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STABLE THEORIES AND REPRESENTATION OVER SETS

MORAN COHEN AND SAHARON SHELAH

Abstract. In this paper we explore the representation property over sets.

This property generalizes constructibility, however is weak enough to enable

us to prove that the class of theories T whose models are representable is

exactly the class of stable theories. Stronger results are given for ω-stable.

1. Preliminaries

Convention 1. We use k to denote an arbitrary class of structures (of a given

language, closed under isomorphism). The class of structures of the language {=}

is denoted k
eq.

(1) C is a “monster” model for T . i.e. a sufficiently saturated one.

(2) for a sequence of sets 〈Aβ : β < α〉 let A<α :=
⋃

β<αAβ , A≤α := A<α+1.

(3) tp(a,A) := tp(a,A,C).

Definition 1.1. Let k be a class of structures of a given vocabulary τ .

• Ex1µ,κ(k) denotes the minimal class of structures k
′ ⊇ k with the property

that for each structure I ∈ k there exists an enrichment I+ ∈ k
′ by a

partition
〈

P I+

α : α < κ
〉

, partial unary functions
〈

F I+

β : β < µ
〉

such that

Fβ(Pα) ⊆ P<α and Pα, Fβ /∈ τI hold for every α < κ, β < µ

• For a given model I ∈ k, we define the free algebra M = Mµ,κ(I) as the

model having the language τ+ := τI ∪ {Fα,β , }α<µ, β<κ
where each Fα,β is

a β-place function. ‖Mµ,κ(I)‖ consists of all the terms constructed in the

usual (well-founded inductive) way from elements of I using the functions

Fα,β The functions and relations of τI are interpreted in M as partial

functions and restricted relations on I ⊆ M.

• Let θµ,κ := |Mµ,κ(κ)| (The power of the set of µ-terms with κ constants).

• Ex2µ,κ(k) denotes the class of models of the form Mµ,κ(I) for every I ∈ k.

Definition 1.2. Let M |= T , I a structure. f : M → I is a (Γ,∆)-representation

of M in-I iff Rang(f) is closed under functions in I (both partial and full), and for
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a, b ∈ <ωM the following holds:

tpΓ(f(a), ∅, I) = tpΓ(f(b), ∅, I) ⇒ tp∆(a, ∅,M) = tp∆(b, ∅,M)

• We say that M is (k,Γ,∆)-representable if I ∈ k and there exists a (Γ,∆)-

representation f :M → I .

• we say that the theory T is (k,Γ,∆)-representable if every M |= T is

(k,Γ,∆)-representable.

• We omit ∆,Γ from the notation if Γ = qfL[τI ], ∆ = L[τM ].

Observation 1.1. let M |= T

• M is k-representable implies M is Exiµ,κ(k)-representable (i = 1, 2).

• For i = 1, 2: M is Exiµ2,κ2
(Exiµ1,κ1

(k))-representable iffM is Exiµ1+µ2,κ1+κ2
(k)-

representable.

• M is Ex2µ2,κ2
(Ex1µ1,κ1

(k))-representable implies M is Ex1µ1,κ1
(Ex2µ2,κ2

(k))-

representable.

Fact 1. A map f : M → I+ is a representation of M in I+ ∈ Ex1µ,κ(k
eq), if

tp(ā, ∅,M) = tp(b̄, ∅,M) holds for every U, h̃, a, b fulfilling the following condition:

U ⊆ |I+| is such that cl{F I+

β }U = U , h̃ is a partial automorphism of I+ whose

domain contains U , and ā, b̄ ∈ mM are sequences such that h̃(f(ā)) = f(b̄) and

f(a) ⊆ U .

2. Stable Theories

Discussion 2.1. In this section we prove the equivalence stable = Ex1µ1,κ1
(Ex2µ2,κ2

(keq))-

representable

Theorem 2.1. Let T be Ex1µ1,κ1
(Ex2µ2,κ2

(keq))-representable. If b =
〈

bα : α < λ
〉

⊆

C, is such that lg bα < µ = µ1 + κ2, λ > κ1 + µ1 + κ2+, and λ > χ<µ for every

χ < λ then there exists an S ⊆ λ of cardinality λ such that
〈

bα : α ∈ S
〉

is an

indiscernible set.

