
ar
X

iv
:1

11
0.

09
19

v1
  [

m
at

h.
L

O
] 

 5
 O

ct
 2

01
1

On effective σ-boundedness and σ-compactness

Vladimir Kanovei∗

September 19, 2018

Abstract

Different generalizations of a known theorem by Kechris, saying
that any Σ1

1
set A of the Baire space either is effectively sigma-

bounded (that is, covered by a countable union of compact ∆1

1
sets),

or it contains a superperfect subset, are obtained, in particular, 1) with
covering by compact sets and equivalence classes of a given finite col-
lection of ∆1

1
equivalence relations, 2) generalizations to Σ1

2
sets, 3)

generalizations true in the Solovay model.
A generalization to Σ1

1
sets A, of a theorem by Louveau, saying

that any ∆1

1
set A of the Baire space either is effectively σ-compact

(that is, is equal to a countable union of compact ∆1

1
sets), or it con-

tains a relatively closed superperfect subset, is obtained as well.
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Introduction

Effective descriptive set theory appeared in the 1950s as a useful technique
of simplification and clarification of constructions of classical descriptive set
theory (see e.g. [1], [23], or [12]). Yet it has become clear that development of
effective descriptive set theory also leads to results having no direct analogies
in classical descriptive set theory. As an example we recall the following
well-known basis theorem: any countable ∆1

1 set A of the Baire space N =
ωω consists of ∆1

1 points. Its remote predecessor in classical descriptive
set theory is the Luzin – Novikov theorem on splitting of Borel sets with
countable cross-sections into countable unions of uniform Borel sets.

In this paper, we focus on effectivity aspects of the properties of σ-com-
pactness and σ-boundedness of pointsets. Our starting point will be a pair
of classical dichotomy theorems on pointsets, together with their effective
versions obtained in the end of 1970s.

The first of them deals with the property of σ-boundedness. Recall
that a pointset is σ-bounded iff it is a subset of a σ-compact set. 1 Saint Ray-
mond [21] proved that if X is a Σ1

1 set then one and only one of the following
two (obviously incompatible) conditions holds:

(I) the set X is σ-bounded;

(II) there is a superperfect set Y ⊆ X .

Recall that a superperfect set is a closed set homeomorphic to N .
An effective version of this result (Theorem 4.1 below), by Kechris [15],

says that if X is a Σ1
1 set then condition (I) can be strengthened to a ∆1

1-
effective σ-boundedness (so that a given set X is covered by a ∆1

1 sequence
of compact sets). The proof in [15] uses the determinacy-style technique. A
different proof of this result, based rather on methods of effective descriptive
set theory, will be presented in Section 4, in particular, as a foundation for
a more general dichotomy theorem in Section 11.

The other background result, an immediate concequence of a theorem by
Hurewicz [7], deals with the property of σ-compactness instead of σ-bound-
edness. It says that if X is a Σ1

1 set then one and only one of the following
two (clearly incompatible as well) conditions (I), (II) holds:

(I) the set X is σ-compact;

(II) there is a set Y ⊆ X homeomorphic to N and relatively closed in X .

1For subsets of the Baire space N = ω
ω , the property of σ-boundedness is equivalent

to being bounded in N with the eventual domination order, while the compactness is
equivalent to being bounded in N with the termwise domination order.
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An effective version of this theorem (Theorem 5.1 below), essentially by Lou-
veau [17] (see also 4F.18 in [20] which the author of [20] credits to Louveau),
shows that if X is a lightface ∆1

1 set then condition (I) can be strengthened
to a ∆1

1-effective σ-compactness (so that a given set is equal to the union
of a ∆1

1 sequence of compact sets). We present here a somewhat different
proof of this result in Section 5, in particular, as a base for the proof of a
similar but more complicated dichotomy theorem on Σ1

1 sets in Section 6.
Some well-known classical results related to Theorems 4.1 and 5.1 are

discussed in Section 7. We outline several counterexamples with sets more
complicated than Σ1

1 in Section 8.
Sections 9, 10, 11 contain a generalization of Theorem 4.1 (Theorem 11.1)

which replaces σ-bounded sets by {F1, . . . ,Fn}-σ-bounded sets, where F1

, . . . ,Fn are given ∆1
1 equivalence relations and being {F1, . . . ,Fn}-σ-bound-

ed means being covered by the union of a σ-bounded set and countably many
equivalence classes of F1, . . . ,Fn . Accordingly the condition of existence of
a superperfect set strengthens by the requirement that the superperfect set
is pairwise Fi-inequivalent for i = 1, . . . , n. Section 9 develops a necessary
technique while the proof of the generalized dichotomy is presented in Sec-
tion 11. In the classical form, the case of a single equivalence relation F in
this dichotomy was earlier obtained by Zapletal, see [14].

In parallel to this, we prove in Section 10 that a σ-bounded set and a
countable union of equivalence classes as above can be defined so that they
depend only on a given set X (and the collection of equivalence relations
Fj ), but are independent of the choice of a parameter p such that X is
Σ1

1(p) and the relations are ∆1
1(p).

In the remaining parts of the paper, we prove, in Sections 12, 13, 14, a
generalization, along the same lines, of another Kechris’ result of [15], related
to Σ1

2 sets, which by necessity involves uncountable unions of equivalence
classes and σ-bounded sets as well as coding by uncountable constructible
Borel codes. In the course of the proof of this generalized theorem (The-
orem 13.1), it will be shown (Theorem 14.1) that if a countable union of
equivalence classes of a ∆1

1 equivalence relation is ∆1
1(ξ), where ξ < ω1 ,

then all classes in this union admit Borel coding by constructible (not nec-
essarily countable) codes.

In the final Sections 15, 16 we present generalizations of some of the
abovementioned theorems to ordinal definable pointsets in the Solovay model.
Some questions here remain open.

We thank Alekos Kechris, Ben Miller, Marcin Sabok, and Jindra Zapletal
for valuable remarks and suggestions.
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1 Preliminaries

We use standard notation Σ1
1 , Π

1
1 , ∆

1
1 for effective classes of points and

pointsets in N , as well as Σ1
1 , Π

1
1 , ∆

1
1 for corresponding projective classes.

Let ω<ω be the set of all finite strings of natural numbers, including the
empty string Λ. If u, v ∈ ω<ω then lhu is the length of u, and u ⊂ v means
that v is a proper extension of u. If u ∈ ω<ω and n ∈ ω then u∧n is the
string obtained by adding n to u as the rightmost term. Let, for u ∈ ω<ω,

Nu = {x ∈ N : u ⊂ x} (a Baire interval in N ) .

If a set X ⊆ N contains at least two elements then there is a longest string
u = stem(X) such that X ⊆ Nu . We put diam(X) = 1

1+stem(X) in this case,

and additionally diam(X) = 0 whenever X has at most one element.
A set T ⊆ ω<ω is a tree if u ∈ T holds whenever u∧n ∈ T for at least

one n, and a pruned tree iff u ∈ T implies u∧n ∈ T for at least one n.
Any non-empty tree contains Λ. A string u ∈ T is a branching point of T
if there are k 6= n such that u∧k ∈ T and u∧n ∈ T ; let bran(T ) be the
set of all branching points of T . The branching height BHT (u) of a string
u ∈ T in a tree T is equal to the number of strings v ∈ bran(T ) , v ⊂ u.
For instance, if T = ω<ω then BHω<ω(u) = lhu for any string u.

A tree T ⊆ ω<ω is compact , if it is pruned and has finite branchings,
that is, if u ∈ bran(T ) then u∧n ∈ T holds for finitely many n. Then

[T ] = {x ∈ N : ∀m (x ↾m ∈ T )},

the body of T , is a compact set. Conversely, if X ⊆ N is compact then

tree(X) = {x ↾ n : x ∈ X ∧ n ∈ ω}

is a compact tree. Let CT be the ∆1
1 set of all non-empty compact trees.

A pruned tree T ⊆ ω<ω is perfect , if for each u ∈ T there is a string
v ∈ bran(T ) with u ⊂ v . Then [T ] is a perfect set. A perfect tree T is
superperfect , if for each u ∈ bran(T ) there are infinitely many numbers n
such that u∧n ∈ T . Then [T ] is a superperfect set. Conversely, if X ⊆ N

is a perfect set then tree(X) is a perfect tree, while for any superperfect
set X ⊆ N there is a superperfect tree T ⊆ tree(X).

If X, Y are any sets and P ⊆ X× Y then

projP = {x ∈ X : ∃ y (〈x, y〉 ∈ P )} and (P )x = {y ∈ Y : 〈x, y〉 ∈ P}

are, resp., the projection of P to X, and the cross-section of P defined by
x ∈ X. A set P ⊆ X × Y is uniform if every cross-section (P )x (x ∈ X)
contains at most one element.
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2 Some basic facts

We’ll make use of several known results of effective descriptive set theory.
They are listed below, with a few proofs (of claims which are not in common
use in this area) attached to make the text self-contained.

Definition 2.1. A product space is any finite product of factors ω, ω<ω ,
N , P(ω<ω). A discrete product space is a finite product of ω, ω<ω .

Fact 2.2 (Kreisel selection, 4B.5 in [20]). If X is a discrete product space,
P ⊆ N × X is a Π1

1 set, and A ⊆ projP is a Σ1
1 set, then there is a ∆1

1

map f : N → X such that 〈x, f(x)〉 ∈ P for all x ∈ A.

Fact 2.3 (4D.3 in [20]). If P (x, y, z, . . . ) is a Π1
1 relation on a product

space then the following derived relations are Π1
1 , too:

∃x ∈ ∆1
1 P (x, y, z, . . . ) and ∃x ∈ ∆1

1(y)P (x, y, z, . . . ) .

Fact 2.4 (4D.14 in [20]). If X is a product space then the following two
sets are Π1

1 : D = {x ∈ X : x is ∆1
1} and

{〈p, x〉 : p ∈ N ∧ x ∈ X ∧ x is ∆1
1(p)}.

For instance, x ∈ D ⇐⇒ ∃ y ∈ ∆1
1 (x = y); then apply Fact 2.3.

Fact 2.5 (enumeration of ∆1
1 , 4D.2 in [20]). Let X be a product space.

There exist Π1
1 sets E ⊆ ω and W ⊆ ω × X, and a Σ1

1 set W ′ ⊆ ω × X

such that

(i) if e ∈ E then (W )e = (W ′)e (where (W )e = {x ∈ X : 〈e, x〉 ∈ W});

(ii) a set X ⊆ X is ∆1
1 iff there is e ∈ E such that X = (W )e .

There is a useful uniform version of Fact 2.5.

Fact 2.6. Let X be a product space. There exist Π1
1 sets E ⊆ N × ω and

W ⊆ N × ω × X, and a Σ1
1 set W′ ⊆ N × ω × X such that

(i) if 〈p, e〉 ∈ E then (W)pe = (W′)pe (where, as above, (W)pe =
{x ∈ X : 〈p, e, x〉 ∈ W});

(ii) if p ∈ N then a set X ⊆ X is ∆1
1(p) iff there is a number e ∈ E

such that T = (W)pe = (W′)pe .

This result implies the following stronger version of Fact 2.2.
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Fact 2.7 (4D.6 in [20]). Suppose that X is a product space, Q ⊆ N × X

is Π1
1 , A ⊆ projQ is Σ1

1 , and for each a ∈ A there is a point x ∈ ∆1
1(a)

such that 〈a, x〉 ∈ Q. Then there is a ∆1
1 map f : N → X such that

〈a, f(a)〉 ∈ Q for all a ∈ A.

Proof. Assume that X = N , for the sake of brevity. Then any x ∈ X

satisfies x ⊆ Y = ω × ω . Making use of the sets E ⊆ N × ω and W,W′ ⊆
N × ω × Y as in Fact 2.6, we let

P = {〈a, e〉 ∈ E : (W)ae ∈ N ∧ 〈a, (W)ae〉 ∈ Q}.

Easily the set P and its projection projP both are Π1
1 , and A ⊆ projP .

By Fact 2.2, there is a ∆1
1 map f : N → ω such that 〈a, f(a)〉 ∈ P for all

a ∈ A. It remains to define f(a) = (W)a,f(a) for a ∈ A; to prove that f is
∆1

1 use both sets W and W′ .

Fact 2.8 (4F.17 in [20]). Let X , Y be product spaces, P ⊆ X× Y be a ∆1
1

set, and every cross-section (P )x (x ∈ X) be at most countable. Then

(i) X = projP is a ∆1
1 set,

(ii) there is a ∆1
1 set Q ⊆ ω × X × Y such that if n < ω then the set

Qn = {〈x, y〉 : 〈n, x, y〉 ∈ Q} is a uniform subset of P , projQn = X ,
and P =

⋃

n Qn , and hence

(iii) P is a countable union of ∆1
1 sets each of which uniformizes P .

Fact 2.9 (a corollary of 2.8). If X 6= ∅ is a countable ∆1
1 set then there

is a ∆1
1 map defined on ω such that X = {f(n) : n < ω}.

Fact 2.10 (4F.14 in [20]). If F ⊆ N is a closed ∆1
1 set and X ⊆ F

is a compact Σ1
1 set then there is a compact ∆1

1 tree T ⊆ ω<ω such that
X ⊆ [T ] ⊆ F . In particular, in the case X = F , any compact ∆1

1 set
X ⊆ N has the form X = [T ] for some compact ∆1

1 tree T ⊆ ω<ω .

Facts 2.2, 2.3, 2.4 (the first set), 2.5, 2.7, 2.8, 2.10 remain true for rela-
tivized lightface classes Σ1

1(p) , Π
1
1 (p) , ∆

1
1(p), where p ∈ N is an arbitrary

fixed parameter. Therefore Facts 2.2, 2.8 also hold with lightface classes
replaced by boldface projective classes Σ1

1 , Π
1
1 , ∆

1
1 .

3 The Gandy – Harrington topology

The Gandy – Harrington topology on the Baire space N consists of all
unions of Σ1

1 sets S ⊆ N . This topology includes the Polish topology on
N but is not Polish. Nevertheless the Gandy – Harrington topology satisfies
a condition typical for Polish spaces.
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Definition 3.1. Let F be any family of sets, e.g. sets in a given background
space X. A set D ⊆ F is open dense iff ∀F ∈ F ∃D ∈ D (D ⊆ F ), and

∀F ∈ F ∀D ∈ D (F ⊆ D =⇒ F ∈ D) .

Sets D satisfying only the first requirement are called dense. If D ⊆ F is
dense then the set D ′ = {F ∈ F : ∃D ∈ D (F ⊆ D)} is open dense. The
notions of open and dense are related to a certain topology which we’ll not
discuss, but not necessarily with the topology of the background space X.

