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Abstract
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1 Introduction

It may be argued that the well-known equivalence of theorems such as Tychonoff theorem, or
Stone-Čech compactification, with the axiom of choice, or other similarly non-constructive
principles, is a consequence of the chosen formulation of the concept of space, rather than
being an intrinsic feature of these results. By replacing the ordinary notion of topological
space with that of locale (or frame, or complete Heyting algebra) one obtains fully gen-
eral versions of these theorems that can be proved without any choice, and often with no
application of the principle of excluded middle [21, 14, 13, 20].

The notion of locale is for this reason the concept of space generally adopted in choice-
free intuitionistic settings, such as toposes or intuitionistic set theory (IZF) [26]. By not
assuming as available impredicative principles as the existence of powersets, the concept of
formal space, or set-generated locale, plays a corresponding role in even weaker systems, as
constructive set theory (CZF) or constructive type theory (CTT) [31, 10, 1, 24, 11]. The
main criterion of adequacy of this notion is that, considered in fully impredicative settings
as ZF or IZF1, the category FSp of formal spaces is equivalent to the ordinary category of
locales.

∗To appear on: Math. Log. Quart. 56, No. 4, 1 (2010) / DOI 10.1002/malq.200910014.
1In this paper a system is defined ‘fully impredicative’ if it is at least as strong as full higher order

arithmetic HHA (topos logic).
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This paper deals with certain peculiar features of both the constructive and the intuition-
istic theory of locales. In fact, we will mainly be concerned with certain independence results
that follow from the consistency of CZF and CTT with a generalised form of Troelstra’s
principle of uniformity [34].

Our main results are mostly related to the following fundamental ‘structural’ aspect of
the theory of locales: considered in any topos, the category of locales is complete and cocom-
plete, i.e., all limits (in particular products) and colimits exist in this category. By contrast,
the existence of binary products of arbitrary formal spaces already seems to require the use
of strongly impredicative principles, that are not available in the generalised predicative
settings under consideration. In particular to remedy this deficiency, the concept of induc-
tively generated formal space was introduced in [10, 1]: inductively generated formal spaces
define a full subcategory FSpi of the category of formal spaces, in which limits and colimits
do exist (albeit under the assumption of strong principles for the existence of inductively
defined sets, such as the axiom REA in constructive set theory, see e.g. [24, 1]).

By exhibiting a particular formal space that CTT cannot prove to be inductively gener-
ated, FSpi has been shown to form a proper subcategory of FSp [10] (see [15] for a similar
result in CZF). Nevertheless, since FSpi contains in particular all locally compact formal
spaces, and since, considered in a fully impredicative setting, this category is still equivalent
to the category of locales (as every formal space is inductively generated in such a setting),
the concept of inductively generated formal space has generally been regarded as providing
the proper constructive analogue of the notion of locale.

In this paper we show that the restriction to the category FSpi is, however, a very
severe one: we prove that CTT, CZF, as several extensions of CZF, including REA and
the impredicative unbounded separation scheme, cannot prove that a non-trivial Boolean
formal space - i.e., a formal space whose associated frame is a non-trivial complete Boolean
algebra -, is inductively generated. This result provides us with an example, for every given
formal space S (inductively generated or not), of a formal space that these systems cannot
prove to be inductively generated, namely the least dense subspace of S. Similar facts also
hold for De Morgan (or extremally disconnected) formal spaces, and for formal spaces whose
associated frame is the the Dedekind–MacNeille completion of a poset.

Further independence results, concerning compactness, overtness (openness) and exis-
tence of points, will then be shown to hold with respect to the internal language of toposes
(HHA), IZF, and/or CTT and CZF. In particular, we show that CZF (+REA+...), CTT
cannot prove that a non-trivial formal space is compact and De Morgan. This is in contrast
with a well-known result of M. H. Stone, valid in any topos: in HHA, or IZF, the frame
of ideals of a complete Boolean algebra is a compact De Morgan locale [19]. It follows in
particular that, for no non-trivial compact regular formal space S, the Gleason cover of S
[19, 20] can be constructed in CZF, CTT.

The paper is organized as follows: basic facts on formal spaces/locales as treated in
constructive settings are recalled in Section 2. In Section 3 the version of the uniformity
principle that we shall exploit is presented and its incompatibility with De Morgan law is
exhibited. The independence results concerning Boolean and De Morgan formal spaces are
described in Section 4; the case of spaces arising via the Dedekind–MacNeille completion of
a poset, and a problem left open in [10], are discussed in Section 5.
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2 Preliminaries

The reader is referred to [3, 27] for background on Aczel’s constructive set theory (CZF) and
constructive type theory (CTT), respectively. In the following, we shall use CZF strictly to
indicate the basic formulation of Aczel’s theory. An extension of CZF that is often consid-
ered, particularly in connection with constructive locale theory, is the theory CZF+REA.
The regular extension axiom REA is needed to ensure that certain inductively defined classes
are sets [3]. Extending CZF with the full separation scheme (Sep) and the powerset axiom
yields the fully impredicative set theory IZF. Adding the law of excluded middle to either
theory (CZF or IZF) gives ZF. In the following, we use HHA (for intuitionistic higher-order
Heyting arithmetic) to indicate topos logic [26, 34].

General information on locales may be found in [13, 14, 20]; for basic facts concerning
the theory of formal spaces in constructive predicative settings such as CZF, CTT see
[1, 10, 31, 24] or [2, 11]. Here we synthetically recall the notions needed in this note.

A formal topology, or formal space, is a pair S ≡ (S,⊳) where S, the base, is a set, and
⊳, the covering relation, is a relation between elements and subsets of S satisfying:

i. a ∈ U implies a ⊳ U ,

ii. if a ⊳ U and U ⊳ V , then a ⊳ V ,

iii. a ⊳ U and a ⊳ V imply a ⊳ U ↓ V ,

where U ⊳ V ≡ (∀u ∈ U)u ⊳ V, and U ↓ V ≡ {d ∈ S : (∃u ∈ U) (d ⊳ {u}) & (∃v ∈
V ) (d ⊳ {v})}. In CZF, the covering is formally a subclass of S × Pow(S), where Pow(S)
is the class of subsets of S; in addition to i − iii, a further requirement in that context is
that the class S(U) ≡ {a : a ⊳ U} be a set for all U (see [1] for more). Two subsets U, V

of S are the same formal open, U =S V , exactly when U ⊳ V & V ⊳ U . Observe that one
may always assume that S has a ‘top’ element, i.e., an element 1S such that S =S {1S}. An
implication operation is defined on formal opens by U → V ≡ {a ∈ S : a ↓ U ⊳ V }. The
pseudocomplement U∗ of U (the largest open disjoint from U) is given by:

U∗ ≡ U → ∅ ≡ {a ∈ S : a ↓ U ⊳ ∅}.