Proof. Let M |= T contain a, f : M → M++ := (Mµ2,κ2
(I), Pα, Fβ)α<κ1,β<µ1

a

representation. Let aα = f(bα).

assume w.l.o.g:

• Every aα is closed under subterms in Mµ2,κ2
(I).

• Every aα is closed under the partial functions Fβ .

• lg aα = ξ ( for all α < λ ).

λ = cfλ > (θµ1,κ1
)
ξ
and therefore there exists σ(x), lg x < κ2, S0 ∈ [λ]

λ
such that

for all α ∈ S0 there exists tα ⊆ <κ2I such that aα = σ(tα).
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similarly, (κ2)
ξ
< λ and there exists an S1 ∈ [S0]

λ
on which the map

α 7→
{

(i, β) ∈ ξ × κ2 : aiα ∈ Pβ

}

is constant and equal to a binary relation R1.

Also, ξµ1+ξ < λ implies that there exists an S2 ∈ [S1]
λ
on which the map

α 7→
{

(β, ζ0, ζ1) : ζ0, ζ1 < ξ, β < µ1, Fβ(a
ζ0
α ) = aζ1α

}

is constant and equal to the relation R2.

From lemma 3.3 it follows that there exist S3 ∈ [S2]
λ
, U ⊆ ξ, E ⊆ ξ × ξ such

that:

• aα ↾ U = aβ ↾ U for all α, β ∈ S3

• E an equvalence such that aiα = ajα ↔ (i, j) ∈ E for all α ∈ S3.

• aiα = ajβ → i, j ∈ U for all α 6= β ∈ S3 .

We show that for every u, v ⊆ S3 without repetitions and of length ℓ < ω , there

exists a partial automorphism h of M++ such that h(av) = au.

Indeed, define h(ajvk) = ajuk
for all j < ξ, k < ℓ. E and U show that aj0vk0 =

aj1vk1
→ aj0uk0

= aj1uk1
. Hence, h is well-defined.

Let the term σ(t) be in Dom(h). Since av is closed under subterms it follows

that h(σ(t)) = σ(h(t)).

h respects Pα:

ajuκ
∈ Pα ↔ (j, α) ∈ R1 ↔ ajvk ∈ Pα

h commutes with Fα: for all aj0vk0 , a
j1
vk1

∈ Dom(h), since avk0 is closed under it

follows that there exists j < ξ such that Fα(a
j0
vk0

) = ajvk0
. Therefore (j, j0) ∈ E and

by the definition it follows

Fα(h(a
j0
vk0

)) = Fα(a
j0
vk1

) = ajvk1 = h(ajvk0 ) = h(Fα(a
j0
vk0

))

�

Theorem 2.2. Quote theorem [2, II.2.13]

Theorem 2.3. T is Ex1µ1,κ1
(Ex2µ2,κ2

(keq))-representable implies T stable.

Proof. Let T be unstable. from theorem 2.2 and compactness, there exist ϕ(x, y) ∈

LT ,M |= T and a sequence 〈ai : i < λ〉, λ = (κµ)++i2(µ)
+ such that |= ϕ(ai, aj)

if(i<j)

for all i, j < λ. Assume towards contradiction that f :M → I+ is a representation

of M in I+ ∈ Ex1µ1,κ1
(Ex2µ2,κ2

(keq)). Then theorem 2.1 implies in particular the

existence of i, j < λ, a partial automorphism g of I+ with domain and range closed

under functions, such that:

g(f(ai
⌢aj)) = f(aj

⌢ai)
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from the definition of a representation we get

tp(ai
⌢aj , ∅,M) = tp(aj

⌢ai, ∅,M)

a contradiction to the definition of ϕ. �

Discussion 2.2. We now turn to the proof of the other direction of equivalence.

This will require more facts on stable theories and strongly independent sets, defined

below.

Definition 2.1. A set I ⊆ C will be called strongly independent over A if the

following holds:

⊛ for all a ∈ I, tp(a,A ∪ I\ {a} ,M) is the unique p ∈ S(A ∪ I\ {a}) such that

p ⊇ tp(a,A ∪ I\ {a}) and p does not fork over A.