A Polish net for F is any collection {Dn : n ∈ ω} of open dense sets
Dn ⊆ F such that we have

⋂

n Fn 6= ∅ for every sequence of sets Fn ∈ Dn

satisfying the finite intersection property (i.e.
⋂

k≤n Fk 6= ∅ for all n).

For instance the family of all non-empty closed sets of a complete metric
space X admits a Polish net: let Dn contain all closed sets of diameter
≤ n−1 in X. The next theorem is less elementary. This theorem and the
following corollary are well-known, see e.g. [5, 6, 10, 13].

Theorem 3.2. The collection P of all non-empty Σ1
1 sets in N admits a

Polish net.

4 Effective σ-boundedness dichotomy for Σ
1
1 sets

Here we present a proof of the following theorem by methods of effective
descriptive set theory (including the Gandy – Harrington topology). The
original proof in [15] was based rather on determinacy ideas.

Theorem 4.1 (Kechris [15], p. 198). If A ⊆ N is a Σ1
1 set then one and

only one of the following two claims (I), (II) holds:

(I) A is ∆1
1-effectively σ-bounded, so that there is a ∆1

1 sequence {Tn}n∈ω
of compact trees Tn ⊆ ω<ω such that A ⊆

⋃

n[Tn] ;

(II) there is a superperfect set Y ⊆ A.

Corollary 4.2. If A ⊆ N is a σ-bounded Σ1
1 set then it is ∆1

1-effectively
σ-bounded in the sense of (I) of Theorem 4.1.

Proof (theorem). Recall that CT is the set of all compact trees ∅ 6= T ⊆
ω<ω ; CT is ∆1

1 , of course. Let U be the union of all sets of the form [T ],
where T ⊆ ω<ω is a compact tree. Formally,

x ∈ U ⇐⇒ ∃T ∈ ∆1
1 (T ∈ CT ∧ x ∈ [T ]) ,

and hence U is Π1
1 by Fact 2.3, and the difference A′ = ArU is a Σ1

1 set.
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Lemma 4.3. Under the conditions of Theorem 4.1, if Y ⊆ A′ is a non-
empty Σ1

1 set then its topological closure Y in N is not compact, i.e., the
tree tree(Y ) = {y ↾ n : y ∈ Y ∧ n ∈ ω} has at least one infinite branching.

Proof. Suppose otherwise: Y is compact. Then by Fact 2.10 (with F = N )
there is a compact ∆1

1 tree T such that Y ⊆ [T ]. Therefore Y ⊆ Y ⊆ [T ] ⊆
U , and this contradicts to the assumption ∅ 6= Y ⊆ A′ . (Lemma)

Case 1 : A′ = ∅, that is, A ⊆ U . To prove (I) of Theorem 4.1, note that

Q = {〈x, T 〉 : x ∈ N ∧ T ∈ CT ∩∆1
1 ∧ x ∈ [T ]}

is a Π1
1 set by Facts 2.3 and 2.4, and obviously U = projQ. By Σ1

1

separation there is a ∆1
1 set X such that A ⊆ X ⊆ U . Then

P = {〈x, T 〉 ∈ Q : x ∈ X}

is still a Π1
1 set, and projP = X is a ∆1

1 set. Therefore by Fact 2.7 there
is a ∆1

1 function τ : X → CT such that 〈x, τ(x)〉 ∈ Q for all x ∈ X .
Note that τ(x) ∈ CT∩∆1

1 and x ∈ [τ(x)] for all x ∈ A by the construc-
tion. Thus the full image R = {τ(x) : x ∈ A} is a Σ1

1 subset of the Π1
1 set

CT ∩∆1
1 , and hence there is a ∆1

1 set D such that R ⊆ D ⊆ CT ∩∆1
1 . By

Fact 2.8, there is a ∆1
1 map δ : ω

onto
−→ D . Now put Tn = δ(n) for all n,

getting (I) of Theorem 4.1.

Case 2 : A′ = ArU 6= ∅. To prove that (II) of Theorem 4.1 holds, we’ll
define a system of Σ1

1 sets ∅ 6= Yu ⊆ A′ satisfying the following conditions:

(1) if u ∈ ω<ω and i ∈ ω then Yu∧i ⊆ Yu ;

(2) diam(Yu) ≤ 2− lh u ;

(3) if u ∈ ω<ω and k 6= n then Yu∧k ∩Yu∧n = ∅, and moreover, sets Yu∧k

are covered by pairwise disjoint (clopen) Baire intervals Ju∧k ;

(4) Ys ∈ Dlh u , where by Theorem 3.2 {Dn : n ∈ ω} is a fixed Polish net
for the family P of all non-empty Σ1

1 sets Y ⊆ N ;

(5) if u ∈ ω<ω and xk ∈ Yu∧k for all k ∈ ω then the sequence of points
xk does not have convergent subsequences in N .

If such a construction is accomplished then (4) implies that
⋂

m Ya↾m 6= ∅

for each a ∈ N . On the other hand by (2) every such an intersection

contains a single point, which we denote by f(a), and the map f : N
onto
−→

Y = ran f = {f(a) : a ∈ N } is a homeomorphism by clear reasons.

8



Prove that Y is closed in N . Consider an arbitrary sequence of points
an ∈ N such that the corresponding sequence of points yn = f(an) ∈
Y converges to a point y ∈ N ; we have to prove that y ∈ Y . If the
sequence {an}n∈ω contains a subsequence of points bk = an(k) convergent
to some b ∈ N then quite obviously the sequence of points zk = f(bk) (a
subsequence of {yn}n∈ω ) converges to z = f(b) ∈ Y , as required. Thus
suppose that the sequence {an}n∈ω has no convergent subsequences. Then
it cannot be covered by a compact set, and it easily follows that there is a
string u ∈ ω<ω , an infinite set K ⊆ ω , and for each k ∈ K — a number n(k)
such that u∧k ⊂ an(k) . But then yn(k) ∈ Yu∧k by construction. Therefore
the subsequence {yn(k)}k∈ω diverges by (5), which is a contradiction.

Thus Y is closed, and hence we have (II) of Theorem 4.1.
As for the construction of sets Yu , if a Σ1

1 set Yu ⊆ A′ is defined then
by Lemma 4.3 there is a string t ∈ T (Yu) such that t∧k ∈ T (Yu) for all k
in an infinite set Ku ⊆ ω . This allows us to define a sequence of pairwise
different points yk ∈ Yu (k ∈ ω) having no convergent subsequences. We
cover these points by Baire intervals Uk small enough for (5) to be true for
the Σ1

1 sets Yu∧i = Yu ∩Ui , and then shrink these sets if necessary to fulfill
(2) and (4).

(Theorem 4.1)

5 Effective σ-compactness dichotomy for ∆1
1 sets

Here we present a proof of the following result.

Theorem 5.1 (essentially Louveau [17]). If A ⊆ N is a ∆1
1 set then one

and only one of the next two claims holds:

(I) A is ∆1
1-effectively σ-compact, so that there is a ∆1

1 sequence {Tn}n∈ω
of compact trees Tn ⊆ ω<ω such that A =

⋃

n[Tn] ;

(II) there is a set Y ⊆ A homeomorphic to N and relatively closed in A.

Corollary 5.2. If A ⊆ N is a σ-compact ∆1
1 set then it is ∆1

1-effectively
σ-compact in the sense of (I) of Theorem 5.1.

Proof (theorem). By Theorem 4.1, we can w.l.o.g. assume that A is σ-
bounded, and hence if F ⊆ A is a closed set then F is σ-compact. Further,
the union U of all sets [T ] ⊆ A, where T is a compact ∆1

1 tree, is Π1
1 :

x ∈ U ⇐⇒ ∃T ∈ ∆1
1 (T is a compact tree and x ∈ [T ] ⊆ A) ,

and the result follows from Fact 2.3. We conclude that A′ = Ar U is Σ1
1 .
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Lemma 5.3. If F ⊆ A′ is a non-empty Σ1
1 set then F 6⊆ A.

Proof. We first prove that if X ⊆ A is a compact Σ1
1 set then A′∩X = ∅.

Suppose towards the contrary that A′ ∩ X is non-empty. We are going to
find a closed ∆1

1 set F satisfying X ⊆ F ⊆ A — this would imply X ⊆ U
by Fact 2.10, which is a contradiction.

Since the complementary Π1
1 set C = N rX is open, the set

H = {〈x, u〉 : u ∈ ω<ω ∧ x ∈ C ∩ Nu ∧ Nu ∩X = ∅}

is Π1
1 and projH = C . Thus the ∆1

1 set D = N r A is included in
projH . By Fact 2.2, there is a ∆1

1 map ν : D → ω<ω such that x ∈ D =⇒
〈x, ν(x)〉 ∈ H , or equivalently, x ∈ Nν(x) ⊆ C for all x ∈ D . Then the set
Σ = ran ν = {ν(x) : x ∈ D} ⊆ ω<ω is Σ1

1 and D ⊆
⋃

u∈Σ Nu ⊆ C .
But Π = {u ∈ ω<ω : Nu ⊆ C} is a Π1

1 set and Σ ⊆ Π. It follows that
there exists a ∆1

1 set ∆ such that Σ ⊆ ∆ ⊆ Π. Then still D ⊆
⋃

s∈∆ Ns ⊆
C , and hence the closed set F = N r

⋃

u∈∆ Nu satisfies X ⊆ F ⊆ A. But
x ∈ F is equivalent to ∀u (u ∈ ∆ =⇒ x 6∈ Nu), thus F is ∆1

1 , as required.
Now suppose towards the contrary that ∅ 6= F ⊆ A′ is a Σ1

1 set but
F ⊆ A. By the w.l.o.g. assumption above, F =

⋃

n Fn is σ-compact,
where all Fn are compact. There is a Baire interval Nu such that the set
X = Nu ∩ F is non-empty and X ⊆ Fn for some n. Thus X ⊆ A is a
non-empty compact Σ1

1 set, hence X∩A′ = ∅ by the first part of the proof.
In other words, Nu ∩ F ∩ A′ = ∅. It follows that Nu ∩ F = ∅ (because
F ⊆ A′), contrary to X = Nu ∩ F 6= ∅. (Lemma)

We return to the proof of the theorem.

Case 1 : A′ = ∅, that is, A = U . This implies (I) of Theorem 5.1,
exactly as in the proof of Theorem 4.1 above.

Case 2 : A′ = A r U 6= ∅. To get a set Y ⊆ A′ , relatively closed in A
and homeomorphic to N , as in (II) of Theorem 5.1, we’ll define a system
of non-empty Σ1

1 sets Yu ⊆ A′ satisfying conditions (1), (2), (3), (4) of
Section 4, along with the next requirement instead of (5):

(5′) if u ∈ ω<ω then there is a point yu ∈ Yu r A such that any sequence
of points xk ∈ Yu∧k (k ∈ ω) converges to yu .

If we have defined such a system of sets, then the associated map f :
N → A′ is 1 − 1 and is a homeomorphism from N onto its full image
Y = ran f = {f(a) : a ∈ N } ⊆ A′ , as in the proof of Theorem 4.1.

Let’s prove that Y is relatively closed in A. Consider a sequence of
points an ∈ N such that the corresponding sequence of yn = f(an) ∈ Y

10



converges to a point y ∈ N ; we have to prove that y ∈ Y or y 6∈ A. If the
sequence {an} contains a subsequence convergent to b ∈ N then, as in the
proof of Theorem 4.1, {yn} converges to f(b) ∈ Y . If the sequence {an} has
no convergent subsequences, then there exist a string u ∈ ω<ω , an infinite set
K ⊆ ω , and for each k ∈ K — a number n(k), such that u∧k ⊂ an(k) . But
then yn(k) ∈ Yu∧k by construction. Therefore the subsequence {yn(k)}k∈ω
converges to a point yu 6∈ A by (5′), as required.

Finally on the construction of sets Ys .
Suppose that a Σ1

1 set ∅ 6= Yu ⊆ A′ is defined. Then its closure Yu

is a Σ1
1 set, too, therefore Yu 6⊆ A by Lemma 5.3. There is a sequence of

pairwise different points xn ∈ Yu which converges to a point yu ∈ Yu r A.
Let Un be a neighbourhood of xn (a Baire interval) of diameter less than 1

3
of the least distance from xn to the points xk , k 6= n. Put Yu∧n = Yu∩Un ,
and shrink the sets Yu∧n so that they satisfy (2) and (4).

(Theorem 5.1)

6 Effective σ-compactness dichotomy: generalization to Σ1
1

There is a difference between Theorem 4.1 and Theorem 5.1: the first the-
orem deals with Σ1

1 sets A while the other one — with ∆1
1 sets only. The

proof of Theorem 5.1 in Section 5 does not work in the case when A is a
Σ1

1 set. Indeed then A′ is a set in Σ1
1 and Σ1

2 , but, generally speaking,
it cannot be expected to be a Σ1

1 set, so the rest of the proof does not go
through.

As a matter of fact, Theorem 5.1 per se fails for Σ1
1 sets A, as the

following counterexample shows.

Example 6.1. Let {y} be a Π1
1 singleton such that y ∈ 2ω is not ∆1

1 . The
set A = 2ω r {y} is then Σ1

1 and an open subset of 2ω , hence, σ-compact.
Suppose towards the contrary that Theorem 5.1 holds for A. Then (I) of
Theorem 5.1 must be true. Let {Tn}n∈ω be a ∆1

1 sequence of compact trees
such that A =

⋃

n[Tn]. Therefore y is ∆1
1 , as the only point in 2ω which

does not belong to
⋃

n[Tn], a contradiction.

Our best result in the direction of Theorem 5.1 for Σ1
1 sets with still

some effectivity in (I) is the following theorem:

Theorem 6.2. If A ⊆ N is a Σ1
1 set then one and only one of the

following two claims holds:

(I) A is ∆1
3-effectively σ-compact, so that there exists a ∆1

3 sequence
{T n}n<ω of compact ∆1

3 trees T n ⊆ ω<ω such that A =
⋃

n<ω[T
n] ;

11



(II) there is a set Y ⊆ A homeomorphic to N and relatively closed in A.

Proof. Given a tree S ⊆ (ω × ω)<ω , define a derived tree S′ ⊆ S so that

(∗) S′ consists of all nodes 〈u, v〉 ∈ S such that proj [S ↾ 〈u, v〉] 6⊆ A,
where S ↾ 〈u, v〉 = {〈u′, v′〉 ∈ S : (u ⊂ u′ ∧ v ⊂ v′) ∨ (u′ ⊆ u ∧ v′ ⊆ v)}.

Note that S′ can contain maximal nodes even if S contains no maximal
nodes. Yet if 〈u, v〉 is a maximal node in S , or generally a note in the
well-founded part of S (so [S ↾ 〈u, v〉] = ∅), then definitely 〈u, v〉 6∈ S′ .

