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WEAKLY PRECOMPLETE COMPUTABLY ENUMERABLE

EQUIVALENCE RELATIONS

SERIKZHAN BADAEV AND ANDREA SORBI

Abstract. Using computable reducibility ≤ on equivalence relations, we investigate weakly pre-
complete ceers (a “ceer” is a computably enumerable equivalence relation on the natural numbers),
and we compare their class with the more restricted class of precomplete ceers. We show that there
are infinitely many isomorphism types of universal (in fact uniformly finitely precomplete) weakly
precomplete ceers , that are not precomplete; and there are infinitely many isomorphism types of
non-universal weakly precomplete ceers. Whereas the Visser space of a precomplete ceer always
contains an infinite effectively discrete subset, there exist weakly precomplete ceers whose Visser
spaces do not contain infinite effectively discrete subsets. As a consequence, contrary to precomplete
ceers which always yield partitions into effectively inseparable sets, we show that although weakly
precomplete ceers always yield partitions into computably inseparable sets, nevertheless there are
weakly precomplete ceers for which no equivalence class is creative. Finally, we show that the index
set of the precomplete ceers is Σ0

3-complete, whereas the index set of the weakly precomplete ceers
is Π0

3-complete. As a consequence of these results, we also show that the index sets of the uniformly
precomplete ceers and of the e-complete ceers are Σ3-complete.

1. Introduction

Precomplete equivalence relations, introduced by Mal’cev [13], and extensively studied by Er-
shov [9], play an important role in computability theory, and in the theory of numberings. Recall
that an equivalence relation E on the set of natural numbers ω is precomplete if there exists a total
computable function f(e, x), called an E-totalizer, such that for all e, x,

ϕe(x)↓⇒ ϕe(x) E f(e, x),

or, equivalently, thanks to the Ershov Fixed Point Theorem [9], there exists a total computable
function g, such that, for all e,

ϕe(g(e))↓⇒ ϕe(g(e)) E g(e).

A natural extension of precompleteness was proposed by Badaev [2], by weakening the above fixed
point property:

Definition 1.1. [2] An equivalence relation E is weakly precomplete if there exists a partial com-
putable function fix such that, for all e,

ϕe total⇒ [fix(e)↓ &ϕe(fix(e)) E fix(e)].
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2 S. BADAEV AND A. SORBI

This paper is almost entirely dedicated to the study of weakly precomplete computably enumerable
equivalence relations. Recall that a computably enumerable equivalence relation is also called a
ceer, or (in the Russian literature) a positive equivalence relation.

Precomplete ceers have been studied in several papers, of which, particularly relevant to our pur-
poses are [1, 2, 3, 4, 5, 8, 11, 12, 14, 15, 18, 20]. For important examples of precomplete ceers that
naturally arise in logic, see e.g. [20]. Precomplete ceers have been also investigated in relation to
the following reducibility ≤ on equivalence relations, due to Ershov [9]: given equivalence relations
R,S on ω, say that R is reducible to S, if there is a computable function f such that, for all x, y,

x R y ⇔ f(x) S f(y).

It was shown in [5] that every nontrivial (i.e., different from ω2) precomplete ceer S is universal
with respect to the class of ceers, i.e., for every ceer R, one has R ≤ S. Lachlan [12] proved that
any two nontrivial precomplete ceers R,S are isomorphic (notation: R ' S), i.e., there exists a
computable permutation f of ω such that R ≤ S via f (and, consequently, S ≤ R via f−1).

On the other hand, weakly precomplete ceers have not been extensively studied. A first useful
observation is:

Lemma 1.2. A ceer E is weakly precomplete if and only if

(∀e)[ϕe total ⇒ (∃n)[ϕe(n) E n]].

Proof. (⇐) Under the assumption, the partial function fix, defined by

fix(e) = first n [ϕe(n)↓ E n],

is computable, and witnesses the fact that E is weakly precomplete.

(⇒) On the other hand, if fix is a partial computable function witnessing that E is weakly precom-
plete, then, given e, if ϕe is total we have that fix(e) is the desired fixed point for ϕe, modulo E:
this shows the claim. �

Definition 1.3. We say that a total function d is a diagonal function for an equivalence E if, for
every x, d(x) ��E x.

Corollary 1.4. A ceer E is weakly precomplete if and only if E has no computable diagonal
function.

