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Lévy Processes on a First Order Model 1
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The classical notion of Lévy process is generalized to one that takes as

its values probabilities on a first order model equipped with a commuta-

tive semigroup. This is achieved by applying a convolution product on

definable probabilities and the infinite divisibility with respect to it.
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1. Introduction

In a first order model A = (A, . . . ), an element a ∈ A is identifiable with its

type in the diagram language LA. As a type, a corresponds to a {0, 1}-probability

measure on the Boolean algebra of LA-formulas having only one free variable. In

this respect, elements in A are regarded as deterministic. Then an arbitrary prob-

ability measure on the Boolean algebra corresponds to the law of a certain random

variable—both the law and the random variable are liberally identified with each

other. So intuitively one treats the collection of these probabilities as random “el-

ements” of A and a time evolution of these probabilities as a stochastic process on

A.

In classical stochastic analysis, Lévy processes are stochastic processes with sta-

tionary independent increments. Prominent examples from this important and

well-studied class of processes include Brownian motions and Poisson processes. A

fundamental characterization of this class is that the laws of these processes satisfy

some infinitely divisible condition.

The theme of this article is to explore a way to define Lévy processes on first

order models as closely analogous to the classical real-valued Lévy processes as pos-

sible. To achieve this, we need to borrow Keisler’s notion of probability measure

on a model and nonforking product from [5] and rely heavily on results from that
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article. However, in contrast to [5], we will neither deal with forking nor delicate

extensions on larger fragments. In order to specify a convolution product of two de-

finable probabilities, we require that a commutative semigroup be definable. Then

the remaining task is to identify definable probabilities which are infinitely divisible

w.r.t. the convolution product and to define Lévy processes w.r.t. either a discrete

or a continuous timeline. In either case, the dynamics behind the evolution is deter-

mined by the definable semigroup. In fact, given an infinitely divisible probability

µ, the corresponding Lévy process is a time evolution from 0, a special element in

A, to µ. When A is the real ordered field (R,+, ·,≤, 0, 1), everything here coincides

with the classical real-valued Lévy processes.

Comparing with Keisler’s work [6] on randomization of a first order model, here

we only deal with objects closely connected to A and will not involve an external

probability space. Consequently, instead of random variables, we work purely with

probabilities on A. Moreover, our measure algebra already has enough saturation

built into it, hence we are able to avoid technicalities such as finite additivity

vs. σ-additivity and liftings vs. standard parts. Obviously, since we are moving

away from the classical stochastic setting, a lot of analytic tools such as Fourier

transforms have to be given up. One needs to find algebraic, model-theoretic and

combinatorial replacements in order to obtain useful results.

Other equivalent formulations of our Lévy processes should be possible. For ex-

ample, by defining hyperfinite random walks on A or by starting from nonstandard

compound Poisson processes. But we will not take such routes here. Interestingly,

it is unclear at this point what corresponds to a Brownian motion, the prototype of

Lévy processes, on a general A. For further investigation, perhaps one should also

study Markov processes on some first order models.

We first introduce our notation and terminologies in the next section. The role

of Borel functions is played by definability in our context. The details are given

in §3. In §4, infinitely divisible probabilities and Lévy processes are developed.

In our context, a Lévy process can be regarded as an evolution along a “straight

line segment of probabilities” from a fixed deterministic element to a fixed infin-

itely divisible definable probability. The process is indexed by various types of

timelines, discrete or continuous. In order to define continuous time indexed Lévy
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processes, convolution exponentials are introduced and the Lévy-Khintchine prop-

erty is formulated. A class of Loeb measures constructed from internally definable

probabilities is required and Lévy processes for these probabilities are also investi-

gated.

2. Basic notion and assumptions

Some familiarity with model theory, stochastic analysis and nonstandard analysis

is assumed. The latter is only needed for the Loeb measure construction to get

σ-additive probability measures. Notation, definitions and basic results from [4],

[2] and [11] are freely used throughout.

The real closed ordered field (R,+, ·,≤, 0, 1) is denoted by R.

We work with a fixed first order language L and an L-model A = (A, . . . ).

Moreover, either we require that L be countable, as in [5], or we we allow |L| be

arbitrary but require Th(A), i.e. the theory of A, do not have the independence

property. Under the absence of the independence property, by the Corollary in [9],

results from [5] for measures on A remain valid.

Furthermore, we assume that a commutative semigroup structure is definable in

A. That is, there is an L-formula θ(x, y, z) such that A satisfies the following:






∀xy∃!zθ(x, y, z)
∀xyz

(
θ(x, y, z) ↔ θ(y, x, z)

)

∀xyzw
((

∃v
(
θ(x, y, v) ∧ θ(v, z, w)

))
↔

(
∃u

(
θ(y, z, u) ∧ θ(x, u, w)

)))

∃x∀yθ(x, y, y).
For example, if A defines a poset in which there is a least element and any two

elements have a unique least upper bound then we can take θ(x, y, z) to be the

formula saying that z is the least upper bound of x and y.

Hereafter we fix such formula θ. Write x+ y = z instead of θ(x, y, z) and denote

the neutral element in A given by the last axiom (which is necessarily unique) as

0, i.e. A |= ∀xθ(0, x, x).

For our purpose, we will mostly use + to define an iterated convolution product

of a fixed probability with itself, hence commutativity is not essential; but the

notation becomes somewhat simplified and natural under this requirement.

We assume that there is an uncountable inaccessible cardinal κ > |L|+ |A| and

work with a κ-saturated nonstandard universe (in the sense of nonstandard analysis)

containing a saturated elementary extension of A of cardinality κ. Elements in the
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nonstandard universe are referred to as internal objects and every standard object

X is extended to an internal one denoted by ∗X. So the internal model ∗
A is the

saturated elementary extension of A of cardinality κ.

Sets of cardinality < κ are called small.

Internal symbols in ∗L \ L will not be used.

The use of the κ and the saturated model is purely for convenience and for

consistency with the framework in [5], as ℵ1-saturation of the nonstandard universe

would be sufficient for the Loeb measure construction and as the results needed from

[5] can be rephrased for a ℵ1-saturated elementary extension of A.

We mainly work with formulas in LA, i.e. L expanded by adding a new constant

symbol for each element of A, and regard A as a LA-model in a canonical way.

Given an LA-formula ϕ = ϕ(x̄) in free variables x̄ of arity n, we let ϕA denote the

set {ā ∈ An | A |= ϕ(ā)}. (Note that ∗ϕA is the internal set {ā ∈ ∗An | ∗A |= ϕ(ā)},

i.e. ϕ
∗A.) Then Bn

0 stands for the set algebra generated by the ϕA, where ϕ ranges

over LA-formulas of arity n (for its free variables). The notation Bn stands for

the set algebra generated by the ∗ϕA, still ranging over LA-formulas of arity n. As

Boolean algebras, Bn
0 and Bn are isomorphic. Although elements in Bn are internal,

Bn is in general an external subalgebra of ∗Bn
0 . The σ-algebra generated by Bn is

denoted by σBn. We write B and σB for B1 and σB1 respectively.

