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In this work we provide a new topological representation for implication algebras in such a way that its one-
point compactification is the topological space given in [1]. Some applications are given thereof.
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1 Introduction and Preliminaries

Among the algebraic structures associated with logical systems, implication structures are particularly frequent.
Generally, they consist of a partially ordered set where the order is characterized by a binary implication operation
→. If the ordered set is a join-semilattice whose principal filters are Boolean algebras, we obtain implication
algebras [2, 3], which are also known as Tarski algebras [7] - the variety of {→}-subreducts of Boolean algebras.

In this work we continue our study of implication algebras. In [1] we represent an implication algebra as a
union of a unique family of filters of a suitable Boolean algebra Bo(A), and we use the Stone space of Bo(A)
to obtain a topological representation for A. Now we define a Zariski type topology on the set Spec(A) of
maximal implicative filters of A in such a way that the Stone space of Bo(A) is homeomorphic to the one-point
compactification of the topological space Spec(A). This is an intrinsic construction in the sense that it does not
depend on the embedding of A into Bo(A).

To start, let us recall the definition of implication algebras.
An implication algebra is an algebra 〈A,→〉 of type 〈2〉 that satisfies the equations:

(I1) (x→ y)→ x = x,

(I2) (x→ y)→ y = (y → x)→ x,

(I3) x→ (y → z) = y → (x→ z).

Just to put this class of algebras in a wider context, let us say that an implication algebra is a BCK-algebra that
satisfies the equation (x→ y)→ x = x.

In any implication algebra A the term x→ x is constant, which we represent by 1. The relation x ≤ y if and
only if x → y = 1 is a partial order, called the natural order of A, with 1 as its greatest element. Relative to
this partial order, A is a join-semilattice and the join of two elements a and b is given by a ∨ b = (a → b) → b.
Besides, for each a in A, [a) = {x ∈ A : a ≤ x} is a Boolean algebra in which, for b, c ≥ a, b ∧ c = (b →
(c→ a))→ a gives the meet and b→ a is the complement of b in [a). In fact, following [2, Theorems 6 and 7],
implication algebras are precisely join-semilattices with greatest element such that for each element a, [a) with
the inherited order is a Boolean algebra.

If A is an implication algebra, there is a Boolean algebra B such that A is an implication subalgebra of B
(see [2, Theorem 17]). Let B(A) be the Boolean subalgebra of B generated by A, and F (A) the filter generated
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by A in B(A). A is increasing in B(A) [1] (a new shorter proof is given in Lemma 2.2), and consequently, A is
a union of filters of B(A).

A subset C of a Boolean algebra B satisfies the finite meet property (fmp for short), provided that 0 cannot be
obtained with finite meets of elements of C, that is, the lattice filter generated by C in B is proper. The fmp is
the analogue of the finite intersection property for set boolean algebras.

Consider the following Boolean algebra, called the Boolean closure of A:

Bo(A) =
{

B(A) if F (A) 6= B(A)
B(A)× {0, 1} if F (A) = B(A)

Theorem 1.1 [1] Let A be an implication algebra. Then

(1) A is an increasing subset of Bo(A) and A satisfies the fmp.

(2) If h : A → B is an {→}-homomorphism from the implication algebra A into a Boolean algebra B, such
that h[A] has the fmp in B, then there is a Boolean homomorphism ĥ : Bo(A) → B such that ĥ�A = h,
i.e., the diagram

A ⊆ Bo(A)
h↘ ↓ ĥ

B

commutes.

Moreover, the proper filter F (A) generated by A in Bo(A) is an ultrafilter.

Two implication algebras may have the same Boolean closure, but they can be distinguished by means of the
filters contained in them. Indeed, ifM(A) is the family of all maximal elements in the set of all filters of Bo(A)
contained in the implication algebra A, ordered by inclusion, then:

(a) A =
⋃

F∈M(A) F,

(b) M(A) is an antichain, relative to inclusion,

(c) if M is a filter of Bo(A) contained in A, then M ⊆ F for some F ∈M(A).

Moreover, these properties characterize M(A), in the sense that if A is an implication algebra and G is an
antichain of filters of Bo(A) contained in A satisfying (a), (b) and (c), then G = M(A). Notice that the case
M(A) = {A} is not excluded.

We denote by St(B) the Stone space of a Boolean algebra B [4].
By an implication space we mean a 4-tuple 〈X, τ, u, C〉 such that

(i) 〈X, τ〉 is a Boolean space,

(ii) u is a fixed element of X ,

(iii) C is an antichain, with respect to inclusion, of closed sets of X such that
⋂
C = {u},

(iv) if C is a closed subset of X such that for every clopen N of X , C ⊆ N implies D ⊆ N for some D ∈ C,
then there exists D′ ∈ C such that D′ ⊆ C.

If 〈X1, τ1, u1, C1〉 and 〈X2, τ2, u2, C2〉 are implication spaces, we say that a map f : X1 −→ X2 is i-
continuous provided that f is continuous, f(u1) = u2 and for all C ∈ C2, there isD ∈ C1 such thatD ⊆ f−1[C].

In [1] it is proved that there exists a dual equivalence between the category of implication algebras and homo-
morphisms and the category of implication spaces and i-continuous functions.
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2 Compactification of Spec(A)

In this section we define a topology on the set Spec(A) of maximal implicative filters of an implication algebra
A in such a way that the one-point compactification of Spec(A) will be homeomorphic to the Stone space of
Bo(A).

We call a subset F of an implication algebra A an implicative filter if

(a) 1 ∈ F ,

(b) for all x, y ∈ A such that x, x→ y ∈ F , we have that y ∈ F .