Lemma 6.3. The set {〈S, u, v〉 : 〈u, v〉 ∈ S′} is Σ1
2 .

In addition, S′ ⊆ S , and if S ⊆ T then S′ ⊆ T ′ .
Moreover, if M is a countable transitive model of a large enough frag-

ment of ZFC and S ∈ M then (S′)M ⊆ S′ .

Proof. As A is Σ1
1 , the key condition proj [S ↾ 〈u, v〉] 6⊆ A is Σ1

2 .

Beginning the proof of Theorem 6.2, we w.l.o.g. assume, by Theorem 4.1,
that A, the given set, is σ-bounded, and hence if F ⊆ A is a closed set then
F is σ-compact. Let P ⊆ N ×N be a Π0

1 set such that A = projP . Let

S = {〈x ↾ n, y ↾ n〉 : n ∈ ω ∧ 〈x, y〉 ∈ P} ⊆ ω<ω × ω<ω,

so that P = [S]. A decreasing sequence of derived trees S(α), α ∈ Ord, is
defined by transfinite induction so that S(0) = S , if λ is a limit ordinal then
naturally S(λ) =

⋂

α<λ S
(α) , and S(α+1) = (S(α))′ for any α.

Obviously there is a countable ordinal λ such that S(λ+1) = S(λ) .

Case 1 : S(λ) = ∅. Then, if x ∈ A = projP then by construction there
exist an ordinal α < λ and a node 〈u, v〉 ∈ S(α) such that

x ∈ A(α)
uv ⊆ A

(α)
uv ⊆ A , where A(α)

uv = proj [S(α) ↾ 〈u, v〉] ,

and hence A is a countable union of sets F ⊆ A of the form A
(α)
uv , where

α < λ and 〈u, v〉 ∈ S(α) , closed, therefore σ-compact by the above.
Let us show how this leads to (I) of the theorem.
It easily follows from Lemma 6.3 that both the ordinal λ, and each

ordinal α < λ, and the sequence {S(α)}α<λ itself, are ∆1
3 . Therefore there

is a ∆1
3 sequence {U (n)}n<ω of the same trees, that is,

{S(α) : α < λ} = {U (n) : n < ω}.

12



Each tree U (n) , n < ω , is ∆1
3 either, as well as all restricted subtrees of the

form U (n) ↾ 〈u, v〉 (where 〈u, v〉 ∈ U (n)) and their “projections”

T (n)
uv = {u : ∃ v (〈u, v〉 ∈ U (n) ↾ 〈u, v〉)} ⊆ ω<ω.

On the other hand, if α < λ and 〈u, v〉 ∈ S(α) then we have A
(α)
uv = [T

(n)
uv ]

for some n = n(α) by construction.

To conclude, if x ∈ A then there is a ∆1
3 tree T

(n)
uv ⊆ ω<ω such that

x ∈ [T
(n)
uv ] ⊆ A — and [T

(n)
uv ] is σ-compact in this case. Then by Theorem 5.1

(relativized version) there is a ∆1
1(T

(n)
uv ) sequence of compact trees T

(n)
uv (k)

such that [T
(n)
uv ] =

⋃

k[T
(n)
uv (k)]. This easily leads to (I) of the theorem. 2

Case 2 : S(λ) 6= ∅, and then S(λ) ⊆ S is a pruned tree.

Lemma 6.4. If 〈u, v〉 ∈ S(λ) , u′ ∈ ω<ω , u ⊂ u′ , and A
(λ)
uv ∩Nu′ 6= ∅ then

there is a string v′ ∈ ω<ω such that v ⊂ v′ and 〈u′, v′〉 ∈ S(λ) .

We’ll define a pair 〈u(t), v(t)〉 ∈ S(λ) for each t ∈ ω<ω , such that

(1) if t ∈ ω<ω then t ⊆ u(t);

(2) if s, t ∈ ω<ω and s ⊆ t then u(s) ⊆ u(t) and v(s) ⊆ v(t);

(3) if t ∈ ω<ω and k 6= n then u(t∧k) and u(t∧n) are ⊆-incomparable;

(4) if s ∈ ω<ω then there exists a point ys ∈ A
(λ)
u(s)v(s) r A such that any

sequence of points xk ∈ A
(λ)
u(s∧k)v(s∧k) converges to ys .

Suppose that such a system of sets is defined. Then the associated map
f(a) =

⋃

n u(a ↾ n) : N → A is 1 − 1 and is a homeomorphism from N

onto its full image Y = ran f = {f(a) : a ∈ N } ⊆ A.
Let’s prove that Y is relatively closed in A. Consider a sequence of points

an ∈ N such that the corresponding sequence of points yn = f(an) ∈ Y
converges to a point y ∈ N ; we have to prove that y ∈ Y or y 6∈ A.
If the sequence {an} contains a subsequence convergent to b ∈ N then
{yn} converges to f(b) ∈ Y . So suppose that the sequence {an} has no
convergent subsequences. Then there exist a string s ∈ ω<ω , an infinite set
K ⊆ ω , and for each k ∈ K — a number n(k), such that s∧k ⊂ an(k) . Then

2Class ∆
1
3 in (I) of the theorem looks too weird. One may want to improve it to ∆

1
2 at

least. This would be the case if the ordinal λ in the argument of Case 1 could be shown
to be ∆

1
2 . Yet by Martin [19] closure ordinals of inductive constructions of this sort may

exceed the domain of ∆1
2 ordinals.
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yn(k) ∈ A
(λ)
u(s∧k)v(s∧k) by construction. Therefore the subsequence {yn(k)}k∈ω

converges to a point ys 6∈ A by (4), as required.
Finally on the construction of sets Ys .

Suppose that a pair 〈u(t), v(t)〉 ∈ S(λ) is defined. Then A
(λ)
u(t)v(t) 6⊆ A by

the choice of λ. There is a sequence of pairwise different points xn ∈ A
(λ)
u(t)v(t)

which converges to a point ys ∈ A
(λ)
u(t)v(t) r A. We can associate a string

un ∈ ω<ω with each xn such that u(t) ⊂ un ⊂ xn , the strings un are
pairwise ⊆-incompatible, and lhun → ∞. Then, by Lemma 6.4, for each n
there is a matching string vn such that v(t) ⊂ vn and 〈un, vn〉 ∈ S(λ) . Put
u(t∧n) = un and v(t∧n) = vn for all n.

(Theorem 6.2)

7 Related classical results

The “effective” results presented above can be compared with some known
theorems of classical descriptive set theory, including the following two.

Theorem 7.1 (Saint Raymond [21] or 21.23 in [16]). If A is a Σ1
1 set

in a Polish space then either A is σ-bounded or there is a superperfect set
P ⊆ A.

Theorem 7.2 (Hurewicz [7]). If A is a Σ1
1 set in a Polish space then either

A is σ-compact or there is a subset Y ⊆ A homeomorphic to the Baire space
N and relatively closed in A.

Arguments in [16] show that it’s sufficient to prove each of these theorems
in the case X = N ; then the results can be generalized to an arbitrary Polish
space X by purely topological methods. In the case X = N , Theorem 7.1
immediately follows from our Theorem 4.1 (in relativized form, i.e., for
classes Σ1

1(p), where p ∈ N is arbitrary), while Theorem 7.2 follows from
Theorem 6.2 (relativized). On the other hand, Theorem 7.2 also follows
from Theorem 5.1 (relativized) for sets A in ∆1

1 (that is, Borel sets). 3

Theorem 5.1 implies yet another theorem, which combines several clas-
sical results of descriptive set theory by Arsenin, Kunugui, Saint Raymond,
Shegolkov, see references in [16] or in [9, § 4].

Theorem 7.3 (compare with Fact 2.8). Suppose that X,Y are Polish spaces,
P ⊆ X × Y is a ∆1

1 set, and all cross-sections (P )x = {y : 〈x, y〉 ∈ P}
(x ∈ X) are σ-compact. Then

3See [16, 18] for another modern approach to those classical theorems, based mainly
on infinite games rather than methods of effective descriptive theory.
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(i) the projection projP is a ∆1
1 set;

(ii) P is a countable union of ∆1
1 sets with compact cross-sections;

(iii) P can be uniformized by a ∆1
1 set.

Proof (a sketch for the case X = Y = N ). (i) Assume, for the sake of
simplicity, that P ⊆ N × N is a ∆1

1 set. The set

H = {〈x, T 〉 : x ∈ N ∧ T ∈ CT ∧ T ∈ ∆1
1(x) ∧ [T ] ⊆ (P )x}

is Π1
1 by Fact 2.4. It follows from Theorem 5.1 that if 〈x, y〉 ∈ P then there

is a tree T such that 〈x, T 〉 ∈ H and y ∈ [T ]. Therefore the Π1
1 set

E = {〈x, y, T 〉 : 〈x, y〉 ∈ P ∧ 〈x, T 〉 ∈ H ∧ y ∈ [T ]} ⊆ N × N × 2(ω
<ω)

satisfies projxy E = P , that is, if 〈x, y〉 ∈ P then there is a tree T such

that 〈x, y, T 〉 ∈ E . There is a uniform Π1
1 set U ⊆ E which uniformizes E ,

i.e., if 〈x, y〉 ∈ P then there is a unique T such that 〈x, y, T 〉 ∈ U . Yet U
is Σ1

1 as well by Fact 2.3, since 〈x, y, T 〉 ∈ U is equivalent to:

〈x, y〉 ∈ P ∧ y ∈ [T ] ∧ ∀T ′ ∈ ∆1
1(x) (〈x, y, T

′〉 ∈ U =⇒ T = T ′) .

Thus the Σ1
1 set F = {〈x, T 〉 : ∃ y (〈x, y, T 〉 ∈ U)} is a subset of the Π1

1 set
H . By Σ1

1 separation, there is a ∆1
1 set V such that F ⊆ V ⊆ H . Then

〈x, y〉 ∈ P ⇐⇒ ∃T (〈x, T 〉 ∈ V ∧ y ∈ [T ])

by definition. Finally all cross-sections of V are at most countable: indeed
if 〈x, T 〉 ∈ V then T ∈ ∆1

1(x) (since V ⊆ H ). Note that projP = projV ,
and hence the projection D = projP is ∆1

1 (hence Borel) by Fact 2.8.

(ii) It follows from Fact 2.8 that V is equal to a union V =
⋃

n Vn

of uniform ∆1
1 sets Vn , and then each projection Dn = projVn ⊆ D is

∆1
1 . Each Vn is basically the graph of a ∆1

1 map τn : Dn → CT, and
(P )x =

⋃

x∈Dn
[τn(x)]. If n ∈ ω then we put

Pn = {〈x, y〉 : x ∈ Dn ∧ y ∈ [τn(x)])} .

Then P =
⋃

n Pn by the above, each set Pn has only compact cross-sections,
and each Pn is a ∆1

1 set, since the sets Dn and maps τn belong to ∆1
1 .

(iii) Still by Fact 2.8, the set V can be uniformized by a uniform ∆1
1

set, that is, there exists a ∆1
1 map τ : D → CT such that 〈x, τ(x)〉 ∈ V

for all x ∈ D . To uniformize the original set P , let Q consist of all pairs
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〈x, y〉 ∈ P such that y is the lexicographically leftmost point in the compact
set [τ(x)]. Clearly Q uniformizes P . To check that Q is ∆1

1 , note that “y
is a the lexicographically leftmost point in [T ]” is an arithmetic relation in
the assumption that T ∈ CT.

Similar arguments, this time based on Theorem 4.1, also lead to an
alternative proof of the following known result.

Theorem 7.4 (Burgess, Hillard, 35.43 in [16]). If P is a Σ1
1 set in the

product X×Y of two Polish spaces X, and every section (P )x is a σ-bounded
set, then there is a sequence of Borel sets Pn ⊆ X×Y with compact sections
(Pn)x such that P ⊆

⋃

n Pn .

But at the moment it seems that no conclusive theory of Σ1
1 sets with

σ-compact sections (as opposed to those with σ-bounded sections) is known.
For instance what about effective decompositions of such sets into countable
unions of definable sets with compact sections? Our Theorem 6.2 can be
used to show that such a decomposition is possible, but the decomposing sets
with compact sections appear to be excessively complicated (3rd projective
level by rough estimation). It is an interesting problem to improve this
result to something more reasonable like Borel combinations of Σ1

1 sets.
On the other hand, it is known from [26, 28] that Σ1

1 sets with σ-compact
sections are not necessarily decomposable into countably many Σ1

1 sets with
compact sections.

8 Counterexamples above Σ1
1

Here we outline several counterexamples to Theorems 4.1 and 5.1 with sets
A more complicated than Σ1

1 .

Example 8.1. Suppose that the universe is a Cohen real extension L[a]
of the constructible universe L. The set A = N ∩ L is Σ1

2 and it is not
σ-bounded in L[a]. On the other hand, it is known from [4] that A has no
perfect subsets, let alone superperfect ones. Thus A is a Σ1

2 counterexample
to both Theorem 4.1 and Theorem 5.1 in L[a]. We then immediately obtain
a similar Π1

1 counterexample, using the Π1
1 uniformization theorem.

Example 8.2. Suppose that the universe is a dominating real extension
L[d] of L. The set A = N ∩ L is then σ-bounded in L[d]. The domi-
nating forcing is homogeneous enough for any OD (ordinal-definable) real
in L[d] to be constructible, and hence it is true in L[d] that A cannot be
covered by a countable union of OD compact sets in L[d]. Thus A is a Σ1

2

counterexample to Corollary 4.2.
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Yet it is not clear how a similar Π1
1 counterexample, or even a Σ1

2

counterexample to Corollary 5.2, can be produced.

Example 8.3. Let A = {y} be a Π1
1 singleton such that y is not a ∆1

1

real. Then conditions (I), (II) of Theorem 4.1 obviously fail for A.
The same for Theorem 5.1.
Moreover A is a Π1

1 counterexample to Corollary 4.2 as well, although
not as strong as those given in Example 8.2.

It is known that there is a countable Π1
1 set A ⊆ N containing at least

one non-∆1
2 element. Can it serve as a more profound Π1

1 counterexample
than the singleton A of Example 8.3 ?

9 Generalizing the σ-bounded dichotomy: preliminaries

Below in Section 11, we establish a generalization of Theorem 4.1 for a cer-
tain system of pointset ideals which include the ideal of σ-bounded sets along
with equivalence classes of a given finite or countable family of equivalence
relations. The next definition introduces a necessary framework.

Definition 9.1. Let F be a family of equivalence relations on a set X0 ⊆
N . A set X ⊆ X0 is F -σ-bounded , iff it is covered by a union of the form
B ∪

⋃

n∈ω Yn , where B is a σ-bounded set and each Yn is an F-equivalence
class for an equivalence relation F = F(n) ∈ F which depends on n.