Definition 2.2. We call the a sequence 〈Iα : α < µ〉 of subsets of M a strongly-

independent decomposition (in short: s.i.d) of length µ of M if for all α < µ, it

holds that Iα is strongly independent over I<α, and that |M | = I<µ.[2, II.2.13]

Convention 2. We assume from this point onwards that T is stable.

Claim 2.4. let a1, a2 ∈ C, A ⊇ B1, B2 such that tp(ai, A ∪ {a3−i}) is non-forking

over Bi, and tp(ai, A) is the unique nonforking extension in S(A) of tp(ai, Bi).

Then (∗)1 ⇔ (∗)2 where:

(∗)i tp(ai, Bi) has a unique nonforking extension whose domain is A ∪ {a3−i}.

Proof. it is sufficient to prove ¬(∗)2 ⇒ ¬(∗)1, since the converse follows by symme-

try.

Assume that tp(a2, B2) has two distinct nonforking extensions p1, p2 ∈ S(A ∪

{a1}).

Then, there exists ϕ ∈ p1, ¬ϕ ∈ p2, ϕ = ϕ(x, a1, c̄). Let b1, b2 realize p1, p2,

respectively.

tp(bi, A) = pi ↾ A is a nonforking extension of p implies p1 ↾ A = p2 ↾ A. Thus,

for i < 2 There exist elementary maps Fi in C so that Fi ↾ A = idA, Fi(bi) = a2.

Let qi ∈ S(A ∪ {bi}) be a nonforking extension of tp(a1, B1).

Then Fi(qi) ∈ S(A∪{a2}) is a nonforking extension of tp(a1, B1) (Fi ↾ A = idA,

and elementary maps preserve nonforking).

Now note that |= ϕ(b1, a1, c̄) ∧ ¬ϕ(b2, a1, c̄), hence ϕ(a2, x, c̄) ∈ F1(q1) and

¬ϕ(a2, x, c̄) ∈ F2(q2). Therefore, Fi(qi) are distinct extensions, as required. �

Definition 2.3. An ordered partition 〈Jα : α < µ′〉 is called an order-preserving

refinement of the ordered partition 〈Iα : α < µ′〉 if it is a refinement as a partition

and α′ < β′ for all α < β < µ, α′, β′ < µ′ such that Iα ⊇ Jα′ Iβ ⊇ Jβ′ .
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Claim 2.5. If 〈Iα : α < µ〉 is an s.i.d of M , then every order-preserving refinement

of it is an s.i.d. of M .

Proof. Let α′ < µ′. we show that Jα′ ⊆ Iα is strongly independent over J<α′ . Then

let a ∈ Jα′ .

tp(a, I≤α\ {a}) is nonforking over I<α and hence, the reduct tp(a, J≤α′) is non-

forking over I<α, nor does it fork over the larger J<α′ . On the other hand, if

tp(a, J<α′) ⊆ q ∈ S(J≤α′\ {a}) is nonforking over J<α, it has an extension q ⊆ q′ ∈

S(I≤α\ {a}) which is nonforking over J<α. a ∈ Iα implies that tp(a, J≤α′\ {a}) ⊆

tp(a, I≤α\ {a}) is nonforking over I<α and since Iα is strongly independent over

I<α we get q′ = tp(a, I≤α\ {a}), and in particular,

q′ ↾ (J≤α′\ {a}) = tp(a, J≤α′\ {a})

therefore Jα′ is as required, nonforking over J<α′ . �

Theorem 2.6. Let p, q ∈ S(B) be distinct, nonforking over A ⊆ B. Then there

exists an E ∈ FE(A) such that:

p(x) ∪ q(y) ⊢ ¬E(x, y)

(cf˙[2, III;2.9(2)]

Claim 2.7. Let A ⊂ B be such that if ϕ is a formula over B which is almost over A,

then there exists a formula over A which is equivalent to ϕ modulo T . If p, q ∈ S(B)

are distinct nonforking over A, There exists a ϕ∗(x, c) such that p ⊢ ϕ∗, q ⊢ ¬ϕ∗.