In particular, every implicative filter is upwardly closed. A prime implicative filter is a proper implicative filter
such that x ∨ y ∈ F implies x ∈ F or y ∈ F . Observe that in this variety, maximal implicative filters and
prime filters coincide. The filter generated by a subset X of A is Fg(X) = {b ∈ A : there exists x1, . . . , xn ∈
X such that x1 → (x2 → . . . (xn → b) . . .) = 1}. Let us write x 0→ y = y, and x k+1→ y = x → (x k→ y)
for k < ω. If F ⊆ A is an implicative filter and a ∈ A, Fg(F ∪ {a}) = {b ∈ A : there exists an n <

ω such that a n→ b ∈ F}.
Lemma 2.1 Let M be a proper implicative filter of an implication algebra A. Then M is maximal if and only

if for every a 6∈M , a→ b ∈M for every b ∈ A.

P r o o f. Let M be a maximal implicative filter of A and assume a 6∈M and b ∈ A. Then

A = Fg(M ∪ {a}) = {x ∈ A : a n→ x ∈M for some n < ω}.

This implies that a n→ b ∈M for some n ∈ N. Now, since the identity x 2→ y ≈ x→ y holds in any implication
algebra, we get that a→ b ∈M .

Conversely, suppose M is a proper implicative filter of A such that a → b ∈ M whenever a 6∈ M . Let F
be an implicative filter of A such that M $ F . Let a ∈ F \M and b ∈ A. By hypothesis, a → b ∈ M , so
a → b ∈ F . Since a ∈ F , we get that b ∈ F . This shows that F = A and so M is a maximal implicative
filter.

Lemma 2.2 [1, Lemma 1.1] Let B be a Boolean algebra, A an implication subalgebra of B and B(A) the
Boolean subalgebra of B generated by A. Then A is increasing in B(A).

P r o o f. Let a ∈ A, b ∈ B(A) such that a ≤ b. Let us see that b ∈ A. From b ∈ B(A), there exist aki,
cki ∈ A such that

b =
r∧

k=1

(
(
∨

i∈Ik

¬aki) ∨ (
∨

i∈Jk

cki)

)
,

where r ≥ 1 and for every k = 1, . . . r, Ik and Jk are finite subsets of N with Ik ∪ Jk 6= ∅.
Let ak = (

∨
i∈Ik
¬aki) ∨ (

∨
i∈Jk

cki), k = 1, . . . , r. As a ≤ b, a ≤ ak for every k = 1, . . . , r, so, in order to
prove that b ∈ A it is enough to prove that ak ∈ A for every k.

For every k such that Jk 6= ∅, we have that
∨

i∈Jk
cki ∈ A. So, ak = (

∨
i∈Ik
¬aki) ∨ (

∨
i∈Jk

cki) =∨
i∈Ik

(aki →
∨

i∈Jk
cki) ∈ A. If k is such that Jk = ∅, then a ≤

∨
i∈Ik
¬aki, and consequently, ak =∨

i∈Ik
¬aki =

∨
i∈Ik
¬aki ∨ a =

∨
i∈Ik

(aki → a) ∈ A.

Observe that as a consequence of the previous lemma, the collection of filters of B(A) contained in A is just
the family of lattice filters of A.

If A is an increasing subset of a Boolean algebra B, it is clear that A and the filter F (A) generated by A in
B are implication subalgebras of B.

Lemma 2.3 Let A be an increasing subset of a Boolean algebra B. If M is a maximal implicative filter
of A, then the (implicative) filter F (M) generated by M in F (A) is a maximal implicative filter of F (A) and
F (M) ∩A = M .
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P r o o f. SinceM is an increasing subset of F (A), it is easy to see that F (M)∩A = M . This, in turn, implies
that F (M) is a proper implicative filter of F (A).

In order to prove that F (M) is maximal, let x ∈ F (A)\F (M) and let us prove that x→ y ∈ F (M) for every
y ∈ F (A).

Since x ∈ F (A), x =
∧n

i=1 xi, xi ∈ A, and since x 6∈ F (M), there exists i0 = 1, . . . , n such that xi0 6∈ M .
Let y ∈ F (A), y =

∧m
j=1 yj , yj ∈ A. Then

x→ y = (
n∧

i=1

xi)→ (
m∧

j=1

yj) = ¬(
n∧

i=1

xi) ∨ (
m∧

j=1

yj) = (
n∨

i=1

¬xi) ∨ (
m∧

j=1

yj) =

=
m∧

j=1

[(
n∨

i=1

¬xi) ∨ yj ] =
m∧

j=1

[(
∨
i6=i0

¬xi) ∨ (xi0 → yj)].

Since xi0 6∈ M and M is maximal in A, xi0 → yj ∈ M for every j = 1, . . . ,m. As M is increasing,
then (

∨
i6=i0
¬xi) ∨ (xi0 → yj) ∈ M for every j. Hence

∧m
j=1[(

∨
i6=i0
¬xi) ∨ (xi0 → yj)] ∈ F (M). That is,

x→ y ∈ F (M), for every y ∈ F (A).

Lemma 2.4 If M ∈ Spec(A), then U = F (M) ∪ (¬F (A) \ ¬F (M)) ∈ St(Bo(A)) \ {F (A)}.

P r o o f. We verify that U is an ultrafilter of Bo(A).

