PA in which X/Fin is used.

The easiest way to show that a poset is proper to show that it is c.c.c. or countably
closed. Thus, every countable arithmetically closed family is proper since it is c.c.c.
and P(N) is proper since it is countably closed. Unfortunately these two conditions
do not give us any other instances of proper families.

Theorem 3.1. Every c.c.c. family of reals is countable.

Proof. Let X be an arithmetically closed family of reals. If x is a finite subset of
N, let pxq denote the code of x using Gödel’s coding. For every A ∈ X, define an
associated A′ = {pA ∩ nq | n ∈ N}. Clearly A′ is definable from A, and hence in
X. Observe that if A 6= B, then |A′ ∩B′| < ω. Hence if A 6= B, we get that A′ and
B′ are incompatible in X/Fin. It follows that A = {A′ | A ∈ X} is an antichain
of X/Fin of size |X|. This shows that X/Fin always has antichains as large as the
whole poset. �

Thus, the poset X/Fin has the worst possible chain condition, namely |X|+-c.c..

Theorem 3.2. Every countably closed family of reals is P(N).

Proof. I will show that every A ⊆ N is in X. Define a sequence of subsets 〈Bn | n ∈
ω〉 by Bn = {m ∈ N | (m)n = χA(n)} where χA is the characteristic function of A.
Let Am = ∩n≤mBn and observe that each Am is infinite. Thus, A0 ≥ A1 ≥ · · · ≥
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Am ≥ . . . are elements of X/Fin. By countable closure, there exists C ∈ X/Fin
such that C ⊆Fin Am for all m ∈ N. Thus, C ⊆Fin Bn for all n ∈ N. It follows
that A = {n ∈ N | ∃m ∀k ∈ C if k > m, then (k)n = 1}. This shows that A is
arithmetic in C, and hence A ∈ X by arithmetic closure. Since A was arbitrary,
this concludes the proof that X = P(N). �

The assumption that X is arithmetically closed is not necessary for Theorem 3.2.
Any family of reals X such that X/Fin is countably closed must be arithmetically
closed (see [?]) .

Enayat showed in [?] that ZFC proves the existence of an arithmetically closed
family of size ω1 which collapses ω1, and hence is not proper.

Later Enayat and Shelah showed in [?] that there is a Borel arithmetically closed
family of size ω1 which is not proper as well.

I will show below that it is consistent with ZFC that there are continuum many
proper families of size ω1 and it is consistent with ZFC that there are continuum
many piecewise proper families of size ω2. But first I will consider the question
of when does forcing to add new reals preserve the properness of the reals of the
ground model. I will show that if CH holds, forcing with a c.c.c. poset preserves
the properness of the reals of the ground model.

Lemma 3.3. Let X0 ⊆ X1 ⊆ · · · ⊆ Xξ ⊆ · · · for ξ < ω1 be a continuous chain of

countable families of reals and let X = ∪ξ<ω1
Xξ. If M is a countable elementary

substructure of some Hλ and 〈Xξ | ξ < ω1〉 ∈ M , then M ∩ X = Xα where α =

OrdM ∩ ω1.

Proof. Let α = OrdM ∩ ω1. Suppose ξ ∈ α, then ξ ∈ M , and hence Xξ ∈ M .
Since Xξ is countable, it follows that Xξ ⊆ M . Thus, Xα ⊆ X ∩M . Now suppose
A ∈ X ∩M , then the least ξ such that A ∈ Xξ is definable in Hλ. It follows that
ξ ∈ M , and hence ξ ∈ α. Thus, X ∩M ⊆ Xα. �

Lemma 3.4. Suppose P is a c.c.c. poset and G ⊆ Q is V -generic for a countably

closed poset Q. Then P remains c.c.c. in V [G].

