
Mathematical Logic Quarterly, 10 February 2010

The quantifier complexity of polynomial-size iterated definitions
in first-order logic

Samuel R. Buss∗ and Alan S. Johnson
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112, USA

Key words Iterated definition, recursive definition, quantifier complexity, finite quantifier
MSC (2000) 03B10, 03D80

We refine the constructions of Ferrante-Rackoff and Solovay on iterated definitions in first-order logic and their
expressibility with polynomial size formulas. These constructions introduce additional quantifiers; however, we
show that these extra quantifiers range over only finite sets and can be eliminated. We prove optimal upper and
lower bounds on the quantifier complexity of polynomial size formulas obtained from the iterated definitions. In
the quantifier-free case and in the case of purely existential or universal quantifiers, we show that Ω(n/ logn)
quantifiers are necessary and sufficient. The last lower bounds are obtained with the aid of the Yao-Håstad
switching lemma.

Copyright line will be provided by the publisher

1 Introduction

Consider the situation where predicates Rn(~x) are defined by an iterated definition in first-order logic. Namely,
assume R0(~x) is an explicitly given first-order formula, and that the predicate Rn(~x) is defined to be a first-order
formula A(Rn−1) involving Rn−1. Formally speaking, the notation A(Rn−1) indicates that A(P) is a formula
containing occurrences of a new predicate symbol P , and A(Rn−1) is obtained by replacing all occurrences of P
with the predicate Rn−1. In particular, the different occurrences of Rn−1 in A(Rn−1) may have different terms
as arguments.

We take Rn to be the first-order formula obtained by unwinding the recursive definition. However, since
A(Rn−1) may contain multiple occurrences of Rn−1, Rn may be exponentially large. For languages that con-
tain ↔, this exponential size was reduced by the classic results of Ferrante-Rackoff [1], who showed that the
iteratively defined property Rn(~x) can be expressed as a first-order formula Fn(~x) which has size polynomially
bounded by the number of iterations n and the sizes of the formulas R0 and A. (In general, we use Fn to denote
a polynomial size formula that expresses Rn). Solovay (unpublished) showed that the Ferrante-Rackoff bounds
also apply to first-order logic without ↔ in the language. An exposition of these results can also be found in
the expository article of Pudlák [2]; Pudlák applies these polynomial size bounds to the give a polynomial upper
bound on the size of proofs of partial self-consistency statements of the type given by [3, 4].

Pudlák defines predicates Satn which state that formulas with n logical connectives are satisfiable, and uses
the results of Ferrante-Rackoff-Solovay to express Satn by polynomial size formulas. There are polynomial size
proofs that these formulas for Satn satisfy the needed inductive properties: this allows Pudlák to obtain his bounds
on proofs of partial self-consistency. More generally, one can define the formulas for Satn as Σn-formulas. This
can be shown directly, but the goal of the present paper generalize this by characterizing the logical complexity
of properties defined by arbitrary first-order recursive definitions.

The essential idea of the Ferrante-Rackoff-Solovay constructions is to show that A(Rn−1) can be converted
into an equivalent formula that contains only a single occurrence of Rn−1. Indeed, if there is only a single
occurrence of Rn−1 in A(Rn−1), then unwinding the recursion shows Rn can be expressed by a polynomial size
(in fact, linear size) formula Fn. The present paper sharpens this construction by giving a more careful analysis
of the quantifier complexity of Fn. The Ferrante-Rackoff-Solovay constructions introduce additional quantifiers,

∗ Both authors were supported in part by NSF grant DMS-0700533. E-mail: sbuss@math.ucsd.edu, asj002@math.ucsd.edu

Copyright line will be provided by the publisher

2 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

Complexity Occurrences
of A(P) of P Lower Bound Upper Bound Theorem

Σ2k, k > 0 Pos. Σ2kn Σ2kn(R0) 5.3/4.3
Σ2k, k > 0 Pos./Neg. Σ2kn ∆2kn+1(R0) 5.3/6.1

Σ2k+1, k > 0 Pos. Σ2kn+1 Σ2kn+1(R0) 5.6/4.5
Σ2k+1, k > 0 Pos./Neg. Σ(2k+1)n ∆(2k+1)n+1(R0) 6.3/6.1
∆k+1, k > 0 Pos. ∆kn+1 ∆kn+1(R0) 5.8/4.8
∆k+1, k > 0 Pos./Neg. ∆kn+1 ∆kn+1(R0) 5.8/6.1

Σ1 Pos. Σ εn
logn
∪Π εn

logn
∆ δn

logn
(R0) 5.9/4.7

Σ1 Pos./Neg. Σn ∆n+1(R0) 6.3/6.1
Quantifier free Pos. Σ εn

logn
∪Π εn

logn
∆ δn

logn
(R0) 5.9/4.7

Quantifier free Pos./Neg. Σ εn
logn
∪Π εn

logn
∆ δn

logn
(R0) 5.9/6.2

Fig. 1 The obtained upper and lower bounds on the complexity of polynomial size formulas for Rn, where δ, ε > 0 are
arbitrarily small constants which depend on the degree of the polynomial growth rate.

and additional quantifier alternation. However, these additional quantifiers range over only finite sets, and it is
shown that these “finite quantifiers” can be eliminated from Fn.

Let k ≥ 0. A formulaB is defined to be Σk (respectively, Πk) provided its quantifier block is Σk (respectively,
Πk) after the application of prenex operations. It is permitted that a block of quantifiers is empty, so that Σk
contains Πk−1, and Πk contains Σk−1. A ∆k formula is one which is provably equivalent to a Σk and a Πk

formula by polynomial size proofs. We shall later define classes Σk(ϕ), Πk(ϕ), and ∆k(ϕ). They are defined
similarly to Σk, Πk, and ∆k by counting alternations of quantifiers, but ignoring quantifiers appearing in ϕ. The
precise definition is given in Section 4.

We always measure the size of a proof by the number of symbols in the proof. All the formal proofs discussed
in this paper are done in the sequent calculus, a definition of which can be found in [5]. The sequent calculus is
polynomially equivalent to many other common proof systems, such as Hilbert systems and natural deduction,
so our results hold for these other systems as well.

Figure 1 summarizes our results. The first column lists the quantifier complexity of A(P) and the second
column lists whether P appears only positively or appears both positively and negatively in A(P). The third and
fourth columns give the upper and lower bounds on the complexity of polynomial size first-order formulas which
are equivalent to the property Rn defined recursively as A(Rn−1).

The results of Figure 1 apply to validity in first-order models that have two or more elements. The case of
models with only a single element can safely be ignored, since in such models, quantifiers become vacuous and
first-order logic becomes just propositional logic (namely, with each predicate symbol corresponding to only a
boolean variable).

The outline of the paper is as follows. Section 2 begins by defining the notion of a finite quantifier, i.e., a
quantifier that effectively quantifies over an explicit finite set. In many cases, it is possible to exchange quantifier
order, namely one can move a finite quantifier rightward (inward) past an ordinary quantifier. Section 2 gives
precise bounds on how this increases the size of a formula. Section 2 also introduces notations and conventions
for quantifying over a block of quantifiers, in particular for the case where there are a finite number of possible
values for the block of quantified variables. Section 3 uses finite quantifiers to equivalently rewrite a formula A
with multiple positive instances of a predicate P using only one occurrence of P . Section 4 proves the upper
bounds in Figure 1 for positive occurrences of P . Section 5 proves the lower bounds in Figure 1 with positive
occurrences. There are two techniques to prove the lower bounds. One is to use complete problems from the
arithmetic hierarchy. The other is to use lower bounds on circuits calculating parity, specifically the Yao-Håstad
switching lemma. Section 6 proves the bounds for formulas A in which A occurs both positively and negatively.

An example application of our results is to the predicate Tn(x, y) that says there is a path of length at most
2n from x to y in a graph (G,E). Specifically, let T0(x, y) be E(x, y) ∨ x = y, and for n > 0, let Tn(x, y) be
∃z(Tn−1(x, z)∧Tn−1(z, y)). As is well-known, Tn(x, y) is also expressed ∃z∀u((u = x ∨ u = y)→ Tn−1(u, z)).

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 3

This construction is a simple special case of the Ferrante-Rackoff method; indeed, the quantifier “∀u” is an exam-
ple of what we call a finite quantifier in Section 2, since u effectively ranges over the finite set {x, y}. Unwinding
the definition of Tn above gives a polynomial size Σ2n-definition for Tn. Our Theorem 4.7 below improves this
by showing that Tn can also be expressed by polynomial size formulas in Σδn/ logn, for all δ > 0.

2 Finite Quantification

This section discusses quantification over fixed-length blocks of variables which effectively range over finitely
many terms; such a quantifier will be termed finite. This section introduces notation for finite quantifiers, and
then proves some basic properties. All the constructions and theorems in this section hold in pure logic, rather
than systems with a pairing function, such as Peano arithmetic.

As an example of finite quantification, consider the formulas

∀x((x = s1 ∨ x = s2 ∨ x = s3)→ B(x))

and

∃x((x = s1 ∨ x = s2 ∨ x = s3) ∧B(x)).

The variable x effectively ranges over the set {s1, s2, s3}, that is, over a set of size at most three. The terms si
may contain variables, so the range of quantification is not fixed, but can vary with the values of the variables.
Note that the two formulas above contain only a single occurrence of the subformula B, but are equivalent to
B(s1) ∧B(s2) ∧B(s3) and B(s1) ∨B(s2) ∨B(s3), respectively.