Proof. Immediate. �

Contrary to the fact that all nontrivial precomplete ceers fall into a unique isomorphism type, it is
known [2], that there are infinitely many distinct isomorphism types of weakly precomplete ceers.

Montagna [15] proposed the following definition, where, given a set X and an equivalence relation
E, we define

[X]E = {x : (∃y ∈ X)[x E y]} :

Definition 1.5. [15] An equivalence relation E is uniformly finitely precomplete (abbreviated as
u.f.p.) if there exists a total computable function f(D, e, n) (where D is a finite set given by its
canonical index) such that, for all D, e, n,

ϕe(n)↓∈ [D]E ⇒ ϕe(n) E f(D, e, n).
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Clearly, every precomplete equivalence relation is also u.f.p., and it can be shown, see [15], that
nontrivial u.f.p. ceers are universal. Another important class of u.f.p. ceers is provided by the e-
complete ceers, i.e., the u.f.p. ceers E which possess a computable diagonal function. Montagna [15],
and independently Lachlan [12], proved that if R,S are e-complete ceers, then R ' S, hence, as for
nontrivial precomplete ceers, e-complete ceers forms a single isomorphism type. By Corollary 1.4
it follows:

Corollary 1.6. [4] Every u.f.p. ceer is either e-complete or weakly precomplete.

Shavrukov [18] showed that there are u.f.p. ceers that are neither precomplete nor e-complete.

Remark 1.7. Unless otherwise specified, in the following, all ceers will be understood to be non-
trivial.

We shall use the symbol Id to denote the equivalence relation =.

Following [1], we say that a sequence {Rs : s ∈ ω} of equivalence relations on ω is a computable
approximation to a ceer R, if

(1) the set {〈x, y, s〉 : x Rs y} is computable;
(2) R0 = Id;
(3) for all s, Rs ⊆ Rs+1; the equivalence classes of Rs are finite; there exists at most one pair

[x]Rs , [y]Rs of equivalence classes, such that [x]Rs ∩ [y]Rs = ∅, but [x]Rs+1 = [y]Rs+1 (we say
in this case that the equivalence relation R-collapses x and y at stage s+ 1);

(4) R =
⋃

tR
t.

1.1. A little excursus into numberings. Recall that a numbered set is a pair 〈ν, S〉, where S
is a nonempty countable set, and ν : ω −→ S is a numbering, i.e. an onto function. A morphism
of two numbered sets 〈ν1, S1〉 and 〈ν2, S2〉 is a function µ : S1 −→ S2, for which there exists a
computable function f , such that ν2 ◦f = µ◦ν1 (we say that f induces µ). For more on the theory
of numberings the reader is invited to look at [9], or [10].

Given an equivalence relation E on ω, let 〈νE , SE〉 be the numbered set in which SE = {[x]E : x ∈ ω}
is the set of equivalence classes of E, and νE : ω −→ SE is given by νE(x) = [x]E . If R and E are
equivalence relations and µ is a morphism of the numbered sets 〈νR, SR〉 and 〈νE , SE〉, we will also
write µ : R −→ E.

It is immediate to see that, for ceers R,E, one has that R ≤ E if and only if there exists a
monomorphism, i.e. 1-1 morphism µ : R −→ E. Similarly, if R ' E then there exists a 1-1 and
onto morphism µ : R −→ E; moreover, the converse is true if the equivalence classes of R and
E are infinite. (The converse need not be true in general: for instance, let 2ω and 2ω + 1 be the
equivalence classes of R, and let {0} and ω r {0} be the equivalence classes of E; then there there
is 1-1 and onto morphism µ : R −→ E, but R 6' S, as is easily seen.)

2. Weakly precomplete ceers and universality

It is known, see [2], that there exist infinitely many weakly precomplete ceers which are pairwise not
isomorphic. Badaev’s construction in [2] was adapted by Shavrukov [18] to show that there exists
a u.f.p. ceer which is neither precomplete nor e-complete, thus showing that there is a universal
weakly precomplete ceer that is not precomplete.
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In this section, we show (Corollary 2.4) that there exist infinitely many pairwise non-isomorphic
weakly precomplete ceers, that are universal (in fact u.f.p.); and we show (Theorem 2.6) that there
exist infinitely many pairwise non-isomorphic weakly precomplete ceers, that are not universal.