Proof. By 2.6, there exists an E ∈ FE(A) such that p(x) ∪ q(y) ⊢ ¬E(x, y).

Let {bi : i < n(E)} ⊆ C represent the equivalence classes of E. Define w :=

{i < n(E) : p(x) ∪ {E(x, bi)} is consistent}, and let ϕ(x) :=
∨

i∈w E(x, bi). Then

• w.l.o.g for all i ∈ w, bi ∈ C realizes p.

• p(x) ⊢ ϕ(x) ( if a realizes p there exists a bi such that |= aEbi since the

bi are representatives of the equivalence classes of E. on the other hand, i

must belong to w, which implies that ϕ(a) holds ) .

• Similarly, q(x) ⊢ ¬ϕ(x) since if a realizes q then p(x) ∪ q(y) ⊢ ¬E(x, y)

therefore ¬E(bi, a) for all i ∈ w, therefore |= ¬ϕ(a).

• ϕ(x) is preserved by members of Aut(C, B): Let f ∈ Aut(C, B). Then f

preservesE (and its equivalence classes in C) and p (Dom(p) = B) implying:

– p(x) ∪ {E(x, bi)} ⇔ p(x) ∪ {E(x, f(bi))} holds for all i < n(E).

– ¬E(f(bi), f(bj)) for all i, j < n(E), i 6= j.
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– f acts as a permutation on C/E, and when reduced also on {bi/E : i ∈ w},

therefore:

f(ϕ(C)) = f(
⋃

i∈w

bi/E) =
⋃

i∈w

f(bi)/E = ϕ(C)

implying |= ϕ(x) ≡ f(ϕ(x)). Lemma Sh:c,III.2.3][ implies that ϕ(x) has an equiv-

alent formula ϕ∗ over B, as needed. �

Claim 2.8. For all p ∈ Sm(B) there exists A ⊆ B, |A| < κ(T ) such that p does

not fork over A. Also, κ(T ) ≤ |T |+.

(cf. [2, III;3.2, 3.3])

Claim 2.9. The number of formulas almost over A is (up to logical equivalence)

at most |A|+ |T |

(cf. [2, III;2.2(2)])

Lemma 2.10. if M |= T then there exists an s.i.d of length µ = |T |+

Proof. We construct inductively a sequence 〈Iα : α < µ〉 such that Iα is strongly

independent over I<α and is moreover maximal with respect to this property ( for

all I ⊇ Iα is not strongly independent over I<α), for all α.

Assume towards contradiction that a ∈ M\I<µ. By the definition of κ(T ) and

2.8 we get a set

B ⊆ I<µ, |B| < κ(T ) ≤ |T |+

such that p(x) := tp(a, I<µ) is nonforking over B, and there exists an α0(∗) < µ

such that I<α0(∗) ⊇ B.

Let

Γ :=
{

ϕ(x; c̄) : ϕ(x, c̄) is almost over B, ϕ(x; ȳ) ∈ L, c̄ ∈lg ȳ
I<µ

}

By claim 2.9, there exists a set Γ∗ ⊆ Γ, |Γ∗| ≤ |B|+ |T | < cf(|T |+) of represen-

tatives (by logical equivalence) of the formulas almost over B. Hence, there exists

α1(∗) < µ such that b̄ ⊆ I<α(∗) for all ϕ(x, b̄) ∈ Γ∗ . Let α(∗) = maxi<2 {αi(∗)}.

We now show that p ↾ I≤α(∗) is the only extension in S(I≤α(∗)) of p ↾ I<α(∗)

which is nonforking over I<α(∗):

Indeed, p is nonforking over B. Let q ∈ S(I≤α(∗)) a nonforking extension of

p ↾ I<α(∗).

By transitivity of non-forking, q is nonforking over B. Assume towards contra-

diction that q 6= p. Then by 2.6 there exists an E ∈ FE(B) such that q(x)∪ p(y) ⊢

¬E(x, y), and particularly q(x) ⊢ ¬E(x, a).