Given an internal finitely additive probability measure µ on ∗Bn
0 , the Loeb mea-

sure construction from nonstandard analysis produces a σ-additive probability mea-

sure on the Loeb algebra of ∗Bn
0 (a certain σ-algebra extending the σ-algebra gener-

ated by ∗Bn
0 ) denoted by L(µ). Moreover, on ∗Bn

0 , values of µ and L(µ) are infinitely

close to each other. L(µ) is the unique σ-additive extension w.r.t. these properties.

Here we temporarily denote the restriction of L(µ) to σBn by ◦µ.

Mn is the notation for the σ-additive probability measures ◦µ on σBn obtained

in this way. M1 is just written as M. Note that if ν is a finitely additive probability

measure on Bn
0 then ◦(∗ν) ∈ Mn. Conversely, if µ ∈ Mn, then µ = ◦(∗ν), where ν

is the finitely additive probability on Bn
0 given by ν(φA) = µ(∗ϕA). Moreover, for

µ ∈ Mn and X ∈ σBn, we have µ(X) = sup{µ(Y ) | Y ∈ Bn∧Y ⊂ X} = inf{µ(Y ) |

Y ∈ Bn ∧ Y ⊃ X}, that is, µ is in agreement with both the inner and the outer

measure of its restriction on Bn. Hence elements in M correspond to the unique
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σ-additive extension of finitely additive probability measures on Bn. In particular,

we only need to specify a finitely additive probability measure on either Bn
0 or Bn

in order to determine a required one in Mn. In general, Mn is a proper subclass

of σ-additive probability measures on σBn.

We also regard ∗A as topologized by basic open sets from B and when a function

f : ∗An −→ R is measurable w.r.t. σBn, we say that f is σBn-Borel. So f is

σBn-Borel if f−1
[
(−∞, r]

]
∈ σBn for every r ∈ Q.

Given µ ∈ Mn and σBn-Borel f we write
∫
f(x̄)dµ(x̄) for the Lebesgue integral

of f w.r.t. µ.

Given small C ≺ ∗A, all the above remain valid with A replaced by C. Moreover,

we use notation like BC,MC, . . . to denote the counterparts of B,M, . . . for C.

Example 1. (i) For each a ∈ A, we let δa denote the Dirac measure at a. i.e. for

all X ∈ σB, δa(X) = 1 whenever a ∈ X and = 0 otherwise. Similarly, for a ∈ ∗A,

we let ∆a denote the internal Dirac measure at a, i.e. for all X ∈ ∗B0, ∆a(X) = 1

whenever a ∈ X and = 0 otherwise.

Note that δa ∈ M for every a ∈ A, as ◦∆a = δa.

(ii) Now suppose L = {≤} and A = (Q,≤). Then for every infinitesimal a ∈ ∗A

we have ◦∆a = δ0. �

Probability measures in M are also referred to as probabilities on A. We also

speak of probabilities on C for other C ≺ ∗
A in a similar manner.

Intuitively, one regards a probability on A as the law of a random variable taking

values in A. Hence one also regard M as a set of random elements of A, in which

the deterministic ones are identified with δa, a ∈ A, i.e. the LA-types.

3. Definable probabilities and the convolution product

Let A be the σ-algebra generated from sets which are small union of the ϕ
∗A’s,

where the ϕ(x)’s are L ∗A-formulas. By a probability measure over ∗
A, we mean a

σ-additive probability measure on A such that for every small set S of the ϕ
∗A’s,

there is a countable subset S0 ⊂ S such that ∪S and ∪S0 have the same measure.

By [5] Lem. 6.1, given a probability measure µ over ∗A, the restriction of µ to σBC

belongs to MC for any small C ≺ ∗A.



6

Definition 2. (i) Let C ≺ ∗A be small. A probability measure µ over ∗A is called

definable over C if for every L-formula ϕ(x, ȳ), the mapping f : ∗An −→ [0, 1] given

by f(ȳ) = µ
(
ϕ

∗A(·, ȳ)
)
is σBn

C
-Borel, where n is the arity of ȳ and ϕ

∗A(·, ȳ) denotes

{x ∈ ∗A | ∗A |= ϕ(x, ȳ)}.

(Note that such f is still σBn
C
-Borel even when ϕ(x, ȳ) is an LC -formula, because

we can write ϕ(x, ȳ) as θ(x, ȳ, c̄), for some L-formula θ and some c̄ from C of arity

m, then f is the section of a σBn+m
C

-Borel function at c̄, hence is σBn
C
-Borel.)

(ii) The probability measure µ over ∗A is said to be countably definable over C

if, for each n ∈ N, there is a countably generated subalgebra Cn ⊂ σBn
C
, such that

the mapping ȳ 7−→ µ
(
ϕ

∗A(·, ȳ)
)
is Cn-Borel for any L-formula ϕ(x, ȳ) of arity n. �

We obtain from [5] Prop. 6.4(ii) and Cor. 6.7 the following.

Lemma 3. Suppose Th(A) does not have the independence property. Then every

µ ∈ M extends to a countably definable probability measure µ̄ over ∗A. �

In general, the extension µ̄ above is not unique. For example, if there is a type

over LA omitted by A but realized by two distinct a, b ∈ ∗A, then, considering the

Dirac measures on A, both δa and (δa + δb)/2 are countably definable probability

measures over ∗A extending their common restriction on A.

However if the extension is definable over A then there is uniqueness in the

following sense for LA-formulas.

Lemma 4. Let µ1, µ2 be probability measures over ∗A extending some µ ∈ M.

Suppose both µ1 and µ2 are definable over A. Then for each ν ∈ Mn and LA-

formula ϕ(x, ȳ), where n is the arity of ȳ,

ν
(
{ȳ ∈ ∗An | µ1(Xȳ) = µ2(Xȳ)}

)
= 1, where Xȳ = ϕ

∗A(·, ȳ).

Proof. Suppose on the contrary, ν
(
{ȳ ∈ ∗An | µ1(Xȳ) 6= µ2(Xȳ)}

)
> 0. By Def. 2

and the assumption, {ȳ ∈ ∗An | µ1(Xȳ) 6= µ2(Xȳ)} ∈ σBn. So, as ν ∈ Mn, there

is LA-formula θ(ȳ) such that ν(θ
∗A) > 0 and θ

∗A ⊂ {ȳ ∈ ∗An | µ1(Xȳ) 6= µ2(Xȳ)}.