Proof. Suppose P does not remain c.c.c. in V [G]. Fix a Q-name Ȧ and r ∈ Q such

that r  “Ȧ is a maximal antichain of P̌ of size ω1”. Choose q0 ≤ r and a0 ∈ P

such that q0  ǎ0 ∈ Ȧ. Suppose that we have defined q0 ≥ q1 ≥ · · · ≥ qξ ≥ · · · for
ξ < β where β is some countable ordinal, together with a corresponding sequence
〈aξ | ξ < β〉 of elements of P such that qξ  ǎξ ∈ Ȧ and aξ1 6= aξ2 for all ξ1 < ξ2.
By countable closure of Q, we can find q ∈ Q such that q ≤ qξ for all ξ < β. Let

qβ ≤ q and aβ ∈ P such that qβ  ǎβ ∈ Ȧ and aβ 6= aξ for all ξ < β. Such aβ
must exist since we assumed r  “Ȧ is a maximal antichain of Q̌ of size ω1” and
q ≤ r. Thus, we can build a descending sequence 〈qξ | ξ < ω1〉 of elements of Q

and a corresponding sequence 〈aξ | ξ < ω1〉 of elements of P such that qξ  ǎξ ∈ Ȧ.
But clearly 〈aξ | ξ < ω1〉 is an antichain in V of size ω1, which contradicts the
assumption that P was c.c.c.. �

Theorem 3.5. If CH holds, then PV (N)/Fin remains proper in any generic ex-

tension by a c.c.c. poset.

Proof. Let P be a c.c.c. poset and fix a V -generic g ⊆ P. In V , let P(N) = ∪ξ<ω1
Xξ

where each Xξ is countable and X0 ⊆ X1 ⊆ · · · ⊆ Xξ ⊆ · · · is a continuous
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chain. For sufficiently large cardinals λ, it is easy to see that H
V [g]
λ = Hλ[g]. The

countable elementary substructures of Hλ[g] of the form M [g] where M ⊆ V and
〈Xξ | ξ < ω1〉,P ∈ M [g] form a club. So by Theorem 2.4, it suffices to find generic
conditions only for such elementary substructures. Fix a countable M [g] ≺ Hλ[g] in
V [g] such that 〈Xξ | ξ < ω1〉,P ∈ M [g] and M ⊆ V . We need to prove that for every
B ∈ M [g] ∩ P(N)V /Fin, there exists A ∈ P(N)V /Fin such that A ⊆Fin B and A is

M [g]-generic in V [g]. By Lemma 3.3, M [g] ∩ PV (N) = Xα where α = OrdM ∩ ω1.
Let D = {D ∩Xα | D ∈ M and D dense in PV (N)/Fin}. Observe that D ⊆ V and
|D| = ω. Since P is c.c.c., we can show that there is D′ ⊇ D of size ω in V . In V ,
use D′ and Xα to define E = {D ∈ D′ | D dense in Xα}. It is clear that D ⊆ E . By
the countable closure of P(N)V /Fin in V , we can find an infinite A ⊆Fin B such
that every D ∈ E contains some C above A. It follows that A is M -generic. In fact,
I will show that A is M [g]-generic. To verify this, we need to check that whenever
A ∈ G and G ⊆ P(N)V /Fin is V [g]-generic, then M [g][G] ∩ Ord = M [g] ∩ Ord.
Since we are forcing with P×P(N)/Fin, we haveM [g][G] = M [G][g]. It is clear that
M ∩Ord = M [g]∩Ord, and so it remains to show that M [G][g]∩Ord = M ∩Ord.
Since A ∈ G and A is M -generic, we have that M [G]∩Ord = M ∩Ord. The poset
P remains c.c.c. in V [G] by Lemma 3.4 since P(N)V /Fin is countably closed. Also
we have M [G] ≺ Hλ[G], even though M [G] itself may not be an element of V [G].
Let A be a maximal antichain of P in M [G], then A ∈ Hλ[G], and hence A has
size ω. It follows that A ⊆ M [G]. Since g is V [G]-generic, it must meet A . So g
is M [G]-generic, and hence M [G][g] ∩Ord = M [G] ∩Ord. �

It follows that it is consistent that there are uncountable proper families other
than P(N). Start in any universe satisfying CH and force to add a Cohen real. In
the resulting generic extension, the reals of V will be an uncountable proper family.

Next, I will show how to force the existence of many proper families. I will begin
by looking at what properness translates into in this specific context.