A morphism f : S1 −→ S2 of formal topologies is a mapping f : S1 −→ Pow(S2)
satisfying, for all a, b ∈ S1, U ⊆ S1,

i. f(S1) =S2 S2,

ii. f(a) ↓ f(b) ⊳ f(a ↓ b),

iii. a ⊳ U implies f(a) ⊳ f(U)

where, for U a subset of S1, f(U) ≡
⋃

a∈U f(a). Two morphisms f, g : S1 −→ S2 are defined
to be equal precisely when f(a) =S2 g(a) for all a ∈ S1. On any formal topology S, the
identity morphism is given by idS(a) = {a}, for all a.

A (formal) point of a formal space S is a subset α of S satisfying:

i. (∃a ∈ S)a ∈ α

3



ii. a, b ∈ α implies (∃c ∈ α) c ∈ a ↓ b.

iii. a ∈ α and a ⊳ U imply (∃b ∈ U) b ∈ α.

In particular, the top element 1S (when it is present) belongs to every point, and for no
a ∈ α, is a ⊳ ∅.

Even classically, a formal space may well have no points and be non-trivial, i.e., such that
¬(S ⊳ ∅). In terms of logic, this is because points of a formal space are the Pow({⊤})-valued
(classically two-valued) models of a geometric theory, which may be consistent without
having a model [13].

A subspace of a formal space S ≡ (S,⊳) is a formal space S′ ≡ (S,⊳′), on the same
base, and with ⊳′ satisfying i. ⊳⊆⊳′, and ii. x ↓′ y ⊳′ x ↓ y. See [11] for a more detailed
discussion. For example, a (formal) open subset V ⊆ S determines the closed subspace
SV ≡ (S,⊳V ), with a ⊳V U ⇐⇒ a ⊳ U ∪ V (intuitively, SV represents the complement of
the open V as a subspace).

A formal space S is set-presented iff there are families of sets I(x), for x in S, and
C(x, i) ⊆ S, for x ∈ S, i ∈ I(x), such that

a ⊳ U ⇐⇒ (∃i ∈ I(a))C(a, i) ⊆ U.

Observe that this implies a ⊳ C(a, i) for all i. In CZF+REA, CTT, S is set-presented if
and only if it is inductively generated in the sense of [1, 10]. In CZF, CTT, the class of set-
presented formal spaces contains all locally compact spaces [1]. In a topos, or in (I)ZF, all
formal spaces are trivially set-presented: one simply defines I(x) = {U ∈ Pow(S) : x ⊳ U},
C(x, U) = U . The full subcategory of set-presented formal spaces has limits and colimits in
sufficiently strong versions of constructive set theory and type theory.

In CZF, a class-frame (or class-locale) L is a partially ordered class that has a top
element, binary meets, and suprema for arbitrary sets of elements of L, and that is such
that meets distribute over the set suprema. A class-frame is said to be set-generated by a
subclass B if: i. B is a set; ii. the class {b ∈ B : b ≤ x} is a set and x =

∨
{b ∈ B : b ≤ x},

for all x ∈ L.
Morphisms of set-generated frames are class-functions respecting meets, the top, and arbi-
trary set joins.

Given a formal topology S, let the collection of saturated subsets of S, i.e., the class {U ⊆
S : S(U) = U}, be denoted by Sat(S). Endowed with the operations U ∧ V ≡ U ∩ V = U ↓
V and

∨
i∈I Ui ≡ S(

⋃
i∈I Ui), Sat(S) is a set-generated frame. The implication operation

previously recalled defines an implication operation on Sat(S) in the usual sense, making it
in a complete Heyting algebra. In particular, U∗, for U ∈ Sat(S) is the pseudocomplement
of U in the ordinary lattice-theoretic sense.

With their respective morphisms, formal topologies and set-generated class-frames form
equivalent categories [1, 2]. With powersets, every set-generated class-frame has a set of
elements, so it is just an ordinary frame (locale). Therefore, in fully impredicative settings
such as toposes, the category FT of formal topologies is equivalent to that of frames (see
also [31]). Its opposite FSp=FTop, here referred to as the category of formal spaces (often
simply spaces) and continuous functions, is thus equivalent in such settings to the category
of locales.
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3 Uniformity principles

To distinguish the behavior of formal spaces in constructive settings from that in an intu-
itionistic but fully impredicative context, we will exploit a generalised form of the so called
uniformity principle [34, 30]. In constructive set theory this is so formulated: for every set
I,

(∀x)(∃y ∈ I)A(x, y) → (∃y ∈ I)(∀x)A(x, y) (GUP-CZF).

In [4, 5] this principle has been proved to be consistent (in particular) with CZF+REA+
PA+Sep, where REA is the regular extension axiom, PA is the presentation axiom, and Sep
is impredicative unbounded separation (see [5] for a list of other principles compatible with
GUP-CZF. Consistency of these principles with CZF is shown in [5] by the definition of a
model that has independently been noted also in [25] and [33]; see also [29]). Note that
GUP-CZF follows from its instance:

(∀x)(∃y ∈ ω)A(x, y) → (∃y ∈ ω)(∀x)A(x, y) (UP-CZF)

(ω is the set of natural numbers), and the principle that every set is subcountable, also valid
in the model of GUP described in [5, 25, 33]. It will be convenient to note explicitly the
following consequence of GUP-CZF: for every set I,

(∀p ∈ Pow({⊤}))(∃i ∈ I)A(p, i) → (∃i ∈ I)(∀p ∈ Pow({⊤}))A(p, i) (GUP′-CZF)

where Pow({⊤}) is the powerclass of the one-element set (the antecedent of GUP′-CZF
yields (∀x)(∃y ∈ I)((∃z)((∀w)(w ∈ z ↔ w ∈ x & w ∈ {⊤}) & A(z, y))); one can then
apply GUP-CZF). The type-theoretic formulation of this principle, first exploited in [10], is
recalled in the Appendix.