In particular, ∗A |= ∃ȳθ(ȳ), hence, as A ≺ ∗A, there is ā ∈ An ∩ θ
∗A. Then

µ1

(
ϕ

∗A(·, ā)
)
6= µ2

(
ϕ

∗A(·, ā)
)
, contradicting to µ1, µ2 extending µ. �

The following terminology deviates a bit from that used in [5] and it does not

apply to probability measures over ∗
A.
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Definition 5. Suppose C ≺ ∗A and C is small.

(i) A definable probability on C is some µ ∈ MC having an extension to a

probability measure µ̄ over ∗A such that µ̄ is countably definable over C. A probability

on C is simply called definable if the reference to C is clear.

(ii) If the µ̄ is unique, we say that µ is strongly definable.

(iii) The set of definable probabilities on C is denoted by D(C). �

Clearly we have the following.

Proposition 6. δa is strongly definable, for each a ∈ A. �

Remark 7. From Prop. 6, we see that A embeds into D(A) in a canonical way

via a 7−→ δa. So we can view D(A) as an expansion of A by including “definable

random elements”—a sort of “definable randomization” of A and view A as the

set of deterministic elements in it. Moreover, the satisfaction relation A |= ϕ(a)

becomes δa(ϕ
∗A) = 1. �

In [5] a class of probability measures called “smooth measures” was studied.

These are probability measures that exclude distinct extensions on the unstable

part, thus generalize stable types in the classical theory. By [5] Prop. 6.4(iii) and

and Cor. 6.7, we have the following.

Lemma 8. (i) Each smooth probability on A is strongly definable.

(ii) In particular, if Th(A) is stable, all probabilities on A are strongly definable,

so M = D(A). �

In the absence of the independence property, every probability on A extends to

a smooth one by [5] Thm. 3.16(ii). Therefore the following holds.

Lemma 9. Suppose Th(A) does not have the independence property. Let µ ∈ M,

then for some small C with A ≺ C ≺ ∗A, µ has a extension to a strongly definable

probability on C. �

If A is o-minimal, then its theory does not have the independence property.

Hence the above lemmas are applicable to o-minimal models. In these models, a

certain linear order is definable and every LA-formula ϕ(x) is equivalent to a fi-

nite combination of intervals. Important examples include R and its expansions
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equipped with the exponential function or restricted analytic functions. In particu-

lar, the law of a real-valued random variable in the classical sense is always strongly

definable. Therefore our setting here is a generalization of that for classical sto-

chastic analysis.

It is worth mentioning that p-adic fields are not o-minimal but does not have

the independence property either.

But we do not know whether the absence of the independence property or o-

minimality or elimination of quantifiers imply that every µ ∈ M is always strongly

definable, or even just definable.

A useful fact is the following that D(A) and its subclass of strongly definable

probabilities are closed under convex combinations. The verification is straight-

forward.

Proposition 10. Let µ and ν be (strongly) definable probabilities on A. Let r ∈

[0, 1]. Then the probability rµ+(1− r)ν is also a (strongly) definable probability on

A. �

Theorem 11. Let µ, ν be probability measures over ∗A so that both µ and ν are

countably definable over some small C ≺ ∗A. Then the mapping

ξ : ϕ
∗A 7−→

∫

µ
(
{x ∈ ∗A | ∗A |= ϕ(x+y)}

)
dν(y), where ϕ(x) is an L ∗A-formula,

extends uniquely to a probability measure over ∗A which is countably definable over

C.

We denote this measure by µ⋆ν.

Proof. First, by the note in Def. 2, the function y 7−→ µ
(
{x ∈ ∗A | ∗A |= ϕ(x+y)}

)

is A-Borel, hence the above Lebesgue integral, therefore the ξ, is well-defined.

Clearly ξ forms a finitely additive probability measure on A. For example, Let

ϕ1(x), ϕ2(x) be L ∗A-formulas such that ϕ
∗A
1 ∩ ϕ

∗A
2 = ∅, then

ξ
(
ϕ

∗A
1 ∪ϕ

∗A
2

)
=

∫

µ
(
(ϕ1∨ϕ2)

∗A(·+y)
)
dν(y) =

∫ (

µ
(
ϕ

∗A
1 (·+y)

)
+µ

(
ϕ

∗A
2 (·+y)

))

dν(y) = ξ
(
ϕ

∗A
1

)
+ξ

(
ϕ

∗A
2

)
.

So, by [5] Lem. 6.2, ξ extends uniquely to probability measure ξ′ over ∗A.

For any L ∗A-formula ϕ(x), we have ξ
(
ϕ

∗A
)
= [µ × ν]

(
{(x, y) ∈ ∗A2 | ∗A |=

ϕ(x + y)}
)
, according to the definition of the nonforking product [µ × ν] given in

[5] Def. 6.11. Hence, by [5] Lem. 6.13, ξ′ is countably definable over C. �
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For definable probabilities, the probability measure given above is unique on σB

in the following sense.

Proposition 12. Let µ, ν ∈ D(A). Let µ and ν respectively extend to probability

measures µ1, µ2 and ν1, ν2 over ∗A which are countably definable over A.

Then µ1⋆ν1 and µ2⋆ν2 (as given by Thm. 11) coincide on σB.

Proof. Let ϕ(x) be any LA-formula. Then
∫

µ2

(
ϕ

∗A(·+y)
)
dν2(y) =

∫

µ2

(
ϕ

∗A(·+y)
)
dν(y) =

∫

µ1

(
ϕ

∗A(·+y)
)
dν(y) =

∫

µ1

(
ϕ

∗A(·+y)
)
dν1(y),

where the first equality follows from the mapping y 7−→ µ2

(
ϕ

∗A(· + y)
)
being σB-

Borel and ν2 extending ν, the second one follows from Lem. 4 and the third one

follows from ν1 extending ν.

Hence µ1⋆ν1 and µ2⋆ν2 coincide on σB. �

Now we define the convolution of definable probabilities on A.

Definition 13. (i) Let µ, ν ∈ D(A). Let µ̄, ν̄ be any extensions of µ, ν respectively

which are probability measures over ∗A and countably definable over A. Then the

convolution product of µ and ν is the restriction of the µ̄⋆ν̄ given by Thm. 11 to

σB.

(ii) By Prop. 12 this convolution product is unique. This uniquely defined prob-

ability measure on A is denoted by µ ⋆ ν. �

By Thm. 11, we also have the following.

Corollary 14. Let µ, ν ∈ D(A).

(i) (µ ⋆ ν) ∈ D(A).