The formula E(x, a) is almost over B, therefore by the choice of α1(∗), there

exists a ϕ(x, b̄) logically equivalent to E(x, a) in T , with b̄ ⊆ I<α(∗).
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Now, since E(a, a), it also holds that |= ϕ(a, b̄), and b̄ ⊆ I<α(∗) implies ϕ(x, b̄) ∈

tp(a, I<α(∗)) = q ↾ I<α(∗) , a contradiction.

In particular, tp(a, I≤α(∗)) is the only nonforking extension of tp(a, I<α(∗)) in

S
(

I≤α(∗)\ {b}
)

. By the choice of Iα(∗) it follows for all b ∈ Iα(∗) that tp(b, I≤α(∗)\ {b})

is the only nonforking extension of tp(b, I<α(∗)) in S
(

I≤α(∗)\ {b}
)

.

From claim 2.4 it follows that tp(b, I≤α(∗)\ {b} ∪ {a}) is the only nonforking

extension of tp(b, I<α(∗)) in S(I≤α(∗)\ {b} ∪ {a}).

So, ⊛ holds for Iα(∗)∪{a} ( with respect to I<α(∗)) contradicting the maximality

of Iα(∗). �

Claim 2.11. Forking is preserved under elementary maps [2, III.1.5]

Theorem 2.12. definability for types cf. [2, II;2.2]

2.1. Representing stable theories.

Theorem 2.13. If M |= T , then M is Ex1|T |+,|T |(k
eq)-representable.

Proof. By 2.10 we get a strongly independent decomposition ofM :
〈

Iα : α < |T |+
〉

.

By Claim 2.5 we assume w.l.o.g |I1| = |I0| = 1.

Define the structure I+ ∈ Ex1|T |+,|T |(k
eq) as follows:

(1) |I+| = |M |.

(2) for all α < |T |+, P I+

α = Iα .

(3) for all ϕ(x, ȳ) ∈ LM define n one-place partial functions ( let n = lg z̄ )
{

F I+

ϕ(x,ȳ),j(x) : j < n
}

as follows:

(a) DomF I+

ϕ(x,y),j = |M | \ (I0 ∪ I1).

(b) By Theorem 2.12 we get for every ϕ(x, ȳ) ∈ LM another formula

ψϕ(ȳ, z̄) ∈ LM , such that for all 2 ≤ α < µ, a ∈ Iα there exists

c̄a ∈lg z̄ I<α such that for all b̄ ∈ Iα, |= ϕ[a, b̄] ⇔|= ψϕ[b̄, c̄a] holds.

(c) For all 2 ≤ α < µ and a ∈ Iα, let F
I+

ϕ(x,ȳ),j(a) := (c̄a)j

(4) Add |T | partial functions
〈

(F ∗
i )

I+

: i < |T |
〉

as follows:

(a) DomF ∗
i = |M | \I<2

(b) Fix α > 1, then there exists |B| ≤ |T | such that for every ϕ(x, c) over

I<α which is almost over B there exists a θ(x, d) over B such that

|= ∀x
(

θ(x, d) ↔ ϕ(x, c)
)

:

(i) Let |B0| < κ(T ) ≤ |T |+ , B0 ⊆ I<α such that tp(a, I<α) does

not fork over B0.

(ii) Assume Bn is defined and let

Bn+1 := Bn ∪ {c : ϕ(x, c) ∈ S′}
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where S′ is a complete set of representatives of S, relative to

logical equivalence in T

S := {ϕ(x, c) ∈ LT : c ⊆ I<α, ϕ is almost over Bn}

by 2.9 we can assume w.l.o.g |S′| ≤ |T |+ |Bn| = |T |.

(iii) Then the set B =
⋃

n<ω Bn is a s required.

(c) Let 〈bi : i < |T |〉 enumerate B (possibly with repetitions). We define

Fi(a) = bi.

(5) Let f :M → I+ be defined as f(a) = a for all a ∈ |M |.

Let h be a partial automorphism of I+ whose domain and range are closed under

partial functions of I+.

We show that tp(h(ā), ∅,M) = tp(ā, ∅,M) holds for all ā ⊆ Dom(h):

• It is sufficient to show for all α < |T |+ , n < ω, ā ∈ Iα ∩ Dom(h) without

repetitions (n := lg ā) the following holds:

h (tp(ā, I<α ∩Dom(h))) = tp(h(ā), I<α ∩ Rang(h)) ⊠α,n

we prove this by induction on the lexicographic well-order |T |+ × ω

• For ⊠α,n holds for α < 2 since Iα is a singleton.