A set X ⊆ X0 is F -superperfect , if it is a superperfect pairwise F-
inequivalent set (i.e., a partial F-transversal) for every F ∈ F .

Clearly F -σ-bounded sets form a σ-ideal containing all σ-bounded sets,
and no F -σ-bounded set can be F -superperfect. What are properties of
these ideals? Do they have some semblance of the superperfect ideal itself?
We begin with a lemma and a corollary afterwards, which show that this
is indeed the case w.r.t. the property of being Π1

1 on Σ1
1 . The lemma is a

generalization of Corollary 4.2, of course.

Lemma 9.2. Suppose that {Fn}n<ω is a ∆1
1 sequence of equivalence rela-

tions on N , and a Σ1
1 set X ⊆ N is {Fn}n<ω-σ-bounded. Then X is

∆1
1-effectively {Fn}n<ω-σ-bounded, in the sense that there exist:

(1) a ∆1
1 sequence of compact trees Tk ,

(2) a ∆1
1 sequence of numbers nk , and

(3) a ∆1
1 set H ⊆ ω × N
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such that, for every k < ω the cross-section (H)k = {a : 〈k, a〉 ∈ H} is an
Fnk

-equivalence class and X ⊆
⋃

k[Tk] ∪
⋃

k(H)k .

In particular, if a Σ1
1 set X ⊆ N is {Fn}n<ω-σ-bounded then X is

covered by the union of all ∆1
1 F0-classes, all ∆1

1 F1-classes, all ∆1
1 F2-

classes, et cetera, and all ∆1
1 compact sets.

Proof. The set C = CT ∩∆1
1 of all ∆1

1 compact trees is Π1
1 , and hence so

is K =
⋃

T∈C [T ]. If n < ω then let Un be the union of all ∆1
1 Fn-classes.

Let’s show that U =
⋃

n Un is Π1
1 either. We make use of sets E ⊆ ω and

W,W ′ ⊆ ω × N as in Fact 2.5. The Π1
1 formula ϕ(e, n) :=

e ∈ E ∧ ∀ y, z ∈ (W ′)e (y Fn z) ∧ ∀ y ∈ (W ′)e ∀ z (y Fn z =⇒ z ∈ (W )e)

says that e ∈ E and (W ′)e = (W )e is a Fn-equivalence class. Moreover

x ∈ U ⇐⇒ ∃n ∃ e (ϕ(e, n) ∧ x ∈ (W )e).

Case 1 : X ⊆ K ∪ U . Then the set S of all pairs 〈x, h〉 such that

− either h = T ∈ C and x ∈ [T ],

− or h = 〈e, n〉 ∈ Φ = {〈e, n〉 ∈ E × ω : ϕ(e, n)} and x ∈ (W )e ,

is a Π1
1 set satisfying X ⊆ projS . By Fact 2.7 there is a ∆1

1 map f defined
on N and such that 〈a, f(a)〉 ∈ S for each a ∈ X . The sets

X ′ = {x ∈ X : f(x) ∈ CT} and X ′′ = {x ∈ X : f(x) ∈ Φ}

are Σ1
1 as well as their images

R′ = {f(x) : x ∈ X ′} ⊆ C and R′′ = {f(x) : x ∈ X ′′} ⊆ Φ ,

and X ′ ∪ X ′′ = X , R′ ∪ R′′ = {f(x) : x ∈ X}. By the Σ1
1 Separation

theorem there is a ∆1
1 set τ such that R′ ⊆ τ ⊆ C , and by Fact 2.9 we have

τ = {Tk : k < ω}, where k 7−→ Tk is a ∆1
1 map. By similar reasons, there

is a ∆1
1 map k 7−→ 〈ek, nk〉 such that R′′ ⊆ ρ = {〈ek , nk〉 : k < ω} ⊆ Φ. To

finish the proof in Case 1, it remains to define

H = {〈k, x〉 ∈ ω × N : x ∈ (W )ek} = {〈k, x〉 ∈ ω × N : x ∈ (W ′)ek} .

Case 2 : A = X r (K ∪ U) 6= ∅. Then A is a non-empty Σ1
1 set. We

are going to derive a contradiction. By definition, we have X ⊆
⋃

k Ck ∪
⋃

n

⋃

k Enk , where each Ck is compact and each Enk is an Fn-class. Let
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M be a countable elementary substructure of a sufficiently large structure,
containing, in particular, the whole sequence of covering sets Ck and Enk .
Below “generic” will mean Gandy – Harrington generic over M .

As A 6= ∅ is Σ1
1 , there is a perfect set P ⊆ A of points both generic

and pairwise generic. It is known that then P is a pairwise Fn-inequivalent
set for every n, hence, definitely a set not covered by a countable union of
Fn-classes for all n < ω . Thus to get a contradiction it suffices to prove that
P ∩ Ck = ∅ for all k . In other words, we have to prove that if k < ω and
x ∈ A is any generic real then x 6∈ Ck .

Suppose towards the contrary that a non-empty Σ1
1 condition Y ⊆ A

forces that a ∈ Ck , where a is a canonical name for the Gandy – Harrington
generic real. We claim that Y is not σ-bounded. Indeed otherwise we have
Y ⊆

⋃

n[Tn] by Theorem 4.1, where all trees Tn ⊆ ω<ω are ∆1
1 and compact,

which contradicts the fact that A does not intersect any compact ∆1
1 set.

Therefore Y 6⊆ Ck . Then there is a point x ∈ Y and a number m such
that the set I = {y ∈ N : y ↾m = x ↾m} does not intersect Ck . But then
the Σ1

1 condition Y ′ = Y ∩ I forces that a 6∈ Ck , a contradiction.

Corollary 9.3. If {Fn}n<ω is a ∆1
1 sequence of equivalence relations on

N then the ideal of {Fn}n<ω-σ-bounded sets is Π1
1 on Σ1

1 and Π1
1 on Σ1

1 .

See [31, section 3.8] on Π1
1 on Σ1

1 and Π1
1 on Σ1

1 ideals.

Proof. Consider a Σ1
1 set P ⊆ N × N . We have to prove that

X = {x ∈ N : (P )x = {y : 〈x, y〉 ∈ P} is {Fn}n<ω-σ-bounded}

is a Π1
1 set. By the relativized version of Lemma 9.2, x ∈ X iff

(∗) there exist ∆1
1(x) sequences {Tk}k<ω (of compact trees) and {nk}k<ω

and a ∆1
1(x) set H ⊆ ω × N such that, for every k < ω the cross-

section (H)k is an Fnk
-equivalence class and (P )x ⊆

⋃

k[Tk]∪
⋃

k(H)k .

A routine analysis (as in the proof of Lemma 9.2) shows that this is a Π1
1

description of the set X .

10 Digression: another look on the effectivity

As usual, Lemma 9.2 and Corollary 9.3 remain true for relativized classes.
In particular, if p ∈ N , Fn are ∆1

1(p) equivalence relations, and a Σ1
1(p) set

X ⊆ N is {Fn}n<ω-σ-bounded then X is covered by the union of all ∆1
1(p)

Fn-classes, n = 0, 1, 2, . . . , and all ∆1
1(p) compact sets. If now p 6= q ∈ N is
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a different parameter, but still Fn are ∆1
1(q) and X is Σ1

1(q) and {Fn}n<ω-σ-
bounded then accordingly X is covered by the union of all ∆1

1(q) Fn-classes,
n = 0, 1, 2, . . . , and all ∆1

1(q) compact sets. Those two countable coverings
of the same set X can be different, of course. This leads to the question: is
there a covering of X of the type indicated, which depends on X and Fn

themselves, but not on the choice of a parameter p such that X is Σ1
1(p)

and Fn are ∆1
1(p). We are able to answer this question in the positive at

least in the case of finitely many equivalence relations. The next theorem
will be instrumental in the proof of a theorem in Section 13.

Theorem 10.1. Suppose that n ≥ 1, F1, . . . ,Fn are Borel equivalence
relations on N , and a Σ1

1 set X ⊆ N is {F1, . . . ,Fn}-σ-bounded. Then
there exist Borel sets Y1, . . . , Yn,Xn+1 ⊆ N such that

(i) X ⊆ Y1 ∪ · · · ∪ Yn ∪Xn+1 ,

(ii) each set Yj is a countable union of Fj-equivalence classes while the
set Xn+1 is σ-bounded,

(iii) if p ∈ N , X is Σ1
1(p), and all relations Fm are ∆1

1(p), then there
is a parameter p̄ ∈ N in ∆1

2(p) such that both Xn+1 and all sets Yj

are ∆1
1(p̄) — hence, ∆1

2(p).

This, under the assumptions of the theorem, there is a Borel covering
of X satisfying (i) and (ii), and effective as soon as X and Fj are granted
some effectivity. It is a challenging problem to get rid of p̄ in (iii) (so that
Xn+1 and all Yj are just ∆1

1(p) with the same p), but this remains open.

Proof. We define sets X = X1 ⊇ X2 ⊇ X3 ⊇ . . . ⊇ Xn ⊇ Xn+1 so that
Xj+1 = Xj r Yj , where by induction

Yj = {x ∈ N : the set Xj ∩ [x]Fj
is not {Fj , . . . ,Fn}-σ-bounded}. (1)

In particular,

Y1 = {x ∈ N : the set X1 ∩ [x]F1
is not {F2, . . . ,Fn}-σ-bounded} ,

Y2 = {x ∈ N : the set X2 ∩ [x]F2
is not {F3, . . . ,Fn}-σ-bounded} ,

. . .

Yn−1 = {x ∈ N : the set Xn−1 ∩ [x]Fn−1
is not {Fn}-σ-bounded} ,

Yn = {x ∈ N : the set Xn ∩ [x]Fn
is not ∅-σ-bounded} ,

where ∅-σ-bounded is the same as just σ-bounded.

20



Lemma 10.2. If 1 ≤ j ≤ n then Yj is a countable union of Fj-equivalence
classes and the set Xj+1 = Xj r Yj is {Fj+1, . . . ,Fn}-σ-bounded.

Proof. Let Yj be the family of all sets Y such that Y is a union of at most
countably many Fj-classes and Xj r Y is {Fj+1, . . . ,Fn}-σ-bounded. Note
that Yj is a non-empty (since Xj is {Fj , . . . ,Fn}-σ-bounded by induction) σ-
filter (since the collection of all {Fj+1, . . . ,Fn}-σ-bounded sets is a σ-ideal).
Therefore Y ′

j =
⋂

Yj is a set in Yj , in fact, the ⊆-least set in Yj .
It remains to show that Yj = Y ′

j . We claim that if C is an Fj-class then
C ⊆ Y ′

j iff C ⊆ Y ′
j . Indeed if C ∩ Yj = ∅ then Xj ∩ C is {Fj+1, . . . ,Fn}-σ-

bounded, thus Y ′
j rC is still a set in Yj , therefore C∩Y ′

j = ∅. Conversely if
C∩Y ′

j = ∅ then (Xj ∩C) ⊆ (Xj rY ′
j ), and hence Xj ∩C is {Fj+1, . . . ,Fn}-

σ-bounded, so C ∩ Yj = ∅, as required. (Lemma)

Thus by the lemma the sets Yj and Xn+1 satisfy (i) and (ii) of the theo-
rem. To verify (iii), assume that p ∈ N , X is Σ1

1(p), and all Fm are ∆1
1(p).

The main issue is that the sets Yj , albeit Borel (as countable unions of Borel
equivalence classes) do not seem to be ∆1

1(p), at least straightforwardly. For
instance, Y1 is Σ1

1(p) by Corollary 9.3 (relativized), and accordingly X2 is
Π1

1 (p) (instead of ∆1
1(p)), which makes it very difficult to directly estimate

the class of Y2 at the nest step. This is where a new parameter appears.
We precede the last part of the proof of the theorem with the following

auxiliary fact on equivalence relations, perhaps, already known.

Lemma 10.3. Let E be a ∆1
1 equivalence relation on N , and X ⊆ N be

a Σ1
1 set which intersects only countably many E-classes.
Then all E-classes [x]E , x ∈ X, are ∆1

1 sets, and there is an E-invariant
∆1

1 set Y ⊆ N such that X ⊆ Y and all E-classes [y]E , y ∈ Y , are ∆1
1

sets (therefore Y still contains only countably many E-classes).

Proof. The union C of all ∆1
1 E-classes is an E-invariant Π1

1 set. (See, e.g.,
10.1.2 in [13].) Thus, if X 6⊆ C then H = X r C is a non-empty Σ1

1 set
which does not intersect ∆1

1 E-classes. Then (see, e.g., Case 2 in the proof
of Theorem 10.1.1 in [13]) H contains a perfect pairwise E-inequivalent set,
which contradicts our assumptions. Therefore X ⊆ C , so indeed all E-
classes [x]E , x ∈ X , are ∆1

1 . To prove the second claim apply the invariant
Σ1

1 separation theorem (see, e.g., 10.4.2 in [13]), which yields an E-invariant
∆1

1 set Y satisfying X ⊆ [X]E ⊆ Y ⊆ C . (Lemma)

We continue the proof of Theorem 10.1. The next goal is to find a
parameter q1 ∈ N in ∆1

2(p) such that the Σ1
1(p) set Y1 is ∆1

1(q1). Let Π1
1
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sets E ⊆ N × ω and W ⊆ N × ω × N , and a Σ1
1 set W′ ⊆ N × ω × N

be as in Lemma 2.6. Let E(p) = {e : 〈p, e〉 ∈ E} and, for all e < ω ,

We(p) = {x : 〈p, e, x〉 ∈ W} , W ′
e(p) = {x : 〈p, e, x〉 ∈ W′} ,

so that E(p) and all sets We(p) are Π1
1 (p) while all sets W ′

e(p) are Σ1
1(p).

By Lemma 10.3 (relativized), a point x ∈ N belongs to Y1 iff

∃ e
(
e ∈ E(p) ∧ x ∈ We(p) ∧ We(p) is an F1-class ∧

∧ W ′
e(p) ∩X1 is not {F2, . . . ,Fn}-σ-bounded

)
.

The first line is Π1
1 (p). (Note that We(p) = W ′

e(p) for all e ∈ E(p).) The
second line is only Σ1

1(p) by Corollary 9.3. However the set

Q1(p) = {e ∈ E(p) :W ′
e(p) ∩X1 is not {F2, . . . ,Fn}-σ-bounded} ⊆ ω

is ∆1
2(p) (more precisely, an intersection of Π1

1 (p) and Σ1
1(p)), and

x ∈ Y1 ⇐⇒ ∃ e ∈ E(p) ∩Q1(p)
(
x ∈ We(p) ∧ We(p) is an F1-class

)
.