Proposition 3.6. Suppose X is a family of reals and A is a countable antichain

of X/Fin. Then for B ∈ X:

(1) Every V -generic filter G ⊆ X/Fin containing B meets A .

(2) There exists a finite list A0, . . . , An ∈ A such that B ⊆Fin A0 ∪ . . . ∪ An.

Proof.

(2)=⇒(1): Suppose B ⊆Fin A0 ∪ . . . ∪ An for some A0, . . . , An ∈ A . Since a V -
generic filter G is an ultrafilter, one of the Ai must be in G.
(1)=⇒(2): Assume that every V -generic filter G containing B meets A and suppose
toward a contradiction that (2) does not hold. EnumerateA = {A0, A1, . . . , An, . . .}.
It follows that for all n ∈ N, the intersection B∩(N−A0)∩· · ·∩(N−An) is infinite.
Define C = {cn | n ∈ N} such that c0 is the least element of B ∩ (N−A0) and cn+1

is the least element of B ∩ (N − A0) ∩ · · · ∩ (N − An+1) greater than cn. Clearly
C ⊆ B and C ⊆Fin (N−An) for all n ∈ N. Let G be a V -generic filter containing C,
then B ∈ G and (N −An) ∈ G for all n ∈ N. But this contradicts our assumption
that G meets A . �

Corollary 3.7. A family of reals X is proper if and only if there exists λ > 2|X|

such that for every countable M ≺ Hλ containing X, whenever C ∈ M ∩ X/Fin,
then there is B ⊆Fin C in X/Fin such that for every maximal antichain A ∈ M of

X/Fin, there are A0, . . . , An ∈ A ∩M with B ⊆Fin A0 ∪ · · · ∪ An.
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Proof.

(=⇒): Suppose X is proper. Then there is λ > 2|X| such that for every countable
M ≺ Hλ containing X and every C ∈ M∩X/Fin, there is an M -generic B ⊆Fin C in
X/Fin. Fix a countable M ≺ Hλ containing X and C ∈ M ∩X/Fin. Let B ⊆Fin C
be M -generic. Thus, every V -generic filter containing B must meet A ∩ M for
every maximal antichain A ∈ M of X/Fin. But since A ∩ M is countable, by
Proposition 3.6, there exist A0, . . . , An ∈ A ∩M such that B ⊆Fin A0 ∪ · · · ∪ An.
(⇐=): Suppose that there is λ > 2|X| such that for every countable M ≺ Hλ

containing X, whenever C ∈ M ∩X/Fin, then there is B ⊆Fin C in X/Fin such that
for every maximal antichain A ∈ M of X/Fin, there are A0, . . . , An ∈ A ∩M with
B ⊆Fin A0 ∪ · · · ∪ An. Fix a countable M ≺ Hλ with X ∈ M and C ∈ M ∩ X/Fin.
Let B ⊆Fin C be as above. By Proposition 3.6, every V -generic filter G containing
B must meet A ∩M for every maximal antichain A ∈ M . Thus, B is M -generic.
Since M was arbitrary, we can conclude that X is proper. �

The hypothesis of Corollary 3.7 can be weakened, by Theorem 2.4, to finding for
some Hλ, only a club of countable M having the desired property.

The next definition is key to all the remaining arguments in the paper.

Definition 3.8. Let X be a countable family of reals, let D be some collection
of dense subsets of X/Fin, and let B ∈ X. We say that an infinite set A ⊆ N is
〈X,D〉-generic below B if A ⊆Fin B and for every D ∈ D, there is C ∈ D such that
A ⊆Fin C.

Here one should think of the context of having some large family Y ∈ M ≺ Hλ

for a countable M , X = Y∩M , and D = {D∩M | D ∈ M and D dense in Y/Fin}.
We think of A as coming from the large family Y and the requirement for A to be
〈X,D〉-generic is a strengthening of the requirement to be M -generic.

Lemma 3.9. Let X be a countable family. Assume that B ∈ X/Fin and G ⊆ X/Fin
is a V -generic filter containing B. Then in V [G], there is an infinite A ⊆ N such

that A ⊆Fin C for all C ∈ G. Furthermore, if D is the collection of dense subsets

of X/Fin of V , then such an A is 〈X,D〉-generic below B.