• Let α ≥ 2, and assume ⊠β,n for all n < ω and β < α.

• ⊠α,1 holds, since let a ∈ Iα, ϕ(x, c̄) a formula over Dom(h)∩ I<α such that

ϕ[a, c̄] holds. Then by the definitions of the F ’s above ψϕ[c̄, Fϕ,0(a) . . . Fϕ,lg ȳ−1(a)]

holds. Since the latter is a formula over Dom(h)∩I<α and by the induction

hypothesis it follows that ψϕ[h(c̄), h(Fϕ,0(a)) . . . h(Fϕ,lg ȳ−1(a))] holds. Also

by the induction hypothesis, h commutes with the functions of I+ over the

domain I<α∩Dom(h). Hence, ψϕ[h(c̄), Fϕ,0(h(a)) . . . Fϕ,lg ȳ−1(h(a))] holds.

The definition of Fϕ,j(x) implies that M |= ϕ[h(a), h(c)].

• For n > 1 We continue by induction, but first we prove the following:

Claim 2.14. Let A ⊆ I+ be closed under functions of I+. Then A ∩ Iα is

strongly independent over A ∩ I<α.

proof Let Aα = Iα ∩ A, a ∈ Aα, B := {F ∗
i (a) : i < |T |}. Then,

(1) B ⊆ A<α.

(2) By the choice of the F ∗
i ’s it holds that tp(a, I<α) is nonforking over B

(3) By 2 and by transitivity of nonforking, tp(a, I≤α\ {a}) is nonforking

over B. tp(a, I≤α\ {a}) is a nonforking extension of tp(a, I<α).

(4) For any formula over I<α which is almost over B there exists an equiv-

alent formula (in T ) over B (by the choice of the F ∗
i )
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The first two properties imply that tp(a,A≤α\ {a}) ⊆ tp(a, I≤α\ {a}) is

nonforking over A<α.

We turn to proving the uniqueness. Let q0 ∈ S(A≤α\ {a}) be a nonfork-

ing extension of tp(a,A<α).

– q0 has a nonforking extension q ∈ S(I≤α\ {a}).

– q is nonforking over A≤α\ {a} and by transitivity nonforking over A<α

and therefore nonforking over A<α ⊆ I<α.

– q ↾ I<α = tp(a, I<α) - since otherwise, a formula ϕ(x) over I<α exists

such that q(x) ⊢ ϕ(x), tp(a, I<α) ⊢ ¬ϕ(x)˙ By 4 above ( as B was

chosen ) and claim 2.7 ϕ(x) is equivalent to a formula over B. Hence,

q ↾ B 6= tp(a,B) contradicting the choice of q.

– So, q is a nonforking extension of q ↾ I<α, unique by the strong inde-

pendence of Iα over I<α, and therefore equal to tp(a, I≤α\ {a}).

– The above arguments imply the required conclusion - q0 = q ↾ (A≤α\ {a}) =

tp(a,A≤α\ {a})

�

• We continue the main proof, letting Dγ := Dom(h)∩Iγ , Rγ := Rang(h)∩Iγ

( for all γ < |T |+, h”(Dγ) = Rγ).

Let ā ∈n (Dα) and b ∈ Dα\ā.

– h ↾ (D<α ∪ ā) is elementary by the induction hypothesis.

– tp(b,D≤α\ {b}) does not fork over D<α (by the last claim, and since

Dom(h) us closed under functions), therefore tp(b,D<α ∪ ā) also does

not fork over D<α.

The above, with claim 2.11 imply that q := h(tp(b,D<α ∪ ā)) does not fork

over h(Dom(h) ∩ I<α) = Rang(h) ∩ I<α.

– ⊠β,1 holds for all β < α, and in particular q ∈ S(R<α ∪ ā) is a non-

forking extension of tp(h(b), R<α). Also, q has a nonforking extension

q′ ∈ S(R≤α\h(b)) which does not fork over R<α by transitivity.