We write EM, DML for the principle of excluded middle and De Morgan law, respec-
tively. Recall that De Morgan law ¬(P ∧ Q) → ¬P ∨ ¬Q for all propositions P,Q, is
equivalent to

¬¬P ∨ ¬P

for all P . By the identification of subsets of the one-element set with restricted formulas
(those in which all quantifiers are bounded) [3], in CZF this principle for restricted formulas
can be formulated as

(∀p ∈ Pow({⊤}))p∗∗ ∪ p∗ = {⊤} ([R]DML)

where p∗ ≡ {x ∈ {⊤} : x 6∈ p}. Note that, considered in IZF, [R]DML expresses De Morgan
Law for arbitrary formulas.

The generalised uniformity principle conflicts in CZF with [R]DML, and with DML in
CTT. We prove the first fact: assume that p∗∗ ∪ p∗ = {⊤} for all p ∈ Pow({⊤}). Define a
relation F ⊆ Pow({⊤})× {0, 1} by letting

(x, y) ∈ F ⇐⇒ (⊤ ∈ x∗∗ & y = 1) ∨ (⊤ ∈ x∗ & y = 0).

By the assumption, (⊤ ∈ x∗∗) ∨ (⊤ ∈ x∗) for all x ∈ Pow({⊤}), so that trivially

(∀x ∈ Pow({⊤}))(∃y ∈ {0, 1})(x, y) ∈ F.
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By GUP-CZF, this gives

(∃y ∈ {0, 1})(∀x ∈ Pow({⊤}))(x, y) ∈ F,

which yields a contradiction (consider x = {⊤}, x = ∅, for y = 0, y = 1, respectively).
Of course, this implies that GUP is inconsistent with the principle of excluded middle EM

in CTT (see also [28]), in CZF with excluded middle for restricted formulas, or equivalently,
with

(∀p ∈ Pow({⊤}))p ∪ p∗ = {⊤} ([R]EM)

(again, considered in IZF, [R]EM is equivalent to the full law of excluded middle).
In the following, we shall write CZF∗ or CTT∗ for a generic fixed extension of CZF

or CTT, respectively, that is compatible with the generalised uniformity principle. For
simplicity, we call any extension of this kind a ‘constructive setting’ (this terminology is
quite improper, given that CZF∗ may be taken to be given by CZF plus the impredicative
unbounded separation scheme Sep). With ‘intuitionistic setting’ we indicate any of CTT∗,
CZF∗, IZF, HHA.

We shall make free use of the fact that all the settings that we consider may consistently
be extended with the negation of the (restricted) De Morgan law. The assertion that a
space of a certain type cannot be proved to have a certain property in a certain setting will
invariably be proved by showing that in the setting extended with some compatible non-
classical principle (as GUP, or ¬[R]DML), the assumption that the space has the property
is contradictory.

For definiteness, in what follows we always argue in the setting of constructive set theory.
The proof for a different system for which a given result is claimed, is obtained by the
expected modifications of the given argument.

4 Boolean and De Morgan locales/formal spaces

By exploiting the generalised uniformity principle it is shown in [10] that there is a formal
space that CTT cannot prove to be set-presented; in [16] it is shown by other means that
the system CZF cannot prove the so-called ‘double-negation’ formal space Pow({⊤})¬¬ (see
Section 5) to be set-presented2. We shall see in Section 5 that Pow({⊤})¬¬ and the space
considered in [10] are in fact isomorphic, and that their associated frame is a complete
Boolean algebra. The same argument given in [16] can then be used to show that any
formal space whose associated frame is a non-trivial (complete) Boolean algebra cannot be
proved to be set-presented over the basic set of axioms of CZF3.

In this section, using the generalised uniformity principle we give a simple proof that no
system CZF∗, CTT∗ can prove a non-trivial Boolean formal space to be set-presented. In
particular, thus, this holds for CZF∗=CZF+REA+PA+Sep. A similar result is also shown
to hold for De Morgan (or extremally disconnected) formal spaces.

Further independence results concerning overtness, compactness and existence of points
are also obtained. Aside from Theorem 4.10, these make no use of the consistency of GUP

2 As noted in [16], R. Grayson [17] had obtained a corresponding result for certain formulations of
intuitionistic set theory without the powerset axiom.

3This observation is essentially due to S. Vickers; in fact also the corresponding of this result was known
to Grayson [17] in connection with the set theories he considered (cf. footnote 2).
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with the given setting and hold true, mutatis mutandis, also with respect to topos logic
(HHA), or IZF. All results in which the generalised uniformity principle is involved, which
thus only concern the constructive settings, will be marked with GUP.

Call a formal space S such that Sat(S) is a Boolean frame a Boolean formal space. From
now on, let for simplicity S have a top basic element 1S. If S is set-presented, also the
enlargement of its base with a top element 1S can be proved to be set-presented (this is
proved in type theory using type-theoretic choice [11], in constructive set theory exploiting
the Subset Collection scheme). Thus, a Boolean formal space is one such that 1S =S U ∪U∗

for all U ∈ Pow(S).
A formal space S is De Morgan if it satisfies 1S ⊳ U∗∗ ∪ U∗ for all U ∈ Pow(S).

Classically, a topological space is extremally disconnected iff its frame of open subsets is De
Morgan [20]. Obviously, S Boolean implies S De Morgan.

For p ∈ Pow({⊤}), we shall suggestively write P to stand for ⊤ ∈ p, while ‘∀p’ will
always stand for ‘for all p in Pow({⊤})’. We set

UP = {x ∈ S : x = 1S & P} ≡ {x ∈ S : x = 1S & ⊤ ∈ p}.

Note that, in any formal space, {1S}∗ = S∗ =S ∅, and ∅∗ = S =S {1S}.