In general, finite quantification will be based on vectors (or, blocks) of variables. The following definition
introduces notations for vectors of variables and for equality between vectors of terms.

Definition 2.1 Let s1, . . . , sp and t1, . . . , tp be vectors of terms. The formula ~s = ~t abbreviates the conjunc-
tion

∧p
j=1 sj = tj . A block of existential quantifiers ∃z1 · · · ∃zp will be denoted ∃p~z. Similarly, ∀p~z denotes

∀z1 · · · ∀zp.
The superscript p on the quantifier indicates the number of quantified variables, and may be suppressed if

unimportant or if clear from the context.
Definition 2.2 Let si,j be terms for 1 ≤ i ≤ k and 1 ≤ j ≤ p. Let ~si be the vector si,1, . . . , si,p, and define

S to be the set S = {~s1, . . . , ~sk}. Then ∀pk,S~z B(~z) is the formula

∀p~z
[(k∨

i=1

~z = ~si

)
→ B(~z)

]
.

Dually, ∃pk,S~z A(~z) is

∃p~z
[(k∨

i=1

~z = ~si

)
∧B(~z)

]
.

As an example of finite quantifiers, consider the formula

∀12,S~z ∀12,T ~wB(~z, ~w);

here ~z and ~w are of length 1. Each of ~z and ~w range over two values, therefore (~z, ~w) ranges over four values.
Thus the formula can equivalently be rewritten as ∀24,U~uB(~u), for properly chosen U . This example typifies how
to combine like, finite quantifiers. The next proposition generalizes this example, and gives a size bound on the
resulting formula.

Proposition 2.3 Let ϕ be ∀pk,S~z ∀
q
l,T ~w B(~z, ~w) and ψ be ∀p+qkl,S×T (~z, ~w) B(~z, ~w), where S × T is the set

{(~si,~tj)|1 ≤ i ≤ k, 1 ≤ j ≤ l}. Then ` ϕ↔ ψ by a proof of size polynomial in |ϕ|. Furthermore, the sizes of ϕ
and ψ are related by

|ψ| − |B(~z, ~w)| ≤ max{k, l}(|ϕ| − |B(~z, ~w)|).

The same result holds if the displayed universal quantifiers in ϕ and ψ are replaced with existential quantifiers.

Copyright line will be provided by the publisher

4 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

P r o o f. The proof of the finite existential quantifier case is omitted because it is dual to the finite universal
quantifier case. Let χ be∧

~s∈S

∧
~t∈T

B(~s,~t).

It is clear that χ ↔ ϕ and χ ↔ ψ. Formalizing the polynomial size proofs in the sequent calculus is a straight-
forward exercise. To prove the size bound, write ϕ according to the above definitions,

∀p~z

(k∨
i=1

~z = ~si

)
→

∀q ~w
 l∨

j=1

~w = ~ti

→ B(~z, ~w)

 .
Similarly, ψ is the formula

∀p~z ∀q ~w

 k∨
i=1

l∨
j=1

~z = ~si ∧ ~w = ~tj

→ B(~z, ~w)

 .
Count the number of logical symbols in ϕ and ψ while disregarding B, remembering that vector equality is
an abbreviation. In ϕ there are p + q ∀’s, k + l − 2 ∨’s, 2 →’s, and k(p − 1) + l(q − l) ∧’s, for a total of
p(k+1)+q(l+1) logical connectives. On the other hand, ψ has p+q ∀’s, kl−1 ∨’s, 1→, and kl(p+q−1) ∧’s,
for a total of p(kl + 1) + q(kl + 1) logical connectives. Thus the number of logical connectives in ψ is less than
max{k, l} times the number of logical connectives in ϕ (not counting any logical connectives in B). Similarly, ϕ
has kp+ lq =’s, kp z’s, lq w’s, k ~si’s, and l ~tj’s, while ψ has kl(p+ q) =’s, klp z’s, klq w’s, kl ~si’s, and kl ~tj’s
(B is still not being counted). Thus the number of =’s, z’s, w’s, ~si’s, and ~tj’s in ψ is at most max{k, l} times the
number of =’s, z’s, w’s, ~si’s, and ~tj’s in ϕ.

The combination of like, finite quantifiers as in Proposition 2.3 is not a literal combination of multiple quan-
tifiers into a single quantifier, as would be the case if pairing were used. Indeed, this paper never makes use of
pairing to combine like quantifiers. Though Proposition 2.3 makes it appear that two universal quantifiers are
turned into one, this is due to the suppression of quantifiers in the notation for finite quantifiers. As the proof of
Proposition 2.3 shows, the number of quantifiers remains unchanged when combining like, finite quantifiers.

Proposition 2.3 is stated in a way that makes it clear that B(~z, ~w) does not participate in the size increase from
ϕ to ψ. This fact makes it possible to combine multiple instances of adjacent like, finite quantifiers in parallel.

Proposition 2.4 Let ϕ be a formula which contains occurrences of

(Qi)
pi
ki,Si

~zi (Qi)
qi
li,Ti

~wi,

where, for i = 1, . . . , n, the quantifiers Qi are either both ∃ or both ∀. Also suppose that the indicated
quantifier blocks are all disjoint. Let ψ be the formula obtained by simultaneously combining the indicated
adjacent like, finite quantifiers as in Proposition 2.3. Then ` ϕ ↔ ψ by a proof polynomial in |ϕ| and
|ψ| ≤ max{k1, l1, . . . , kn, ln}|ϕ|.

P r o o f. Use induction on n and make use of Proposition 2.3.

An example of a property that finite quantifiers enjoy over regular quantifiers is quantifier exchange for non-
like quantifiers. For instance, consider the formula ∀12,S~z ∃wB(~z, w), where S = {~s1, ~s2}. This asserts there
is a w1 such that B(~s1, w1) holds, and similarly there is a w2 such that B(~s2, w2) holds. This implies that the
formula ∃w1∃w2∀22,S∗~v B(~v) holds, where S∗ = {(~s1, w1), (~s2, w2)}. This process of quantifier exchange is
generalized by the next proposition.

Proposition 2.5 Let ϕ be ∀pk,S~z ∃q ~w B(~z, ~w) and let ψ be

∃q ~w1 · · · ∃q ~wk ∀p+qk,S∗(~z, ~u)B(~z, ~u),

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 5

where S∗ = {(~si, ~wi)|1 ≤ i ≤ k}. Then ` ϕ↔ ψ by a proof of size polynomial in |ϕ|. Furthermore, the sizes of
ϕ and ψ are related by

|ψ| − |B(~z, ~w)| ≤ Ck(|ϕ| − |B(~z, ~w)|),

whereC is a fixed constant. A dual result holds for moving a finite existential quantifier past a universal quantifier.

P r o o f. The proof only considers the case of moving a finite universal quantifier past an existential quantifier,
the other case being dual. Let χ be

k∧
i=1

∃q ~wi B(~si, ~wi).

There are straightforward polynomial size proofs of χ↔ ϕ and χ↔ ψ. To prove the size bound, write ϕ as

∀p~z

[(
k∨
i=1

~z = ~si

)
→ (∃q ~w B(~z, ~w))

]
.

Similarly, ψ is

∃q ~w1 · · · ∃q ~wk ∀p~z ∀q~u

[(
k∨
i=1

~z = ~si ∧ ~u = ~wi

)
→ B(~z, ~u)

]
.

Disregarding the subformula B(~z, ~w) of ψ and ϕ, the size of ϕ is p+ O(kp) +
∑
i,j |si,j |+ q and the size of ψ

is kq + p + q + O(k(p + q)) +
∑
i,j |si,j |, and the size bound follows. A detailed calculation similar to that in

Proposition 2.3 shows that C can be taken to be 5.

In contrast to combination of like, finite quantifiers, in the above exchange property ϕ and ψ do not have the
same number of quantifiers. In fact, ψ has (k + 1)q + p quantifiers whereas ϕ only has p+ q.

Similar to finite quantifier combination, the quantifier exchange of Proposition 2.5 can be done in parallel
without an increase in the size.

Proposition 2.6 Let ϕ be a formula which contains occurrences of

(Qi)
pi
ki,Si

~zi (Qi)
qi ~wi,

where, for i = 1, . . . , n, Qi and Qi are existential and universal, or vice-versa. Also suppose that the indicated
quantifier blocks are all disjoint. Let ψ be the formula obtained by simultaneously exchanging the indicated
quantifiers as in Proposition 2.5. Then ` ϕ ↔ ψ by a proof of size polynomial in |ϕ|. Moreover, there is a fixed
constant C such that |ψ| ≤ C max{k1, . . . , kn}|ϕ|.

P r o o f. Use induction on n and make use of Proposition 2.5.

Note that S does not affect the size bounds in Propositions 2.3-2.6. Thus, the S may be suppressed in the
notation if S is either clear from context or unnecessary to the argument. The subscript k will always be kept on
a finite quantifier to distinguish it from a regular quantifier.

3 The Construction

The purpose of this section is to prove that a formula A containing only positive occurrences of a predicate P can
be transformed into a logically equivalent formula containing only one (positive) occurrence of P . This result
is due to Ferrante-Rackoff [1], who cite the work of Fischer-Meyer [6] and Meyer-Stockmeyer [7]. This section
reproves the result of Ferrante-Rackoff with a different construction. The new feature of our proof is the explicit
treatment of finite quantifiers, which will be important for our later constructions.