These results are visualized in Figure 1 (we recall that all u.f.p. ceers are universal).

weakly precomplete ceers with diagonal functions

ℵ0 iso types

ℵ0 iso types

precomplete

single iso type

e-complete

single iso type

universal ceers

Figure 1. Weakly precomplete ceers vs. universal ceers (u.f.p. ceers are in gray)

2.1. Universal weakly precomplete ceers. We now prove a theorem, which implies (Corol-
lary 2.4) that there exist infinitely many non isomorphic u.f.p. ceers, thus implying both Badaev’s
result and Shavrukov’s result.

First, we recall, see [4]:

Definition 2.1. A strong diagonal function d for an equivalence relation E, is a total computable
function satisfying, for every finite set D,

d(D) /∈ [D]E .

Thus, if d is a strong diagonal function for E then there is an effective procedure for finding, given
any finite set D, a number which is not E-equivalent to any number in D. It is known, [4], that
every e-complete ceer has a strong diagonal function.

Theorem 2.2. If E is a ceer, such that E has a strong diagonal function, then there exist infinitely
many ceers {Ei : i ∈ ω} such that, for every i, j, and

E ⊆ Ei & [i 6= j ⇒ Ei 6' Ej ].

Proof. Let E be a given ceer, such that E has a strong diagonal function d.

The requirements. We want to construct a countable set {Ei : i ∈ ω} of ceers such that for every
i, E ⊆ Ei, and satisfying the requirements, for every i, j, k, with i 6= j,

Pi,j,k : ϕk is total ⇒ ϕk does not induce an isomorphism from Ei onto Ej .

Satisfaction of all requirements implies our claim, as for every isomorphism there is a total com-
putable function inducing it. The priority ordering of requirements is given by

Pi,j,k < Pi′,j′,k′ ⇔ 〈i, j, k〉 < 〈i′, j′, k′〉.
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Strategy to meet Pi,j,k. We describe the strategy to meet Pi,j,k in isolation, which is of course
implemented at certain stages s: hence Ei and Ej have to be understood as their approximations
Es

i and Es
j , respectively, and in particular at each such stage, [a0]Ei is a finite set:

(1) choose a witness b0;
(2) wait for a number a0 such that ϕk(a0)↓Ej b0;
(3) let a1 = d([a0]Ei), and wait for ϕk(a1)↓;
(4) if, say, ϕk(a1) = b1 then Ej-collapse b0 and b1, and restrain a0 ��Ei a1.

Outcomes for the strategy to meet Pi,j,k. Here are the outcomes of the strategy:

(i) if we wait forever at (2), then we meet Pi,j,k since ϕk, even if total, does not induce an onto
morphism;

(ii) if we wait forever at (3), then we win Pi,j,k since ϕk is not total;
(iii) if we act in (4), then we win Pi,j,k since ϕk, even if total, does not induce a monomorphism.

Interactions between strategies. Let P = Pi,j,k and P ′ = Pi′,j′,k′ be two requirements, and let
us look at how P and P ′ interact: suppose that P < P ′.

Each strategy may want to restrain two equivalence classes from collapsing with each other, in
order to have the winning outcome (iii). So, suppose that P wants to restrain a0 ��Ei a1: notice that
P ′ may want to Ei-collapse a0 and a1 only if j′ = i. When P makes the commitment of restraining
a0 ��Ei a1, it resets P ′, so that, using the strong diagonal function d, P ′ chooses a new witness b′0
which is not E-equivalent to any number in the current [a0]Ei ∪ [a1]Ei . (This is done by taking
b′0 = d(X), where X is the set of all numbers so far mentioned in the construction.) Then the
possible future collapsing action taken by P ′ through (4) may at most enlarge one, but not both, of
the two classes [a0]Ei , [a1]Ei , by adjoining some [b′1]Ei to one of [a0]Ei , [a1]Ei , leaving however the
two new classes distinct. On the other hand, no unwanted collpase is caused by E, by our choice
of witnesses using the strong diagonal function.

The construction. The construction is by stages. At stage s we define, for every i, a ceer Es
i :

we begin with E0
i = E, and for s > 0, Es

i extends Es−1
i , by collapsing at most two classes;

thus {Es
i : s ∈ ω} is a uniformly c.e. tower of ceers, and Ei =

⋃
sE

s
i will be our desired ceer.