(ii) Moreover, if µ, ν respectively extend to probability measures µ̄, ν̄ over ∗A

which are countably definable over A, then µ ⋆ ν extends to µ̄⋆ν̄, a probability

measures over ∗A which is countably definable over A. �

Remark 15. (i) If the above µ, ν are strongly definable, is µ⋆ν strongly definable?

(ii) If Th(A) does not have the independence property, then by Lem. 9 and κ >

|L| + |A| being an uncountable inaccessible cardinal, there is a small C such that

A ≺ C ≺ ∗
A and every probability on A extends to a strongly definable one on C. By
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restricting the convolution product back to σB one can define a convolution product

for the whole M, although this need not be the only possible one.

(iii) If one of the probability measures µ, ν on A extends to a smooth probability

measure over ∗A, then µ ⋆ ν = ν ⋆ µ holds by [5] Thm. 6.15 and the commutativity

of +.

(iv) Given µ ∈ D(A) and a ∈ A, we have (µ ⋆ δa)(ϕ
∗A(·)) = µ(ϕ

∗A(· + a)), i.e.

µ ⋆ δa is the probability measure given by the translation of µ by a. In particular,

µ ⋆ δ0 = µ.

(v) By using the Dirac measure at a on A, δa extends to a probability measure

over ∗A which is countably definable over A and is smooth, so it follows from (iii)

that µ ⋆ δa = δa ⋆ µ. �

Since our attention is more on the iterated convolution of a single definable

probability on A we are not so concerned with defining a convolution product

for the whole M nor with commutativity. However, in our case we do have the

convenience of associativity of the convolution product.

Proposition 16. Let µ, ν, λ ∈ D(A). Then (µ ⋆ ν) ⋆ λ = µ ⋆ (ν ⋆ λ).

Proof. Let µ, ν, λ respectively extend to µ̄, ν̄, λ̄, some probability measures over ∗A

which are countably definable over A.

We first note that for any L ∗A-formula θ(x), (ν̄⋆λ̄)
(
θ

∗A(·)
)
= [ν̄× λ̄]

(
θ

∗A(·+ ·)
)
,

where [ν̄ × λ̄] denotes the nonforking product in [5].

Therefore, for any σB-Borel function f : ∗A1+n → R and a1, . . . , an ∈ ∗A, we

have

∫

f(w, a1, . . . , an)d(ν̄⋆λ̄)(w) =

∫

f(y + z, a1, . . . , an)d[ν̄ × λ̄](y, z).

So
∫

f(w, a1, . . . , an)d(ν̄⋆λ̄)(w) =

∫∫

f(y + z, a1, . . . , an)dν̄(y)dλ̄(z),

by [5] Lem. 6.13.

Now let ϕ(x) be an LA-formula. By Cor. 14, ν̄⋆λ̄ is a probability measure over

∗A, countably definable over A and extending ν ⋆ λ. Similarly, µ̄⋆ν̄ is a probability

measure over ∗
A, countably definable over A and extending µ⋆ν. So from what was
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just shown, we have:

(
µ ⋆ (ν ⋆ λ)

)(
ϕ

∗A(·)
)
=

∫

µ̄
(
ϕ

∗A(·+ w)
)
d(ν̄⋆λ̄)(w) =

∫∫

µ̄
(
ϕ

∗A(·+ (y + z))
)
dν̄(y)dλ̄(z)

=

∫∫

µ̄
(
ϕ

∗A((·+ y) + z)
)
dν̄(y)dλ̄(z) =

∫

(µ̄⋆ν̄)
(
ϕ

∗A(·+ z)
)
dλ̄(z)

=
(
(µ̄⋆ν̄)⋆λ̄

)(
ϕ

∗A(·)
)
=

(
(µ ⋆ ν) ⋆ λ

)(
ϕ

∗A(·)
)
.

Therefore (µ ⋆ ν) ⋆ λ = µ ⋆ (ν ⋆ λ). �

Notice the use of the associativity of + in the above proof. The following useful

fact is easy to check.

Proposition 17. Let µ, ν, λ ∈ D(A) and r ∈ [0, 1]. Then
(
rµ + (1 − r)ν

)
⋆ λ =

r(µ ⋆ λ) + (1 − r)(ν ⋆ λ). �

Definition 18. Let µ ∈ D(A). For n ∈ N+ we write µn⋆ for the convolution power

µ ⋆ · · · ⋆ µ
︸ ︷︷ ︸

n times

. When n = 0, µn⋆ is defined to be δ0. Note that, by Prop. 16, µn⋆ is

unambiguously defined.

If µ is a countably definable probability measure over ∗A, we define µn⋆ simi-

larly. �

The following generalizes part of Prop. 10, by showing that D(A) is closed under

infinite convex combinations. As a consequence, D(A) supports some functional

calculus, i.e. some “analytic” functions are definable.

Theorem 19. Suppose an ≥ 0, n ∈ N, such that
∑

∞

n=0 an = 1.

Let µn ∈ D(A), n ∈ N. Then
(
∑

∞

n=0 anµn

)

∈ D(A).

In particular,
(
∑

∞

n=0 anµ
n⋆
)

∈ D(A) for any µ ∈ D(A).

Proof. First, it is clear that
(
∑

∞

n=0 anµn

)

∈ M.

For each n ∈ N, let µn extend to some µ̄n which is a probability measure over ∗A

and is countably definable over A. It is easy to see that
∑

∞

n=0 anµ̄n is a probability

measure over ∗A.

Let ȳ have arity m. By definition, since the µ̄n’s are countably definable over A,

there is a countably generated subalgebra Cm ⊂ σBm such that for all L-formula

ϕ(x, ȳ) and n ∈ N, the mappings ȳ 7−→ µ̄n

(
ϕ

∗A(·, ȳ)
)
are Cm-Borel. Then, as

( ∞∑

n=0

anµ̄n

)(
ϕ

∗A(·, ȳ)
)
= sup

m∈N

( m∑

n=0

anµ̄n

)(
ϕ

∗A(·, ȳ)
)
,
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ȳ 7−→
∑

∞

n=0 anµ̄n

(
ϕ

∗A(·, ȳ)
)
is the supremum of a countable family of Cm-Borel

functions.

Hence ȳ 7−→
∑

∞

n=0 anµ̄n

(
ϕ

∗A(·, ȳ)
)
is a Cm-Borel function.

Therefore
∑

∞

n=0 anµ̄n is a probability measure over ∗A which is countably de-

finable over A.

Since
∑

∞

n=0 anµ̄n extends
∑

∞

n=0 anµn, we conclude that
(
∑

∞

n=0 anµn

)

∈ D(A).