Proof. Since G is countable and directed in V [G], there exists an infinite A ⊆ N

such that A ⊆Fin C for all C ∈ G. For the “furthermore” part, fix a dense subset
D of X/Fin in V . Since there is C ∈ G ∩ D , we have A ⊆Fin C. It is clear that
A ⊆Fin B since B ∈ G. �

Lemma 3.10. Let X0 ⊆ X1 ⊆ · · · ⊆ Xξ ⊆ · · · for ξ < ω1 be a continuous chain of

countable families of reals and let X = ∪ξ<ω1
Xξ. Assume that for every ξ < ω1, if

B ∈ Xξ and D is a countable collection of dense subsets of Xξ, there is A ∈ X/Fin
that is 〈Xξ,D〉-generic below B. Then X is proper.

Proof. Fix a countable M ≺ Hλ such that 〈Xξ | ξ < ω1〉 ∈ M . It suffices to show
that generic conditions exist for such M since these form a club. By Lemma 3.3,
X ∩ M = Xα where α = OrdM ∩ ω1. Fix B ∈ Xα and let D = {D ∩ M | D ∈
M and D dense in X/Fin}. By hypothesis, there is A ∈ X/Fin that is 〈Xα,D〉-
generic below B. Clearly A is M -generic. Thus, we were able to find an M -generic
element below every B ∈ M ∩X/Fin. �

We are finally ready to show how to force the existence of a proper family of size
ω1.
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Theorem 3.11. There is a generic extension of V by a c.c.c. poset that satisfies

¬CH and contains a proper family of reals of size ω1.

Proof. First, note that we can assume without loss of generality that V |= ¬CH
since this is forceable by a c.c.c. forcing.

The forcing to add a proper family of reals will be a c.c.c. finite support iteration
P of length ω1. The iteration P will add, step-by-step, a continuous chain X0 ⊆
X1 ⊆ · · · ⊆ Xξ ⊆ · · · for ξ < ω1 of countable arithmetically closed families such
that ∪ξ<ω1

Xξ will have the property of Lemma 3.10. The idea will be to obtain
generic elements for Xξ, as in Lemma 3.9, by adding generic filters. Once Xξ has
been constructed, I will force over Xξ/Fin below every one of its elements cofinally
often before the iteration is over. Every time such a forcing is done, I will obtain
a generic element for a new collection of dense sets. This element will be added to
Xδ+1 where δ is the stage at which the forcing was done.

Fix a bookkeeping function f mapping ω1 onto ω1 × ω, having the properties
that every pair 〈α, n〉 appears cofinally often in the range and if f(ξ) = 〈α, n〉, then
α ≤ ξ. Let X0 be any countable arithmetically closed family and fix an enumeration
X0 = {B0

0 , B
0
1 , . . . , B

0
n . . .}. Each subsequent Xξ will be created in V Pξ . Suppose

λ is a limit and Gλ is generic for Pλ. In V [Gλ], define Xλ = ∪ξ<λXξ and fix
an enumeration Xλ = {Bλ

0 , B
λ
1 , . . . , B

λ
n, . . .}. Consult f(λ) = 〈ξ, n〉 and define

Q̇λ = Xξ/Fin below Bξ
n. Suppose δ = β+1, then Pδ = Pβ ∗ Q̇β where Q̇β is Xξ/Fin

for some ξ ≤ β below one of its elements. In V [Gδ] = V [Gβ ][H ], let A ⊆Fin B for
all B ∈ H and define Xδ to be the arithmetic closure of Xβ and A. Also in V [Gδ],
fix an enumeration Xδ = {Bδ

0 , B
δ
1 , . . . , B

δ
n, . . .}. Consult f(δ) = 〈ξ, n〉 and define

Q̇δ = Xξ/Fin below Bξ
n. At limits, use finite support.