Lemma 4.1 Let S be any formal space.

i. If (∀p)(∃x)x ∈ UP ∪U∗
P & ¬(x ⊳ ∅), then (∀p)P ∨¬P , i.e., (∀p ∈ Pow({⊤}))p∪ p∗ =

{⊤}.

ii. If (∀p)(∃x)x ∈ U∗∗
P ∪ U∗

P & ¬(x ⊳ ∅), then (∀p)¬¬P ∨ ¬P , i.e., (∀p ∈ Pow({⊤}))
p∗∗ ∪ p∗ = {⊤}.

Proof. From x ∈ UP one gets P . From x ∈ U∗
P and ¬(x ⊳ ∅) one obtains ¬P as follows:

assuming P , one has UP = {x ∈ S : x = 1S}, so that U∗
P ⊳ ∅; together with x ∈ U∗

P and
¬(x ⊳ ∅), this yields a contradiction, so that ¬P . Finally, assuming ¬P gives UP = ∅, and
thus also U∗∗

P =S ∅; by x ∈ U∗∗
P , ¬(x ⊳ ∅) one derives ¬¬P . The reader may then easily fill

in the details. �

In [14] one finds an ‘arrow-theoretic’ proof that no Boolean frame may have points, unless
classical logic is accepted. Here is another formulation of that proof, and the corresponding
fact for De Morgan locales.

Proposition 4.2 No Boolean formal space can have a point unless [R]EM is accepted in
CZF∗ (EM in CTT∗, HHA, IZF). No De Morgan formal space can have a point unless
[R]DML is accepted in CZF∗ (DML in CTT∗, HHA, IZF).

Proof. Assume Boolean formal space S has a point.

S Boolean implies (∀p)1S ⊳ UP ∪ U∗
P ;

S has a point α implies that (∀p)(∃a)a ∈ UP ∪ U∗
P & a ∈ α.
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By a ∈ α one has ¬(a ⊳ ∅), and then one concludes using Lemma 4.1. The proof for the De
Morgan case is similar. �

As the settings in consideration (CZF∗, CTT∗, HHA, IZF) can be extended consistently
by ¬[R]DML (¬DML), in these settings De Morgan locales/formal spaces cannot be proved
to have points. This implies that no such formal space is a topological space, i.e., no non-
trivial De Morgan (in particular Boolean) frame can be obtained as the frame of opens of a
non-empty (inhabited) topological space. Classically, of course, the lattice of open subsets
of any discrete (non-empty) space is a Boolean frame with points.

Despite this result, at least in HHA/IZF, there are Boolean locales that are proper, i.e.,
such that, for all U ∈ Pow(S), S ⊳ U implies ∃a ∈ U (see [14]). Properness is a stronger
formulation of non-triviality.

A formal space (S,⊳) is open (or overt, or has a positivity predicate [22, 31, 10]) iff there
is a predicate Pos(x), for x in S, satisfying

i. Pos(a) and a ⊳ U imply (∃b ∈ S)b ∈ U & Pos(b) (monotonicity);

ii. a ⊳ U implies a ⊳ U+ ≡ {b ∈ U : Pos(b)} (positivity).

(Note that classically, all formal spaces are open, with Pos(a) ≡ ¬(a ⊳ ∅)). Then, although
a Boolean locale can be proper, it cannot be open.

Proposition 4.3 No non-trivial De Morgan formal space S (in particular, no non-trivial
Boolean formal space) can be proved to be open in the intuitionistic settings considered.

Proof. Assume S is open. Then, by positivity, 1S ⊳ {1S}+. Assume 1S ∈ {1S}+, so that
Pos(1S) holds. Then,

S De Morgan implies (∀p)1S ⊳ U∗∗
P ∪ U∗

P ;

by Pos(1S) and monotonicity of Pos, for all p there is a ∈ U∗∗
P ∪ U∗

P with Pos(a).

Thus, since Pos(a) implies ¬(a ⊳ ∅) (by monotonicity), by Lemma 4.1 one obtains
(∀p)¬¬P ∨ ¬P . As the settings under consideration can be extended with the negation
of (restricted) De Morgan law, one has that 1S ∈ {1S}+ leads to a contradiction in the
extended setting, so that {1S}+ = ∅. But this cannot be, as, by positivity 1S ⊳ {1S}+, and
we assumed the space to be non-trivial. �

This proof shows that Boolean formal spaces can be proper only because the elements
one extracts from each cover of the whole space are not required to be different from the
empty open, let alone positive.

Theorem 4.4 (GUP) Let S be

i. a non-trivial Boolean formal space, or

ii. a non-trivial De Morgan formal space such that (∀x ∈ S)x ⊳ ∅ ∨ ¬(x ⊳ ∅);

then S cannot be proved to be set-presented (inductively generated) in CZF∗ or in CTT∗.
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Proof. i. Assume S has a set-presentation in CZF∗. Then

S Boolean implies: (∀p)1S ⊳ UP ∪ U∗
P ;

S set-presented implies: (∀p)(∃i ∈ I(1S))C(1S , i) ⊆ UP ∪ U∗
P ;

assuming GUP, this implies: (∃i ∈ I(1S))(∀p)C(1S , i) ⊆ UP ∪ U∗
P .

In particular, taking p = {⊤} so that P ≡ ⊤ ∈ {⊤} is true, this gives

(∗) ∀x ∈ C(1S , i)(x = 1S ∨ x ⊳ ∅).

Then assume x = 1S ∈ C(1S , i). Since C(1S , i) ⊆ UP ∪ U∗
P , and since S is non-trivial, by

Lemma 4.1, one gets (in CZF∗+GUP) (∀p)P ∨¬P . We saw that GUP is incompatible with
[R]EM. Therefore, by (∗), one gets ∀x ∈ C(1S , i)x ⊳ ∅; but 1S ⊳ C(1S , i), and we assumed
S to be non-trivial, whence S is not set-presented in CZF∗+GUP. This shows that S cannot
be proved to be set-presented in CZF∗.

ii. Assume S is set-presented in CZF∗. Note first that if S satisfies (∀x ∈ S)x ⊳ ∅∨¬(x ⊳

∅), but has no top element 1S , also the isomorphic formal space with a top [11] will sat-
isfy the given decidability condition, as, for the top element, we have by hypothesis that
¬(1S ⊳ ∅). Then, in CZF∗+GUP, one finds i ∈ I(1S) such that (∀p)C(1S , i) ⊆ U∗∗

P ∪ U∗
P .