(1) x ∧ y ∈ U whenever x, y ∈ U . Indeed, if x, y ∈ F (M), x ∧ y ∈ F (M). Suppose x, y ∈ ¬F (A) \ ¬F (M).
Since ¬F (A) is an ideal of Bo(A), x∧y ∈ ¬F (A). Now assume x∧y ∈ ¬F (M), then x∧y = ¬z for some
z ∈ F (M). Then ¬x ∨ ¬y = z ∈ F (M). As F (M) is prime in F (A), then ¬x ∈ F (M) or ¬y ∈ F (M),
that is, x ∈ ¬F (M) or y ∈ ¬F (M), a contradiction, since x, y 6∈ ¬F (M). Hence, x∧y ∈ ¬F (A)\¬F (M).
Suppose now that x ∈ F (M) and y ∈ ¬F (A) \ ¬F (M). If x ∧ y ∈ F (A), y ∈ F (A), a contradiction. So
x ∧ y ∈ ¬F (A). As above we have that x ∧ y 6∈ ¬F (M). Hence, x ∧ y ∈ ¬F (A) \ ¬F (M).

(2) For x ∈ Bo(A), x ∈ U or ¬x ∈ U , but not both. Indeed, suppose that x 6∈ U . Since F (A) is an ultrafilter
of Bo(A), it follows that x ∈ F (A) or ¬x ∈ F (A). If x ∈ F (A), then ¬x ∈ ¬F (A). Besides, since
x 6∈ U , x 6∈ F (M) and so ¬x 6∈ ¬F (M). Therefore, ¬x ∈ ¬F (A) \ ¬F (M) ⊆ U . If ¬x ∈ F (A),
since x 6∈ ¬F (A) \ ¬F (M), x ∈ ¬F (M). Consequently ¬x ∈ F (M) ⊆ U . Finally, it is easy to see that
U ∩ ¬U = ∅, so x ∈ U or ¬x ∈ U , but not both.

(3) U is increasing in Bo(A). Indeed, suppose x ≤ y, where x ∈ U and y ∈ Bo(A). Assume y 6∈ U , then ¬y ∈
U . Now, if x ∈ F (M), we get that y ∈ U since F (M) is increasing in Bo(A). If x ∈ ¬F (A)\¬F (M), we
consider two possibilities for ¬y. If ¬y ∈ F (M), since ¬y ≤ ¬x, it follows that ¬x ∈ F (M), contradiction.
If ¬y ∈ ¬F (A)\¬F (M), then y ∈ F (A)\F (M). By the previous lemma, F (M) is maximal in F (A) and
so we must have y → ¬x ∈ F (M). But y → ¬x = ¬y ∨ ¬x = ¬x, since ¬y ≤ ¬x. Hence, ¬x ∈ F (M),
contradiction.

By the above conditions and the fact that U 6= F (A), we conclude that U ∈ St(Bo(A)) \ {F (A)}.

The previous lemmas lead us to the following crucial relationship between St(Bo(A)) and Spec(A).
Theorem 2.5 There exists a bijection ϕ : Spec(A) −→ St(Bo(A)) \ {F (A)}.

P r o o f. Define ϕ : Spec(A) −→ St(Bo(A)) \ {F (A)} by ϕ(M) = F (M) ∪ (¬F (A) \ ¬F (M)), for
M ∈ Spec(A). By Lemma 2.4, ϕ is a well defined mapping.

Let us define the inverse map of ϕ. In order to do this, observe that if U is an ultrafilter of Bo(A), U 6= F (A),
then U ∩ A is a maximal implicative filter of A. Indeed, it is clear that U ∩ A 6= A, and for x ∈ A, y ∈ A \ U ,
y → x ∈ U since U is maximal, so y → x ∈ A ∩ U for every x ∈ A. This allows us to define a map
ψ : St(Bo(A)) \ {F (A)} −→ Spec(A) such that ψ(U) = U ∩A for every U ∈ St(Bo(A)).

We now show that ψ is one-to-one. Let U1, U2 ∈ St(Bo(A)) \ {F (A)}, U1 6= U2, and let x ∈ Bo(A) such
that x ∈ U1 and x 6∈ U2. There are two possibilities: x ∈ F (A) or ¬x ∈ F (A). If x ∈ F (A), then x =

∧n
i=1 xi,

xi ∈ A. Since x ∈ U1, xi ∈ U1 for every i = 1, . . . , n, and since x 6∈ U2, there exists i0 ∈ {1, . . . , n} such that

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 7

xi0 6∈ U2. So xi0 ∈ U1 ∩ A and xi0 6∈ U2 ∩ A. In case ¬x ∈ F (A), we can argue as before taking into account
that ¬x 6∈ U1 and ¬x ∈ U2. Consequently, ψ is one-to-one.

Finally, given M ∈ Spec(A), let U = ϕ(M) ∈ St(Bo(A)) \ {F (A)}. By Lemma 2.3 we have that
ψ(U) = M . This shows that ψ is onto and completes the proof.

Now we are going to define a Zariski type topology τ on Spec(A). For each a ∈ A, let Na = {M ∈
Spec(A) : a ∈M} and let B = {Spec(A) \Nb : b ∈ A}. Let τ be the topology generated by B. Observe that B
is, in fact, a basis for τ since B is closed by finite intersections. Indeed, let b1, . . . , bn ∈ A and b = b1 ∨ . . .∨ bn.
Since maximal implicative filters are prime, it follows that

Nb =
n⋃

i=1

Nbi
,

hence

Spec(A) \Nb =
n⋂

i=1

(Spec(A) \Nbi
).

The one-point compactification of a topological space X is the set X∗ = X ∪ {∞} with the topology whose
members are the open subsets of X and all subsets U of X∗ such that X∗ \ U is a closed compact subset of X .

A set U is open in X∗ if and only if (a) U ∩X is open in X and (b) whenever∞ ∈ U , X \ U is compact.
It is known (see for example [6]) that the one-point compactification X∗ of a topological space X is compact

and X is a subspace. The space X∗ is Hausdorff if and only if X is locally compact and Hausdorff.
Theorem 2.6 ϕ is a homeomorphism between the spaces 〈Spec(A), τ〉 and St(Bo(A)) \ {F (A)} with the

relative topology.