�

Remark 20. When dealing with an infinite convex combination of iterated con-

volution powers of some µ ∈ D(A), the Borel functions in the above proof can be

represented by integrals. Let µ̄ be an extension of µ which is a probability measure

over ∗A and is countably definable over A. Then

( ∞∑

n=0

anµ̄
n⋆

)(
ϕ

∗A(·, ȳ)
)
=

∞∑

n=0

anµ̄
n⋆

(
ϕ

∗A(·, ȳ)
)

=

∞∑

n=1

an

∫

µ̄(n−1)⋆
(
ϕ

∗A(·+ x, ȳ)
)
dµ̄(x) + a0δ0

(
ϕ

∗A(·, ȳ)
)

=

∫ [ ∞∑

n=1

anµ̄
(n−1)⋆

(
ϕ

∗A(·+ x, ȳ)
)]

dµ̄(x) + a0δ0
(
ϕ

∗A(·, ȳ)
)
,

by the Lebesgue monotone convergence theorem. �

We now introduce the notion of convolution exponential, in order to obtain

infinitely divisible definable probabilities on A in the next section.

Definition 21. Let µ ∈ D(A), r ∈ [0,∞) then we define the convolution exponential

of rµ as

er(µ⋆−1) = e−r
∞∑

n=0

rn

n!
µn⋆.

(So it gives δ0 when r = 0.)

If µ is a countably definable probability measure over ∗
A, we define er(µ⋆−1)

similarly. �

As a consequence of Thm. 19, we have the following.

Corollary 22. Let µ ∈ D(A), r ∈ [0,∞), then er(µ⋆−1) ∈ D(A).

Similarly, if µ is a countably definable probability measure over ∗A, er(µ⋆−1) is

a countably definable probability measure over ∗A. �
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4. Infinitely divisible probabilities and Lévy processes

In the this section, we will work with probabilities from D(A) and the convolution

product ⋆ defined on it. By Cor. 14, D(A) it is closed under ⋆ and, by Thm. 19, it is

closed under infinite convex combinations, including the convolution exponentials.

Moreover, D(A) includes A in the sense that δa ∈ D(A) for every a ∈ A.

From now on, D(A), ⋆, as well as the elements of the underlying σB are considered

to be standard objects and, for the purpose of Loeb measure construction, we shall

adopt an ℵ1-saturated nonstandard universe possibly different from the one used

in the previous sections. However, we continue to use ∗X to denote nonstandard

extensions in this nonstandard universe. In particular, ∗A refers to the ℵ1-saturated

elementary extension of A in this nonstandard universe, not the one used in previous

sections.

Let ν be an internal probability on ∗A. In particular, ν is an internal finitely

additive probability measure on ∗σB. So its Loeb measure L(ν) is a σ-additive

probability measure on L(∗σB), the Loeb algebra of ∗σB. Note that σB embeds

canonically as a subalgebra of L(∗σB) and we let ◦ν denote the restriction of L(ν)

to σB. Note also that for µ ∈ M, ◦(∗µ) = µ. But, in general, ◦ν needs not be an

element of M.

It seems necessary to expand D(A) to a larger class of probability measures in

order to make more random elements available for constructing Lévy processes and

for simplifying the proof of some properties about D(A) itself.

Definition 23. (i) For ν1, ν2 ∈ ∗D(A), we write ν1 ≈ ν2 if ν1(X) ≈ ν2(X) for all

X ∈ ∗σB. We also use expressions like ν1 ≤ ν2 and ν1 / ν2 in a similar manner.

(ii) A σ-additive probability measure µ on L(∗σB) is called L-definable if µ =

L(ν) for some ν ∈ ∗D(A).

(iii) We write Γ(∗A) = {L(ν) | ν ∈ ∗D(A)}, i.e. the L-definable probability

measures on L(∗σB).

(iv) On Γ(∗A), the convolution product is defined by L(ν1) ⋆ L(ν2) = L(ν1 ⋆ ν2).

(Note the multiple usages of the symbol ⋆ : on D(A), ∗D(A) or Γ(∗A), depending

on the context.) �

Observe that each µ ∈ D(A) extends uniquely to L(∗µ) ∈ Γ(∗A).



14

Proposition 24. (i) The convolution product given in Def. 23(iv) is well-defined.

(ii) Given a series of the form in Thm. 19, we have L
(
∑

∞

n=0 anµn

)

=
∑

∞

n=0 anL(µn)

for any µn ∈ ∗D(A), n ∈ N. In particular, L
(
er(µ⋆−1)

)
= er(L(µ)⋆−1) for any

µ ∈ ∗D(A) and r ∈ [0,∞).

(iii) Γ(∗A) is closed under the convolution product and infinite convex combina-

tions as in Thm. 19. (Hence is closed under convolution exponentials.) Moreover,

∗A embeds into Γ(∗A) via a 7−→ δa, where a ∈ ∗A.

Proof. (i): Let µ1, µ2, ν1, ν2 ∈ ∗D(A), such that L(µ1) = L(ν1) and L(µ2) = L(ν2).

Then by the Loeb construction, µ1 ≈ ν1 and µ2 ≈ ν2.

Let X ∈ ∗σB. Then by µ1, µ2, ν1, ν2 ∈ ∗M, some Y ∈ ∗B can be chosen such

that

(µ1 ⋆ µ2)(X) ≈ (µ1 ⋆ µ2)(Y ) and (ν1 ⋆ ν2)(X) ≈ (ν1 ⋆ ν2)(Y ).

By the transfer principle from nonstandard analysis, Y is represented by some ∗LA-

formula ϕ as the set ϕC(·) for some internal C ≻ A. (In fact C has the form ∗A if

we let A denote the ∗A used in previous sections.) Then

(µ1 ⋆ µ2)(X) ≈ (µ1 ⋆ µ2)
(
ϕC(·)

)
=

∫

µ1

(
ϕC(·+ x)

)
dµ2(x)

≈

∫

st
[

µ1

(
ϕC(·+ x)

)]

dL(µ2)(x) =

∫

L(µ1)
(
ϕC(·+ x)

)
dL(µ2)(x),

because the integrand µ1

(
ϕC(·+ x)

)
is S-integrable, so it lifts the Loeb integrable

function st
[

µ1

(
ϕC(·+x)

)]

. (Here st denotes the standard part of a hyperreal num-

ber.) The last equality follows from the Loeb measure construction.

Likewise, (ν1 ⋆ ν2)(X) ≈
∫
L(ν1)

(
ϕC(· + x)

)
dL(ν2)(x), hence (µ1 ⋆ µ2)(X) ≈

(ν1 ⋆ ν2)(X). Since this holds for all X ∈ ∗σB, we have (µ1 ⋆ µ2) ≈ (ν1 ⋆ ν2) and

conclude that L(µ1 ⋆ µ2) = L(ν1 ⋆ ν2).