Let x ∈ C(1S , i), and assume ¬(x ⊳ ∅). By Lemma 4.1, one obtains (∀p)¬¬P ∨¬P . As this
contradicts GUP, one has ¬¬(x ⊳ ∅). By the decidability of x ⊳ ∅, it follows that x ⊳ ∅ for
all x ∈ C(1S , i). But S is non-trivial, so that it (is not set-presented in CZF∗+GUP and
thus) cannot be proved to be set-presented in CZF∗. �

An example of a De Morgan non-Boolean formal space satisfying the condition in Theorem
4.4 is presented in the next section.

This theorem shows that the formal spaces that cannot be inductively generated consist
not just of few pathological cases. In particular, one has:

Corollary 4.5 Given any non-trivial formal space S, the formal space S∗∗ ≡ (S, ⊳∗∗),
where a ⊳∗∗ U ⇐⇒ {a}∗∗ ⊳ U∗∗, can not be proved set-presented in CTT∗, CZF∗.

The space S∗∗ is indeed the Boolean formal subspace corresponding to the ∗∗−nucleus on
the frame defined by S, i.e., the space associated with the frame of ‘regular’ elements of
Sat(S) (see e.g. [14, 20] for a discussion of the ∗∗−nucleus on a locale L).4 S∗∗ is non-trivial
as soon as S is non-trivial.

These subspaces/nuclei are, also classically, a peculiarity of locale theory (as opposed to
point-set topology), since, given any locale L, the ∗∗−nucleus on L yields the least dense
sublocale of L. (This need not exist in a topological space; consider e.g. the real line: the
rationals and the irrationals define dense disjoint subspaces).

Remark 4.6 Although not set-presentable, Boolean formal spaces are constructively useful:
an example of the use of a Boolean formal space to obtain a concrete (constructive and
predicative) description of ideal non-effective objects can be found in [7, Theorem 6.1].

4In the literature on locales this nucleus is also known as the Booleanization of S. There are many
Boolean sublocales of a given locale L, but each of them can be seen as defined by a ∗∗−nucleus over a
closed sublocale of L [14].
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The following proposition shows that being Boolean also conflicts with being compact.

Proposition 4.7 No non-trivial Boolean formal space S can be compact unless [R]EM in
CZF∗, EM in CTT∗, HHA, IZF, is accepted.

Proof. Assume S is compact.

S Boolean implies (∀p)1S ⊳ UP ∪ U∗
P ;

S compact implies that, for all p, there is a finite u0 such that 1S ⊳ u0 ⊆ UP ∪ U∗
P .

It is a standard fact that u0 ⊆ V ∪W , with u0 finite, implies intuitionistically u0 = v0 ∪w0,
with v0 ⊆ V , w0 ⊆ W both finite [6]. Thus we have finite v0 ⊆ UP , w0 ⊆ U∗

P , with
1S ⊳ v0 ∪ w0; moreover, ‘finite’ implies ‘either empty or inhabited’. By cases: v0, w0 = ∅
cannot be, by non-triviality. Then one of the following alternatives holds:

1. v0, w0 inhabited, or

2. v0 inhabited and w0 = ∅, or

3. v0 = ∅ and w0 inhabited.

The first and second case directly give P ∨ ¬P . For the last, assuming P one gets w0 ⊳ ∅,
that together with v0 = ∅, gives 1S ⊳ ∅, so that, by non-triviality of S, ¬P , and then again
P ∨ ¬P . Therefore, if S is compact, the law (∀p)P ∨ ¬P holds. �

In CZF∗, or CTT∗, more generally, no non-trivial Boolean space S can be proved to be
locally compact, since locally compact formal spaces are set-presented [1], and by Theorem
4.4 no non-trivial Boolean space S can be proved to be set-presented in these settings (‘more
generally’: any Boolean S is regular, and a compact regular locale is locally compact, e.g.
[20]). Classically (e.g. in ZF), every finite discrete space has a compact Boolean frame of
opens.

So far the generalised uniformity principle has only been used to show that a constructive
system cannot prove that formal spaces of a certain type can be set-presented. We conclude
this section with two other important consequences of the consistency of this principle with
the constructive settings we are considering.

First let us note that, contrary to what one may expect, in HHA or IZF, De Morgan
locales can be compact : the classical result (due to M. Stone) that the (compact) frame
Idl(B) of ideals over a Boolean algebra B is De Morgan if and only if B is complete (e.g.
[19]) is topos-valid. The following is one half of this result, formulated for formal spaces.
Recall that in e.g. IZF, frames and set-generated class-frames come to the same thing, so
that Sat(S) is carried by a set for every space S.

Proposition 4.8 (Stone) In any of the intuitionistic settings we are considering, let S be
a Boolean formal space. In the context of CZF∗, or CTT∗, assume further that Sat(S) is
(carried by) a set. Then the formal space Sβ ≡ (Sat(S),⊳β), with U ⊳β {Ui}i∈I ⇐⇒ U ⊳

Ui1 ∪ ... ∪ Uin for {i1, ..., in} a (possibly empty) finite subset of I, is a compact De Morgan
formal space.
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Proof. The proof that Sβ is a formal space is left to the reader. One has to prove

S ⊳β ({Ui}i∈I)
∗β ∪ ({Ui}i∈I)

∗β∗β

for any given set {Ui}i∈I of elements of Sat(S). Routine calculations show that

({Ui}i∈I)
∗β =β {(

⋃

i∈I

Ui)
∗S} (1)

(∗S is pseudo-complementation in S), so that

(({Ui}i∈I)
∗β )∗β =β {(

⋃

i∈I

Ui)
∗S∗S}. (2)

Since S is Boolean, (
⋃

i∈I Ui)
∗S∗S =S

⋃
i∈I Ui. As

S ⊳ (
⋃

i∈I

Ui)
∗S ∪ (

⋃

i∈I

Ui) =S (
⋃

i∈I

Ui)
∗S ∪ (

⋃

i∈I

Ui)
∗S∗S ,

one has S ⊳β {(
⋃

i∈I Ui)
∗S , (

⋃
i∈I Ui)

∗S∗S} by definition of⊳β (note that pseudo-complements
are saturated). Therefore, by 1,2 above, S ⊳β ({Ui}i∈I)

∗β ∪({Ui}i∈I)
∗β∗β , as wished. �

Despite this fact, one has:

Proposition 4.9 No non-trivial De Morgan formal space S such that (∀x ∈ S) ¬¬(x ⊳

∅)∨¬(x ⊳ ∅) is compact unless [R]DML holds in CZF∗ (DML holds in CTT∗, HHA, IZF).