P r o o f. We already know that ϕ is a bijection. It remains to show that ϕ and ϕ−1 = ψ are continuous.
Let X = St(Bo(A)) \ {F (A)} with the relative topology and consider an open subset G of X . Then

G = G′ ∩ X for some open subset G′ in St(Bo(A)). Since St(Bo(A)) is Hausdorff, {F (A)} is closed in
St(Bo(A)), soG = G′ \{F (A)} is open in St(Bo(A)). Therefore, there exists some subset Y ⊆ Bo(A) such
that

G =
⋃
b∈Y

Gb

where Gb = {U ∈ St(Bo(A)) : b ∈ U}. Since

ϕ−1(G) =
⋃
b∈Y

ϕ−1(Gb)

it suffices to show that ϕ−1(Gb) is open in Spec(A) for every b ∈ Y .
Since F (A) 6∈ G, then F (A) 6∈ Gb for any b ∈ Y . As F (A) is an ultrafilter of Bo(A), it follows that

b 6∈ F (A), so ¬b ∈ F (A) and we have that ¬b =
∧n

i=1 ai for some a1, . . . , an ∈ A. Then b =
∨n

i=1 ¬ai. It
follows immediately that Gb =

⋃n
i=1G¬ai

.
We claim that ϕ−1(G¬ai

) = Spec(A) \ Nai
, which completes the proof of the continuity of ϕ. Indeed, if

M ∈ ϕ−1(G¬ai
) = ψ(G¬ai

), there exists some U ∈ G¬ai
such that M = U ∩ A. Since ¬ai ∈ U , ai 6∈ U , so

ai 6∈M . Hence M ∈ Spec(A) \Nai . The converse is similar.
It remains to show that ψ is continuous. It is enough to prove that ψ−1(Spec(A) \Na) is open in X for every

a ∈ A. Indeed,

ψ−1(Spec(A) \Na) = {U ∈ X : a 6∈ U ∩A}
= {U ∈ X : a 6∈ U}
= {U ∈ X : ¬a ∈ U}
= G¬a ∩X

which is open in X .
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Remark 2.7 Let Y be a Hausdorff compact space and consider Y \ {a}, a ∈ Y , with the relative topology.
Then Y is the one-point compactification of Y \ {a}. Indeed, it is easy to see that the open sets of Y and those
of (Y \ {a})∗ coincide. In particular, St(Bo(A)) is the one-point compactification of St(Bo(A)) \ {F (A)}.

Corollary 2.8 St(Bo(A)) is homeomorphic to the one-point compactification of 〈Spec(A), τ〉.
Corollary 2.9 〈Spec(A), τ〉 is Hausdorff and locally compact.

Corollary 2.10 〈Spec(A), τ〉 has a basis of clopen compact subsets.

P r o o f. In the proof of Theorem 2.6 we showed that for any a ∈ A, Spec(A) \Na = ψ(G¬a). Now, since
G¬a is compact, Spec(A) \ Na must also be compact in Spec(A). Finally, since Spec(A) is Hausdorff, it
follows that Spec(A) \Na is closed. Therefore, B = {Spec(A) \Na : a ∈ A} is a basis of clopen compact sets
for Spec(A).

Remark 2.11 We could have shown directly that Spec(A) \ Na is closed for every a ∈ A. Indeed, using
Lemma 2.1, it is immediately verified that

Spec(A) \Na =
⋂
b∈A

Na→b.

Since the sets Nb, b ∈ A, are also open, this shows that the topology on Spec(A) is analogous to the Priestly
topology on the prime filters of a bounded distributive lattice (see [5]).

The compactness of Spec(A) \Na for every a ∈ A also follows directly from the definition of the topology
on Spec(A). Suppose Spec(A) \ Na ⊆

⋃
i∈I(Spec(A) \ Nai

). Then
⋂

i∈I Nai
⊆ Na. Now, note that

the intersection of the maximal implicative filters in Na is F ({a}). Similarly, the intersection of the maximal
implicative filters of

⋂
i∈I Nai

is F ({ai : i ∈ I}). It follows that F ({a}) ⊆ F ({ai : i ∈ I}), so there must
be some finite subset J ⊆ I such that a ∈ F ({ai : i ∈ J}). We have then that

⋂
i∈J Nai

⊆ Na whence
Spec(A) \Na ⊆

⋃
i∈J(Spec(A) \Nai

). This shows that Spec(A) \Na is compact.

Definition 2.12 We say that a topological space X is a locally Stone space if X∗ is Stone, i.e., the one-point
compactification of X has a base of clopens.

Observe that if X is a locally Stone space, then X is Hausdorff and locally compact.
Consequently, 〈Spec(A), τ〉 is a locally Stone space.

Proposition 2.13 A topological space X is locally Stone if and only if it is Hausdorff and has a basis of
clopen compact sets.

P r o o f. Let X be a locally Stone space. Then X is Hausdorff. Now, since X∗ is a Stone space, X∗ has a
basis of clopen sets, which are compact because of the compactness of the space. Let B∗ be such a basis and
consider B = {N ∈ B∗ : N ⊆ X}. It is clear that the elements of B are clopen compact sets in X . It remains to
show that B is a basis for X . Indeed, let G be open in X , then G is open in X∗, so G is a union of element in B∗.
However, since∞ 6∈ G, every element in this union is in fact in B.

Conversely, let X be a Hausdorff topological space with a basis B of clopen compact subsets. It is clear then
that X is locally compact. In order to show that X is a locally Stone space, we only need to show that X∗ has a
basis of clopen sets. This basis will be noted B∗ and is defined thus

B∗ = B ∪

{
X∗ \

n⋃
i=1

Ni : n ∈ N, Ni ∈ B

}
.