– On the other hand, since Rang(h) is closed under functions and by the

last claim, it follows that Rα is strongly independent over R<α. hence,

q′ = tp(h(b), R≤α\ {h(b)}). After reduction to R<α ∪ h(ā) we get

tp(h(a), R<α ∪ h(ā)) = h(tp(b,D<α ∪ ā)

implying the inductive step from(α, n) to (α, n+ 1)

tp(h(b ⌢ ā), R<α) = h(tp(b ⌢ ā,D<α))

�

2.2. Representation for ω-stable theories.
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Convention 3. For the remainder of the section T is ω-stable

Claim 2.15. Let p ∈ S(A). Then, there exists a finite B ⊆ A such that p is a

nonforking extension of p ↾ B. (See: [2])

Claim 2.16. For every p ∈ S(A) there exists a finite B ⊆ A such that p is the

unique nonforking extension of p ↾ B in S(A).

Claim 2.17. LetM |= T . M has a strongly independent decomposition 〈In : n < ω〉,

so that

(1) I0 is an indiscernible set over ∅ ( possibly finite ), and

(2) For every a ∈ In, n < ω there exists a finite Ba ⊆ I<n so that tp(a, I≤n\ {a})

is the unique nonforking extension of tp(a,Ba) in S(I≤n\ {a}).

Proof. The first condition is fulfilled by a singleton, so it is possible to find a

I0 ⊆ |M | as above. For n > 0, Construct a sequence 〈In : n < ω〉 such that In ⊆ |M |

is maximal with respect to the second condition ( possibly empty ) for every n < ω.

Assume towards contradiction that there exists a ∈ M\I<ω. By 2.16 it follows

that there exists a finite Ba ⊆ I<ω such that tp(a, I<ω) is the unique nonforking

extension of tp(a,Ba) in S(I<ω). Clearly, this implies that In 6= ∅ for all n < ω.

Therefore, there exists 0 < n∗ < ω such thatBa ⊆ I<n∗
. In particular it follows that

tp(a, I≤n∗
) is the unique nonforking extension of tp(a,Ba) in S(I≤n∗

) ( otherwise,

by transitivity of nonforking we would have two nonforking extensions in S(I<ω)).

The construction above implies that there exists a finite Bb ⊆ I<n∗
such that

tp(b, I≤n∗
\ {b}) is the unique nonforking extension of tp(b, Bb) in S(I≤n∗

\ {b}).

Claim 2.4 implies that for every b ∈ In∗
, tp(b, I≤n∗

\ {b} ∪ {a}) is the unique non-

forking extension of tp(b, Bb) in S(I≤n∗
\ {b} ∪ {a}), Thus, In∗

∪ {a} fulfills the

second condition, contradicting the maximality of In∗
.

�

Theorem 2.18. Let M |= T , then M is Ex2ω,ω(k
eq)-representable.

Proof. Let 〈In : n < ω〉 as in 2.17, I = |I0|. Since T is ω-stable, Sm(∅) is countable

for all m < ω. For convenience we replace the enumeration of the functions ofM(I)

to {Fp : p ∈ S<ω(∅)}, and for every m+ 1-type Fp is an m-ary function. Define by

induction an increasing series of functions fi : I≤i → M(I) as follows: Let f0 be a

bijective map from I0 onto I. Let fn+1 be defined from fn as follows:

• fn+1 ↾ I≤n = fn

• For all a ∈ In+1, let c̄a ∈ℓ (I≤n) enumerate Ba from Claim 2.16, p =

tp(a⌢c̄a, ∅,M) ∈ Sℓ+1(∅). Define fn+1(a) = Fp(fn(c̄a)). Now let f =
⋃

n<ω fn. Now we will show that f is a Ex2ω,ω(k
eq)-representation. Let h

be a partial automorphism of M(I) with domain and range closed under
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subterms. Let a, b ∈M such that h(f(a)) = f(b), and n so that a, b ∈ I≤n.

Assume w.l.o.g m < ω, i < lg a − 1: alg a−1, blg b−1 ∈ I≤m → ai, bi ∈ I≤m.