Proof. For all p ∈ Pow({⊤}), one finds a finite v0 with v0 ⊆ U∗∗
P ∪ U∗

P , 1S ⊳ v0. One has,
in particular, (∀x ∈ v0)¬¬(x ⊳ ∅) ∨ ¬(x ⊳ ∅). By a general intuitionistic principle (see [22,
Lemma 2.4]), this gives (∀x ∈ v0)(¬¬(x ⊳ ∅)) ∨ (∃x ∈ v0)(¬(x ⊳ ∅)). Since v0 is finite, we
get ¬¬(∀x ∈ v0)(x ⊳ ∅)∨ (∃x ∈ v0)(¬(x ⊳ ∅)). It cannot be that x ⊳ ∅ for all x ∈ v0. Thus,
there is x ∈ v0 with ¬(x ⊳ ∅), so that one concludes by Lemma 4.1. �

As a consequence, in a topos that does not satisfy De Morgan law, no frame of the
form Idl(B), with B complete Boolean algebra, can have a base satisfying the decidability
condition in the above proposition. Note also that such frames are examples of De Morgan
frames that are never intuitionistically Boolean, given that no Boolean frame can be proved
compact.

Using the generalised uniformity principle, the above proposition may be strengthened.

Theorem 4.10 (GUP) No non-trivial De Morgan formal space S can be proved to be
compact in CZF∗, CTT∗.

Proof. Using GUP, one has that a finite subset u0 = {x1, ..., xn} of S exists such that
(∀p)1S ⊳ u0 ⊆ U∗

P ∪ U∗∗
P (u0 is non-empty, as S is non-trivial). Assume ¬(x1 ⊳ ∅) ∨

... ∨ ¬(xn ⊳ ∅). By Lemma 4.1, one has that (∀p)¬¬P ∨ ¬P holds. We saw that this
principle is incompatible with GUP, so that ¬(¬(x1 ⊳ ∅) ∨ ... ∨ ¬(xn ⊳ ∅)). This gives
¬¬(x1 ⊳ ∅) &...& ¬¬(xn ⊳ ∅), that is ¬¬(x1 ⊳ ∅ &...& xn ⊳ ∅). On the other hand, from
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1S ⊳ u0 one gets ¬(x1 ⊳ ∅ &...& xn ⊳ ∅), so that S (is not compact in CZF∗+GUP, and
hence) cannot be proved to be compact in CZF∗. �

Recall that the Gleason cover of a compact regular formal space S is a minimal surjection
γS → S, with γS a compact, regular, De Morgan formal space [19, 20]. It then follows from
Theorem 4.10 that, in contrast with what happens in a topos, for no non-trivial compact
regular formal space S the Gleason cover of S can be constructed in CZF∗, CTT∗.

By Theorem 4.10 it also follows that no non-trivial frame can be assumed to be carried
by a set in a constructive setting (see [12] for a more direct proof).

Corollary 4.11 (GUP) Every non-trivial frame Sat(S), for S Boolean, is carried by a
proper class in CZF∗, CTT∗. Thus, no non-trivial frame Sat(S) may be proved to have a
set of elements in these contexts.

Proof. If the collection of elements of Sat(S) could be proved to be constructively a set,
by Proposition 4.8 the formal space Sβ would be compact and De Morgan, contradicting
Theorem 4.10. Now assume a frame Sat(S) has a set of elements; then all frames Sat(S′),
for S′ a subspace of S, are carried by a set, too, so that also Sat(S∗∗) should be. �

Remark 4.12 The property of Boolean formal spaces that has been exploited in the proofs
of Propositions 4.2, 4.7, and Theorem 4.4, is that the whole space S is covered by UP ∪U∗

P ,
for all p in Pow({⊤}) (this is also true for Proposition 4.3, if one proves the result just for
the Boolean case). It is easy to check that a morphism f : S −→ S′, with S Boolean,
preserves pseudocomplements. It follows that whenever such a morphism exists, one also
has (∀p)1S′ ⊳ VP ∪ V ∗

P , with VP ≡ {x ∈ S′ : x = 1S′ & P}. Then, Propositions 4.2, 4.3,
4.7, and Theorem 4.4 hold true more generally if one replaces the Boolean space S with any
non-trivial codomain of a morphism with Boolean domain. Similar considerations also hold
in connection with the results concerning De Morgan spaces in Propositions 4.2, 4.3, 4.9, and
Theorems 4.4, 4.10, when f : S −→ S′ is any morphism that preserves pseudocomplements
(in particular, when f defines an open continuous functions of locales/formal spaces [22]).

In contrast with the Boolean case, one cannot hope to prove that every subspace of a
De Morgan formal space is De Morgan: classically, an extremally disconnected space may
have Hausdorff subspaces that are not extremally disconnected. In [18], the following law is
considered: for all propositions P,Q

(P → Q) ∨ (Q → P ).

This principle is stronger than De Morgan’s (take Q to be ¬P ), and is inherited by the
internal logic of sheaf subtoposes [18]. Call strongly De Morgan a formal space such that
the associated frame models this formula. A strongly De Morgan formal space is De Morgan.
It is easy to prove that the class of strongly De Morgan formal spaces is closed for subspaces.