The elements of B are trivially clopen in X∗. A set H = X∗ \
⋃n

i=1Ni, Ni ∈ B, is open because∞ ∈ H and
X∗ \H =

⋃n
i=1Ni is compact (and closed because X is Hausdorff). Moreover, H is closed because

⋃n
i=1Ni

is open in X∗. Finally, we must prove that B∗ is a basis for X∗. To do that, consider an arbitrary open set G in
X∗. If∞ 6∈ G, then G is open in X , so G is a union of elements in B and hence in B∗. On the other hand, if
∞ ∈ G, then X∗ \ G is compact in X . Then, there must be N1, . . . , Nn ∈ B such that X∗ \ G ⊆

⋃n
i=1Ni.
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Hence, X∗ \
⋃n

i=1Ni ⊆ G. Besides, since X∗ is Hausdorff G \ {∞} is open in X∗ and so it is also open in X .
So G \ {∞} =

⋃
i∈I N

′
i , N ′i ∈ B. This shows that

G =
⋃
i∈I

N ′i ∪

(
X∗ \

n⋃
i=1

Ni

)
.

This completes the proof.

Definition 2.14 We say that a triple 〈X, τ, C〉 is a Zariski implication space (Z-space) if

(i1) 〈X, τ〉 is a locally Stone space,

(i2) C is a nonempty family of closed subsets of X such that C is an antichain and
⋂
C = ∅,

(i3) if C is a closed subset of X such that for every clopen N of X whose complement is compact, C ⊆ N
implies D ⊆ N for some D ∈ C, then there exists D′ ∈ C such that D′ ⊆ C.

Let 〈X, τ, C〉 be a Z-space and let 〈X∗, τ∗,∞, C∗〉 be such that 〈X∗, τ∗〉 is the one-point compactification of
〈X, τ〉 (recall that 〈X∗, τ∗〉 is a Stone space) and C∗ = {C ∪{∞} : C ∈ C}. Observe that if C is a closed subset
ofX thenX \C is an open subset ofX . ThusX \C is an open set inX∗ and thereforeX∗ \(X \C) = C∪{∞}
is a closed set of X∗.

Lemma 2.15 If 〈X, τ, C〉 is a Z-space, then 〈X∗, τ∗,∞, C∗〉 is an i-space.

P r o o f. We already know that 〈X∗, τ∗〉 is a Stone space and it is clear that C∗ is an antichain of closed sets
in X∗ such that

⋂
C∗ = {∞}. Now, let C be a closed set in X∗ such that for every clopen set N in X∗, C ⊆ N

implies D ⊆ N for some D ∈ C∗.
First we show that∞ ∈ C. Indeed, if∞ 6∈ C, C is compact in X . Since X has a basis of clopen compact

sets, C ⊆
⋃n

i=1Ni where each Ni is a clopen compact subset of X . Then
⋃
Ni is clopen in X∗, C ⊆

⋃
Ni, but⋃

Ni does not contain any D ∈ C∗, because∞ 6∈
⋃
Ni. This contradicts our hypothesis on C. Hence∞ must

lie in C.
Now, as C is closed in X∗, C ∩X = C \ {∞} is closed in X . Now suppose N ′ is a clopen of X such that

X \N ′ is compact and C \{∞} ⊆ N ′. ThenN = N ′∪{∞} is a clopen inX∗ such that C ⊆ N . By hypothesis,
there exists some D ∈ C∗ such that D ⊆ N , so D \ {∞} ∈ C and D \ {∞} ⊆ N ′. Using now condition (i3) in
the definition of Z-space, we get that there must be someD′ ∈ C such thatD′ ⊆ C \{∞}. ThenD′∪{∞} ∈ C∗
and D′ ∪ {∞} ⊆ C.

This completes the proof that 〈X∗, τ∗,∞, C∗〉 is an implication space.

Let (X1, τ1, C1) and (X2, τ2, C2) be two Z−spaces. We say that a partial map f : X1 −→ X2 is Z-continuous
if the following conditions hold:

(1) f is continuous, i.e., for every open G in X2, f−1[G] is open in X1.

(2) for every compact K in X2, f−1[K] is compact in X1,

(3) for all C ∈ C2, there is D ∈ C1 such that D ⊆ f−1[C].

Given a Z-continuous partial map f : X1 −→ X2, let Dom(f) = {x ∈ X1 : f(x) exists}. We associate with
f a function f∗ : X∗1 −→ X∗2 given by

f∗(x) =
{
f(x) if x ∈ Dom(f)
∞2 if x 6∈ Dom(f)

Lemma 2.16 Given a Z-continuous partial map f : X1 −→ X2, f∗ is an i-continuous map from X∗1 into
X∗2 .
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P r o o f. LetG be an open subset ofX∗2 . If∞2 6∈ G, thenG is an open subset ofX2 and (f∗)−1[G] = f−1[G]
which is open in X1 and also in X∗1 . If∞2 ∈ G, then X∗2 \G is compact in X2 and so f−1[X∗2 \G] is compact
in X1. But f−1[X∗2 \ G] = (f∗)−1[X∗2 \ G] = X∗1 \ (f∗)−1[G]. This shows that (f∗)−1[G] is open in X∗1 .
Therefore f∗ is continuous.

It is trivially verified that f∗(∞1) = ∞2 and that for each D2 ∈ C∗2 , there exists D1 ∈ C∗1 such that D1 ⊆
(f∗)−1[D2]. Hence f∗ is an i-continuous map.