Each requirements Pi,j,k has four parameters b0(i, j, k, s), b1(i, j, k, s), a0(i, j, k, s), a1(i, j, k, s). In
the following, if a parameter, or Es

i , is not explicitly defined at stage s, then it is understood that
the value at s is the same as at the previous stage.

We initialize Pi,j,k at s if we set each one of its parameters to be undefined.

We say that Pi,j,k requires attention at s if one of the following in the given order happens:

(1) b0(i, j, k, s) is undefined; or
(2) there is some a such that ϕk,s(a)↓Es

j b0(i, j, k, s), and a0(i, j, k, s) is undefined; or

(3) ϕk,s(a1(i, j, k, s))↓ , and b1(i, j, k, s) is undefined.

Stage 0. Initialize all requirements, and let E0
i = E, for all i.



6 S. BADAEV AND A. SORBI

Stage s + 1. Let P = Pi,j,k be the least requirements to require attention: by initialization, there
always is such a requirement. We act on P , according to the following:

(1) if P requires attention through item (1), then letX be the set of all numbers so far mentioned
in the construction, and let b0(i, j, k, s+ 1) = d(X);

(2) if P requires attention through item (2), then choose such an a, let a0(i, j, k, s + 1) = a,
and a1(i, j, k, s + 1) = d(X), where X is the set of all numbers so far mentioned in the
construction;

(3) if P requires attention through item (3), define b1(i, j, k, s+ 1) = ϕk,s(a1(i, j, k, s+ 1)), and

Ej-collapse b0(i, j, k, s) and b1(i, j, k, s + 1): in other words, let Es+1
j be the equivalence

relation obtained by adjoining the equivalence classes of these two numbers.

Initialize all requirements R > P , and go to Stage s+ 2. Finally, for every i, take Ei =
⋃

sE
s
i .

Verification. Clearly E ⊆ Ei, for every i. The rest of the verification is based on the following
lemma.

Lemma 2.3. For every i, j, k, the requirement Pi,j,k requires attention only finitely often, and
lims b0(i, j, k, s) = b0(i, j, k) exists; moreover, if ϕk is total then Pi,j,k is satisfied.

Proof. By induction on 〈i, j, k〉 (with i 6= j). For the least triple 〈i, j, k〉 with i 6= j, we can assume
that ϕk is the function with the empty graph: then Pi,j,k requires attention at stage 1 only.

Now, suppose that the claim is true for every 〈i′, j′, k′〉 < 〈i, j, k〉 (again, assume that i 6= j and
i′ 6= j′, for all such i′, j′). Let s0 be the least stage at which no Pi′,j′,k′ , with 〈i′, j′, k′〉 < 〈i, j, k〉,
requires attention. As the parameter b0(i, j, k, s0 − 1) is undefined by initialization, Pi,j,k requires
attention at stage s0 through item (1), hence, b0(i, j, k, s0) equals the final value b0(i, j, k). If we
never move to (2) at stages s > s0 of the construction, then Pi,j,k does no longer require attention,
and ϕk does not induce an onto morphism, and thus Pi,j,k is satisfied. Otherwise, let s1 > s0 be
the least stage such that at stage s1, Pi,j,k requires attention through item (2): then we define at
s1 the final values a0(i, j, k), and a1(i, j, k), which are not Ei-equivalent. If Pi,j,k will not require
attention after s1, then ϕk is not total, and thus Pi,j,k is satisfied. Assume that ϕk is total: this
implies that, at some stage s2 > s1, Pi,j,k requires attention through item (3), and we act as in (3) of
the construction; in particular we define the final value b1(i, j, k), and we Ej-collapse b0(i, j, k) and
b1(i, j, k). After this, Pi,j,k does not require attention any more; moreover a0(i, j, k) and a1(i, j, k)
will never Ei-collapse, since lower-priority strategies choose, using the strong diagonal function d,
witnesses that are not Ei-equivalent to either a0(i, j, k) or a1(i, j, k); hence ϕk does not induce a
monomorphism, and thus Pi,j,k is satisfied. �

This ends the proof of the theorem. �

Corollary 2.4. There exist infinitely many non-isomorphic u.f.p. ceers.

Proof. By a result by Bernardi and Montagna [4], the u.f.p. ceers coincide with the nontrivial
quotients of any e-complete ceer. Moreover, again by [4], any e-complete ceer has a strong diagonal
function. Thus, if in the previous theorem we start with an e-complete ceer E, then we have that
the collection {Ei : i ∈ ω} consists of pairwise non-isomorphic u.f.p. ceers. �

Corollary 2.5. There exist infinitely many weakly precomplete ceers that are u.f.p. (hence univer-
sal), not precomplete, and pairwise non-isomorphic.