Copyright line will be provided by the publisher

6 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

Before beginning the construction, notation for this section is set. In general, A can be any first-order formula,
but for the present section assume that A is quantifier-free. A may contain free variables ~x, but these will be
suppressed in the notation as they do not play a role. Let P be a k-ary predicate such that P only occurs
positively in A. Let n be the number of occurrences of P in A, and suppose the ith occurrence of P in A occurs
as P (~ti), where ~ti is ti,1, . . . , ti,k. Equality, =, is included in the language; indeed, the presence of = plays a
crucial role in the following. It is more convenient to work A in a certain normal form defined here.

Definition 3.1 A first-order formula B is in De Morgan normal form if the only negated subformulas of B
are atomic.

Because A is provably equivalent to its De Morgan normal form by a proof of size polynomial in |A|, assume
without loss of generality that A is in De Morgan normal form. Define a formula δP (A), which is related to the
De Morgan normal form of ¬A, as follows.

Definition 3.2 The formula δP (A) is defined inductively by:

(i) δP (B) is B, if B is of the form P (~t).

(ii) δP (B) is ¬B, if B is an atomic formula not of the form P (~t).

(iii) δP (B ∧ C) is δP (B) ∨ δP (C).

(iv) δP (B ∨ C) is δP (B) ∧ δP (C).

By convention, delete any ¬¬’s that are created due to the presence of a negated atomic formula not of the
form P (~t). Note that δP (A) is the negation of A but with subformulas P (~t) left unnegated.

Substitution into δP (A) is given its own notation.
Definition 3.3 Let ϕ1, . . . , ϕn be formulas. Define δP (A)(ϕ1, . . . , ϕn) as follows. First form δP (A). Then,

for i = 1, . . . , n, replace the ith occurrence of P , namely replace the subformula P (~ti), with ϕi.
IfB is a subformula ofA, then δP (B/A)(ϕ1, . . . , ϕn) is the corresponding subformula of δP (A)(ϕ1, . . . , ϕn).

As an example, let A be (B ∨ P (~t1)) ∧ (¬C ∨ D ∨ P (~t2)), where B,C,D are atomic formulas not of
the form P (~t), and let E be the second conjunct of A, namely ¬C ∨ D ∨ P (~t2). Then δP (A)(ϕ1, ϕ2) is
(¬B ∧ ϕ1) ∨ (C ∧ ¬D ∧ ϕ2) and δP (E/A)(ϕ1, ϕ2) is C ∧ ¬D ∧ ϕ2.

There is a nice interplay between A and δP (A). Continuing with the example of the preceding paragraph, if
A and δP (A) are both true, then P (~t1) and ϕ1 are true if the first disjunct of δP (A) is true and P (~t2) and ϕ2 are
true if the second disjunct of δP (A) is true. Thus when A and δP (A) are true, they isolate the P (~ti) and ϕi that
“make the formulas true.” This is generalized and made precise in the following theorem.

Theorem 3.4 Suppose, for i = 1, . . . , n, ϕ∗i are formulas such that ti,j is substitutable for uj in ϕ∗i , j =

1, . . . , k. Let ϕi be ϕ∗i (~ti/~u), where, for each j, all occurrences of uj are replaced by ti,j . Then for any
subformula B of A

B ∧ δP (B/A)(~ϕ)→ ∃k~u

[(
n∨
i=1

ϕ∗i

)
∧ P (~u)

]

has a proof of size polynomial in |A|.

P r o o f. The proof is by induction on subformulas B of A.

(i) If B is P (~tj), where 1 ≤ j ≤ n, then δP (B/A)(~ϕ) is ϕj , and it is clear that the sequent has a short proof.

(ii) If B is an atomic subformula not of the form P (~t), then δP (B/A)(~ϕ) is ¬B, and again it is clear that the
sequent has a short proof.

(iii) Suppose B is C ∧D. By induction, the sequent

C, δP (C/A)(~ϕ)→∃k~u
[(

n∨
i=1

ϕ∗i

)
∧ P (~u)

]
Copyright line will be provided by the publisher

mlq header will be provided by the publisher 7

has a polynomial size proof. By ∧:left introduction derive

C ∧D, δP (C/A)(~ϕ)→∃k~u
[(

n∨
i=1

ϕ∗i

)
∧ P (~u)

]
.

Similarly,

C ∧D, δP (D/A)(~ϕ)→∃k~u
[(

n∨
i=1

ϕ∗i

)
∧ P (~u)

]

has a polynomial size proof. Since δP (B/A)(~ϕ) is

δP (C/A)(~ϕ) ∨ δP (D/A)(~ϕ),

the induction is finished by a ∨:left inference.

(iv) The case where B is C ∨D is handled similarly to (iii).

Introduce new vectors of variables ~ri of length k and let ϕ∗i be ~ui = ~ri, for 1 ≤ i ≤ n. Note that
∃k~u [(

∨n
i=1 ϕ

∗
i) ∧ P (~u)] is exactly ∃kn,T ′~u P (~u), where T ′ = {~ri|1 ≤ i ≤ n}. The following corollary is

immediate by ⊃:right introduction and quantifying out the ~ri’s by kn ∀:right inferences.

Corollary 3.5 Let Ψ−P (A) be

∀k~z1 · · · ∀k~zn
[
δP (A)(~t1 = ~z1, . . . ,~tn = ~zn)→ ∃kn,T~u P (~u)

]
,

where T = {~zi|1 ≤ i ≤ n}. Then A→ Ψ−P (A) has a proof of size polynomial in |A|.
The subscript P will be suppressed if it is clear from context.
Note that Ψ−(A) only has one subformula of the form P (~t), so Ψ−(A) is a good candidate for the final goal

of finding a formula equivalent to A that has only one occurrence of P . The question is now whether the reverse
implication Ψ−(A) → A holds. To show that as currently stated it does not, consider a model M where P is
constantly true. Then ∃kn,T~u P (~u) is true regardless of the ~zi’s, so Ψ−(A) is true. But if A happens to be false in
M, then A is not equivalent to Ψ−(A). The next theorem shows that as long as P is false for some arguments,
then the reverse implication holds.

Theorem 3.6 There is a proof of size polynomial in |A| of

∃~x¬P (~x)→ (Ψ−(A)→ A).

P r o o f. We argue informally as follows. Assume Ψ−(A). Let ~w⊥ be a vector of elements such that ¬P (~w⊥).
Define the values ~ri by

~ri =

{
~w⊥ if P (~ti)

~ti otherwise.

Since ¬P (~ri), for i = 1, . . . , n, ∃kn,T ′~u P (~u) is false, where T ′ = {~ri|1 ≤ i ≤ n}. Let B be

¬δP (A)(~t1 = ~r1, . . . ,~tn = ~rn).

Then, by Ψ−(A), B is true. Put B in De Morgan normal form, which is exactly A with each occurrence of P (~ti)
replaced with ~ti 6= ~ri. Finally, conclude A, since P (~ti)↔ ~ti 6= ~ri.

Copyright line will be provided by the publisher

8 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

After some modifications, the ∃~x¬P (~x) appearing in Theorem 3.6 can be replaced with ∃x0∃x1(x0 6= x1).
The idea is to modify P so as to make it false on some values ~w⊥. Specifically, given a k-ary predicate P , form
a (k + 1)-ary predicate P̃ , where P̃ (t0, t1, . . . , tk) is intended to express t0 = t1 ∧ P (t1, . . . , tk). It is clear that
∃x0∃x1(x0 6= x1) → ∃~x¬P̃ (~x). It remains to equivalently formulate A using P̃ instead of P . To accomplish
this, replace the occurrences of P (ti,1, ti,2, . . . , ti,k) in A by P̃ (ti,1, ti,1, ti,2, . . . , ti,k), for i = 1, . . . , n, and call
the resulting formula Ã. The main result of this section is ready to be proved.

Definition 3.7 Let ϕ be a first-order formula. Then `≥2 ϕ is an abbreviation for

` ∃x0∃x1(x0 6= x1)→ ϕ.

Theorem 3.8 Let P be a k-ary predicate and A be a quantifier-free formula. Assume that A contains n
occurrences of P , all of which are positive. Then there exists a Π2 formula Ψ(A) with one (positive) occurrence
of P such that

`≥2 Ψ(A)↔ A

by a proof of size polynomial in |A|. Moreover, Ψ(A) is of the form

∀k+1~z1 · · · ∀k+1~zn ∃k+1
n,T ~uΨM (A),

where ΨM (A) is quantifier-free and T = {~zi|1 ≤ i ≤ n}.

P r o o f. We view Ã as a formula with (k + 1)-variables, Ã = Ã(x0, . . . , xk), where the x1, . . . , xk are the
free variables of A, and x0 does not actually occur in Ã at all. By Theorem 3.6, there is a polynomial size proof
of

∃~x¬P̃ (x0, x1, . . . , xk)→ (Ψ−
P̃

(Ã)↔ Ã).

Replace all occurrences of P̃ (t0, t1, . . . , tk) in Ã by t0 = t1∧P (t1, . . . , tk), and call the resulting formulaB. Do
a similar replacement for Ψ−

P̃
(Ã), put the formula into prenex form, and call the resulting formula Ψ(A). Then

there is a polynomial size proof of

∃~x¬(x0 = x1 ∧ P (x1, . . . , xk))→ (Ψ(A)↔ B).

Clearly there are polynomial size proofs for ` B ↔ A and `≥2 ∃~x¬(x0 = x1 ∧ P (x1, . . . , xk)). Thus there is
also a polynomial size proof for `≥2 Ψ(A)↔ A.