Let Z be the category of Z−spaces with Z-continuous partial maps, and let X denote the category of impli-
cation spaces with i-continuous maps. Let ? : Z −→ X be such that ?(〈X, τ, C〉) = 〈X∗, τ∗,∞, C∗〉 and if
f : 〈X1, τ1, C1〉 −→ 〈X2, τ2, C2〉 is a Z-continuous partial map, then ?(f) = f∗. The previous lemmas directly
imply the following theorem.

Theorem 2.17 ? : Z −→ X is a covariant functor.

Now we are going to define an inverse for ?. Given an implication space 〈X, τ, u, C〉, let ◦(〈X, τ, u, C〉) =
〈X◦, τ◦, C◦〉 where X◦ = X \ {u}, τ◦ is the relative topology on X◦ and C◦ = {C \ {u} : C ∈ C}.

Lemma 2.18 For every implication space 〈X, τ, u, C〉, 〈X◦, τ◦, C◦〉 is a Z-space.

P r o o f. Straightforward.

It remains to define the correspondence between morphisms.
Let 〈X1, τ1, u1, C1〉 and 〈X2, τ2, u2, C2〉 be two implication spaces. Given an i-continuous map f : X1 −→

X2, we define f◦ : X◦1 −→ X◦2 such that f◦ = f �S , where S = {x ∈ X1 : f(x) 6= u2} = X1 \ f−1(u2).
Observe that f◦ is a partial map since f(x) is not defined for those x ∈ X◦1 such that f(x) = u2.

Lemma 2.19 If f : X1 −→ X2 is an i-continuous map between implication spaces, then f◦ : X◦1 −→ X◦2 is
a Z-continuous partial map between Z-spaces.

P r o o f. Let G be an open subset of X◦2 . Then G is open in X2, so f−1[G] is open in X1 and consequently
f−1[G] = f−1[G] ∩X◦1 = (f◦)−1[G] is open in X◦1 . This shows that f◦ is continuous.

Now let K be a compact set in X◦2 . Then X2 \K is open in X2, so f−1[X2 \K] = X1 \ f−1[K] is open in
X1 and contains u1. Hence f−1[K] = (f◦)−1[K] is compact in X◦1 .

This completes the proof that f◦ is a Z-continuous partial map, since condition (3) is trivial.

We summarize the last two lemmas in the following theorem.

Theorem 2.20 ◦ : X −→ Z is a covariant functor.

Our objective now is to show that the functors ? and ◦ define a category equivalence between the categories X
and Z.

Given a Z-space 〈X, τ, C〉, we have that ◦ ? (〈X, τ, C〉) = 〈X∗◦, τ∗◦, C∗◦〉. It is immediate that X∗◦ = X and
C∗◦ = C. Using the definition of one-point compactification and the fact that 〈X, τ〉 is a Hausdorff space, it is
easily shown that τ∗◦ = τ . So, in fact, upon applying the functors ◦ and ? we get the original Z-space back.

Conversely, suppose 〈X, τ,∞, C〉 is an implication space, where we used ∞ for the distinguished element
instead of u for the sake of simplicity in the following argument. Then, ?◦ (〈X, τ,∞, C〉) = 〈X◦∗, τ◦∗,∞, C◦∗〉.
It is easily seen that X◦∗ = X and C◦∗ = C. Moreover, by Remark 2.7, we also have that τ◦∗ = τ . Therefore,
after applying ?◦ we obtain the original implication space we started with.

Since ◦? = idZ and ?◦ = idX, we have the following equivalence theorem.

Theorem 2.21 The functors ? and ◦ define an equivalence between the categories Z and X.

Let I be the category of implication algebras and homomorphisms. Let I be the functor that establishes a
duality between the categories X and I [1]. As a consequence of the previous theorem we have that

η = I? : Z −→ I

is a contravariant functor between the categories Z and I. Observe that for any Z-space 〈X, τ, C〉, we have that

I ? (〈X, τ, C〉) = I(〈X∗, τ∗,∞, C∗〉) = 〈{N ∈ Clop(X∗) : C ⊆ N, for some C ∈ C∗},→〉,

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 11

where N1 → N2 = N c
1 ∪N2, and it is easily seen (as we will see in the following section) that

〈{N ∈ Clop(X∗) : C ⊆ N, for some C ∈ C∗},→〉 ∼=

∼= 〈{N ∈ Clop(X) : X \N is compact, and C ⊆ N for some C ∈ C},→〉.

The following corollary is immediate.

Corollary 2.22 The functor η defines a duality between the categories Z and I.

As an application, we give a topological representation for generalized Boolean algebras. Recall that a gen-
eralized Boolean algebra is an implication algebra A such that the infimum is defined for every pair of elements
of A, and it is a meet-semilattice with the implication as residuum. In this case we have that F (A) = A, and
so the corresponding implication space is X(A) = (Bo(A), τ, {F (A)}). Hence, the associated Z-space is
〈Spec(A), τ ′, {∅}〉, where 〈Spec(A), τ ′〉 is a locally Stone space. Conversely, if 〈X, τ, {∅}〉 is a Z-space, then
the corresponding implication algebra is a generalized Boolean algebra. This shows that generalized Boolean
algebras correspond to Z-spaces where C = {∅}.

Let gZ be the full subcategory of Z whose objects are those Z-spaces for which C = {∅}. Besides, let gB be
the full subcategory of I consisting of generalized Boolean algebras. Thus, the restriction gη of the functor η to
gZ gives a duality between the categories gZ and gB.

Observe that in the category gX we can drop the symbol {∅} and consider its objects simply as locally Stone
spaces. Moreover, in the definition of the morphisms in gZ we can drop condition (3) since it is trivially implied
by the fact that C = {∅}.