We conclude that Y1 is ∆1
1(p,Q1), hence, ∆1

1(q1), where q1 ∈ N is a
“concatenation” of p and Q1 (so that q1 is ∆1

2(p)).
Arguing the same way, we find parameters q2 , q3 , . . . such that each Yj

is ∆1
1(qj) and each qj+1 is ∆1

2(qj), and hence ∆1
2(p) by induction. Wrapping

this construction up in a parameter p̄ as in (iii) is a routine.

We don’t know whether the theorem still holds for countably infinite
sequences of equivalence relations. Yet the proof miserably fails in this case.
Indeed, let, for any n, Fn be an equivalence relation on N whose classes
are Ik = {x ∈ N : x(0) = k}, k = 0, 1, . . . , n, and all singletons outside
of these large classes. The whole space N =

⋃

n In is {F0,F1,F2, . . .}-σ-
bounded, of course. But running the construction as above, we’ll obviously
have Y0 = Y1 = Y2 = · · · = ∅ (as each Fn-class is covered by an appropriate
Fn+1-class), which results in nonsense.

There is another interesting problem. Under the assumptions of the
theorem, the covering of X by sets Y1, . . . , Yn,Xn+1 ⊆ N depends on X
but is independent of the choice of a parameter p as in (iii). On the other
hand, if such a parameter p, and accordingly p̄ as in (iii), is given then
not only each Yj but also a representation of Yj =

⋃

m Yjm as a countable
union of Fj-classes Yjm , can be obtained in ∆1

1(p̄) by Lemma 9.2. One
may ask whether such a decomposition of each Yj is available in a way
independent of the choice of p (as the sets Yj themselves). The answer
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in the negative is expected, but it may likely take a lot of work. On the
other hand, Theorem 14.1 below will show that, under some restrictions,
if a countable union of equivalence classes of a ∆1

1 equivalence relation is
∆1

1(ξ), where ξ < ω1 , then all classes in this union admit constructible (not
necessarily countable) Borel codes.

11 Generalizing the σ-bounded dichotomy: the theorem

Coming back to the content of Section 9, we’ll prove the following theorem
in this section.

Theorem 11.1 (common with Marcin Sabok and Jindra Zapletal). Suppose
that n < ω , F1, . . . ,Fn are ∆1

1 equivalence relations on N , and A ⊆ N is
a Σ1

1 set. Then one and only one of the following two claims holds:

(I) the set A is {F1, . . . ,Fn}-σ-bounded — and therefore ∆1
1-effectively

{Fn}n<ω-σ-bounded as in Lemma 9.2;

(II) there exists an {F1, . . . ,Fn}-superperfect set P ⊆ A.

If n = 0 then this theorem is equivalent to Theorem 4.1: indeed, if
F = ∅ then ∅-σ-bounded sets are just σ-bounded, while ∅-superperfect
sets are just superperfect.

The following key result of Solecki – Spinas [25, Theorem 2.1 and Corol-
lary 2.2] will be an essential pre-requisite in the proof of Theorem 11.1.

Theorem 11.2. Suppose that E ⊆ N ×N and (*) there is a decomposition
E =

⋃

nEn such that

(i) if n < ω and U ⊆ N ×N is open then the projection proj (En ∩ U)
has the Baire property in N ;

(ii) if n < ω and a ∈ N then the cross-section (En)a = {x : 〈a, x〉 ∈ En}
is bounded (= covered by a compact set).

Then there is a superperfect set P ⊆ N free for E in the sense that if
x 6= y belong to P then 〈x, y〉 6∈ E .

Corollary 11.3. If E ⊆ N ×N is a Σ1
1 set and each cross-section (E)a ,

a ∈ N , is σ-bounded, then there is a superperfect set P ⊆ N free for E .
In particular, if E is a Σ1

1 equivalence relation on N with all E-equivalence
classes σ-bounded then there is a superperfect pairwise E-inequivalent set.
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Proof (see [25]). By Theorem 7.4 E admits a decomposition satisfying (*)
of Theorem 11.2. We also note that if E is an equivalence relation then a
set free for E is the same as a pairwise E-inequivalent set.

Proof (Theorem 11.1). We argue by induction on n. The case n = 0 (then
{F1, . . . ,Fn} = ∅) is covered by Theorem 4.1. Now the step n → n+ 1.

Let F1, . . . ,Fn,Fn+1 be ∆1
1 equivalence relations on N , and A ⊆ N be

a Σ1
1 set. The set

U = {x ∈ A : [x]F1
is non-{F2, . . . ,Fn+1}-σ-bounded}

is Σ1
1 by Corollary 9.3.

Case 1 : the Σ1
1 set U has only countably many F1-classes. Then by

Lemma 10.3, there is an F1-invariant ∆
1
1 set D such that U ⊆ D , D contains

only countably many F1-classes, and all of them are ∆1
1 .

Subcase 1.1 : the complementary Σ1
1 set B = ArD is {F2, . . . ,Fn+1}-σ-

bounded. Then the whole domain A = D ∪B is {F1, . . . ,Fn+1}-σ-bounded,
hence we have (I) for F1, . . . ,Fn,Fn+1 .

Subcase 1.2 : B is non-{F2, . . . ,Fn+1}-σ-bounded. By the inductive hy-
pothesis there is an {F2, . . . ,Fn+1}-superperfect set P ⊆ B . Let x ∈ P .
Then the class [x]F1

is {F2, . . . ,Fn+1}-σ-bounded. We claim that the set
Px = [x]F1

∩ P is just σ-bounded. Indeed by definition Px ⊆ Y ∪
⋃

k Xk ,
where Y is σ-bounded while each Xk is an Fn(k)-equivalence class for some
n(k) = 2, 3, . . . , n + 1. By construction P has at most one common point
with each Xk . Therefore the set PxrY is at most countable, hence, σ-bou-
nded, and we are done.

Thus all F1-classes inside P are σ-bounded. By Corollary 11.3, there
is a superperfect pairwise F1-inequivalent set Q ⊆ P — then the set Q is
{F1, . . . ,Fn+1}-superperfect by construction. Thus (II) holds.

Case 2 : U has uncountably many F1-classes. Then by the Silver di-
chotomy [24] there exists a perfect pairwise F1-inequivalent set X ⊆ U .
If x ∈ X then by definition the class [x]F1

is not {F2, . . . ,Fn+1}-σ-bound-
ed. Therefore by the inductive hypothesis there exists an {F2, . . . ,Fn+1}-
superperfect set Y ⊆ [x]F1

, above and hence a superperfect tree T ⊆ ω<ω

such that [T ] = Y . The next step is to get such a tree T by means of a
Borel function defined on a smaller domain.

Lemma 11.4. In our assumptions, there is a perfect set X ′ ⊆ X and a
Borel map x 7−→ Tx defined on X ′ , such that if x ∈ X ′ then Tx is a
superperfect tree, [Tx] ⊆ [x]F1

, and [Tx] is {F2, . . . ,Fn+1}-superperfect.
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Proof (Lemma). Let p ∈ N be a parameter such that X is Π0
1 (p).

Let V be the set universe considered, and let V+ be a generic extension

of V such that ω
L[p]
1 is countable in V+ . Let X+ be the V+-extension of

X , so that X+ is Π0
1 (p) in V+ and X = X+ ∩ V. Let F

+
i be a similar

extension of Fi . It is true then in V+ by the Shoenfield absoluteness that
each F

+
i is a ∆1

1 equivalence relation on N , and X+ is a perfect set in
Π0

1 (p). Moreover, it is true in V+ by the Shoenfield absoluteness that

(∗) if x ∈ X+ then the F
+
1 -class [x]

F
+
1

is not {F+2 , . . . ,F
+
n+1}-σ-bounded

— simply because the formula

∀x ∈ X ([x]F1
is not {F2, . . . ,Fn+1}-σ-bounded)

is essentially Π1
2 by Corollary 9.3, and is true in V. It follows by the

inductive hypothesis (applied in V+) that, in V+ , the Π1
1 (p) set W+ of all

pairs 〈x, T 〉 such that x ∈ X+ , T ⊆ ω<ω is a superperfect tree, and

[T ] ⊆ [x]
F
+
1

∧ the set [T ] is {F+2 , . . . ,F
+
n+1}-superperfect,

— satisfies projW+ = X+ . Therefore by the Shoenfield absoluteness the-
orem the set W = W+ ∩V is Π1

1 (p) and satisfies projW = X in V.
Applying the Kondo — Addison uniformization in V+ , we get a Π1

1 (p)
set U+ ⊆ W+ which uniformizes W+ , in particular, projU+ = projW+ =
X+ . The corresponding set U = U+ ∩ V of type Π1

1 (p) in V then uni-
formizes W and satisfies projU = projW = X still by Shoenfield.

Now, by the choice of the universe V+ , the uncountable Π1
1 (p) set U+

must contain a perfect subset P+ ⊆ U+ of class Π0
1 (q) for a parameter

q ∈ L[p], hence, q ∈ V. The according set P = P+ ∩ V is then a perfect
subset of U in V, and hence X ′ = projP ⊆ X is a perfect set.

Finally, if x ∈ X ′ then let Tx be the only element such that 〈x, Tx〉 ∈ P .
The map x 7−→ Tx is Borel. On the other hand, still by the Shoenfield
absoluteness, if x ∈ X ′ then [Tx] ⊆ [x]F1

and the set [Tx] is {F2, . . . ,Fn+1}-
superperfect. (Lemma)

We continue the proof of Theorem 11.1.
Let X ′ ⊆ X and a Borel map x 7−→ Tx be as in the lemma. If x ∈ X ′

and i = 2, . . . , n+1, then every Fi-class [y]Fi
has at most one point common

with the set Yx = [Tx]. Thus if C is a {F2, . . . ,Fn+1}-σ-bounded set then
the intersection C ∩ Yx is σ-bounded and hence C ∩ Yx is meager in Yx .

There is a Borel set W ⊆ X ′ × N such that the collection of all cross-
sections (W )x , x ∈ X ′ , is equal to the family of all countable unions of

25



Fi-classes, i = 2, . . . , n+1, plus a σ-bounded Fσ set. (Note that σ-bounded
Fσ sets is the same as σ-compact sets, and that every σ-bounded set is a
subset of a σ-bounded Fσ set.) Thus if x ∈ X ′ then (W )x ∩Yx is meager in
Yx by the above. Therefore, by a version of “comeager uniformization”, there
is a Borel map f defined on X ′ such that if x ∈ X ′ then f(x) ∈ Yxr (W )x .
Clearly f is 1− 1, hence the set R = {f(x) : x ∈ X ′} is Borel.

Moreover R is pairwise F1-inequivalent by construction. We assert that
R is non-{F2, . . . ,Fn+1}-σ-bounded, in particular, not σ-bounded!

Indeed suppose otherwise. Then there is x ∈ X ′ such that R ⊆ (W )x .
But then f(x) ∈ (W )x , which contradicts the choice of f .

Thus indeed R is non-{F2, . . . ,Fn+1}-σ-bounded. It follows by the induc-
tive hypothesis that there exists a {F2, . . . ,Fn+1}-superperfect set P ⊆ R.
And P is pairwise F1-inequivalent since so is R. We conclude that P is
even {F1, . . . ,Fn+1}-superperfect, which leads to (II) of the theorem.

(Theorem 11.1)

It is an interesting problem to figure out whether Theorem 11.1 is true
for a countable infinite family of equivalence relations (as in Lemma 9.2).
The inductive proof presented above is of little help, of course.

Another problem is to figure out whether the theorem still holds for Π1
1

equivalence relations, as the classical Silver dichotomy does. This is open
even for the case of one Π1

1 equivalence relation, since the background result,
Corollary 11.3, does not cover this case.

And finally we don’t know whether Theorem 11.1 can be strengthened
to yield the existence of sets free (as in Corollary 11.3) for a given (finite or
countable) collection of Borel sets.

It remains to note that Theorem 11.1 (in its relativized form) implies
the following theorem, perhaps, not known previously in such a generality.

Theorem 11.5. Suppose that F1, . . . ,Fn are Borel equivalence relations on
a Polish space X, and A ⊆ X is a Σ1

1 set. Then either A is {F1, . . . ,Fn}-
σ-bounded, or there exists an {F1, . . . ,Fn}-superperfect set P ⊆ A.

Yet the case n = 1 is known in the form of the following (not yet pub-
lished) superperfect dichotomy theorem of Zapletal:

Theorem 11.6. If E be a Borel equivalence relation on N and A ⊆ N is
a Σ1

1 set then either A is covered by countably many E-classes and a σ-bou-
nded set or there is a superperfect pairwise E-inequivalent set P ⊆ A.

Theorem 11.6 can be considered as a “superperfect” version of Silver’s
dichotomy (see [24] or [13, 10.1]), saying that if E is a Borel equivalence
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relation then either the domain of E is a union of countably many E-classes
or there is a perfect pairwise E-inequivalent set Y ⊆ D .

12 The case of Σ1
2 sets: preliminaries

In view of the counterexamples in Section 8, one can expect that positive
results for Σ1

2 sets similar to Theorems 4.1, 11.1, 5.1 should be expected in
terms of ω1-unions of compact sets. And indeed using a determinacy-style
argument, Kechris proved in [15] that if A ⊆ N is a Σ1

2 set then (in a
somewhat abridged form) one of the following two claims holds:

(I) A is L-σ-bounded , in the sense that it is covered by the union of all sets
[T ], where T ∈ L is a compact tree 4 (hence not necessarily a countable
union) — or equivalently, for each x ∈ A there is y ∈ N ∩ L with
x ≤∗ y , where ≤∗ is the eventual domination order on N ,

(II) there is a superperfect set P ⊆ A.

Our next goal is to generalise this result in the directions of Theo-
rem 11.1. The logic of such a generalization forces us to change superperfect
sets in (II) by {F1, . . . ,Fn}-superperfect sets, where F1, . . . ,Fn is a given
collection of ∆1

1 equivalence relations. As for a corresponding change in (I),
one would naturally look for a condition like:

for each x ∈ A, either there is y ∈ N ∩ L with x ≤∗ y , or
there is j = 1, . . . , n and an “L-presented” Fj-equivalence class
containing x,

whatever being “L-presented” would mean. The following example shows
that the most elementary definition of “L-presented” as “containing a con-
structible element” fails.

Example 12.1. Let F be the equivalence relation of equality of countable
sets of reals. That is, its domain is the set N ω of all infinite sequences of

reals, and for x, y ∈ N ω , x F y iff ranx = ran y . Let f : ω
onto
−→ ωL

1 is
a generic collapse map. In L[f ], let A be the Σ1

2 set of all x ∈ N ω such
that ranx (a set of reals) belongs to L (but x itself does not necessarily
belong to L). Then, if x ∈ A then the F-class [x]F is not σ-bounded, and
the quotient A/F (the set of all F-classes inside A) is uncountable in L[f ].