The poset P is c.c.c. since it is a finite support iteration of c.c.c. posets (see
[?], p. 271). Let G be V -generic for P. It should be clear that we can use G in
V [G] to construct an arithmetically closed Scott set X = ∪ξ<ω1

Xξ. A standard nice

name counting argument shows that (2ω)V = (2ω)V [G]. Since we assumed at the
beginning that V |= ¬CH, it follows that V [G] |= ¬CH.

Finally, we must see that X satisfies the hypothesis of Lemma 3.10 in V [G]. Fix
Xξ, a set B ∈ Xξ, and a countable collection D of dense subsets of Xξ/Fin. Since
the poset P is a finite support c.c.c. iteration and all elements of D are countable,
they must appear at some stage α below ω1. Since we force with Xξ/Fin below B
cofinally often, we have added a 〈Xξ,D〉-generic condition below B at some stage
above α. �

Corollary 3.12. There is a generic extension of V that satisfies CH and contains

a proper family of reals of size ω1 other than P(N).

Proof. As before, we can assume without loss of generality that V |= ¬CH. Force

with P ∗ Q̇ where P is the forcing iteration from Theorem 3.11 and Q is the poset
which adds a subset to ω1 with countable conditions. Let G ∗H be V -generic for
P∗ Q̇, then clearly CH holds in V [G][H ]. Also the family X created from G remains
proper in V [G][H ] since Q is a countably closed forcing, and therefore cannot affect
the properness of a family of reals. �

We can push this argument further to show that it is consistent with ZFC that
there are continuum many proper families of reals of size ω1.
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Theorem 3.13. There is a generic extension of V by a c.c.c. poset that satisfies

¬CH and contains continuum many proper families of reals of size ω1.

Proof. We start by forcing MA + ¬CH. Since this can be done by a c.c.c. forcing
notion ([?], p. 272), we can assume without loss of generality that V |= MA+¬CH.

Define a finite support product Q = Πξ<2ωP
ξ where every Pξ is an iteration of

length ω1 as described in Theorem 3.11. Since Martin’s Axiom implies that finite
support products of c.c.c. posets are c.c.c. (see [?], p. 277), the product poset Q

is c.c.c.. Let G ⊆ Q be V -generic, then each Gξ = G ↾ Pξ together with Pξ can
be used to build an arithmetically closed family Xξ as described in Theorem 3.11.
Each such Xξ will be the union of an increasing chain of countable arithmetically
closed families Xξ

γ for γ < ω1. First, I claim that all Xξ are distinct. Fixing

α < β, I will show that Xα 6= Xβ. Consider V [G ↾ β + 1] = V [G ↾ β][Gβ ] a
generic extension by (Q ↾ β) × Pβ . Observe that Xα already exists in V [G ↾ β].
Recall that to build Xβ, we start with an arithmetically closed countable family

X
β
0 and let the first poset in the iteration Pβ be X

β
0/Fin. Let g be the generic

filter for X
β
0/Fin definable from Gβ . The next step in constructing Xβ is to pick

A ⊆ N such that A ⊆Fin B for all B ∈ g and define X
β
1 to be the arithmetic

closure of Xβ
0 and A. It should be clear that g is definable from A and X

β
0 . Since

g is V [G ↾ β]-generic, it follows that g /∈ V [G ↾ β]. Thus, A /∈ V [G ↾ β], and
hence Xβ 6= Xα. It remains to show that each Xα is proper in V [G]. Fix α < 2ω

and let V [G] = V [G ↾ α][Gα][Gtail] where Gtail is the generic for Q above α. By
the commutativity of products, V [G ↾ α][Gα][Gtail] = V [G ↾ α][Gtail][G

α] and Gα

is V [G ↾ α][Gtail]-generic. Fix a countable M ≺ H
V [G]
λ containing the sequence

〈Xα
ξ | ξ < ω1〉 as an element. By Lemma 3.3, M ∩ Xα is some Xα

γ . This is
the key step of the proof since it allows us to know exactly what M ∩ Xα is,
even though we know nothing about M . Let Gα

ξ = Gα ↾ Pα
ξ for ξ < ω1. Let

D = {D ∩M | D ∈ M and D dense in Xα/Fin}. There must be some β < ω1 such
that D ∈ V [G ↾ α][Gtail][G

α
β ]. By construction, there must be some stage δ > β

at which we forced with Xα
γ/Fin and added a set A such that A ⊆Fin B for all

B ∈ H where Gα
δ+1 = Gα

δ ∗H . Now observe that H is V [G ↾ α][Gtail][G
α
δ ]-generic

for Xα
γ/Fin. Therefore H meets all the sets in D. So we can conclude that A is

M -generic.
A standard nice name counting argument will again show that (2ω)V = (2ω)V [G].