5 Dedekind–MacNeille completions

Given a set S, and any (class-)relation R(a, U), for a ∈ S and U ∈ Pow(S), one may define
R to be set-presented precisely as for coverings. Let Φ(P ) be an instance of a law in one
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variable P that is incompatible with GUP, e.g. Φ(P ) ≡ P ∨¬P (in CZF∗, p∪ p∗ = {⊤}, for
p ∈ Pow({⊤})).

Proposition 5.1 (GUP) Let S be a set, and let R ⊆ S × Pow(S) be such that, for some
a in S, ¬R(a, ∅), and (∀p)R(a, UΦ(P )), where UΦ(P ) ≡ {x ∈ S : x = a & Φ(P )}. Then R

cannot be proved to be set-presented in CZF∗, CTT∗.

Proof. Assume R is set-presented by C(x, i) with x ∈ S and i ∈ I(x). By GUP, there
is i ∈ I(a) such that (∀p)C(a, i) ⊆ UΦ(P ) and R(a, C(a, i)). Assume x ∈ C(a, i). Then
(∀p)Φ(P ). By hypothesis this contradicts GUP. Therefore, C(a, i) = ∅, and R(a, ∅), against
what we have assumed. �

Recall that the Dedekind–MacNeille completion of a partial order makes it possible to
embed a given partially ordered set in a complete lattice preserving meets and joins that
exist (see e.g. [32, 34]). Given a partially ordered set (S,≤), one may define a relation
Rc(x, U) by letting

Rc(x, U) ⇐⇒ (∀y)[(∀u ∈ U)u ≤ y] → x ≤ y ⇐⇒ x ∈
⋂

U⊆↓y

↓ y.

To have that Rc is a covering relation, the Dedekind–MacNeille covering, the partial order
has to satisfy some further conditions. In particular, if S is a Heyting algebra this is always
the case. The frame Sat(S,Rc) of saturated subsets of the formal topology (S,Rc) is then
the complete lattice in which the Heyting algebra S is embedded via e : S −→ Sat(S,Rc),
e(a) = S({a}). Recall that, as over any frame, an implication operation making Sat(S,Rc)
a complete Heyting algebra can be defined by letting U → V ≡ {a ∈ S : a ↓ U ⊳ V }. The
Heyting algebra structure of Sat(S,Rc) then extends that of S (see e.g. [34], vol. II).

T. Coquand has suggested5 that no Dedekind–MacNeille covering can be constructively
proved to be set-presented (see also [9]). We prove here that this holds for every relation
Rc(x, U) on a given poset (S,≤), but with a further hypothesis.

Proposition 5.2 (GUP) Let (S,≤) be a partial order having at least one element a that
is not the least of S, and that is ‘stable’, in the sense that ¬¬(a ≤ x) implies a ≤ x, for all
x. Then the relation Rc(x, U) cannot be proved to be set-presented in CZF∗, CTT∗.

Proof. By Proposition 5.1, it suffices to show that ¬Rc(a, ∅) and (∀p)Rc(a, UΦ(P )), with
UΦ(P ) ≡ {a : Φ(P )}, and Φ(P ) ≡ P ∨ ¬P . If Rc(a, ∅), then a ∈

⋂
∅⊆↓y ↓ y. This gives

(∀y ∈ S)a ≤ y, against the hypothesis. For the second, let UΦ(P ) ⊆↓ y, and assume
¬(a ≤ y) and Φ(P ). Then UΦ(P ) = {a} ⊆↓ y, so that a ≤ y, against what we have assumed.
This gives ¬Φ(P ). As ¬¬Φ(P ) is intuitionistically provable, we get ¬¬(a ≤ y), whence
a ≤ y. We conclude that a ∈

⋂
UΦ(P )⊆↓y ↓ y, for all p, i.e., (∀p)Rc(a, UΦ(P )). �

Note that this proof is, in essence, a simplification and a generalization of the proof for
the special case considered in [10].

5On the occasion of the presentation of the material in the preceding sections at the workshop “Trends
in constructive mathematics”, Chiemsee (Germany) June 19-23, 2006.
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Corollary 5.3 (GUP) If (S,≤) is any poset with at least two elements and a decidable
order relation, then Rc(x, U) cannot be proved to be set-presented in CZF∗, CTT∗.

These results may be used to produce examples of non-De Morgan formal spaces that
cannot be constructively set-presented.

Corollary 5.4 (GUP) Let H ≡ (S,∧,∨,→, 0, 1) be a Heyting algebra satisfying the hy-
pothesis in Proposition 5.2 (w.r.t. the partial order associated with H). Assume in H De
Morgan law is false, i.e., there is b ∈ S such that 1 6= b∗ ∨ b∗∗. Then the relation Rc(x, U),
defining the Dedekind–MacNeille cover on H, defines a non-De Morgan formal space that
cannot be proved to be set-presented in CZF∗, CTT∗.

Proof. As already recalled, the (set-generated) frame Sat(S,Rc) associated with the
Dedekind–MacNeille cover defined over an Heyting algebra H is a complete Heyting al-
gebra in which the Heyting algebra operations extend the corresponding operations on H .
As b∗ = b → 0 one can conclude. �

The set T = {0, 12 , 1} endowed with the natural order is a non-Boolean Heyting alge-
bra. The Dedekind–MacNeille cover over this poset defines a De Morgan non-Boolean formal
space (T,⊳DM ). That T is non-Boolean again follows by the fact that the complete Heyting
algebra Sat(T ) is such that the Heyting algebra operations are extensions of the correspond-
ing operations of T . To prove that (T,⊳DM) is De Morgan, i.e., that for every U ∈ Pow(T ),
1 ∈

⋂
K(U), with K(U) ≡ {↓ y : U∗ ∪ U∗∗ ⊆↓ y}, first one notes that U∗ ∪ U∗∗ ⊆↓ 1;

unwinding the definitions, one then proves that assuming 1 6∈ U∗ ∪ U∗∗ leads to a contra-
diction, so that ¬1 6∈ U∗ ∪ U∗∗ (sketch: 1 6∈ U∗ ∪ U∗∗ implies ¬(1 ∈ U∗) & ¬(1 ∈ U∗∗).
The second conjunct yields ¬(12 6∈ U∗ & 1 6∈ U∗), that in turn gives (12 6∈ U & 1 6∈ U);
on the other, by the first conjunct one gets ¬(12 6∈ U & 1 6∈ U), so that a contradiction is
reached). Therefore, ↓ 1

2 6∈ K(U) and ↓ 0 6∈ K(U), whence 1 ∈
⋂
K(U). By Proposition 5.2

(or Theorem 4.4) one has that (T,⊳DM ) is not constructively set-presentable.