In the following section we will describe explicitly the duality between Z and I in order to avoid passing
through X.

3 Duality between I and Z

In what follows, we describe in detail the duality between the categories I and Z developed in the previous
section. Specifically, we make explicit the correspondence between implication algebras and Z-spaces as well
as the correspondence between implicative homomorphisms and Z-continuous partial maps. In addition, we will
characterize monomorphisms and epimorphisms in both categories as well as give a dual counterpart of surjective
homomorphisms in Z.

3.1 Description of the duality

We now give a direct description of the duality between I and Z.
We have the functor η : Z −→ I such that

η(〈X, τ, C〉) = I(〈X∗, τ∗,∞, C∗〉) = 〈A,→〉,

where A = {N ∈ Clop(X∗) : C ⊆ N for some C ∈ C∗} and N1 → N2 = N c
1 ∪N2 for every N1, N2 ∈ A.

Since ∞ ∈ C for every C ∈ C∗, it follows that ∞ ∈ N for every N ∈ A. Besides, it is easy to see that
N ∈ Clop(X∗) such that∞ ∈ N if and only if N ′ = N \ {∞} is clopen in X and X \ N ′ is compact. If we
identify the clopen sets in X∗ and the clopen sets in X whose complement is compact, we may consider

A = {N ∈ Clop(X) : X \N is compact and C ⊆ N for some C ∈ C}.

In this way we obtain the implication algebra associated with the Z-space 〈X, τ, C〉 without referring to the
implication space 〈X∗, τ∗,∞, C∗〉.

Now consider a Z-continuous partial map f : 〈X1, τ1, C1〉 −→ 〈X2, τ2, C2〉. Applying ? we get f∗ :
〈X∗1 , τ∗1 ,∞1, C∗1 〉 −→ 〈X∗2 , τ∗2 ,∞2, C∗2 〉 given by

f∗(x) =
{
f(x) if x ∈ Dom(f)
∞2 if x 6∈ Dom(f)
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where Dom(f) = {x ∈ X1 : f(x) exists}. Let A1 and A2 be the corresponding implication algebras. Then
I(f∗) : A2 −→ A1 is given by I(f∗)(N) = (f∗)−1(N) for every N ∈ A2. If we consider N ′ = N \ {∞2} and
identify N ′ with N , we get that

η(f)(N ′) = f−1(N ′) ∪ (X \Dom(f)).

Let A be an implication algebra and X(A) = 〈X, τ,∞, C〉 its associated implication space. Then ◦X(A) =
〈X◦, τ◦, C◦〉, where X◦ = St(Bo(A)) \ {F (A)}. If we identify M with ϕ(M), we have X◦ = Spec(A) and
C ∈ C◦ iff C = {M ∈ Spec(A) : F ⊆M} where F ∈M(A).

Now if h : A1 −→ A2 is a homomorphism between two implication algebras, then X(h) : X(A2) −→
X(A1) is given by X(h)(U) = ĥ−1(U) where U ∈ St(X(A1)) and ĥ : Bo(A1) −→ Bo(A2) is the boolean
homomorphism given in Theorem 1.1. It follows that ◦X(h) : ◦X(A2) −→ ◦X(A1) is given by

◦X(h)(M) =
{
ĥ−1(F (M) ∪ ¬F (A2) \ ¬F (M)) ∩A1 if ĥ−1(F (M) ∪ ¬F (A2) \ ¬F (M)) 6= F (A1)
not defined otherwise

where M ∈ Spec(A2).
It is easy to show that this may be shortened to

◦X(M) =
{
h−1(M) if h−1(M) 6= A1

not defined otherwise

3.2 Special morphisms

Since I is an equational category, monomorphisms in I are simply injective homomorphisms. However, epi-
morphisms do not coincide with surjective homomorphisms. For example, consider the four-element boolean
implication algebra with universe B = {0, a, a′, 1} and its subuniverse A = {a, a′, 1}. Then the inclusion map
i : A −→ B may be easily shown to be an epimorphism which is not onto.

We now turn to the task of characterizing monomorphisms and epimorphisms in the category Z. We also find
the dual counterparts of surjective homomorphisms.

Proposition 3.1 A Z-continuous partial map f : 〈X1, τ1, C1〉 −→ 〈X2, τ2, C2〉 is monic if and only if f is an
injective map.

P r o o f. Suppose f is monic and let us see that f is a map, rather than a partial map. Assume there were some
x 6∈ Dom(f). Consider the Z-space Z = {a, b} with CZ = {∅} and two partial maps g, h : Z −→ X1 given by
g(a) = x and h(b) = x. It is immediate to see that g, h areZ-continuous partial maps and that f ◦g = f ◦h. Since
f is monic, we get g = h, a contradiction. This shows that Dom(f) = X1. The injectivity of f is immediate.

The converse is trivial.

Corollary 3.2 Let h : A1 −→ A2 be a homomorphism between two implication algebras. Then h is an
epimorphism in the category I if and only if the following conditions hold:

(e1) h−1(M) ∈ Spec(A1) for every M ∈ Spec(A2).

(e2) If M1,M2 ∈ Spec(A2) and M1 6= M2, then h−1(M1) 6= h−1(M2).

The following two propositions are immediate.

Proposition 3.3 A Z-continuous partial map f : 〈X1, τ1, C1〉 −→ 〈X2, τ2, C2〉 is epic if and only if f−1(N1) 6=
f−1(N2) whenever N1, N2 ∈ η(X1), N1 6= N2.