WEAKLY PRECOMPLETE CEERS 7

Proof. The result follows now from Corollary 1.6, Corollary 2.4 and the following facts: the pre-
complete ceers are all isomorphic ([12]); and the e-complete ceers are all isomorphic ([15, 12]). �

2.2. Non-universal weakly precomplete ceers. Although not isomorphic, the weakly precom-
plete ceers of the previous section are all u.f.p., and thus universal. In this section we prove that
there exist infinitely many non-isomorphic weakly precomplete ceers that are not universal.

Theorem 2.6. There exist infinitely many weakly precomplete ceers {Ei : i ∈ ω} such that each Ei

is not universal, and if i 6= j then Ei 6' Ej.

Proof. We want to build ceers {Ei : i ∈ ω} satisfying the following requirements (recall that Id
denotes the identity relation):

Requirements. For every e, i, j, k with i 6= j the requirements to be satisfied are:

Ne,i : ϕe total ⇒ (∃xe,i)[ϕe(xe,i) Ei xe,i],

Pi,j,k : ϕk does not induce an isomorphism Ei ' Ej ,

Qi,k : ϕk does not induce a reduction Id ≤ Ei.

Strategy for Ne,i in isolation. The strategy for Ne,i is:

(1) appoint a new witness xe,i;
(2) wait for ϕe(xe,i) to converge;
(3) Ei-collapse xe,i and ϕe(xe,i).

Outcomes. The outcomes of the strategy are clear.

Strategy for Pi,j,k in isolation, with i 6= j. If i 6= j, the strategy for Pi,j,k can be described as
follows:

(1) pick new witnesses b0(i, j, k) and b1(i, j, k) (thus, not Ej-equivalent), and momentarily re-
strain b0(i, j, k)

��
Ej b1(i, j, k);

(2) wait for two numbers c0, c1 to appear such that ϕk(cr) Ej br(i, j, k), with r = 0, 1;
(3) once the first pair of such numbers c0 and c1 has appeared then

(a) if c0 ��Ei c1 then Ei-collapse b0(i, j, k) and b1(i, j, k), and restrain c0 ��Ei c1;
(b) if already c0 Ei c1, then keep the restraint b0(i, j, k) ��Ei b1(i, j, k).

Outcomes. The outcomes of the strategy are, once again, clear:

(i) if we wait at (2), then ϕk can not induce an onto morphism;
(ii) if (3) holds then either c0 Ei c1 when they appear (case (3b)), and thus ϕk can not induce

a morphism as we restrain b0(i, j, k)
��
Ej b1(i, j, k); or (case (3a)) c0 ��Ei c1 and b0(i, j, k) Ei

b1(i, j, k), and thus ϕk can not induce a monomorphism.

Strategy for Qi,k in isolation. The strategy for Qi,k can be described as follows:

(1) appoint new witnesses a0(i, k), a1(i, k);
(2) wait for ϕk(a0(i, k)) and ϕk(a1(i, k)) to converge, say ϕk(a0(i, k)))↓= d0 and ϕk(a1(i, k)))↓

= d1;
(3) Ei-collapse d0 and d1.
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Outcomes. Here are the outcomes of the strategy:

(i) if we wait at (2), then ϕk is not total;
(ii) if (3) then ϕk can not induce a monomorphism;

Interactions between strategies. There are obvious conflicts between strategies that want to
Ei-collapse pairs of numbers (for some i), and strategies that want to restrain non Ei-equivalent
pairs of numbers, but all strategies are finitary, and can be easily combined by a standard finite
injury argument. We suppose to fix a priority ordering < on the requirements of order type ω: if
R < R′, then we say that R has higher-priority than R′, or, equivalently R′ has lower-priority than
R.