Remark 5.5 If in the hypotheses of Proposition 5.1, R is a covering ⊳ on a set S, and if
a ≡ 1S =S S, then for every morphism f : S −→ S′, by 1s ⊳ UΦ(P ) one gets 1S′ ⊳ U ′

Φ(P ),

with U ′
Φ(P ) ≡ {x ∈ S′ : x = 1S′ & Φ(P )}. Therefore, if S′ is non-trivial, by Proposition 5.1

it is not set-presentable. As an immediate corollary one has in particular that no formal
space defined by the Dedekind–MacNeille cover on a poset (S,≤) with the properties in
Proposition 5.2, and such that a is also the greatest element of (S,≤), may have points
(as points are in a bijective correspondence with morphisms from the given topology to the
set-presentable topology Pow({⊤})), and that every non-trivial formal subspace of S is not
set-presentable (if S′ ≡ (S,⊳′) is a subspace of S, letting e(x) = {x} for all x ∈ S defines a
morphism e : S −→ S′).

In fact, the next result can be obtained without any reference to the uniformity principle
(see also [9]).

Proposition 5.6 Let S be a Dedekind–MacNeille topology defined on a poset with the prop-
erty in Proposition 5.2, and having a as greatest element. If S has a point, or is compact,
then [R]EM in CZF∗ (EM in CTT∗, HHA, IZF) holds. Furthermore, S cannot be proved to
be open in the intuitionistic settings considered.
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Proof. Follows immediately by the fact that it holds ¬Rc(a, ∅) and Rc(a, UΦ(P )) for all p,
with Φ(P ) ≡ (p ∪ p∗ = {⊤}) (cf. proof of Proposition 5.2). �

We conclude this section with a discussion of Open Problem 4.5 of [10]. Taking S = {0, 1}
with the natural order, and a ⊳DM U ≡ Rc(a, U) we obtain the formal space that is in [10]
shown not to be set-presentable in CTT. Let us denote this space by SDM .

We already pointed out that a uniform method for the definition of products of arbitrary
formal spaces is generally regarded as being beyond constructive means. Open Problem 4.5
of [10] asked whether at least the particular product of SDM with itself is predicatively
definable. The answer in this (indeed very special) case is yes. We show this with a slight
detour. The ‘double negation’ formal topology Pow({⊤})¬¬, is defined by

S = {⊤},⊤ ⊳ U ⇐⇒ ¬¬(⊤ ∈ U).

In [15, 16] it is shown that the system CZF cannot prove Pow({⊤})¬¬ to be set-presentable.
Note that Pow({⊤})¬¬ is isomorphic with the Boolean formal space Pow({⊤})∗∗ of regular
elements of Pow({⊤}) (cf. section 4).

It is then easy to see that Pow({⊤})¬¬ and SDM are the ‘same’ formal space.

Lemma 5.7 SDM
∼= Pow({⊤})¬¬.

Proof. It is an exercise in intuitionistic logic to prove that 0 =SDM
∅, ¬¬(1 ∈ U) ⇐⇒

1 ⊳DM U , and ¬¬(⊤ ∈ U) implies 1 ⊳DM {1 : ⊤ ∈ U}. It follows that the homomorphisms
f : SDM −→ Pow({⊤})¬¬ and g : Pow({⊤})¬¬ −→ SDM , given by f(0) = ∅, f(1) = {⊤},
and g(⊤) = {1}, yield the required isomorphism. �

Now the product Pow({⊤})¬¬ × Pow({⊤})¬¬ in FSp is simply Pow({⊤})¬¬ itself:
Pow({⊤})¬¬ is ‘almost’ a terminal object in FSp, if a morphism with Pow({⊤})¬¬ as domain
exists, then it is unique.

Conclusion

The generalised uniformity principle has been systematically exploited in this paper to ob-
tain non-derivability results for the main formal systems for constructive mathematics, in
particular with the aim of distinguishing topos-valid from intuitionistic generalised predica-
tive mathematics. It has already been pointed out that it is improper to define ‘constructive’
an extension of CZF or CTT that is consistent with the generalised uniformity principle, as
e.g. CZF plus the highly impredicative unbounded separation principle is one such extension.
On the other hand, it may be reasonable to define ‘non-constructive’ a result that cannot
be derived within some extension of CZF or CTT that is compatible with GUP. This note
has thus shown that some standard topos-valid results are in fact non-constructive in this
sense. A further important result, valid in any topos, that turns out to be a non-constructive
theorem in the present sense is described in [12].
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Appendix: The generalised uniformity principle in type theory

In the type-theoretic context the generalised uniformity principle reads informally as follows:
given any set I, and any mapping R into the type of propositions PROP taking a proposition
and an element of I as arguments, if a mapping F is given from PROP to I such that
R(P, F (P )) holds for all P , then one may find an element ī ∈ I such that R(P, ī) holds
for all P . We denote this version of the principle by GUP-CTT. Observe that, due to
the propositions-as-sets identification, the type PROP of propositions may be replaced in
GUP-CTT by the type SET of sets. In [10] this principle is formulated implicitly and it
is claimed that GUP-CTT can be ‘added’ consistently to type theory. Models, due to T.
Coquand, of type theory validating this form of the uniformity principle have then been
discussed in [28].

Formally, GUP-CTT can be expressed in type theory (more specifically, in the logical
framework [27, 8]) by the addition of two constants UP1, UP2 as follows (cf. [28]):

UP1 : (I : SET ) → R : (PROP → El(I) → PROP ) → F : (PROP → El(I)) →
G : (P : PROP → El(R(P, F (P )))) → El(I);

UP2 : (I : SET ) → R : (PROP → El(I) → PROP ) → F : (PROP → El(I)) →
G : (P : PROP ) → El(R(P, F (P ))) → ((P : PROP ) → El(R(P,UP1(IRFG)))).
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