Thus, V [G] satisfies ¬CH and contains continuum many proper families of reals of
size ω1. �

Similar techniques allow us to force the existence of a piecewise proper family of
reals of size ω2.

Lemma 3.14. Let X0 ⊆ X1 ⊆ · · · ⊆ Xξ ⊆ · · · for ξ < ω1 be a continuous chain of

countable families of reals and let X = ∪ξ<ω1
Xξ. Assume that for every ξ < ω1, if

B ∈ Xξ and D is a countable collection of dense subsets of Xξ, there is A ∈ X/Fin
that is 〈Xξ,D〉-generic below B. Then X is proper and X remains proper after

forcing with any absolutely c.c.c. poset.

Proof. The proof is a straightforward modification of the proof of Theorem 3.5.
Let P be an absolutely c.c.c. poset and g ⊆ P be V -generic. We need to show
that X is proper in V [g]. Fix a countable M [g] ≺ Hλ[g] in V [g] such that 〈Xξ :
ξ < ω1〉,P ∈ M [g] and M ⊆ V . Let Xα = M ∩ X and let D = {D ∩ Xξ | D ∈
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M and D dense in X}. Observe that D ⊆ V and |D| = ω. Define E as in proof of
Theorem 3.5. Now choose A ∈ X that is 〈Xα, E〉-generic in V . It follows that A
is M -generic. Next proceed exactly as in the proof of Theorem 3.5, using the fact
that P is absolutely c.c.c. in the final stage of the argument. �

Theorem 3.15. There is a generic extension of V by a c.c.c. poset which contains

a piecewise proper family of reals of size ω2.

Proof. We will define a c.c.c. forcing iteration Qω2
of length ω2 to accomplish this.

Let Q0 be the forcing to add a proper family X0 of size ω1 (Theorem 3.11). At
the αth-stage, force with the poset to add a proper family Xα ⊇ ∪β<αXβ. Observe
here, that the poset from Theorem 3.11 can be very easily modified to the poset
which adds a proper family extending any family of reals from the ground model.
Let G ⊆ Qω2

be V -generic. I claim each Xα remains proper in V [G]. Fix Xα and
factor the forcing Qω2

= Qα ∗ Qtail. The family Xα is proper in V [Gα] and Qtail

is absolutely c.c.c. in V [Gα]. The poset Qtail is absolutely c.c.c since the forcing
to add a proper family is a finite support iteration of countable posets. Thus, by
Lemma 3.14, Xα remains proper in V [Gα][Gtail]. Thus, X = ∪α<ω2

Xα is clearly
piecewise proper. �

By exactly following the proof of Theorem 3.13, we can extend Theorem 3.15 to
obtain:

Theorem 3.16. There is a generic extension of V by a c.c.c. poset which contains

continuum many piecewise proper families of reals of size ω2.

By Enayat’s [?] example of a non-proper arithmetically closed family of size ω1,
we know that there are piecewise proper families that are not proper. This follows
by recalling that arithmetically closed families of size ω1 are trivially piecewise
proper. It is not clear whether every proper family has to be piecewise proper. In
particular, it is not known whether P(N) is piecewise proper. It follows that P(N)
can be piecewise proper from the proof of Theorem 3.15 since we can modify the
construction to end up with X = P(N).

Finally, I will discuss a possible construction for proper families under PFA. The
idea is, in some sense, to mimic the forcing iteration like that of Theorem 3.11 in
the ground model. Unfortunately, the main problem with the construction is that
it is not clear whether we are getting the whole P(N). This problem never arose in
the forcing construction since we were building families of size ω1 and knew that
the continuum was larger than ω1. I will describe the construction and a possible
way of ensuring that the resulting family is not P(N).