Notice that only P -requirements want to restrain equivalence classes from being collapsed. So, let
R = Pi,j,k be a P -requirement. How does R restrain two equivalence classes against the action
of a lower-priority R′ > R? If R′ is a P -requirement, then the restraint is guaranteed simply by
initialization when R acts, so that the lower-priority R′ starts anew with new witnesses outside
the two equivalence classes; therefore a possible future collapsing action performed by R′ does not
interfere at all with the two equivalence classes, and thus with the restraint imposed by R. Suppose
next that R′ is an N -requirement, say R′ = Ne,i′ , and i′ is either i or j, according to whether R

wants to restrain c0 ��Ei c1, or b0(i, j, k)
��
Ej b1(i, j, k): in this case, it is true that xe,i′ is chosen

outside of the two equivalence classes, which R wants to restrain, but ϕe(xe,i′) may in the future
converge to a number in one of the two equivalence classes, and R′ may want to Ei′-collapse xe,i′ and
ϕe(xe,i′); but this action merely enlarges one of the two equivalence classes, without Ei′-collapsing
them. Finally, suppose R′ = Qi′,k′ , where again i′ is either i or j: To make sure that R′ will be
respectful of the restraint imposed by R, let n(R′) be the number of requirements having higher
priority than R′: each one restrains at most 2 equivalence classes, so altogether, R′ has to deal with
at most 2n(R′) restrained equivalence classes. For this, it is enough to slightly modify the strategy
in isolation, and allow R′ to work with 2n(R′) + 2 distinct witnesses ar(i

′, k′). Either ϕk′ is not
defined on all these witnesses, and thus we win the requirement; or for each r < 2n(R′)+2 we find dr
such that ϕk′(ar(i

′, k′))↓= dr. At this point, either, already dh Ei′ dk, for some h < k < 2n(R′)+2,
and thus we win with no further action; or there exist h < k < 2n(R′) + 2, such that neither of the
equivalence classes of dh and dk is restrained, so that we can Ei′-collapse the two of them, without
interfering with higher-priority requirements.

To facilitate recognition of restrained equivalence classes, whenever a requirement R wants to
restrain two equivalence classes, we label these classes with a marker [R], which may be subsequently
cancelled, i.e., taken off the equivalence classes.

The construction. The construction is by stages. At stage s we define, for every i, j, k, an
approximation Es

i to Ei; we use parameters xe,i(s), br(i, j, k, s) (r < 2), ar(i, k, s) (r < 2n(Qi,k)+2,
where n(Qi,k) is the number of requirements having priority higher than Qi,k); at any stage s > 0,
unless otherwise specified, each parameter retains the same value from the previous stage.

Let us say that a number is new if it is bigger than all numbers already Ei-equivalent (all i)to
numbers so far mentioned in the construction. We say that a requirement R is initialized at stage
s if we set the relative parameters to be undefined, and we cancel the restraint imposed by it, by
taking the marker [R] off the equivalence classes labelled by this marker.

Requiring attention. At stage s, we say that Ne,i requires attention if, in the order,
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(1) xe,i(s) is undefined; or
(2) ϕe,s(xe,i(s))↓ , but ϕe(xe,i(s)) and xe,i(s) are not as yet Ei-equivalent.

We say that Pi,j,k requires attention if,

(1) for every r < 2, br(i, j, k, s) is undefined; or
(2) for every r < 2, br(i, j, k, s) is defined, with b0(i, j, k, s) ��

Es
j b1(i, j, k, s), and a number cr has

appeared such that ϕk,s(cr) E
s
j br(i, j, k, s), and Pi,j,k has not as yet acted since the last

time the witnesses br(i, j, k, s) were defined.

We say that Qi,k requires attention if, in the order, where m = 2n(Qi,k) + 2,

(1) for every r < m, ar(i, k, s) is undefined; or
(2) for every r < m, ar(i, k, s) is defined and a number dr has appeared for which ϕk,s(ar(i, k, s))↓

= dr, and Qi,k has not as yet acted since the last time the witnesses ar(i, k, s) were defined.

Stage 0. Let E0
i = Id; initialize all strategies.

Stage s+ 1. Let R be the least requirement that requires attention at stage s+ 1: notice that by
initialization, there always is such a requirement. We take action according to whether R is an
N -requirement, or a P -requirement, or a Q-requirement:

(1) R = Ne,i:
(a) If R requires attention through (1), then define xe,i(s+ 1) to be new (we may assume

that ϕe is still undefined on it);
(b) If R requires attention through (2), then Ei-collapse ϕe(xe,i(s)) and xe,i(s);

(2) R = Pi,j,k:
(a) If R requires attention through (1), then choose two distinct new numbers and use

them for the values of parameters br(i, j, k, s + 1), r < 2; put the marker [R] on the
equivalence classes of b0(i, j, k, s+ 1), and b1(i, j, k, s+ 1);