A dual result to Theorem 3.8 also holds.

Theorem 3.9 Let P be a k-ary predicate and A be a quantifier-free formula. Assume that A contains n
occurrences of P , all of which are positive. Then there exists a Σ2 formula Θ(A) with one (positive) occurrence
of P such that

`≥2 Θ(A)↔ A

by a proof of size polynomial in |A|. Moreover, Θ(A) is of the form

∃k+1~z1 · · · ∃k+1~zn ∀k+1
n,T ~uΘM (A),

where ΘM (A) is quantifier-free and T = {~zi|1 ≤ i ≤ n}.

P r o o f. Arguing informally, letB be ¬A in De Morgan normal form. Replace subformulas of the form ¬P (~t)
in B by Q(~t), whereQ is a new predicate meant to express ¬P . Apply Theorem 3.8 toB with respect to Q to get
Ψ(B). Put ¬Ψ(B) into De Morgan normal form, and replace the one occurrence of ¬Q(~t) by P (~t). Let Θ(A)
be the resulting formula.

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 9

Depending on the context in which it is being used, Ψ(A) can be defined with slightly different properties.
Note in Theorem 3.8 that the variables in the universal quantification only range over finitely many values;
specifically, ~zi is either ~w⊥ or ~ti. Thus it seems natural that the universal quantifiers in Ψ(A) can be taken to be
finite. However, finite quantification requires writing out all the terms that are being quantified over, and thus, to
change the universal quantifiers in Ψ(A) to finite universal quantifiers, extra assumptions must be made. Here
are two possibilities.

(i) If there are terms ~t⊥ such that ` ¬P (~t⊥), then the universal quantifiers in Ψ(A) can be changed to finite
universal quantifiers. Specifically, Ψ(A) would have the form

∀k2,S1
~z1 · · · ∀k2,Sn~zn ∃

k
n,T~uΨM (A),

where ΨM (A) is quantifier-free with one occurrence of P , Si is {~ti,~t⊥} and T is {ti|1 ≤ i ≤ n}. Note that
it is unnecessary to introduce P̃ and that because ` ¬P (~t⊥), the proof of the equivalence between A and Ψ(A)
becomes unconditional.

(ii) If there are two unequal terms t0, t1, then the universal quantifiers in Ψ(A) can be changed to finite
universal quantifiers. Introduce P̃ as above. If ~t⊥ is t0, t1, t1, . . . , t1, let Ψ(A) be

∀k+1
2,S1

~z1 · · · ∀k+1
2,Sn

~zn ∃k+1
n,T ~uΨM (A),

where ΨM (A) is quantifier-free with one occurrence of P , Si is {~ti,~t⊥} and T is {ti|1 ≤ i ≤ n}. Then

` t0 6= t1 → (Ψ(A)↔ A).

We do not examine the situation in (ii) in the rest of the paper. Although it seems advantageous to have both
the universal and existential quantifiers in Ψ(A) be finite, this does not improve the upper bounds we prove
on quantifier complexity. There are two reasons for this. When proving our upper bounds, if the universal
quantifiers in Ψ(A) are adjacent to non-finite universal quantifiers, then the fact the universal quantifier in Ψ(A)
is finite becomes moot. When this situation does not arise, we prove our upper bound by the exchange property
of Proposition 2.6, which does not require the outer quantifier be finite in order to move it inwards.

A dual discussion of (i) and (ii) holds for Θ(A).

4 Upper Bounds, Positive Occurrences

The general context for this section is the following. Let Rn be recursively defined as A(Rn−1), where Rn−1
occurs only positively in A(Rn−1), and let Rn be obtained by unwinding the definition. In particular, Rn is
linear size if A contains one occurrence of Rn−1 and is exponential size if A contains multiple occurrences of
Rn−1. This section shows how to construct polynomial size Fn equivalent to Rn, such that there are polynomial
size proofs that the Fn’s follow the same recursion as the Rn’s. This result relies heavily on the construction of
Section 3. Furthermore, Fn is equivalent to Rn, but this statement does not have a polynomial size proof (except
in trivial cases) because Rn is exponentially large.

Our main goal in this section is to place upper bounds on the resulting quantifier complexity of the Fn’s. The
notion of quantifier complexity is made precise in the following definitions.

Definition 4.1 Let k ≥ 0. A first-order formula is Σk (respectively, Πk) if, after the application of prenex
operations, its quantifier block starts with ∃ (respectively, ∀) and has at most k quantifier alternations.

A formula B is ∆k for k ≥ 0 if there are first order formulas α in Σk and β in Πk such that there are proofs
of B ↔ α and B ↔ β. A family of formulas {Fn} is ∆k(n) provided there are formulas αn ∈ Σk(n) and
βn ∈ Πk(n) such that there are proofs of size polynomial in |Fn| of Fn ↔ αn and Fn ↔ βn.

The condition of polynomial provability for ∆k formulas in Definition 4.1 is important when Rn is defined as
A(Rn−1) and A is ∆k. In this case, A has two different expressions, and the polynomial size Fn’s are defined
using both expressions. Thus to prove the Fn’s follow the same recursion as the Rn’s via a polynomial size
proof, A must be provably equivalent to both of its expressions by polynomial size proofs. Note that any Boolean
combination of Σk and/or Πk formulas is ∆k+1.

The next definition counts quantifier alternations, modulo some formula ϕ.

Copyright line will be provided by the publisher

10 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

Definition 4.2 Let ϕ be a first-order formula. Define the following sets of formulas Σk(ϕ) and Πk(ϕ) for
k ≥ 0 as follows.

(i) If B is quantifier-free or a substitution instance of ϕ, then B is Σ0(ϕ) and Π0(ϕ).

(ii) If B and C are in Σk(ϕ) (respectively, Πk(ϕ)), then so are B ∧ C, B ∨ C, and ∃xB (respectively, ∀xB).

(iii) If B is in Σk(ϕ) (respectively, Πk(ϕ)), then ¬B is in Πk(ϕ) (respectively, Σk(ϕ)).

(iv) IfB is in Σk(ϕ) (respectively, Πk(ϕ)), then ∀xB (respectively, ∃xB) is in Πk+1(ϕ) (respectively, Σk+1(ϕ)).

A formula B is ∆k(ϕ) for k ≥ 0 if there are first-order formulas α in Σk(ϕ) and β in Πk(ϕ) such that there
are proofs of B ↔ α and B ↔ β. Intuitively, B is Σk(ϕ) if B is Σk after replacing each occurrence of ϕ with
its own new predicate symbol.

In Theorem 4.3 we consider the case where A is Σ2k, k > 0.
If A is a formula containing the predicate symbol Q, and P is a new predicate symbol such that P and Q have

the same arity, then A(P) is obtained by replacing all subformulas of the form Q(~t) in A by P (~t). Therefore, the
different occurrences of P in A(P) may have different terms as arguments. On the other hand, Ψ and Θ act as
operators. Thus Ψ(A) and Θ(A) are formulas obtained from A by the process of Section 3, and do not indicate
substitution as in the notation A(P).

Theorem 4.3 Suppose Rn is recursively defined as A(Rn−1) with Rn−1 occurring only positively in A. If
A is Σ2k for k > 0, then there are formulas Fn such that F0 is R0 and for n > 0, Fn is Σ2kn(R0) and
`≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

P r o o f. The proof proceeds by induction on n. Let A contain occurrences of a new predicate P such that
A(Rn−1) is obtained by replacing, in A, subformulas of the form P (~t) with Rn−1(~t). Also, suppose w.l.o.g. that
A is of the form

∃~x1∀~x2 · · · ∃~x2k−1∀~x2kAM ,

where AM is quantifier-free. For the base case, take F0 to be R0. For n > 0, assume Fn−1 has the stated
properties, and define Fn to be

∃~x1∀~x2 · · · ∃~x2k−1∀~x2kΨP (AM)(Fn−1).

Fn polynomial size because it is defined by a formula with one instance of Fn−1. By Theorem 3.8,

`≥2 ΨP (AM)↔ AM

by a polynomial size proof. Then `≥2 ΨP (AM)(Fn−1) ↔ AM (Fn−1), and hence `≥2 Fn ↔ A(Fn−1), by
polynomial size proofs.

It remains to show that Fn is Σ2kn(R0), for n > 0. By using the form of ΨP (AM) given in Theorem 3.8, Fn
is

∃~x1∀~x2 · · · ∃~x2k−1∀~x2k∀~z ∃m~uΨM (AM)(Fn−1),

where ΨM (AM) is quantifier-free, and m is the size of the finite set of terms ~u ranges over. If n = 1, for a one
time increase of size, the ∃m~u in F1 can be expanded as a disjunction of size m, so that F1 is Σ2k(R0). If n > 1,
assume by induction that Fn−1 is Σ2k(n−1)(R0). Since ΨM (AM)(Fn−1) contains only positive occurrences
(one, in fact) of Fn−1, it is Σ2k(n−1). Thus the leftmost ∃m~u in Fn adds no complexity because the outermost
quantifier of ΨM (AM)(Fn−1) is also ∃. Thus Fn is Σ2kn(R0).