Fix an enumeration {〈Aξ, Bξ〉 | ξ < ω2} of P(ω)×P(ω). Also fix a bookkeeping
function f from ω2 onto ω2 such that each element appears cofinally in the range. I
will build a family X of size ω2 as the union of an increasing chain of arithmetically
closed families Xξ for ξ < ω2. Start with any arithmetically closed family X0 of size
ω1. Suppose we have constructed Xβ for β ≤ α and we need to construct Xα+1.
Consult f(α) = γ and consider the pair 〈Aγ , Bγ〉 in the enumeration of P(ω)×P(ω).
First, suppose that Aγ codes a countable family Y ⊆ Xα and Bγ codes a countable
collection D of dense subsets of Y. Let G be some filter on Y meeting all sets in
D and let A ⊆Fin C for all C ∈ G. Define Xα+1 to be the arithmetic closure of Xα

and A. If the pair 〈Aγ , Bγ〉 does not code such information, let Xα+1 = Xα. At
limit stages take unions.
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I claim that X is proper. Fix some countable M ≺ Hλ containing X. Let
Y = M ∩X and let D = {D ∩M | D ∈ M and D dense in X/Fin}. There must be
some γ such that 〈Aγ , Bγ〉 codes Y and D. Let δ such that M ∩ X is contained in
Xδ, then there must be some α > δ such that f(α) = γ. Thus, at stage α in the
construction we considered the pair 〈Aγ , Bγ〉. Since α > δ, we haveM∩X = M∩Xα.
It follows that at stage α we added an M -generic set A to X.

A way to prove that X 6= P(N) would be to show that some fixed set C is not in
X. Suppose the following question had a positive answer:

Question 3.17. Let X be an arithmetically closed family such that C /∈ X and
Y ⊆ X be a countable family. Is there a Y/Fin-name Ȧ such that 1Y/Fin  “Ȧ ⊆Fin

B for all B ∈ Ġ and Č is not in the arithmetic closure of Ȧ and X̌”?

Assuming that the answer to Question 3.17 is positive, let us construct a proper
family X in such a way that C is not in X. We will carry out the above construction
being careful in our choice of the filters G and elements A. Start with X0 that does
not contain C and assume that C /∈ Xα. Suppose the pair 〈Aγ , Bγ〉 considered at
stage α codes meaningful information. That is, Aγ codes a countable familyY ⊆ Xα

and Bγ codes a countable collectionD of dense subsets ofY. Choose some transitive
N ≺ Hω2

of size ω1 such that Xα, Y, and D are elements of N . Since we assumed

a positive answer to Question 3.17, Hω2
satisfies that there exists a Y/Fin-name Ȧ

such that 1Y/Fin  “Ȧ ⊆Fin B for all B ∈ Ġ and Č is not in the arithmetic closure

of Ȧ and X̌α”. But then N satisfies the same statement by elementarity. Hence
there is Ȧ ∈ N such that N satisfies 1Y/Fin  “Ȧ ⊆Fin B for all B ∈ Ġ and Č is

not in the arithmetic closure of Ȧ and X̌α”. Now use PFA to find an N -generic
filter G for Y/Fin. Since G is fully generic for the model N , the model N [G] will

satisfy that C is not in the arithmetic closure of Xα and A = ȦG. Thus, it is really
true that C is not in the arithmetic closure of Xα and A. Since G also met all the
dense sets in D and A ⊆Fin B for all B ∈ G, we can let Xα+1 be the arithmetic
closure of Xα and A. Thus, C /∈ Xα+1. We can conclude that C /∈ X.

4. Questions

Question 4.1. Can ZFC or ZFC + PFA prove the existence of an uncountable
proper family of reals other than P(N)?

Question 4.2. Can ZFC or ZFC + PFA prove the existence of a piecewise proper
family of size ω2?

Question 4.3. Is it consistent with ZFC that there are proper families of reals of
size ω2 other than P(N)?

Question 4.4. What is the answer to Question 3.17?

Question 4.5. Can P(N) be non-piecewise proper?
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