We believe that there is no perfect (let alone superperfect) pairwise F-
inequivalentset P ⊆ A in L[f ], which is quite a safe conjecture in view of

4
L is the constructible universe.
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the results in [4]. Yet to make the example self-contained let us add to L[f ]

a set C of ℵL
3 = ℵ

L[f ]
2 Cohen reals. By a simple cardinality argument, there

are no perfect pairwise F-inequivalent sets P ⊆ A in L[f,C].
However, in L[f,C], the quotient A/F has uncountably many particular

F-classes which are non-σ-bounded and even non-L-σ-bounded in the sense of
(I) above, but contain no constructible elements. Thus A neither contains
an F-superperfect subset nor satisfies the condition that for each x ∈ A,
either there is y ∈ N ∩ L with x ≤∗ y , or there is an F-equivalence class
containing x and containing a constructible element .

Our model for “L-presented” will be somewhat more complex than just
“containing a constructible element”. In fact we’ll consider two (connected)
models, one being based on a certain uniform version of ∆1

1 , with ordinals
as background parameters, the other one being based on Borel coding. They
are introduced in the following definitions.

Definition 12.2 (coding ordinals). Let WO ⊆ N be the Π1
1 set of all

codes of countable (including finite) ordinals, and if ξ < ω1 then we define
WOξ = {w ∈ WO :w codes ξ}. If w ∈ WOξ then put |w| = ξ .

Definition 12.3. A Σ1
2 map h : N → N is absolutely total if it remains

total in any set-generic extension of the universe. In other words, it is
required that there is a Σ1

2 formula σ(·, ·) such that h = {〈x, y〉 : σ(x, y)}
and the sentence ∀x∃ yσ(x, y) is forced by any set forcing. (Note that a total
but not absolutely total map can be defined in L by h(x)= the Goedel-least
w ∈ WO such that x appears at the ξ-th step of the Goedel construction,
where ξ = |w| < ω1 is the ordinal coded by w .)

Suppose that ξ < ω1 . A set X ⊆ N is essential Σ1
n(ξ) if there is a

Σ1
n formula ϕ(x,w) such that X = {x ∈ N : ϕ(x,w)} for every w ∈ WOξ .

Essential Π1
n(ξ) sets are defined similarly, while an essential ∆1

n(ξ) set is
any set both essential Σ1

n(ξ) and essential Π1
n(ξ).

A set X is essential (∆1
1/∆

1
2)(ξ) if there is an absolutely total Σ1

2 map
h, a Σ1

1 formula χ(·, ·), and a Π1
1 formula χ′(·, ·), such that if w ∈ WOξ

then X = {x ∈ N : χ(x, h(w))} = {x ∈ N : χ′(x, h(w))}.

Thus essential (∆1
1/∆

1
2)(ξ) sets belong in between essential ∆1

1(ξ) and
essential ∆1

2(ξ). Each essential (∆1
1/∆

1
2)(ξ) set X is Borel, hence, it admits

a Borel code. Moreover, if X is essential (∆1
1/∆

1
2)(ξ) via an absolutely total

Σ1
2 map h, and w ∈ WOξ , then X admits a Borel code in L[w]. We’ll show

(see 14.2 and 14.4) that such a set X admits a Borel code, even in L, in
some generalized sense which allows uncountable Borel operations.
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Definition 12.4. Let Ord<ω be the class of all strings (finite sequences) of
ordinals. If s ∈ Ord<ω and ξ ∈ Ord then s∧ξ denotes the string s extended
by ξ . If s ∈ Ord<ω then lh s is the length of s. Λ is the empty string.

A set T ⊆ Ord<ω is a tree if T 6= ∅, and for any s ∈ T and m < lh s we
have s ↾m ∈ T . Then let supT be the least ordinal λ such that T ⊆ λ<ω ,
and let MaxT be the set of all ⊆-maximal elements s ∈ T .

If a tree T is well-founded then a rank function s 7−→ |s|T ∈ Ord can
be associated with T so that |t|T = supt∧ξ∈T (|t

∧ξ|T + 1) (the least ordinal
strictly bigger than all ordinals of the form |t∧ξ|T , where ξ ∈ Ord and
t∧ξ ∈ T ) for each t ∈ T . In particular |s|T = 0 for any s ∈ MaxT .

Let |T | = |Λ|T (the rank of T ).
Let K be the class of all generalized Borel codes in L, that is, all pairs

c = 〈T, d〉 = 〈Tc, dc〉 ∈ L, where T ⊆ Ord<ω is a well-founded tree and
d ⊆ T ×ω<ω . In this case, a set [T, d, s] ⊆ N can be defined for each s ∈ T
by induction on |s|T so that

[T, d, s] =

{

N r
⋃

〈s,u〉∈d Nu , whenever s ∈ MaxT ;

N r
⋃

s∧ξ∈T [T, d, s
∧ξ] , whenever |s|T > 0 .

Recall that Nu = {a ∈ N : u ⊂ a} is a Baire interval.
Finally we put [T, d] = [T, d,Λ].
If ρ < ω1 then let Kρ ∈ L be the set of all codes 〈T, d〉 ∈ K such that

|T | ≤ ρ and supT ≤ ωL
ρ . (Not necessarily supT < ω1 .)

Accordingly let [Kρ] = {[T, d] : 〈T, d〉 ∈ Kρ}.

If 〈T, d〉 ∈ K and supT < ω1 then [T, d] is a Borel set in Π0
1+|T | .

We underline that only constructible codes are considered.

13 The case of Σ1
2 sets: the result

We’ll prove the next theorem which generalizes the result of Kechris in [15]
sited above. If F is an equivalence relation on N then let a σ-F-class be
any finite or countable union of F-equivalence classes.

Theorem 13.1. Let n < ω , F1, . . . ,Fn be ∆1
1 equivalence relations on N ,

and A ⊆ N be a Σ1
2 set. Then one of the following (I), (II) holds:

(I) A is L-{F1, . . . ,Fn}-σ-bounded, in the sense that for each x ∈ A:

– either there is y ∈ N ∩ L such that x ≤∗ y ,

– or (non-exclusively) we have both (I)a and (I)b, where
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(a) there is j = 1, . . . , n and a σ-Fj-class C which contains x
and is essential (∆1

1/∆
1
2)(ξ) for some ξ < ω1 ,

(b) if, in addition, ρ < ωL

1 and all Fj are Π0
1+ρ then there is

j = 1, . . . , n and an Fj-class X in [Kρ] which contains x ;

(II) there exists an {F1, . . . ,Fn}-superperfect set P ⊆ A.

A point of certain dissatisfaction is ωL
ρ as the measure of borelness in

Definition 12.4 and subsequently in (I)b of Theorem 13.1. Can it be reduced,
to present the borelness involved by considerably narrower trees (of the same
height)? Examples given in [22] and more resently in [3] allow to conjecture
that the value ωL

ρ cannot be reduced in any essential way. A similar question

can be addressed to the inequality ωL

ρ+1 < ω1 in the next remark.

Suppose that ωL

ρ+1 < ω1 . Then both N ∩ L and Kρ are countable
sets, and hence the number of points y and classes X involved in (I) of
Theorem 13.1. Thus, assuming ωL

ρ+1 < ω1 , condition (I) of Theorem 13.1
can be replaced by just the {F1, . . . ,Fn}-σ-boundedness of A.

The proof of Theorem 13.1 will consist of two major parts. First of
all, we prove, in this section, the version sans condition (I)b in (I) of the
theorem. Then we prove, in Section 14, that (I)a implies (I)b in (I).

Proof (Theorem 13.1 sans (I)b). We’ll make use of Theorems 10.1 and
11.1 in key arguments. To begin with, we reveal a certain uniformity in
Theorem 10.1(iii), which was not convenient to deal with in Section 10.

Proposition 13.2. Under the conditions of Theorem 10.1, if ξ < ω1 , all
relations Fj are essential ∆1

1(ξ), and X is essential Σ1
1(ξ), then the sets

Yj and Xn+1 satisfying (i), (ii) can be chosen to be essential (∆1
1/∆

1
2)(ξ).

Proof (Sketch). We come back to the proof of Theorem 10.1. The map
h(p) = p̄ is defined in finitely many steps, such that each step is governed
by a combination of Σ1

1 and Π1
1 formulas, so it is absolutely total Σ1

2 .

In continuation, note that, by Kondo’s uniformization, A is the projec-
tion of a uniform Π1

1 set B ⊆ N × 2ω . Let B =
⋃

ξ<ω1
Bξ be an ordinary

decomposition of B into pairwise disjoint Borel sets Bξ (called constituents).
There is a Σ1

1 formula β(w, x, y) and a Π1
1 formula β′(w, x, y) such that

(A) if ξ < ω1 and w ∈ WOξ then

Bξ = {〈x, y〉 : β(w, x, y)} = {〈x, y〉 : β′(w, x, y)}.

We put Aξ = projBξ ; then A =
⋃

ξ<ω1
Aξ and all sets Aξ are Borel, and

moreover Aξ is ∆1
1(w) whenever w ∈ WOξ , because

30



(B) if ξ < ω1 and w ∈ WOξ then

x ∈ Aξ ⇐⇒ ∃ y β(w, x, y)
︸ ︷︷ ︸

α(w,x)

⇐⇒ ∃ y ∈ ∆1
1(x,w) β

′(w, x, y)
︸ ︷︷ ︸

α′(w,x)

,

where α(·, ·) is a Σ1
1 formula while α′(·, ·) is a Π1

1 formula.

Case 1 : There is an ordinal ξ < ω1 such that Aξ is not {F1, . . . ,Fn}-σ-
bounded. Then we have (II) of the theorem by Theorem 11.1.

Case 2 : All sets Aξ are {F1, . . . ,Fn}-σ-bounded. We claim that, under
this assumption, if ξ < ω1 then the set Aξ is L-{F1, . . . ,Fn}-σ-bounded in
the sense of (I) of Theorem 13.1, hence (I) of Theorem 13.1 holds for A.

To prove the claim, fix ξ < ω1 .
The set Aξ = {x : α(w, x)} = {x : α′(w, x)} (for any w ∈ WOξ ) is es-

sential ∆1
1(ξ). The relations Fj are just ∆1

1 . By Theorem 10.1 and Propo-
sition 13.2 there exist Borel sets Y1, . . . , Yn,Xn+1 ⊆ N satisfying (i), (ii)
of Theorem 10.1 for X = Aξ , and essential (∆1

1/∆
1
2)(ξ). Thus Xn+1 is

σ-bounded, each set Yj is a σ-Fj-class, and Aξ ⊆ Y1 ∪ · · · ∪ Yn ∪Xn+1 .
Now the claim and Theorem 13.1 immediately follow from:

Lemma 13.3. If y ∈ Xn+1 then there is a real a ∈ L such that y ≤∗ a.

Proof (Lemma). Let V be the whole set universe in which we prove the
lemma. Thus ξ < ωV

1 but not necessarily ξ < ωL

1 .

Case L1: ξ < ωL
1 . We assert that the set (Xn+1)

L = Xn+1 ∩ L is σ-
bounded in L. Indeed otherwise by Theorem 4.1 (relativized) there is a
superperfect tree T ∈ L such that [T ] ⊆ (Xn+1)

L in L. Then by Shoenfield
[T ] ⊆ Xn+1 in the universe, contrary to the σ-boundedness of Xn+1 .

Thus (Xn+1)
L is σ-bounded in L, so there is a real a ∈ L such that

if y ∈ (Xn+1)
L then y ≤∗ a. Then, again by Shoenfield, it is true in the

universe that if y ∈ Xn+1 then y ≤∗ a, as required.

Case L2: ξ ≥ ωL
1 . Recall that the set Xn+1 is essential (∆1

1/∆
1
2)(ξ), via

a certain absolutely total Σ1
2 map h(w) = w̄ and formulas χ(·, ·) of type

Σ1
1 and χ′(·, ·) of type Π1

1 , as in Definition 12.4, so that

(C) if w ∈ WOξ then Xn+1 = {x : χ(w̄, x)} = {x : χ′(w̄, x)}.

Let f, g ∈ ξω be collapse functions generic over V, such that the pair 〈f, g〉

is generic over V as well. Then ξ < ω
L[f ]
1 and ξ < ω

L[g]
1 . For Xn+1 being

σ-bounded is a Σ1
2 formula (make use of (C) and Corollary 9.3), hence by

Shoenfield it is true in L[f ] that the set

(Xn+1)
L[f ] = {x ∈ L[f ] : χ(w̄, x)} = {x ∈ L[f ] : χ′(w̄, x)}
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(w ∈ WOξ ∩ L[f ] is arbitrary) is σ-bounded. Thus there is a real x ∈
N ∩ L[f ] such that y ≤∗ x for all y ∈ (Xn+1)

L[f ] . Then again by the
Shoenfield absoluteness y ≤∗ x holds even for all y ∈ (Xn+1)

L[f,g] .
In particular if y ∈ (Xn+1)

L[g] then y ≤∗ x.
On the other hand, as f, g are mutually generic, one can show that if

x ∈ N ∩ L[f ], y ∈ N ∩ L[g], and y ≤∗ x then there is a real a ∈ N ∩ L

with y ≤∗ a ≤∗ x. We conclude that if y ∈ (Xn+1)
L[g] then there is a real

a ∈ L such that y ≤∗ a. Now, as ωL
1 ≤ ξ < ω

L[g]
1 , there exists a sequence

{an}n<ω ∈ L[g] such that N ∩ L = {an : n < ω}. Therefore we have

∀ y ∈ (Xn+1)
L[g] ∃n (y ≤∗ an)

in L[g], and hence by Shoenfield ∀ y ∈ (Xn+1)
V[g] ∃n (y ≤∗ an) in V[g].

But as ξ < ωV
1 , there is a sequence {bn}n<ω ∈ V such that N ∩ L = {bn :

n < ω}. Then we have ∀ y ∈ (Xn+1)
V[g] ∃n (y ≤∗ bn) in V[g], and by

Shoenfield ∀ y ∈ Xn+1 ∃n (y ≤∗ bn) in V, and so on. (Lemma)

(Theorem 13.1 sans (I)b)

14 The case of Σ1
2 sets: proof of the second part

To demonstrate that the abridged version of Theorem 13.1 implies the full
version, it suffices to prove the following theorem.

Theorem 14.1. Assume that, in the ground set universe V,

(∗) ρ < ωL
1 , ξ < ω1 , E is an equivalence relation on N in ∆1

1 ∩Π0
1+ρ ,

∅ 6= C ⊆ N is a σ-E-class and a set essential (∆1
1/∆

1
2)(ξ).

Then each E-class X ⊆ C is a set in [Kρ].

Any essential (∆1
1/∆

1
2)(ξ) set is essential ∆1

2(ξ), and hence ∆HC
1 (ξ).