Proposition 3.4 Let f : 〈X1, τ1, C1〉 −→ 〈X2, τ2, C2〉 be a Z-continuous partial map. Then η(f) is a
surjective homomorphism if and only if given any N1 ∈ η(X1), there exists N2 ∈ η(X2) such that N1 =
f−1(N2) ∪ (X1 \Dom(f)).
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4 Congruences and Products

Theorem 4.1 Let A be an implication algebra and (X, τ, C) its corresponding Z-space. Then, there is a
one-one correspondence between the implicative filters in A and the closed subsets of X .

P r o o f. Let F be an implicative filter in A and consider CF = {M ∈ Spec(A) : F ⊆ M}. Since CF =⋂
a∈F Na, it is clear thatCF is closed inX . Note also that

⋂
CF = F . We will show that the mapping F 7−→ CF

is a one-one correspondence between the implicative filters in A and the closed subsets of X . Indeed, suppose
F1 and F2 are two implicative filters in A such that CF1 = CF2 . Then F1 =

⋂
CF1 =

⋂
CF2 = F2. Besides,

if C is any closed set in X , then there exists a family {ai}i∈I of element of A such that C =
⋂

i∈I Nai . It now
follows immediately that C = {M ∈ Spec(A) : Fg({ai}i∈I) ⊆M}.

Corollary 4.2 The congruence lattice of a finite implication algebra is boolean.

P r o o f. Let A be a finite implication algebra and (X, τ, C) its corresponding Z-space. Since X is finite and
Hausdorff, τ must be the discrete topology. Hence every subset of X is closed and the congruence lattice of A is
isomorphic to the power set of X .

Theorem 4.3 Let A1,A2 be two implication algebras and (X1, τ1, C1), (X2, τ2, C2) its corresponding Z-
spaces. Assume that X1 ∩X2 = ∅. Then the corresponding Z-space for A1 ×A2 is the space (X, τ, C) where
X = X1 ∪X2, τ = {U1 ∪ U2 : Ui ∈ τi, i = 1, 2} and C = {C1 ∪ C2 : Ci ∈ Ci, i = 1, 2}.

P r o o f. First observe that (X, τ, C) is aZ-space. Indeed, it is easy to see that (X, τ) is a Hausdorff topological
space. Besides, if we let Bi be a basis of clopen compact sets for Xi, i = 1, 2, it may be shown that B =
{N1 ∪N2 : Ni ∈ Bi, i = 1, 2} is a basis of clopen compact sets for X . It is also clear that C is a family of closed
sets in X and we have that⋂

C =
⋂

U∈C1

⋂
V ∈C2

(U ∪ V ) =
⋂

U∈C1

(
U ∪

⋂
V ∈C2

V

)
=
⋂

U∈C1

U = ∅.

Finally, let C be a closed set in X such that for every clopen N whose complement is compact, C ⊆ N implies
D ⊆ N for some D ∈ C. We know that C = C1 ∪ C2 with each Ci closed in Xi, i = 1, 2. Assume
C1 ⊆ N1 for some clopen N1 in X1 whose complement is compact. Then N1 ∪ X2 is trivially clopen in X
and X \ (N1 ∪ X2) = X1 \ N1 is still compact in X . Since C ⊆ N1 ∪ X2, there must exist D ∈ C such that
D ⊆ N1 ∪ X2. But D = D1 ∪ D2, with Di ⊆ Xi, i = 1, 2, so D1 ⊆ N1. Since X1 is a Z-space, we get
that there must exist D′1 ∈ C1 such that D′1 ⊆ C1. Analogously, there exists D′2 ∈ C2 such that D′2 ⊆ C2, so
D′ = D′1 ∪D′2 ∈ C and D′ ⊆ C. This completes the proof that (X, τ, C) is a Z-space.

It now remains to show that (X, τ, C) is indeed the corresponding Z-space for A1 × A2. We first claim
that the maximal implicative filters in A1 × A2 are those of the form M1 × A2 with M1 ∈ Spec(A1) and
A1 ×M2 with M2 ∈ Spec(A2). For brevity we put M1 = M1 × A2 and M2 = A1 ×M2. By Lemma 2.1,
it is clear that M i is a maximal implicative filter in A1 ×A2 for each Mi ∈ Spec(Ai), i = 1, 2. Conversely,
let M ∈ Spec(A1 ×A2). It is easy to show that M = F1 × F2 for some implicative filters Fi in Ai, i = 1, 2.
Suppose F1 6= A1 and let x ∈ A1 \ F1, thus (x, 1) 6∈ M . By Lemma 2.1, for each x′ ∈ A1 and y ∈ A2,
(x, 1) → (x′, y) = (x → x′, y) ∈ M , so x → x′ ∈ F1 and y ∈ F2. This shows that F1 ∈ Spec(A1) and
F2 = A2. Likewise, if we suppose that F2 6= A2 we obtain that F1 = A1 and F2 ∈ Spec(A2). This completes
the proof of our claim.

It is now clear that the elements in X = X1 ∪ X2 may be identified with those in Spec(A1 × A2) via
Mi 7−→M i, Mi ∈ Spec(Ai), i = 1, 2. In addition, for every (a1, a2) ∈ A1 ×A2 we have that

Spec(A1 ×A2) \N(a1,a2) = {M : M ∈ Spec(A1) \Na1} ∪ {M : M ∈ Spec(A2) \Na2}.

This shows that the basis B defined above is the correct basis for the Z-space of A1 × A2. Finally, it is easy
to notice that the lattice filters in A1 ×A2 are precisely those filters of the form F1 × F2 where Fi is a lattice
filter in Ai, i = 1, 2. So the set of maximal implicative filters in A1 × A2 that contain F1 × F2 is the set
{M : M ∈ Spec(A1), F1 ⊆ M} ∪ {M : M ∈ Spec(A2), F2 ⊆ M}. This implies that the choice of C is also
correct.
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