A dual result holds when A is Π2k with k > 0. The argument remains the same, except that Θ is used instead
of Ψ:

Theorem 4.4 Suppose Rn is recursively defined as A(Rn−1) with Rn−1 occurring only positively in A. If
A is Π2k for k > 0, then there are formulas Fn such that F0 is R0 and for n > 0, Fn is Π2kn(R0) and
`≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 11

The fact that the quantifier block of A was even in length seemingly played an important role in Theorem 4.3
because the quantifiers introduced by the application of Ψ were able to be absorbed into the first and last quan-
tifier blocks of A. Suppose A is Σ2k+1 for k > 0. Then the quantifier block of A would begin and end with
the same type of quantifier. If the argument of Theorem 4.3 were applied, only one of the quantifier types of
ΨP (AM)(Fn−1) could be absorbed into quantifier blocks introduced of A, resulting in an extra n quantifier
alternations in Fn. These extra alternations could be eliminated using the quantifier exchange property of Propo-
sition 2.6. Instead, however, we prove the following theorem by reducing it to Theorem 4.4.

Theorem 4.5 Suppose Rn is recursively defined as A(Rn−1) with Rn−1 occurring only positively in A. If
A is Σ2k+1 for k > 0, then there are formulas Fn such that F0 is R0 and for n > 0, Fn is Σ2kn+1(R0) and
`≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

P r o o f. Suppose that A(Rn−1) in prenex form is

∃~x1∀~x2∃~x3 · · · ∀~x2k∃~x2k+1AM (Rn−1),

where AM is quantifier-free. For n ≥ 0, define Sn to be

∀~x2∃~x3 · · · ∀~x2k∃~x2k+1AM (Rn),

then Rn is ∃~x1Sn−1 and Sn is

∀~x2∃~x3 · · · ∀~x2k∃~x2k+1AM (∃~zSn−1).

Since the occurrences of ∃~zSn−1 are all positive in AM (∃~zSn−1), Sn can be equivalently rewritten as

∀~x2∃~x3 · · · ∀~x2k∃~x2k+1∃~z1 · · · ∃~zlAM (Sn−1),

where l is the number of occurrences of Rn−1 in A. Let B(Sn−1) be this formula. Apply Theorem 4.4 to B and
Sn to get polynomial size formulas Gn in Π2kn(R0) such that `≥2 Gn ↔ B(Gn−1) by a polynomial size proof.
The theorem is proved by letting F0 be R0 and Fn be ∃~x1Gn for n > 0.

Theorem 4.5 has a dual argument that uses Theorem 4.3 instead of Theorem 4.4:

Theorem 4.6 Suppose Rn is recursively defined as A(Rn−1) with Rn−1 occurring only positively in A. If
A is Π2k+1 for k > 0, then there are formulas Fn such that F0 is R0 and for n > 0, Fn is Π2kn+1(R0) and
`≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

Now consider the cases whereA is purely universal, purely existential, or quantifier-free. The above arguments
fail in these cases, since they depended on the fact that both universal and existential quantifiers were present in
A so they could be combined with the quantifiers introduced by applications of Ψ and Θ. The next theorem uses
the quantifier exchange property of Propositions 2.5 and 2.6 to give a better bound on the quantifier complexity
of Fn.

Theorem 4.7 Suppose Rn is recursively defined as A(Rn−1) with Rn−1 occurring only positively in A. Fix
δ > 0. If A is purely existential, purely universal, or quantifier-free, then there are formulas Fn such that F0 is
R0 and for n > 0, Fn is ∆δn/ logn(R0) and `≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and
|R0|. Moreover, `≥2 Fn ↔ Rn.

P r o o f. First assume that A is purely existential. Let A contain occurrences of a new predicate P such that
A(Rn) is obtained by replacing, in A, subformulas of the form P (~t) with Rn(~t). Suppose A is of the form
∃~xAM , where AM is quantifier-free, and let F−0 and F0 both be R0. For n > 0, let F−n be ∃l~xΘP (AM)(F−n−1).
For n > 0, Fn will be constructed below from F−n using the polynomial size equivalences in Propositions 2.4
and 2.6. Because the size bounds in Propositions 2.4 and 2.6 do not depend on the lengths of the vectors of
variables or the set of terms that the finite quantifiers range over, only the sizes of the sets a finite quantifier
ranges over will be displayed. Often, the quantifying variables will be suppressed to improve readability.

By Theorem 3.9, `≥2 ΘP (AM) ↔ AM by a polynomial size proof, and hence `≥2 F−n ↔ A(F−n−1) by a
polynomial size proof. If m is the number of occurrences of Rn−1 in A(Rn−1), then Theorem 3.9 states that

Copyright line will be provided by the publisher

12 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

ΘP (AM)(F−n−1) is ∃~z∀m~uΘM (AM)(F−n−1), where ΘM (AM) is quantifier-free and has one, positive occurrence
of P . Then F−n has the form ∃~w∀m~uΘM (AM)(F−n−1), where ~w is (~x, ~z). By unwinding its recursive definition,
F−n can be written as

∃~w1∀m~u1 · · · ∃~wn∀m~un B,

where B is a polynomial sized, ∆0(R0) formula with one, positive occurrence of R0. Let D0 be this formula.
The construction proceeds in stages moving finite quantifiers rightwards past unlike quantifiers and then com-

bining like, finite quantifiers, as in Propositions 2.3-2.6, at each stage cutting the number of quantifier alternations
in half. For simplicity we assume that n is a power of two; this assumption can removed by padding with vacuous
quantifiers. The construction produces formulas Di in Σn/2i−1(R0) with one, positive occurrence of R0 such
that Di is of the form

∃∀m2i∃∀m2i · · · ∃∀m2iϕ,

where ϕ is ∆0(R0), and for i > 0, ` Di ↔ Di−1 by a proof of size polynomial in |Di|. Note that D0 satisfies
the base case, so it is enough to show how to construct Di+1 from Di.

Suppose Di has been constructed with the stated properties and is of the form

∃∀m2i∃∀m2i∃∀m2i∃∀m2i · · · ∃∀m2i∃∀m2i∃∀m2i∃∀m2iϕ,

where there are n/2i−1 quantifier alternations and ϕ is ∆0(R0). Use Proposition 2.6 to simultaneously change
the first, third, fifth, etc., occurrences of ∀m2i∃ to be ∃∀m2i . This results in a formula of the form

∃∃∀m2i∀m2i∃∃∀m2i∀m2i · · · ∃∃∀m2i∀m2i∃∃∀m2i∀m2iϕ.

The application of Proposition 2.6 multiplies the size by Cm2i , where C is a fixed constant. Simultaneously
combine the like universal quantifiers using Proposition 2.4, which multiplies the size by a factor ofm2i , and call
the resulting formula Di+1. Then Di+1 is clearly Σn/2i(R0) and, by Propositions 2.4 and 2.6, ` Di ↔ Di+1 by
a proof of size polynomial in |Di|. Also, |Di+1| ≤ Cm2im2i |Di| = Cm2i+1 |Di|, and hence

|Dj | ≤ |D0|Πj−1
i=0Cm

2i+1

= Cjm2j+1−2|D0|.

Fix a constant c. Let j be log log n+c+1 and Fn beDj . Then Fn is in Σd(R0), where d = n
2c logn , and since

D0 is F−n , Fn has polynomial size. By fixing c large enough, d ≤ δ n
logn − 1. Since Σk is contained in ∆k+1 for

any k, Fn is in ∆δ n
logn

(R0). By combining the proofs of Di ↔ Di+1, i = 1, . . . , j, there is a polynomial size
proof of F−n ↔ Fn (since D0 is F−n and Dj is Fn). Since there are polynomial size proofs for `≥2 F−n ↔ Fn
and `≥2 F−n ↔ A(F−n−1), `≥2 Fn ↔ A(Fn−1) by a polynomial size proof.

Taking the dual of the above argument shows the same result holds if A is purely universal. A quantifier-free
formula can be taken to be purely existential (or purely universal) by adding a vacuous quantifier.

The last case to consider is when A is ∆k. If k = 0, then A is quantifier-free and Theorem 4.7 applies. If
k = 1, then A can be taken to be, in particular, purely existential, and Theorem 4.7 again applies. The next
theorem considers the case k > 1. This will be useful in Section 6 when removing the assumption of only
positive occurrences of Rn−1 .

Theorem 4.8 Suppose Rn is recursively defined as A(Rn−1) with Rn−1 occurring only positively in A. Let
k > 0. Suppose A is ∆k+1, and that the two formulas α ∈ Σk+1 and β ∈ Πk+1 equivalent to A(P) contain only
positive occurrences of P . Then there are formulas Fn such that F0 is R0 and for n > 0, Fn is ∆kn+1(R0) and
`≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

P r o o f. Let A contain occurrences of a new predicate P such that A(Rn) is obtained by replacing, in A,
subformulas of the form P (~t) with Rn(~t). Suppose there are polynomial size proofs of A ↔ α and A ↔ β,
where α is Σk+1 and β is Πk+1. Let α be

∃~x1∀~x2 · · ·Q~xk+1αM ,

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 13

where Q is ∃ if k is even and is ∀ if k is odd, and αM is quantifier-free. Let β be

∀~y1∃~y2 · · ·Q~yk+1βM ,

where Q is ∀ if k is even and is ∃ if k is odd, and βM is quantifier-free.
First assume that k is odd. Define two sets of formulas, F−n and G−n , that will be transformed below into the

Fn’s and Gn’s. Let F−0 be R0 and F−n be

∃~x1∀~x2 · · · ∀~xk+1ΨP (αM)(G−n−1)

for n > 0. Let G−0 be R0 and G−n be

∀~y1∃~y2 · · · ∃~yk+1ΘP (βM)(F−n−1)

for n > 0. Let p be the number of occurrences of Rn−1 in α(Rn−1) and q be the number of occurrences of Rn−1
in β(Rn−1). By Theorem 3.8, ΨP (αM) is of the form ∀~z ∃p~u ΨM (αM), where ΨM (αM) is quantifier-free.
Further,

`≥2 ΨP (αM)↔ αM ,

and thus

`≥2 F−n ↔ α(G−n−1),

by polynomial size proofs. Similarly, by Theorem 3.9, Θ(βM) is of the form ∃~z ∀q~uΘM (βM), where ΘM (βM)
is quantifier-free. Further,

`≥2 ΘP (βM)↔ βM ,

and thus

`≥2 G−n ↔ β(F−n−1)

by polynomial size proofs. Since F−0 and G−0 are R0 and ` α↔ β by a polynomial size proof, induction shows
that for all n, `≥2 F−n ↔ G−n by a polynomial size proof. Then `≥2 F−n ↔ A(F−n−1), because there are
polynomial size proofs of A↔ β and A↔ α.