(b) If R requires attention through (2), and c0 �
�Es
i c1, then Ej-collapse b0(i, j, k, s) and

b1(i, j, k, s), take the marker [R] off the equivalence classes of b0(i, j, k, s + 1) and
b1(i, j, k, s+ 1), and put it on the equivalence classes of c0 and c1. If already c0 E

s
i c1,

then do nothing, so leave [R] on the equivalence classes of b0(i, j, k, s) and b1(i, j, k, s).
(3) R = Qi,k:

(a) If R requires attention through (1), then choose m = 2n(R) + 2 distinct new numbers
(we may assume that ϕk is still undefined on all of them) and use them for the values
of parameters ar(i, k, s+ 1), r < m;

(b) If R requires attention through (2), and there are no l, h < m, l 6= h such that already
dl Ei dh, then choose and Ei-collapse dl and dh, where l, h < m, l 6= h, is the least pair
such that the equivalence classes of dl and dh are not labelled by any R′, with R′ < R.

Initialize all R′ > R and go to stage s+ 2.

Finally, take Ei =
⋃

sE
s
i , for every i.

Verification. The verification is based on the following lemma. We say that at stage s the current
parameter xe,i(s) relative to a requirement Ne,i is active if ϕe(xe,i(s)) is still undefined, or xe,i(s)
and ϕe(xe,i(s)) are not as yet Ei-equivalent.
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Lemma 2.7. Each requirement requires attentions only finitely often and is eventually satisfied.

Proof. Assume that the claim is true of all requirements R′ < R, and let s0 > 0 be the least stage
such that for all s ≥ s0, no requirement R′ < R requires attention, no parameter relative to any
R′ < R changes, and by s0 all R′ < R have been satisfied. Notice that whenever a requirement acts,
its initializes all lower-priority requirements: therefore at s0− 1, the requirement exactly preceding
R has acted, and at s0 the requirement R is the highest-priority requirement to require attention.
So at stage s0, we define the final values of the relevant parameters of R, which will not not change
at any further stages s > s0 due to requirements R′ < R.

We now distinguish the three possible cases:

Case R = Ne,i. We define the final value of xe,i at stage s0. If ϕe(xe,i) does not converge then ϕe

is not total, R is satisfied, and R will not require attention any stage s > s0. Assume that ϕe(xe,i)
is defined at some stage s1 > s0. Then, at stage s1, R requires attention through (2) again; we
Ei-collapse ϕe(xe,i) with xe,i, so R is satisfied, and R will not require attention any more.

Case R = Pi,j,k, with i 6= j. At stage s0, we define the final values of br(i, j, k) for all r < 2. If Pi,j,k

does not require attention anymore after stage s0 then at least one of the two numbers br(i, j, k) is
not in the Ej-closure of the range of ϕk, and, therefore, R is satisfied since ϕk does not induce an
onto morphism.

Suppose now that s1 > s0 is the least stage at which c0 and c1 appear.

We first claim:

(?) for every s, with s0 ≤ s < s1, the following hold: for every R′ > R, if R′ is a P -requirement
and w is the current value of a parameter of R′, or R′ is an N -requirement and w is the
current active parameter of R′, then w does not lie in either of the Es

j -equivalence classes

of b0(i, j, k) and b1(i, j, k); and these classes are disjoint.

The proof of this claim is by induction on s. The claim is trivially true of s0, by choice of b0(i, j, k)
and b1(i, j, k), and initialization of all R′ > R. If the claim is true of s, with s0 < s + 1 < s1,
then exactly one R′ > R acts at s + 1. The claim clearly continues to be true, by initialization,
if R′ only acts by choosing its witnesses. Otherwise, if R′ is a P -requirement, then the claim
clearly continues to hold by the inductive assumption, and initialization of all R′′ > R′. If R′ is a
Q-requirement, then the claim continues to hold by initialization of all R′′ > R′, and the fact that
if R′ collapses two equivalence classes, then these classes are not marked by [R]. The only case
which deserves some attention is when R′ = Ne,j , and the witness xe,j ceases to become active, and
R′ collapses it to ϕe(xe,j). But up to s, xe,j does not lie in the Es

j -equivalence class of b0(i, j, k)

nor in that of b1(i, j, k), and even if ϕe(xe,j) lies in one of these equivalence classes, nonetheless the

Es+1
j -equivalence classes of b0(i, j, k) and b1(i, j, k), remain disjoint.