(ii): By a proof similar to that of Thm. 19. Note that
∑

∞

n=0 anµn refers to an

internal series extending the given one.

(iii) is clear from the corresponding properties of ∗D(A) and the Loeb measure

construction and (ii). �

Remark 25. In a way, the relation between ∗A and Γ(∗A) is like that between A

and D(A), so we should view Γ(∗A) as the set of definable random elements from

∗
A. �
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We will study the infinite divisibility of a probability from D(A) or from Γ(∗A)

and the Lévy process corresponding to such probability. As remarked before, this

setting generalizes the setting for classical stochastic analysis, which corresponds

to the case A = R. Results about classical stochastic analysis can be found in [3],

[10] and [11], while nonstandard treatment of them can be found in [1], [7] and [9].

Definition 26. Let µ ∈ D(A). µ is said to be infinitely divisible if for every n ∈ N

there is ν ∈ D(A) such that νn⋆ = µ.

This is also similarly defined for µ ∈ Γ(∗A).

To emphasize, we say “infinitely divisible in D(A)” or “infinitely divisible in

Γ(∗A)”. �

In the case A = R, classical result shows that the above ν is unique if it exists.

However the uniqueness depends at least on the underlying semigroup structure of

A. For example, if the underlying semigroup is [0, 1) with x + y defined to be the

fractional part of the usual addition, then for µ = δ0 the above ν would not be

unique.

Proposition 27. The following are equivalent for any µ ∈ ∗D(A) :

(i) L(µ) is infinitely divisible in Γ(∗A).

(ii) For all small infinite N ∈ ∗N, there is ν ∈ ∗D(A) such that µ ≈ νN⋆.

(iii) For some infinite N ∈ ∗N, there is ν ∈ ∗D(A) such that µ ≈ νN !⋆.

Proof. (i) ⇒ (ii): For each n ∈ N, let µn ∈ ∗D(A) such that L(µ) = L(µn)
n⋆. By

Def. 23(iv) and Prop. 24(i), L(µ) = L
(
µn

n⋆
)
, hence µ ≈ µn

n⋆ by the Loeb measure

construction.

Therefore, it holds for each n ∈ N that ∀X ∈ ∗σB
(
|µ(X)− µn

n⋆(X)| < n−1
)
.

By ℵ1-saturation, extend {µn}n∈N to an internal sequence. Then it holds for all

small enough N ∈ ∗N that ∀X ∈ ∗σB
(
|µ(X)− µN

N⋆(X)| < N−1
)
.

Therefore, for any small enough infinite N ∈ ∗N, if we let ν = µN , then µ ≈ νN⋆.

(ii) ⇒ (iii): By ℵ1-saturation, there are arbitrarily small infinite factorials.

(iii) ⇒ (i): Suppose µ ≈ νN !⋆, where N ∈ ∗N is infinite and ν ∈ ∗D(A). For

each n ∈ N, let µn = νN !/n⋆. Then µ ≈ µn⋆
n , hence L(µ) = L

(
µn⋆
n

)
= L(µn)

n⋆ by

Def. 23(iv) and Prop. 24(i) again. �

Now we define a Lévy process along a timeline.
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Definition 28. By a timeline, we mean an interval I with endpoints from a linearly

ordered semigroup (S,+,≤) such that the left endpoint of I is denoted by 0 and the

right one by 1.

(Note that the symbols + and 0 are used both for this linearly ordered semigroup

and for the semigroup of A, but the intended meaning should be clear from the

context.)

Let µ ∈ D(A) be infinitely divisible. By a Lévy process corresponding to µ w.r.t.

I we mean a mapping X : I −→ D(A) such that

X(0) = δ0, X(1) = µ and X(s+ t) = X(s) ⋆ X(t) for all s, t, s+ t ∈ I.

A Lévy process corresponding an infinitely divisible µ ∈ Γ(∗A) w.r.t. I is defined

similarly. �

The Lévy process above can be regarded as an evolution along a “straight line

segment of probabilities” from the deterministic element δ0 to the random element

µ. Intuitively, one expects that in general unless the geometry is complicated, there

should be only one unique “straight line segment” joining δ0 and µ. Of course this

depends on the uniqueness of the nth root of the convolution product.

Main examples of the I considered are the real interval [0, 1] from R, or [0, 1]∩Q

from (Q,+, ·,≤, 0, 1) or the hyperfinite timeline of the form
{
0, N−1, 2N−1, · · · , NN−1 =

1
}
, identifiable with {0, 1, 2, · · · , N}, from (∗N,+, ·,≤, 0, 1) for some infinite N ∈∗

N.

Remark 29. Given a Lévy process w.r.t. I of the above types, X(t) is infinitely

divisible for every t ∈ I, since for any n ∈ N+, by repeated applications of the

additive condition to X(n−1t), we have X(n−1t)n⋆ = X(t). �

If X is a Lévy process w.r.t. [0, 1], the restriction of X to [0, 1] ∩Q is of course

also a Lévy process. But converting a Lévy process w.r.t. an infinite hyperfinite

timeline to a Lévy process w.r.t. [0, 1] would require some continuity conditions.

However it is simple to get a Lévy process in Γ(∗A) w.r.t. a hyperfinite timeline.

Proposition 30. Let µ ∈ Γ(∗A) be infinitely divisible.

(i) For some infinite N ∈ ∗N there exists a Lévy process corresponding to µ w.r.t.

the hyperfinite timeline I =
{
nN−1 | n = 0, 1, · · · , N

}
.

(ii) There exists a Lévy process corresponding to µ w.r.t. I = Q ∩ [0, 1].
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Proof. (i): By Prop. 27(ii), µ = L
(
νN⋆

)
for some infinite N ∈ ∗N and ν ∈ ∗D(A).

Then we simply define X : I −→ Γ(∗A) by X(nN−1) = L
(
νn⋆

)
, n = 0, 1, · · · , N.

(ii): By Prop. 27(iii), µ = L
(
νN !⋆

)
for some infinite N ∈ ∗N and ν ∈ ∗D(A). Then

we define the Lévy process X : I −→ Γ(∗A) by letting X(nm−1) = L
(
νnm

−1N !⋆
)
,

where n,m ∈ N with nm−1 ∈ Q ∩ [0, 1]. �

Remark 31. In the case A = R one can show for example by [9] that the definition

of the Lévy processes above does not depend on a particular choice of the ν in

the above proof. But we don’t know how to identify general A that satisfies this

property. �

The more difficult problem is to find Lévy processes inD(A) w.r.t. the continuous

timeline I = [0, 1].