If n > 0, F−n has one occurrence of G−n−1 and is of the form

∃~x1∀~x2 · · · ∀~xk+1∀~z∃m~uΨM (AM)(G−n−1).

Similarly if n > 0, G−n has one occurrence of F−n−1 and is of the form

∀~y1∃~y2 · · · ∃~yk+1∃~z∀q~uΘM (AM)(F−n−1).

Let n > 0. The unwinding the recursion shows that F−n is a polynomial size formula with quantifier block

∃∀∃ · · · ∃∀∃p|∀∃∀ · · · ∀∃∀q|∃∀∃ · · · ∃∀∃p|∀∃∀ · · · ∀∃∀q|∃∀ · · ·QQm.

The last quantifiers QQm are either ∀∃p or ∃∀q , depending on whether n is even or odd. Call each set of
quantifiers set apart by vertical lines a cell. Each cell is created after one stage of the unwinding of F−n , thus
there are n cells. Each cell contains k + 2 quantifiers, corresponding to the sizes of the quantifier blocks in the
recursions. Note that the rightmost quantifier in every cell is finite. Apply Proposition 2.6 to simultaneously
exchange the quantifiers on either side of each of the n − 1 vertical lines. This increases the size of the formula
by a factor of max{p, q}, and the quantifier block of the resulting formula is

∃∀∃ · · · ∃∀∀|∃p∃∀ · · · ∀∃∃|∀q∀∃ · · · ∃∀∀|∃p∃∀ · · · ∀∃∃|∀q∀ · · ·QQm.

Copyright line will be provided by the publisher

14 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

The innermost quantifier Qm is still finite, so for a one time size cost expand it as a conjunction of size q (if it
is universal) or disjunction of size p (if it is existential) and call the resulting formula F+

n . Then the first cell of
F+
n ’s quantifiers has k + 1 alternations, the last cell has k alternations, and each of the n− 2 middle cells have k

alternations, so that F+
n is Σkn+1(R0). Proposition 2.6 implies that ` F+

n ↔ F−n by a polynomial size proof. If
n = 0, let F+

0 be R0. Then we have a polynomial size proof for `≥2 F+
n ↔ A(F+

n−1).
All that is left to show is that F+

n is actually ∆kn+1. This is accomplished by dually defining formulas G+
n

in Πkn+1 such that G+
0 is R0 and ` G+

n ↔ G−n by a polynomial size proof. Since `≥2 F−n ↔ G−n , for n > 0,
`≥2 F+

n ↔ G+
n by a polynomial size proof. If n = 0, ` F+

0 ↔ G+
0 because they are both R0. This would show

that F+
n is ∆kn+1(R0) if the assumption of two distinct elements were removed.

To this end, for n > 0, let Fn be

F+
n ∨ ∀x0∀x1(x0 = x1),

let Gn be

G+
n ∨ ∀x0∀x1(x0 = x1),

and let F0 and G0 be R0. Clearly, Fn is Σkn+1(R0), Gn is Πkn+1(R0), and ` Fn ↔ Gn by a polynomial size
proof. Therefore, Fn is ∆kn+1(R0). It is also clear that there is a polynomial proof for `≥2 Fn ↔ A(Fn−1).

If k is even, the proof is slightly easier becauseF−n can instead be defined as ∃~x1∀~x2 · · · ∃~xk+1ΨP (αM)(F−n−1)

for n > 0. Similarly, G−n can be instead defined as ∀~y1∃~y2 · · · ∀~yk+1ΘP (βM)(G−n−1) for n > 0. The rest of the
proof is similar to the case when k is even, and so is omitted.

Section 6 removes the condition that α and β contain only positive occurrences of P .

5 Lower Bounds, Positive Occurrences

The present section places lower bounds on the quantifier complexity of polynomial size formulas expressing
some recursively defined predicate Rn. Once again we assume Rn−1 occurs only positively in the definition of
Rn. These lower bounds closely match the upper bounds that were proved in Section 4.

There are two ideas in proving lower bounds. One is to use complete problems from the arithmetic hierarchy,
and the other is to use lower bounds of the Yao-Håstad switching lemma on circuits calculating parity. In either
case, the main effort is in showing that these problems can be defined recursively by a formula with the desired
quantifier complexity.

Let T (e, x, u) be the Kleene T predicate which expresses the statement that u codes a computation of Turing
machine with Gödel number e on input x. Sequences x1, . . . , xm will be coded by Gödel numbers 〈x1, . . . , xm〉.
Let ∗ denote concatenation of two sequences and Accept(u) denote the statement that u codes an accepting
computation. Let β(i, 〈x1, . . . , xm〉) be the Gödel β function that returns the ith element of the sequence. Let N
be the standard model of the integers in the language that contains all primitive recursive functions and predicates.
Since the setting for equivalence is in models with more than one element, it is enough to give lower bounds on
the quantifier complexity of a formula expressing Rn over N.

The following two definitions simplify notation in the following.
Definition 5.1 Let m > 0. Let µ(e, x, y1, y2, . . . , ym−1, ym) be the formula

T (e, 〈x, y1, y2, . . . , ym−1, β(1, ym)〉, β(2, ym))→ Accept(β(2, ym)).

Define ν(e, x, y1, y2, . . . , ym−1, ym) to be

T (e, 〈x, y1, y2, . . . , ym−1, β(1, ym)〉, β(2, ym)) ∧ Accept(β(2, ym)).

Define Am(e, x) to be

∃y1∀y2 · · ·Qymπ(e, x, y1, y2, . . . , ym),

where Q is ∀ and π is µ if m is even, and Q is ∃ and π is ν if m is odd. Define Bm(e, x) by

∀y1∃y2 · · ·Qymπ(e, x, y1, y2, . . . , ym),

where Q is ∃ and π is ν if m is even, and Q is ∀ and π is µ if m is even.

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 15

Clearly, Am and Bm are Σm- and Πm-complete, respectively.
The first lower bound we prove is the case when is A in Σ2k, k > 0.

Definition 5.2 Let C2k
0 (e, x, u) be the formula

T (e, x, u)→ Accept(u).

For n > 0, let C2k
n (e, x, u) be the formula

∃x1∀x2 · · · ∃x2k−1∀x2kC2k
n−1(e, 〈x1, x2, . . . , x2k−1, β(1, x2k)〉 ∗ x, β(2, x2k)).

Note that, unless n = 0, the argument u is ignored. If k, n > 0, then C2k
n (e, x, u) is equivalent to A2kn(e, x),

and thus is Σ2kn-complete. This proves the following lower bound.

Theorem 5.3 Let k > 0. Then there exist formulas C2k
n recursively defined to be A(C2k

n−1), where A is Σ2k,
C2k

0 is quantifier-free, and C2k
n−1 occurs only positively in A(C2k

n−1), such that if n > 0 and N � ϕ↔ C2k
n , then

ϕ 6∈ Π2kn. Hence ϕ 6∈ Σl for l < 2kn.

There is a dual construction for the case when A is Π2k, k > 0. Let D2k
n (e, x, u) be T (e, x, u) ∧ Accept(u) if

n = 0, and

∀x1∃x2 · · · ∀x2k−1∃x2kD2k
n−1(e, 〈x1, x2, . . . , x2k−1, β(1, x2k)〉 ∗ x, β(2, x2k))

if n > 0. ThenD2k
n (e, x, u) is equivalent to B2kn(e, x) when k, n > 0, and henceD2k

n (e, x, u) is Π2kn-complete.
The following theorem is immediate.

Theorem 5.4 Let k > 0. Then there exist formulas D2k
n recursively defined to be A(D2k

n−1), where A is Π2k,
D2k

0 is quantifier-free, and D2k
n−1 occurs only positively in A(D2k

n−1), such that if n > 0 and N � ϕ↔ D2k
n , then

ϕ 6∈ Σ2kn. Hence ϕ 6∈ Πl for l < 2kn.

If A is Σ2k+1, k > 0, a lower bound can be proved after slightly modifying C2k
n . The case when A is Σ1 is

handled separately.

Definition 5.5 Let k > 0 be fixed, and let C2k+1
0 (e, x, u) be the formula

T (e, x, u) ∧ Accept(u).

For n > 0 let C2k+1
n (e, x, u) be the formula

∃x1∀x2 · · · ∀x2k∃x2k+1C
2k+1
n−1 (e, 〈x1, . . . , x2k, β(1, x2k+1)〉 ∗ x, β(2, x2k+1)).