(Recall that HC is the set of all hereditarily countable sets.) This simple
fact will allow us to make use of the following result, explicitly proved in [8]
(Lemma 4) on the base of ideas and technique developed in [29, 30].

Proposition 14.2. Let X,Y ⊆ N are two disjoint sets in ΣHC
1 (ω1) (that

is, ΣHC
1 with any finite number of parameters in ω1). Suppose that ρ < ωL

1

and X is Π0
1+ρ-separable from Y . Then there is a separating set in [Kρ].

In particular if Z ⊆ N is a set in ∆HC
1 ∩Π0

1+ρ then Z ∈ [Kρ].

For instance, if ρ = 0, so that Π0
1+ρ = closed sets, then the result takes

the form: any closed ∆HC
1 set Z ⊆ N has a code in the set
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K0 = {〈T, d〉 ∈ K : |T | = 0 (hence just T = {Λ}) ∧ supT ≤ ω},

but this can be easily established directly.
Thus sets essential (∆1

1/∆
1
2)(ξ), ξ < ω1 , even those essential ∆1

2(ξ),
admit a straight Borel coding by (not necessarily countable) codes in L.

Proof (Theorem 14.1). Assume that ρ, ξ , E , C are as in (∗) above. Then
C is Σ0

1+ρ+1 , therefore by Lemma 14.4 C belongs to [Kρ+2] in V. We’ll
show now that an appropriate coding can be chosen in absolute manner.

Remark 14.3. Suppose that our set C is essential (∆1
1/∆

1
2)(ξ), via an

absolutely total Σ1
2 map h and formulas χ, χ′ as in Definition 12.3. Then

the following is true in the ground universe V:

(†) if v,w ∈ WOξ and x ∈ N then

χ(x, h(v)) ⇐⇒ χ(x, h(w)) ⇐⇒ χ′(x, h(v)) ⇐⇒ χ′(x, h(w)).

If we eliminate h by a formula σ as in Definition 12.3 then (†) becomes a Π1
2

sentence. Therefore (†) is true in any extension V[G] of V by Shoenfield,

and moreover, in any generic extension L[G] of L such that ξ < ω
L[G]
1 . This

allows us to unambiguously define extensions hV[G] of h (a total map) and
CV[G] of C to V[G], using the same formulas, so that CV[G] is an essential

(∆1
1/∆

1
2)(ξ) set in V[G] still via hV[G] , χ, χ′ . Then, assuming ξ < ω

L[G]
1 , we

define associated restrictions hL[G] = hV[G]∩L[G] and CL[G] = CV[G]∩L[G]
to L[G], so that CL[G] is essential (∆1

1/∆
1
2)(ξ) in L[G] via hL[G] , χ, χ′ , too.

And as E is a ∆1
1 equivalence relation in V, then, even easier, we define

an extension E
V[G] of E to V[G], using the same formulas which define E,

so that E
V[G] is a ∆1

1 equivalence relation in V[G] by Shoenfield, and then
define E

L[G]=E
V[G] ∩L[G] (a ∆1

1 equivalence relation in L[G]).

Lemma 14.4. C absolutely belongs to [Kρ+2], in the sense that there is
a code 〈T, d〉 ∈ Kρ+2 such that we have CV[G] = [T, d] in any set generic
extension V[G] of the universe V.

Note that then by Shoenfield the equality CL[G] = [T, d] also holds in

any generic extension L[G] of L such that ξ < ω
L[G]
1 .

Proof (Lemma). Let a map f : ω
onto
−→ ωL

ρ+1 be collapse generic over V.

Let CV[f ] ∈ V[f ] be the extension of C to V[f ], as above. Then CV[f ]

is essential (∆1
1/∆

1
2)(ξ) in V[f ], and hence by Proposition 14.2 there is a

code 〈T, d〉 ∈ Kρ such that CV[f ] = [T, d] in V[f ]. To prove, that this code
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witnesses that C absolutely belongs to [Kρ], consider any generic extension
V[G]. It can be assumed that G is generic even over V[f ].

Let CV[G] , CV[f,G] be the extensions of C (a set in V) to resp. V[G] ,
V[f,G] (see Remark 14.3). The code 〈T, d〉 is countable in V[f ] and in
V[f,G] by the choice of f . Therefore the equality CV[f ] = [T, d] can be
expressed by a Shoenfield-absolute formula. We conclude that CV[f,G] =
[T, d] holds in V[f,G], hence CV[G] = [T, d] is true in V[G] as well as easily
CV[G] = CV[f,G] ∩V[G] and [T, d]V[G] = [T, d]V[f,G] ∩V[G]. (Lemma)

It follows that there is a code 〈T0, d0〉 ∈ Kρ+2 such that [T0, d0] = CV[G]

in any extension V[G] of V, and hence we obtain by Shoenfield:

Corollary 14.5. In any set-generic extension V[G] of V, [T0, d0] is a σ-
E
V[G]-class containing only those E

V[G]-classes presented in [T0, d0]∩V.

We continue with a few definitions.
If 〈T, d〉 , 〈T ′, d′〉 ∈ K then let 〈T, d〉 4 〈T ′, d′〉 mean that [T, d] ⊆ [T ′, d′]

in any set generic extension L[G] of L. Then, using appropriate collapse
extensions, we conclude by Shoenfield, that [T, d] ⊆ [T ′, d′] also holds in any
set generic extension V[G] of the ground universe V, including V itself.

Say that a code 〈T, d〉 ∈ K is “essentially non-empty” if [T, d] 6= ∅ in
at least one set-generic extension of L. By Shoenfield, this is equivalent to

[T, d] 6= ∅ in some/any extension L[G] with supT < ω
L[G]
1 .

Let P ∈ L be the forcing notion which consists of all “essentially non-
empty” codes 〈T, d〉 ∈ K such that 〈T, d〉 4 〈T0, d0〉 and supT ≤ ωL

ρ+2 . We
order P by 4, and 〈T, d〉 4 〈T ′, d′〉 is understood as 〈T, d〉 being a stronger
forcing condition.

In particular condition 〈T0, d0〉 itself, as in Corollary 14.5, belongs to P.

Lemma 14.6. P forces a real over L, so that if a set G ⊆ P is generic
over L then the intersection

⋂

〈T,d〉∈G[T, d] contains a single real in L[G].

Proof. If u ∈ ω<ω is a string of length n = lhu then let T u = {Λ} and
let du consist of all pairs 〈Λ, v〉 such that v ∈ ω<ω , v 6= u, lh v = n. Then
〈T u, du〉 ∈ P and [T u, du] = Nu = {a ∈ N : u ⊂ a}. By the genericity,
for any n there is a inuque u = u[n] ∈ ω<ω such that lhu[n] = n and
〈T u[n], du[n]〉 ∈ G, and in addition u[n] ⊂ u[m] whenever n < m. It follows
that there is a real xG =

⋃

n u[n] ∈ L[G] such that xG ↾n = u[n], and hence
xG ∈ [T u[n], du[n]], ∀n. We claim that if 〈T, d〉 ∈ P then 〈T, d〉 ∈ G iff
xG ∈ [T, d] in L[G]; this obviously proves the lemma.

We prove the claim by induction on the rank |T |.
Suppose that |T | = 0, so that T = {Λ}, d ⊆ {Λ} × ω<ω , and [T, d] =

N r
⋃

v∈U Nv , where U = {v ∈ ω<ω : 〈Λ, v〉 ∈ d}. We assert that
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(1) any 〈T ′, d′〉 ∈ P is compatible, in P, either with 〈T, d〉 or with one of
the codes 〈T v, dv〉, where v ∈ U — therefore either 〈T, d〉 or one of
the codes 〈T v, dv〉, v ∈ U , belongs to G.

Indeed we have [T, d] = N r
⋃

v∈U [T
v, dv] in any universe.

With (1) in hands, if v ∈ U and 〈T v, dv〉 ∈ G then on the one hand
〈T, d〉 6∈ G by (1), and on the other hand, obviously v = u[n], where n =
lh v , so that xG ∈ [T v, dv] and xG 6∈ [T, d]. Conversely, if there is no v ∈ U
with 〈T v, dv〉 ∈ G then on the one hand 〈T, d〉 ∈ G by (1), and on the other
hand, xG 6∈

⋃

v∈U [T
v, dv ], so that xG ∈ [T, d].

To carry out the step, suppose that |T | > 0. Let Ξ = {ξ : 〈ξ〉 ∈ T}
(where 〈ξ〉 is a one-term string). If ξ ∈ Ξ then let

T ξ = {s ∈ Ord<ω : ξ∧s ∈ T} and dξ = {〈s, v〉 : 〈ξ∧s, v〉 ∈ d} .

Thus each 〈T ξ, dξ〉 is a code in P, |T ξ| < |T |, and [T, d] = N r
⋃

ξ∈Ξ[T
ξ, dξ ]

in any universe containing 〈T, d〉. Similarly to (1) above, we have

(2) any 〈T ′, d′〉 ∈ P is compatible, in P, either with 〈T, d〉 or with one of
the codes 〈T ξ, dξ〉, where ξ ∈ Ξ — therefore either 〈T, d〉 or one of
the codes 〈T ξ, dξ〉, ξ ∈ Ξ, belongs to G.

Now, if ξ ∈ Ξ and 〈T ξ, dξ〉 ∈ G then on the one hand 〈T, d〉 6∈ G by (2),
and on the other hand, xG ∈ [T ξ, dξ] by the inductive hypothesis, and hence
xG 6∈ [T, d]. Conversely, if there is no ξ ∈ Ξ with 〈T ξ, dξ〉 ∈ G then on the
one hand 〈T, d〉 ∈ G by (2), and on the other hand, xG 6∈

⋃

ξ∈Ξ[T
ξ, dξ], by

the inductive hypothesis, so that xG ∈ [T, d].

Reals of the form xG = the only element of
⋂

〈T,d〉∈G[T, d] in L[G],
where G ⊆ P is P-generic, e.g., over V, will be called P-generic over V,
too. Let x be a canonical P-name for xG . Let xleft , xright be canonical
(P × P)-names for the left and the right copies of xG .

Let E be a canonical P-name for the extension E
V[G] or E

L[G] of E to
any class like L[G] or V[G], G being generic.

Definition 14.7. A code 〈T, d〉 ∈ P is stable if condition (〈T, d〉 ; 〈T, d〉)
(P × P)-forces, over L, that xleft E xright .

Lemma 14.8. If 〈T, d〉 ∈ P is stable then there is an element y ∈ C =
[T0, d0] ∩V such that 〈T, d〉 P-forces, over V, that x E y .

Proof. By Corollary 14.5 the contrary assumption leads to a pair of con-
ditions 〈T ′, d′〉 4 〈T, d〉 and 〈T ′′, d′′〉 4 〈T, d〉 in P and elements y′, y′′ ∈
[T0, d0] ∩V such that
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〈T ′, d′〉 P-forces x E y′ , and 〈T ′′, d′′〉 P-forces x E y′′ — over V,

and y′ 6E y′′ . To get a contradiction consider a set G′ ×G′′ , (P × P)-generic
over V, and containing condition (〈T ′, d′〉 ; 〈T ′′, d′′〉). Then, on the one hand,
the generic reals xG′ and xG′′ satisfy xG′ E

V[G′] y′ and xG′′ E
V[G′] y′′ , but

on the other hand, xG′ E
V[G′,G′′] xG′′ holds by stability. Therefore y′ E y′′ ,

which contradicts to the choice of y′ , y′′ .

Lemma 14.9. The set of all stable conditions 〈T, d〉 ∈ P is dense in P.

Proof. By definition cardP = ωL

ρ+3 and cardP(P) = ωL

ρ+4 in L. Consider

an extension V[g] by a collapse-generic map g : ω
onto
−→ ωL

ρ+4 . Then, in V[g],
there is an enumeration {Dn}n<ω of all dense sets D ⊆ P× P , D ∈ L.

Now suppose towards the contrary that 〈T ∗, d∗〉 ∈ P and there is no
stable 〈T, d〉 4 〈T ∗, d∗〉 in P. Then for any condition 〈T, d〉 4 〈T ∗, d∗〉 there
are stronger conditions 〈T ′, d′〉 4 〈T, d〉 and 〈T ′′, d′′〉 4 〈T, d〉 such that
(〈T ′, d′〉 ; 〈T ′′, d′′〉) (P× P)-forces ¬ xleft E xright over L. This allows to
define, in V[g], a family {〈T (u), d(u)〉}u∈2<ω of conditions in P satisfying
〈T (Λ), d(Λ)〉 = 〈T ∗, d∗〉, and in addition

(i) 〈T (u∧i), d(u∧i)〉 4 〈T (u), d(u)〉 for each i = 0, 1 and u ∈ ω<ω ,

(ii) if u 6= v are of length n+ 1 then (〈T (u), d(u)〉 ; 〈T (v), d(v)〉) ∈ Dn ,

(iii) if u ∈ 2<ω then the condition (〈T (u∧0), d(u∧0)〉 ; T (u∧1), d(u∧1))
(P× P)-forces ¬ xleft E xright over L.

Then, in V[g], if a ∈ 2ω then the intersection
⋂

n[T (a↾n), d(a↾n)] contains a
single point xa ∈ [T ∗, d∗] by Lemma 14.6, and if a 6= b then ¬ (xa E

V[g] xb).
But by construction [T ∗, d∗] ⊆ [T0, d0] in V[g], so that [T0, d0] contains
uncountably many E

V[g]-classes in V[g] — a contradiction to Corollary 14.5.

Let H be the set of all codes 〈T, d〉 ∈ Kρ such that the ωL
ρ+4-collapse

forcing notion Coll(ωL
ρ+4) = (ωL

ρ+4)
<ω forces, over L, that

[T, d] ⊆ [T0, d0] and [T, d] is an E-equivalence class.

Lemma 14.10. If 〈T, d〉 ∈ H then it is true in in the ground set universe
V that [T, d] ⊆ [T0, d0] and [T, d] is a E-class.

Proof. By definition this is true for Coll(ωL
ρ+4)-generic extensions of L —

hence by Shoenfield also for all generic extensions V[G] in which ωL
ρ+4 is

countable, and then, by quite obvious downward absoluteness, for V.

36



Lemma 14.11. H 6= ∅.

Proof. By Lemma 14.11 there is a stable condition 〈T ′, d′〉 ∈ P. Using
an ωL

ρ+4-enumeration of all dense sets D ⊆ P in L, we easily get a code

〈T ∗, d∗〉 ∈ K such that supT ∗ ≤ ωL
ρ+4 and

[T ∗, d∗] = {x ∈ [T ′, d′] : x is P-generic over L}

in any class V[G]. Lemma 14.8 implies that all elements x ∈ [T ∗, d∗] in
V[G] are E

V[G]-equivalent to each other and to some y∗ ∈ [T0, d0] ∩V.