Proposition 32. Let µ ∈ D(A) and r ∈ ∗R have standard part s ≥ 0. Then

◦
(
er(

∗µ⋆−1)
)
= es(µ⋆−1).

In particular, ◦
(
er(

∗µ⋆−1)
)
∈ D(A).

Proof. By r being finite, er(
∗µ⋆−1) ≈ e−r

∑K
n=0

rn

n!
∗µn⋆ ≈ e−s

∑K
n=0

sn

n!
∗µn⋆ for any

infinite K ∈ ∗N.

Hence L
(
er(

∗µ⋆−1)
)
coincide with es(µ⋆−1) on σB, i.e. ◦

(
er(

∗µ⋆−1)
)
= es(µ⋆−1).

�

We need the following little fact before proving the next theorem.

Proposition 33. Let µ, ν ∈ ∗D(A). Then µ / ν implies µ ≈ ν.

Proof. Suppose µ / ν and there is S ∈ ∗σB such that µ(S) ≨ ν(S). Consider the

complement Sc, then µ(Sc) = 1− µ(S) ≩ 1− ν(S) = ν(Sc), a contradiction. �

Theorem 34. Let µ ∈ ∗D(A) and let r ∈ ∗[0,∞). Then for all large enough K ∈ ∗N

there is λ ∈ ∗D(A) such that er(µ⋆−1) ≈ λK⋆. Moreover, we can take

λ =
(
1 + rK−1

)−1
δ0 + rK−1

(
1 + rK−1

)−1
µ, i.e.

(
1 + rK−1

)−1(
δ0 + rK−1µ

)
.

Proof. Let K ∈ ∗N and define λ as above. By transferring Prop. 10, as a convex

combination, λ ∈ ∗D(A). Then by transferring Prop. 17,

λK⋆ =
(
1 + rK−1

)−K
K∑

n=0

(
K

n

)
rn

Kn
µn⋆.
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Note that
(
K

n

)
1

Kn
=

K!

Kn(K − n)!

1

n!
=

n−1∏

i=0

(

1−
i

K

)
1

n!
≤

1

n!
.

Note also that for all large enough K ∈ ∗N we have er
(
1 + rK−1

)−K
≈ 1.

Moreover, for such K we have

e−r
K∑

n=0

rn

n!
µn⋆ ≈ er(µ⋆−1).

Hence it follows that for large enough K ∈ ∗N we have

λK⋆ / e−r
K∑

n=0

rn

n!
µn⋆ ≈ er(µ⋆−1),

the result now follows from Proposition 33. �

By Prop. 27(iii), Thm. 34 and Prop. 24(ii), we immediately have the following.

Corollary 35. Let µ ∈ ∗D(A) and let r ∈ ∗[0,∞). Then er(L(µ)⋆−1) is infinitely

divisible in Γ(∗A). �

Remark 36. In the proof of Thm. 34, the size of the K depends on the r only. So, if

the λK⋆ is given first, one can identify some r and obtain µ so that er(µ⋆−1) ≈ λK⋆.

Therefore this would have shown that in Γ(∗A) infinite divisibility is equivalent to

being a convolution exponential. However, such µ would be a (signed) real-valued

measure instead of a probability measure. Perhaps, this is enough justification to

extend the framework here to more general measures. �

The following gives more information about convolution exponentials in Γ(∗A).

Corollary 37. (i) Let µ ∈ ∗D(A) and r, s ∈ ∗[0,∞). Then

er(L(µ)⋆−1) ⋆ es(L(µ)⋆−1) = e(r+s)(L(µ)⋆−1).

(ii) Convolution exponentials in Γ(∗A) are always infinitely divisible and have nth

roots given by convolution exponentials: Let µ ∈ ∗D(A), r ∈ ∗[0,∞) and n ∈ N+.

Then
(

ern
−1(L(µ)⋆−1)

)n⋆

= er(L(µ)⋆−1).
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Proof. (i): Apply Thm. 34 to e(r+s)(µ⋆−1) and choose large enough K ∈ ∗N such

that ε = rsK−1 ≈ 0. Then

er(µ⋆−1) ⋆ es(µ⋆−1) ≈

(

1 +
r

K

)−K(

δ0 +
r

K
µ

)K⋆

⋆

(

1 +
s

K

)−K(

δ0 +
s

K
µ

)K⋆

=

(

1 +
r + s+ ε

K

)−K(

δ0 +
r + s

K
µ+

ε

K
µ2⋆

)K⋆

≈

(

1 +
r + s

K

)−K(

δ0 +
r + s

K
µ

)K⋆

≈ e(r+s)(µ⋆−1).

The arrival of the first term following the second last ≈ is justified by ε ≈ 0 and
(
1 + r+s

K

)K
≈ er+s, while the second term is justified by the following estimate:

Let X ∈ ∗σB, then
∣
∣
∣
∣

(

δ0 +
r + s

K
µ+

ε

K
µ2⋆

)K⋆
(
X
)
−

(

δ0 +
r + s

K
µ

)K⋆
(
X
)
∣
∣
∣
∣

=

( K∑

n=1

(
K

n

)
εn

Kn

(

δ0 +
r + s

K
µ
)(K−n)⋆

µ2n⋆

)
(
X
)
≤

(

1 +
ε

K

)K

− 1 ≈ eε − 1 ≈ 0.

Now by Prop. 24(i),(ii), we have

er(L(µ)⋆−1) ⋆ es(L(µ)⋆−1) = L
(
er(µ⋆−1)

)
⋆ L

(
es(µ⋆−1)

)
= L

(
er(µ⋆−1) ⋆ es(µ⋆−1)

)

= L
(
e(r+s)(µ⋆−1)

)
= e(r+s)(L(µ)⋆−1).

(ii): By first applying (i) with both r, s replaced by rn−1, then applying (i) again

with r, s replaced by rn−1, 2rn−1, ... ..., after iterating (n−1) times, the conclusion

follows. �

Now an almost identical result for convolution exponentials in D(A) :

Corollary 38. (i) Let µ ∈ D(A) and r, s ∈ [0,∞). Then

er(µ⋆−1) ⋆ es(µ⋆−1) = e(r+s)(µ⋆−1).

(ii) Convolution exponentials in D(A) are always infinitely divisible and have

nth roots given by convolution exponentials: Let µ ∈ D(A), r ∈ [0,∞) and n ∈ Nn.

Then
(

ern
−1(µ⋆−1)

)n⋆

= er(µ⋆−1).