Unwinding the definition shows thatC2k
n (e, x, u) is equivalent to A2kn+1, when k, n > 0. The same reasoning

as before Theorem 5.3 proves a lower bound for the odd block length case.

Theorem 5.6 Let k > 0. Then there exist formulas C2k+1
n recursively defined to be A(C2k+1

n−1), where A
is Σ2k+1, C2k+1

0 is quantifier-free, and C2k+1
n−1 occurs only positively in A(C2k+1

n−1), such that if n > 0 and
N � ϕ↔ C2k+1

n , then ϕ 6∈ Π2kn+1. Hence ϕ 6∈ Σl for l < 2kn+ 1.

By constructing D2k+1
n dual to C2k+1

n , D2k+1
n (e, x, u) is B2kn+1(e, x) when k, n > 0, hence is Π2kn+1-

complete, and the lower bound is proved as in the previous cases:

Theorem 5.7 Let k > 0. Then there exist formulas D2k+1
n recursively defined to be A(D2k+1

n−1), where A
is Π2k+1, D2k+1

0 is quantifier-free, and D2k+1
n−1 occurs only positively in A(D2k+1

n−1), such that if n > 0 and
N � ϕ↔ D2k+1

n , then ϕ 6∈ Σ2kn+1. Hence ϕ 6∈ Πl for l < 2kn+ 1.

The next case to consider is when A is ∆k+1, k > 0. Here, k is required to be strictly greater than zero; the
case when A is ∆1 is open. The above constructions can be altered to produce formulas that incorporate aspects
of both Ckn and Dk

n. The construction is dependent on whether k is even or odd; only the even case is presented.
Let k > 0. Define E2k

0 (e, x, u, a) to be

(a = 0 ∧ (T (e, x, u)→ Accept(u))) ∨ (a 6= 0 ∧ (T (e, x, u) ∧ Accept(u))).

Copyright line will be provided by the publisher

16 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

For n > 0, define E2k
n (e, x, u, a) to be

(a = 0 ∧ ∃y1∀y2 · · · ∃y2k−1∀y2kE2k
n−1(e, 〈y1, y2, . . . , y2k−1, β(1, y2k)〉 ∗ x, β(2, y2k), 0))

∨(a 6= 0 ∧ ∀z1∃z2 · · · ∀z2k−1∃z2kE2k
n−1(e, 〈z1, z2, . . . , z2k−1, β(1, z2k)〉 ∗ x, β(2, z2k), 1)).

The argument a in E2k
n can be thought of as a flag that chooses which path of the recursion to follow. Clearly,

E2k
n is defined recursively to be A(E2k

n−1), where A is some ∆2k+1 formula. By unwinding the recursion,
E2k
n (e, x, u, a) is equivalent to (a = 0 ∧ A2kn(e, x)) ∨ (a 6= 0 ∧ B2kn(e, x)). It is straightforward to rework

the recursion in the odd case so that if k > 0, then E2k+1
n (e, x, u, a) is recursively defined to be a ∆(2k+1)+1

formula such that E2k+1
n (e, x, u, a) is equivalent to (a = 0 ∧ A(2k+1)n(e, x)) ∨ (a 6= 0 ∧B(2k+1)n(e, x)). The

next theorem follows easily.

Theorem 5.8 Let k > 0. Then there exist formulas Ek+1
n recursively defined to be A(Ek+1

n−1), where A is
∆k+1, Ek+1

0 is quantifier-free, and Ek+1
n−1 occurs only positively in A(Ek+1

n−1), with the property that, if n > 0 and
N � ϕ↔ Ek+1

n , then ϕ 6∈ Σkn and ϕ 6∈ Πkn.

P r o o f. Let n > 0 and suppose Ek+1
n (e, x, u, a) is equivalent to ϕ. If a = 0, then ϕ is equivalent to Akn, and

so ϕ 6∈ Πkn. If a = 1, then ϕ is Bkn, and so ϕ 6∈ Σkn.

The only lower bounds left to prove are when A is purely universal, purely existential, or quantifier-free. In all
cases the lower bound arises from a recursive definition of the parity function. Without function symbols in the
language the recursion is either Σ1 or Π1, and with function symbols in the language the recursion is quantifier-
free. The lower bound rests on the Yao-Håstad Switching Lemma [8, 9], which places a lower bound on the depth
of a circuit calculating parity.

For Theorem 5.9, let the language contain the predicates =, T , and Mid and the constant symbols 0 and 1. T
is a unary predicate and Mid(i, j, k) is a ternary relation intended to express k = b i+j2 c. In the cases where A
is purely universal or purely existential, function symbols are not allowed. In the quantifier-free case, function
symbols are allowed, and the one function used is the binary function Mid(i, j), which is intended to calculate
b i+j2 c.

Theorem 5.9 There exist formulas P ∗N recursively defined to be A(P ∗N−1), where A is purely existential, P ∗0
is quantifier-free, and P ∗N−1 occurs only positively in A(P ∗N−1), such that the following property holds. If ϕN
are formulas of size polynomial in N such that � ϕN ↔ P ∗N and ϕN is ΣdN (or ΠdN), then dN is Ω(N/ logN).
More precisely, for each polynomial p, there is a constant ε such that if |ϕN | < p(N), then dN > εN/ logN , for
all large N . The same statement holds if A is purely universal or quantifier-free.

P r o o f. To prove the lower bound, it is enough to work in one particular model and prove the lower bound
there. The model used in this proof will be defined more precisely later, but is essentially the standard model over
a finite subset of the integers.

Define P0(i, j) to be the formula T (i), and, for N > 0, define PN (i, j) to be

∃k[Mid(i, j, k) ∧ (PN−1(i, k)⊕ PN−1(k, j))],

where B ⊕ C is an abbreviation for (B ∧ ¬C) ∨ (¬B ∧ C). With the intended meanings of the predicates,
PN (0, n) calculates the parity of T (0), . . . , T (n− 1), where n = 2N .

The above definition of PN uses positive and negative occurrences of PN−1. To avoid this issue, introduce a
new predicate that encodes PN and whether it occurs positively or negatively. Define P ∗N (i, j, a) to be

(PN (i, j) ∧ a = 0) ∨ (¬PN (i, j) ∧ a 6= 0).

The recursive definition of PN can now be restated as a recursive definition of P ∗N by breaking into cases on a.
Let R∗N−1(i, j, k, a) be

a = 0 ∧ [(P ∗N−1(i, k, 0) ∧ P ∗N−1(k, j, 1)) ∨ (P ∗N−1(i, k, 1) ∧ P ∗N−1(k, j, 0))],

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 17

let S∗N−1(i, j, k, a) be

a 6= 0 ∧ [(P ∗N−1(i, k, 0) ∧ P ∗N−1(k, j, 0)) ∨ (P ∗N−1(i, k, 1) ∧ P ∗N−1(k, j, 1))],

and let P ∗N (i, j, a) be recursively defined on P ∗N−1 by:

∃k[Mid(i, j, k) ∧ (R∗N−1(i, j, k, a) ∨ S∗N−1(i, j, k, a))].

Note P ∗N−1 occurs only positively in the definition of P ∗N . Before continuing, the following slight generalization
of the Yao-Håstad Switching Lemma is needed.

Lemma 5.10 (Yao-Håstad Switching Lemma) Let {Cn|n ∈ I} be an infinite family of circuits where Cn has
size n(logn)

O(1)

. If each Cn calculates parity on n objects for each n ∈ I , then Cn has depth Ω(log n/ log log n).
Lemma 5.10 follows from the slightly stronger bounds for the switching lemma proved in [10]. The bounds

state that the size of any circuit calculating parity is at least 2
1
14n

1/(d−1)

, where d is the depth of the circuit. For
fixed r > 0, if the size of the circuit is n(logn)

r

, then a straightforward calculation shows the depth is Ω(logn
log logn).

The constant suppressed by the Ω notation is dependent on r.
We now finish the proof of Theorem 5.9. Suppose that there are formulas ϕN such that � ϕN ↔ P ∗N , where

|ϕN | = NO(1). Also suppose that ϕN is in prenex form with a ΣdN quantifier block (the argument would carry
through if the quantifier block were ΠdN) and quantifier-free part ψN . Let MN be the model with universe
0, 1, . . . , n, where n = 2N , Mid(i, j, k) expresses k = b i+j2 c, and T is arbitrary.

The following translates ϕN (0, n, 0) into a circuit Cn, which will calculate the parity of n objects. First, let
ψ′N be ψN (0, n, 0) in CNF. Since |ψN | = NO(1), we have |ψ′N | = 2N

O(1)

. Next, working from the outside in
replace any subformula in ϕN (0, n, 0) of the form ∃yχ(y) (respectively, ∀yχ(y)) by

∨n
i=0 χ(i) (respectively,∧n

i=0 χ(i)), since they are equivalent in MN . Replace instances of Mid(i, j, k) in ϕN with > if k = b i+j2 c, and
⊥ if k 6= b i+j2 c. Introduce new propositional variables p0, . . . , pn and replace occurrences of T (i) in ϕN with
pi. The formula is now propositional, and naturally translates into a circuit, call it Cn. The quantifier block of
ϕN translates into a circuit of depth dN with (n + 1)dN inputs, where the inputs are occurrences of the circuit
translation of ψ′N . Thus depth of Cn is at most dN + 2. The (n + 1)dN occurrences of ψ′N in Cn contribute
(n + 1)dN 2N

O(1)

= n(logn)
O(1)

to its size, since (n + 1)dN is O(ndN). The initial branching of the circuit
coming from the quantifier block of ϕN adds nN

O(1)

= n(logn)
O(1)

to its size, so overall Cn has size n(logn)
O(1)

.
Since P ∗N (0, n, 0) calculates the parity of T (0), . . . , T (n − 1), Cn calculates the parity of p0, . . . , pn−1. Then
Lemma 5.10 applied to {Cn|n = 2N , N ≥ 0} implies that dN is Ω(log n/ log log n) = Ω(N/ logN).