Let g : ω
onto
−→ ωL

ρ+4 be a collapse-generic map. We argue in V[g]. By a
simple cardinality argument, [T ∗, d∗] 6= ∅ in V[g], and [T ∗, d∗] consists of
pairwise E

V[g]-equivalent elements by the above. This allows us to define

Z = {z : ∃x ∈ [T ∗, d∗] (x E
V[g] z)} = {z : ∀x ∈ [T ∗, d∗] (x E

V[g] z)} .

in V[g], so that it is true in V[g] that Z is an entire EV[g]-equivalence class,
which includes [T ∗, d∗], hence, has a non-empty intersection with [T ′, d′] ⊆
[T0, d0], therefore Z ⊆ [T0, d0] as [T0, d0] is an σ-EV[g]-class in V[g] by (∗).

It follows that Z is Π0
1+ρ in V[g]. Moreover, by the choice of g it is true

in V[g] that 〈T ∗, d∗〉 ∈ L ∩ HC, and hence 〈T ∗, d∗〉 is ∆HC
1 (η) in V[g] for

an ordinal η < ω
V[g]
1 . (Indeed let η be the first ordinal such that 〈T ∗, d∗〉

is the η-th set in the Gödel construction of L.) Then Z is ∆HC
1 (η) in V[g].

Therefore by Proposition 14.2 that there is a code 〈T, d〉 ∈ Kρ such that
Z = [T, d] in V[g]. Let us demonstrate that 〈T, d〉 ∈ H .

Consider a collapse-generic map g′ : ω
onto
−→ ωL

ρ+4 ; we can assume that g′

is Coll(ωL

ρ+4)-generic even over V[g]. We have to prove that

(‡) in L[g′]: [T, d] ⊆ [T0, d0] and [T, d] is an E
L[g′]-equivalence class.

Recall that by construction Z = [T, d] ⊆ [T0, d0] and [T, d] is an E
V[g]-class

in V[g]. But the Borel codes involved are countable in both classes V[g]
and L[g′]. This implies (‡) by Shoenfield.

Now we have gathered everything necessary to end the proof of the
theorem in a few lines. It suffices to prove that C = [T0, d0] ⊆

⋃

〈T,d〉∈H [T, d]
in V. Suppose tovards the contrary that this is not the case.

The set H ⊆ Kρ belongs to L and cardH ≤ ωL
ρ+1 in L, of course.

As 〈T0, d0〉 ∈ Kρ+2 , we can easily define a code 〈T1, d1〉 ∈ Kρ+2 such that
[T1, d1] = [T0, d0]r

⋃

〈T,d〉∈H [T, d] in any universe, and hence [T1, d1] 6= ∅ in
V by the contrary assumption, and still [T1, d1] is a σ-E-class in V since so
is C = [T0, d0] while each [T, d] , 〈T, d〉 ∈ H , is a E-class by Lemma 14.10.
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In other words, the code 〈T1, d1〉 4 〈T0, d0〉 has the same properties (see
Corollary 14.5) as 〈T0, d0〉 does. In fact by exactly the same arguments as
above, but with the forcing notion P1 = {〈T, d〉 ∈ P : 〈T, d〉 4 〈T1, d1〉}, the
set H1 of all codes 〈T, d〉 ∈ H such that the Coll(ωL

ρ+4) forces “[T, d] ⊆
[T0, d0]” over L, is non-empty. (Compare Lemma 14.11.) Let 〈T, d〉 ∈
H1 . Then ∅ 6= [T, d] ⊆ [T1, d1] in V (similarly to Lemma 14.10), which
contradicts to the definition of 〈T1, d1〉.

(Theorem 14.1)

(Theorem 13.1, full version)

15 OD sets in Solovay’s model: generalizations

It is a rather common practice that results like Theorems 4.1 and 5.1 gen-
eralize this or another way in the Solovay model. 5 We’ll prove below the
following such generalizations of our main results. Recall that OD means
ordinal-definable, and also denotes the class of all ordinal-definable sets.

Theorem 15.1. The following is true in the Solovay model. If A ⊆ N is
an OD set then one and only one of the next two claims (I), (II) holds:

(I) A is OD-effectively σ-bounded, so that there exists an OD sequence
{Tξ}ξ<ωL

1
of compact trees Tξ ⊆ ω<ω such that A ⊆

⋃

ξ[Tξ] ;

(II) there is a superperfect set Y ⊆ A.

Here conditions (I) and (II) are incompatible. Indeed, the union U in
(I) is countable, hence the set U is σ-compact. Therefore if Y is a set as is
(II) then Y cannot be covered by U .

Note that condition (I) cannot be strengthened to the form that there
is an OD sequence {Tn}n∈ω of compact trees Tn ⊆ ω<ω such that A ⊆
⋃

n[Tn]. For a counterexample take A = N ∩ L (all constructible reals).
This is a countable set in the Solovay model, hence (I) of Theorem 15.1 holds
and (II) fails, but the existence of an OD (hence, constructible) sequence of
trees as indicated is clearly impossible.

Theorem 15.2. The following is true in the Solovay model. If A ⊆ N is
an OD set then one and only one of the next two claims (I), (II) holds:

5By the Solovay model we’ll always mean a model of ZFC, a generic extension of L

introduced in [27], in which all projective sets are Lebesgue measurable, rather than the
other model of [27], in which only ZF+DC holds but all sets of reals are measurable.
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(I) A is OD-effectively σ-compact, so that there exists an OD sequence
{Tξ}ξ<ωL

1
of compact trees Tξ ⊆ ω<ω such that A =

⋃

ξ[Tξ] ;

(II) there is a set Y ⊆ A homeomorphic to N and relatively closed in A.

The proof of both theorems follows in the next section.
Let’s start with some definitions and a couple of special results related

to the Solovay model. If Ω is an ordinal then by Ω-SM we denote the fol-
lowing sentence: “Ω = ω1 , Ω is strongly inaccessible in L, the constructible
universe, and the whole universe V is a generic extension of L via a known
collapse forcing Coll(ω, < Ω), as in [27]”. Thus Ω-SM says that the universe
is a Solovay-type extension of L.

Lemma 15.3 (assuming Ω-SM). If X is a countable OD set then there

exist an ordinal λ < Ω and an OD 1− 1 map f : λ
onto
−→ X .

Proof. Let F : Ord
onto
−→ OD be a canonical OD map. Recall that under

Ω-SM the universe is a homogeneous generic extension of L. Therefore the
relations F (ξ) ∈ X and F (ξ) = F (η) (with arguments ξ, η) are OD.

Definition 15.4 (assuming Ω-SM). Let P be the collection of all non-
empty OD sets Y ⊆ N . We consider P as a forcing notion (smaller sets
are stronges conditions). A set G ⊆ P is P-generic over OD if it non-
emptily intersects every OD dense set D ⊆ P.

Proposition 15.5 (see, e.g., [11]). Assuming Ω-SM, if a set G ⊆ P is
P-generic then the intersection

⋂
G = {aG} consists of a single real.

As the set P is definitely uncountable, the existence of P-generic sets
does not immediately follow from Ω-SM by a cardinality argument. Yet
fortunately P is locally countable, in a sense.

Definition 15.6 (assuming Ω-SM). A set X ∈ OD is OD-1st-countable if
the OD power set POD(X) = P(X) ∩OD is at most countable. 6

Let P∗ be the set of all OD-1st-countable sets X ∈ P.

For instance, assuming Ω-SM, the set X = N ∩OD = N ∩L of all OD
reals belongs to P∗ . Indeed POD(X) = P(X) ∩ OD = P(X) ∩ L, and
hence POD(X) admits an OD bijection onto the ordinal ωL

2 < ω1 .
The set Coh of all reals x ∈ N Cohen generic over L belongs to P∗

as well. Indeed if Y ⊆ Coh is OD and x ∈ Y then “x ∈ Y ” is Cohen-
forced over L. It follows that there is a set S ⊆ ω<ω , S ∈ L, such that

6Then the set P
OD(X) is not necessarily OD-countable. Take for instance X = ω .
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Y = X ∩
⋃

t∈S Nt . But the collection of all such sets S belongs to L and
has cardinality ω1 in L, hence, is countable under Ω-SM.

Proposition 15.7. Assuming Ω-SM, P∗ is dense in P, that is, if X ∈ P

then there is a set Y ∈ P∗ such that Y ⊆ X .

Proof (sketch, see details in [11]). For any ordinal λ, let Cohλ be the set
of all elements f ∈ λω , (λ<ω)-generic over L. Suppose that X ∈ P. Then
by definition X 6= ∅, hence, there is a real x ∈ X . Then it follows from
Ω-SM that there exist: an ordinal λ < ω1 = Ω, an element f ∈ Cohλ , and
an OD map H : λω → N , such that x = H(f). The set P = {f ′ ∈ Cohλ :
H(f ′) ∈ X} is then OD and non-empty (contains f ), and hence so is its
image Y = {H(f ′) : f ′ ∈ P} ⊆ X (contains x).

It remains to prove that Y ∈ P∗ . As H is an OD map, it is sufficient to
show that Cohλ is P∗ . But this is true by the same reasons as for the set
Coh (see just before Proposition 15.7).

Remark 15.8. One may want to know whether Theorem 11.1 also admits
a version similar to Theorem 15.1 — that is, for a finite sequence of OD
equivalence relations Fj and an OD set A in the Solovay model.

But here we have a grave obstacle just from the beginning. Indeed,
coming back to the derivation of 11.3 from Theorem 11.2, we’ll have to
prove that, in the Solovay model, any OD set E ⊆ N ×N with σ-bounded
sections splits into a countable union of OD sets with bounded sections.
But this claim fails even for sets with countable sections: consider e.g. the
Σ1

1 set E = {〈x, y〉 : y ∈ L[x]}.
Whether a more modest version holds in the Solovay model, with still

∆1
1 relations Fj and an OD set A, remains to be seen.

16 OD sets in Solovay’s model: proofs

Here we prove Theorems 15.1 and 15.2. The proofs strongly resemble those
in Section 4 and Section 5, hence we skip some details. There are two notable
differences. First, the Gandy – Harrington type of arguments is replaced by
the OD forcing, and second, various niceties related to classes Σ1

1 and ∆1
1

become obsolete as OD is a more robust definability class.

Proof (Theorem 15.1). We argue in the Solovay model , that is, we assume
Ω-SM. Consider an arbitrary OD set A ⊆ N . Let U be the union of all
sets of the form [T ], where T ⊆ ω<ω is a compact OD tree. Clearly the set
U and the difference A′ = Ar U are OD.
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Lemma 16.1. Under the conditions of Theorem 15.1, if Y ⊆ A′ is a
non-empty OD set then its topological closure Y in N is not compact.

Proof. If Y is compact then T = tree(Y ) is a compact OD tree, hence
Y ⊆ Y = [T ] ⊆ U , a contradiction to the assumption Y ⊆ A′ . (Lemma)

Case 1 : A′ = ∅, that is, A ⊆ U . To check (I) of Theorem 15.1, note
that under Ω-SM OD reals are the same as constructible reals, and hence
there is an OD enumeration of all OD trees by ordinals ξ < ωL

1 .

Case 2 : the set A′ = ArU is non-empty. By Proposition 15.7, there is
a set A′′ ⊆ A′ , A′′ ∈ P∗ . Then the power set P = POD(A′′) = P(A′′)∩OD
is at most countable. By Lemma 15.3, there exist an ordinal λ < Ω and an

OD map f : λ
onto
−→ P . But the power set POD(λ) is obviously countable,

therefore so is POD(P ). Fix an arbitrary enumeration {DOD
n }n∈ω of all

OD sets D ⊆ P = POD(A′′), dense in P∗ below A′′ . We assert that then
there is a system of non-empty OD sets Ys ⊆ A′ satisfying conditions (1),
(2), (3), (5) in Section 4, along with the following condition instead of (4):

(4od) if s ∈ ω<ω then Ys ∈ DOD
lh s .

If such a construction is accomplished then
⋂

m Ya↾m = {f(a)} for each

a ∈ N by Proposition 15.5, and f : N
onto
−→ Y = {f(a) : a ∈ N } is a

homeomorphism. Moreover the set Y is closed in N by exactly the same
reasons as in Section 4, and hence we have (II) of Theorem 15.1.

The construction of sets Ys goes on exactly as in Section 4, with the only
difference that Σ1

1 and Lemma 4.3 are replaced by OD and Lemma 16.1.

(Theorem 15.1)

Proof (Theorem 15.2). Assuming Ω-SM, consider any OD set A ⊆ N . Let
U be the union of all sets [T ], where T ⊆ ω<ω is a compact OD tree and
[T ] ⊆ A. The set U and the difference A′ = Ar U are OD.

By Theorem 15.1, we can w.l.o.g. assume that A is σ-bounded, and
hence if F ⊆ A is a closed set then F is σ-compact.

Lemma 16.2. If F ⊆ A′ is a non-empty OD set then F 6⊆ A.

Recall that F is the closure of a set F ⊆ N .

Proof. Suppose towards the contrary that ∅ 6= F ⊆ A′ is an OD set
but F ⊆ A. By the w.l.o.g. assumption above, F =

⋃

n Fn is σ-compact,
where all Fn are compact. There is a Baire interval Ns such that the set
X = Ns ∩ F is non-empty and X ⊆ Fn for some n. Thus X ⊆ A is a
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non-empty compact OD set, hence by definition X ⊆ U and A′ ∩X = ∅.
In other words, Ns ∩ F ∩ A′ = ∅. It follows that Ns ∩ F = ∅ (because
F ⊆ A′), which contradicts to X = Ns ∩ F 6= ∅. (Lemma)

We come back to the proof of Theorem 15.2.

Case 1 : A′ = ∅, that is, A = U . This implies (I) of the theorem.

Case 2 : A′ 6= ∅. As in the proof of Theorem 15.1, choose a set A′′ ⊆
A′ , A′′ ∈ P∗ , and fix an arbitrary enumeration {DOD

n }n∈ω of all OD sets
D ⊆ P = POD(A′′), dense in P∗ below A′′ . To get a set Y ⊆ A′′ , relatively
closed in A and homeomorphic to N , we make use of a system of non-empty
OD sets Ys ⊆ A′′ satisfying conditions (1), (2), (3) in Section 4, (4od) as in
the proof of Theorem 15.1, and (5′) in Section 5.

If such a system of sets is defined , then the associated map f : N → A′′

is 1− 1 and is a homeomorphism from N onto its full image Y = ran f =
{f(a) : a ∈ N } ⊆ A′′ . In addition, the set Y is relatively closed in A by
the same arguments (based on condition (5′)) as in Section 5, and hence we
have (II) of Theorem 15.2. The construction of sets Ys also goes on as in
Section 5, but we have to apply Lemma 16.2 instead of Lemma 5.3.

(Theorem 15.2)
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