We prove tpqf(a, ∅) = tpqf(b, ∅) by induction on 〈n, |a ∩ In|〉 ∈ ω × ω.

case n = 0:: the claim holds since I0 is an indiscernible set.

case n = m+ 1::

case |a ∩ In| = 0:: a ⊆ I≤m, hence, the claim holds by the induction

hypothesis.

case |a ∩ In| > 0:: Let k = lg a − 1. By the definition, f(ak) = Fp(cak
)

where cak
⊆ I<n. h commutes with Fp, implying f(bk) = h(f(ak)) =

h(Fp(f(cak
))) = Fp(h(f(cak

))). Therefore, h(f(cak
)) = f(cbk). Now,

since |cak

⌢a ↾ k ∩ In| = |a ∩ In| − 1, and by the induction hypothe-

sis, the map F : cak

⌢a ↾ k 7→ cbk
⌢b ↾ k is elementary. Consider the

type q = F (tp (ak, a ↾ k ∪ cak
)). Note tp(ak

⌢cak
) = p = tp(bk

⌢cbk),

so F (tp(ak, cak
)) = tp(bk, cbk). Then, q is a nonforking extension of

tp(bk, cbk). Moreover, F being elementary and tp(ak, a ↾ k ∪ cak
) is a

nonforking extension of tp(ak, cak
) imply that q is a nonforking exten-

sion of tp(bk, cbk). Now let q ⊆ q′, tp(bk, b ↾ k ∪ cbk) ⊆ q′′, q′, q′′ ∈

S(I≤n\ {bk}) be nonforking extensions. By monotonicity of nonforking

extensions, q′, q′′ are nonforking extensions of tp(bk, cbk). The defini-

tion of cbk implies q′ = q′′. Thus, q = tp(bk, b ↾ k ∪ cbk), therefore

tp(a⌢cak
) = tp(b, cbk). tp(a) = tp(b) follows.

�

3. Appendix - combinatorial claims.

Theorem 3.1. (Fodor) Let λ a regular cardinal, and f : λ→ λ such that f(α) < α

for all 0 < α < λ. (such f is called regressive) Then there exists an ordinal β < λ

such that the set {α < λ : f(α) = β} is stationary in λ.

Corollary 3.2. Let f : λ→ µ, λ > µ (λ regular). There exists an α < µ such that

f−1({α}) ⊆ λ is stationary

Theorem 3.3. (∆-system Lemma) Let λ regular, |W | = λ a set, |St| < µ (t ∈W )

such that χ<µ < λ for all χ < λ. then:

(1) There exist W ′ ⊆ W, |W ′| = λ and S such that s 6= t implies St ∩ Ss = S

for all s, t ∈W ′.

(2) Moreover, if 〈zαt : α < α(t)〉 lists St, also:

(a) There exists α0 such that α(t) = α0 for all t ∈ W ′.

(b) There exists U ⊆ α0 such that for all s, t ∈ W ′ implies St ↾ U = Ss ↾

U , U = {α < α0 : zαt = zαs }.
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(c) There exists an equivalence E on α0 such that zαt = zβt ↔ (α, β) ∈ E,

for all t ∈W ′.

Proof. Proofs for the first part can be found in [1].

The map t → α(t) is regressive (α(t) < µ < λ), so by Fodor’s theorem

there exists W0 ⊆W such that 2a holds. By the first part there exists S ⊆

{zαt : α < α0, t ∈W0} , W1 ⊆W0 such that S = zt∩zs for all t 6= s. Define

the map map W1 ∋ t → Ut where Ut = {α < α0 : zαt ∈ S}. The range has

power at most 2|α0| ≤ 2<µ < λ implying that the map is regressive, and

the existence of W2 ⊆ W1, U such that t ∈ W2 → Ut = U . The range of

the map t→ St ↾ U is US and it has power ≤ |α0|
|α0| < λ, By another use

of Fodor’s theorem there exists W3 ⊆ W2 such that (b) holds. The range

of the map t→ Et where Et =
{

(α, β) : zαt = zβt , α, β < α0

}

has power at

most |α0|
|α0| And by another application of Fodor’s theorem there are E

and W ′ ⊆W3 as required. �
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