The proof would still hold if recursion of P ∗N on P ∗N−1 were instead defined to be

∀k[Mid(i, j, k)→ (R∗N−1(i, j, k, a) ∨ S∗N−1(i, j, k, a))].

If the language is allowed to contain function symbols, quantifiers are not needed in defining P ∗N , as k can be
replaced by Mid(i, j), where Mid(i, j) is a binary function symbol with intended meaning Mid(i, j) = b i+j2 c.
The proof of Theorem 5.9 still holds in this case, because any function symbols in P ∗N (0, n, 0) can replaced in
ϕN by their correct value.

6 Positive and Negative Occurrences

This section removes the restriction of the previous sections that Rn−1 occur only positively in the definition of
Rn. Theorems 6.1 and 6.2 prove upper bounds and Theorem 6.3 improves the lower bound in one case.

Theorem 6.1 Suppose Rn is recursively defined as A(Rn−1). Let k > 0. If A is Σk, Πk, or ∆k+1, then there
are formulas Fn such that F0 is R0 and for n > 0, Fn is ∆kn+1 and `≥2 Fn ↔ A(Fn−1) by a proof of size
polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

P r o o f. We first assume there are two unequal constant symbols c0, c1; this condition will be removed later.
Introduce new (k + 1)-ary predicates R∗n(~x, a). The intuition is that R∗n(~x, a) expresses the formula Sn:

(a = c0 ∧Rn(~x)) ∨ (a 6= c0 ∧ ¬Rn(~x)).

Copyright line will be provided by the publisher

18 S. R. Buss and A. S. Johnson: Quantifier Complexity of Iterated Definitions

We need to recursively express R∗n in terms of only positive occurrences of R∗n−1. For this, form A+(R∗n−1)

as follows: Put A into De Morgan normal form, and replace positive occurrences of Rn−1(~t) in A(Rn−1) by
R∗n−1(~t, c0) and occurrences of ¬Rn−1(~t) by R∗n−1(~t, c1). Similarly, form A−(R∗n−1) as follows: Put ¬A
into De Morgan normal form, and replace positive occurrences of Rn−1(~t) in ¬A(Rn−1) by R∗n−1(~t, c0) and
occurrences of ¬Rn−1(~t) by R∗n−1(~t, c1). Let A∗(R∗n−1) be

(a = c0 ∧A+(R∗n−1)) ∨ (a 6= c0 ∧A−(R∗n−1)).

Note A∗(R∗n−1) has only positive occurrences of R∗n−1, and A∗ is ∆k+1 if A is Σk or Πk, for k > 0. If A is
∆k+1, thenA∗ can be made Σk+1 by choosing the Σk+1 representation forA inA+ and the Πk+1 representation
of A in A−. Similarly, A∗ can also be made Πk+1 by appropriately choosing the representation for A in A+ and
A−. This shows that A∗ is still ∆k+1. In contrast to Section 4, the cases where A is Σ1 or Π1 are not treated
differently. By Theorem 4.8, there exist formulas Fn(~x, a) such that F0 is S0, and for n > 0,

`≥2 Fn(~x, a)↔ A∗(Fn−1)

have polynomial size proofs. Furthermore, since S0 is quantifier-free, Fn is ∆kn+1(R0). Also, we have polyno-
mial size proofs of

c0 6= c1 → (Fn(~x, c0)↔ A+(Fn−1)) (1)

and

c0 6= c1 → (Fn(~x, c1)↔ A−(Fn−1)). (2)

By definition, there is a proof of c0 6= c1 → (F0(~x, c0)↔ ¬F0(~x, c1)). Since A+ and A− are essentially the
negations of each other in De Morgan normal form, induction on n and (1) and (2) imply that for n ≥ 0, there is
a polynomial size proof of

c0 6= c1 → (Fn(~x, c0)↔ ¬Fn(~x, c1)). (3)

Let Gn(~x) be Fn(~x, c0). Then G0(~x) is R0(~x), and there is a polynomial size proof of

c0 6= c1 → (Gn ↔ A(Gn−1)). (4)

We now eliminate the condition that c0 6= c1. Write Gn(~x) as Gn(~x, c0, c1) to display the dependence of Gn
on c0 and c1. Let Gn(~x, d0, d1) be Gn(~x, c0, c1) with all occurrences of c0 replaced by d0 and all occurrences of
c1 replaced by d1. We claim there is a polynomial size proof of

(c0 6= c1 ∧ d0 6= d1)→ (Gn(~x, c0, c1)↔ Gn(~x, d0, d1)). (5)

This is proved by induction. The base case follows easily from the definition of S0, and the inductive step follows
from (3) and (4). Let Xn be

∃y0∃y1(y0 6= y1 ∧Gn(~x, y0, y1))

and Yn be

∀y0∀y1(y0 6= y1 → Gn(~x, y0, y1)),

It follows from (5) that there are polynomial size proofs of

c0 6= c1 → (Gn(~x, c0, c1)↔ Xn)

and

c0 6= c1 → (Gn(~x, c0, c1)↔ Yn).

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 19

Hence

`≥2 Xn ↔ Yn,

`≥2 Xn ↔ A(Xn−1),

and

`≥2 Yn ↔ A(Yn−1)

by polynomial size proofs. Since Gn is ∆kn+1(R0), it can be equivalently be written either as a Σkn+1(R0)
or Πkn+1(R0) formula. Then Xn is Σkn+1(R0) and Yn is Πkn+1(R0). Since `≥2 Xn ↔ Yn, Xn would be
∆kn+1(R0) if the condition of more than two elements could be eliminated. This is done in a similar manner to
the construction at the end of the proof of Theorem 4.8.

The remaining case is when A is quantifier-free. The above proof is essentially unchanged, and thus Theo-
rem 4.7 extends easily to the following theorem.

Theorem 6.2 Suppose Rn is recursively defined as A(Rn−1). Fix δ > 0. If A is purely existential, purely
universal, or quantifier-free, then there are formulas Fn such that F0 is R0 and for n > 0, Fn is ∆δn/ logn(R0)
and `≥2 Fn ↔ A(Fn−1) by a proof of size polynomial in |A|, n, and |R0|. Moreover, `≥2 Fn ↔ Rn.

The corresponding lower bounds whenA(Rn−1) is allowed to have positive and negative occurrences ofRn−1
also follow easily from previous results. IfA is Σ2k, Π2k, or ∆k+1 for k > 0, then Theorems 5.3, 5.4, and 5.8 still
apply, respectively, and give the same lower bounds. If A is Σ2k+1 with k ≥ 0, the lower bound of Theorem 5.6
can be slightly improved, and the case k = 0 can also be included.

Theorem 6.3 Let k ≥ 0. Then there exists formulas F 2k+1
n recursively defined to be A(F 2k+1

n−1), where A is
Σ2k+1 and F 2k+1

0 is quantifier-free, such that if n > 0 and N � ϕ↔ F 2k+1
n , then ϕ 6∈ Π(2k+1)n. Hence ϕ 6∈ Σl

for l < (2k + 1)n.

A dual result holds for A in Π2k+1. The proofs are similar to the arguments in Section 5.

References
[1] J. Ferrante and C. W. Rackoff, The Computational Complexity of Logical Theories, Lecture Notes in Mathematics

#718 (Springer Verlag, Berlin, 1979).
[2] P. Pudlák, The lengths of proofs, in: Handbook of Proof Theory, edited by S. R. Buss (Elsevier North-Holland, 1998),

pp. 547–637.
[3] P. Pudlák, On the lengths of proofs of finitistic consistency statements in first order theories, in: Logic Colloquium

’84, (North-Holland, 1986), pp. 165–196.
[4] P. Pudlák, Improved bounds to the lengths of proofs of finitistic consistency statements, in: Logic and Combinatorics,

edited by S. G. Simpson, Contemporary Mathematics Vol. 65 (American Mathematical Society, 1987), pp. 309–331.
[5] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, 2nd edition, Tracts in Theoretical Computer Science #43

(Cambridge University Press, Cambridge, 2000).
[6] M. J. Fischer and M. O. Rabin, Super-exponential complexity of Presburger arithmetic, in: Proc. SIAM-AMS Sympo-

sium in Applied Mathematics, vol. 7, (Massachusetts Institute of Technology, 1974), pp. 27–41.
[7] L. J. Stockmeyer and A. R. Meyer, Word problems requiring exponential time (preliminary report), in: Proc. of the

Fifth Annual ACM Symposium on Theory of Computing (STOC’73), (1973), pp. 1–9.
[8] J. Håstad, Computational Limitations for Small-depth Circuits (MIT Press, 1987).
[9] A. C. C. Yao, Separating the polynomial time hierarchy by oracles, in: Proceedings of the 26th Annual Symposium on

Foundations of Computer Science (FOCS’85), (IEEE Computer Society, 1985), pp. 1–10.
[10] P. Beame, A switching lemma primer, Typeset manuscript, 1994.

Copyright line will be provided by the publisher