Proof. (i): Apply the same computation in the proof of Cor. 37(i) for ∗µ, we have

er(
∗µ⋆−1) ⋆ es(

∗µ⋆−1) ≈ e(r+s)(∗µ⋆−1).
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Let X ∈ σB, then, by transfer,

(
er(µ⋆−1)⋆es(µ⋆−1)

)
(X) =

(
er(

∗µ⋆−1)⋆es(
∗µ⋆−1)

)
(∗X) ≈ e(r+s)(∗µ⋆−1)(∗X) = e(r+s)(µ⋆−1)(X).

Hence
(
er(µ⋆−1) ⋆ es(µ⋆−1)

)
(X) = e(r+s)(µ⋆−1)(X) for all X ∈ σB, i.e. er(µ⋆−1) ⋆

es(µ⋆−1) = e(r+s)(µ⋆−1).

(ii) follows by iterating (i), as in the proof of Cor. 37(ii). �

The following gives the “mode” of continuity in the convolution powers.

Corollary 39. Let λ and K as in Thm. 34. Let L ∈ ∗N such that rLK−1 ≈ 0.

Then λ(K+L)⋆ ≈ λK⋆.

Proof. For notational convenience, we extend our definitions slightly and use real-

valued measures. First note that

λ(K+L)⋆ − λK⋆ = λK⋆ ⋆ (λL⋆ − δ0) = λK⋆ ⋆ (λ− δ0) ⋆
L−1∑

n=0

λn⋆.

Since λ − δ0 =
(
1 + rK−1

)−1
rK−1(µ − δ0), we have ∀X ∈ ∗σB

(

|λ(K+L)⋆(X) −

λK⋆(X)| / 2rLK−1 ≈ 0
)

. i.e. λ(K+L)⋆ ≈ λK⋆. �

Now we are ready to show that, in both the case of Γ(∗A) and the case of D(A),

Lévy process w.r.t. the continuous timeline I = [0, 1] always exists for a convolution

exponential. The question of uniqueness is still open for the general case other than

R.

Theorem 40. Let I = [0, 1], [0, 1] ∩ Q or any hyperfinite timeline of the form
{
0, N−1, 2N−1, · · · , 1

}
, where N ∈ ∗N.

(i) Let µ ∈ Γ(∗A) be a convolution exponential. Then there exists a Lévy process

X : I −→ Γ(∗A) such that X(1) = µ.

(ii) Let µ ∈ D(A) be a convolution exponential. Then there exists a Lévy process

X : I −→ D(A) such that X(1) = µ.

Proof. (i): For some ν ∈ ∗D(A) and r ∈ [0,∞), we have µ = er(L(ν)⋆−1).

Then, for I = [0, 1], define X : I −→ Γ(∗A) by X(t) = etr(L(ν)⋆−1) and so, by

Cor. 37(i), X is a Lévy process.

The restriction of X to [0, 1] ∩Q is clearly also a Lévy process.

For I =
{
0, N−1, 2N−1, · · · , 1

}
, we define X(nN−1) as L

(
enN

−1r(ν⋆−1)
)
and use

Cor. 37(i) again.
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(ii): We write µ = er(ν⋆−1) for some ν ∈ D(A) and r ∈ [0,∞). Then define X as

in the proof of (i) but apply Cor. 38(i).

In the case I =
{
0, N−1, 2N−1, · · · , 1

}
, we define X(nN−1) as ◦

(
enN

−1r(∗ν⋆−1)
)
,

which is in D(A), by Prop. 32. �

Now we formulate a weak converse of Cor. 38(ii) as an important property which

basically says that infinitely divisible probabilities are in the closure of exponen-

tial ones in a certain sense. This property holds for the case of R. Combined

with Fourier analysis, the celebrated Lévy-Khintchine formula is a corollary to this

property.

Definition 41. We say that A has the Lévy-Khintchine property if for every µ ∈

D(A), µ is infinitely divisible iff µ = ◦
(
er(ν⋆−1)

)
for some ν ∈ ∗D(A) and r ∈

∗[0,∞). �

Remark 42. Suppose A has the Lévy-Khintchine property. Then for each infinitely

divisible µ ∈ D(A), by Thm. 40(i), there is a Lévy process X in Γ(∗A) so that the

restriction of X(1) to σB is µ. However, X(1) needs not be L(∗µ) in general. �

We isolate the following property for an infinitely divisible probability which

requires the nth roots to be concentrate sufficiently near 0.

Definition 43. We say that µ ∈ D(A) has the concentration property if there exists

λ ∈ ∗D(A), r ∈ ∗[0,∞) and infinite K ∈ ∗N such that

(i) er
(
1 + rK−1

)−K
≈ 1;

(ii) ∀X ∈ ∗σB
(
|∗µ(X)− λK⋆(X)| ≤ K−1

)
;

(iii) λ ({0}) ≥
(
1 + rK−1

)−1
. �

Note that by Prop. 27, for the above µ, L(∗µ) has to be infinitely divisible in

Γ(∗A).

From classical results such as those in [11] one can show that every infinitely

divisible probability on R has the concentration property.

Our main interest of the property is the following:

Theorem 44. Suppose that every infinitely divisible probability in D(A) has the

concentration property. Then A has the Lévy-Khintchine property.
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Proof. Let µ ∈ D(A) be infinitely divisible, with the λ,K and r given as in Def. 43.

For some internal C ≻ A, each X ∈ ∗B has the form ϕC(·) for some ∗LA-formula

ϕ. To define an internal probability ν on ∗A, for X = ϕC(·), let

ν(X) =







(
1 +Kr−1

)
λ(X)−Kr−1, if ∗A |= ϕ(0), i.e. if 0 ∈ X

(
1 +Kr−1

)
λ(X), otherwise.

Using the lower bound for λ ({0}) , it is easy to check that ν extends uniquely to

an internal probability on ∗A and belongs to ∗D(A). We still call the extension as

ν. Now we can re-write λ as the convex combination

λ =
(
1 + rK−1

)−1(
δ0 + rK−1ν

)
.

Then similar to the proof of Thm. 34

∗µ ≈ λK⋆ / e−r
K∑

m=0

rm

m!
νm⋆ ≈ er(ν⋆−1),

and hence ∗µ ≈ er(ν⋆−1) and so µ = ◦L(∗µ) = ◦
(
er(ν⋆−1)

)
. �

Remark 45. (i) We conjecture that p-adic fields have the Lévy-Khintchine prop-

erty.

(ii) In our framework, we do not exclude the possibility that the semigroup from

A could be compatible with the semigroup that indexes a Lévy process. It may

be worthwhile to formulate Lévy processes which are definable processes in some

sense. �
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[7] T. Lindstrøm, Hyperfinite Lévy processes, Stoch. Stoch. Rep. 76 (2004), no. 6, 517–548.
[8] S.-A. Ng, A remark on locally pure measures, J. Symbolic Logic 58 (1993), no. 4, 1165–1170.
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