Having shown (?), we can argue that at s1, b0(i, j, k) and b1(i, j, k), are not Ej-equivalent, so R
requires attention for the last time at s1, R can act and achieve at s1 that c0 Ei c1 if and only if
b0(i, j, k)

��
Ej b1(i, j, k), by restraining c0 ��Ei c1, or b0(i, j, k)

��
Ej b1(i, j, k), as needed, and putting the

marker [R] as needed. In order to conclude that R is satisfied, we must now show that the relevant
restraint is preserved forever. We claim:
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(??) Let w0, w1 be the witnesses whose equivalence classes are restrained by R, i.e. marked by
[R]. For every s ≥ s1, the following hold: for every R′ > R, if R′ is a P -requirement and w
is the current value of a parameter of R′, or R′ is an N -requirement and w is the current
active parameter of R′, then w does not lie in either of the Es

j -equivalence classes of w0 and
w1; and these classes are disjoint.

The verification of this claim is similar to that of (?).

From claim (??) it follows that R is satisfied.

Case R = Qi,k. At s0 we define the final values ar(i, k, s) for all r < m = 2n(R)+2. Thus, after s0,
either we wait forever for ϕk to converge on all ar(i, k, s), in which case the requirement no longer
requires attention, and is satisfied since ϕk is not total; or, at some stage s1 > s0 we complete the
list of the numbers dr, r < m. At s1, R requires attention for the last time. If there are l, h < m,
l 6= h, such that already dl Ei dh, then R is satisfied. Otherwise, there is a least pair l, h < m,
l 6= h such that their equivalence classes are not labelled by any [R′], with R′ < R: in this case we
Ei-collapse them, and we win since ah and ak are not Id-equivalent. �

This completes the proof of the theorem. �

Corollary 2.8. There exist infinitely many non-isomorphic weakly precomplete ceers that are not
universal.

Proof. The claim follows from the previous theorem, and the observation that all the ceers built by
the theorem are weakly precomplete, with the exception of at most one ceer that may be trivial. �

3. Weak precompleteness, creativeness and the Visser topology

To any equivalence relation R on ω, one can associate a topological space. For this, recall from
Section 1, that to every equivalence relation R one can associate a numbered set 〈νR, SR〉.
Definition 3.1. Given R, the Visser space VR is the topological space for which

(1) the points are the elements of SR, i.e. the R-equivalence classes;
(2) a basis is given by {S ⊆ SR : ν−1R [S] ∈ Π0

1}.

It is clear that any morphism µ : R −→ S is in fact a continuous mapping from VR to VS . Since
all precomplete ceers are isomorphic, the corresponding Visser spaces are all homeomorphic with
each other. However, homeomorphism does not imply isomorphism, as is shown by the following
lemma.

Lemma 3.2. There exist ceers R,S such that the respective Visser spaces VR and VS are homeo-
morphic, but R and S are not isomorphic.

Proof. We will show that in fact there exist two ceers whose Vissers spaces are homeomorphic, but
neither of them can be embedded through a monomorphism in the other one.

Given a c.e. set X, let RX be the ceer,

x RX y ⇔ [x = y ∨ {x, y} ⊆ X].
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The Visser space VRX
consists of the following set of points:

{X, {x} : x /∈ X} .
Notice that for every number x /∈ X, the singleton {{x}} is open in VRX

.

It is known, see e.g. [1, 6, 17, 9, 11], that for every pair X,Y of c.e. sets, where Y is infinite,

RX ≤ RY ⇔ X ≤1 Y.

Let now X and Y be simple sets that are not computably isomorphic. (It is known that there
are simple sets X,Y such that X �T Y and Y �T X: see [7].) On the other hand, consider any
bijection F : VRX

−→ VRY
, such that F (X) = Y (of course, X and Y are here points of the Visser

spaces VRX
and VRX

, respectively). We claim that every such F is a homeomorphism. Let us show

for instance that F is continuous. Let U be a basic open set in VRY
: then ν−1RY

[U ] is co-c.e., and its
complement Z is c.e. There are two cases to consider:

(1) if Y /∈ U , then U is union of points distinct from Y ; but then in this case, F−1[U ] consists
of points distinct from X, and we know that the singleton of each such point is open; thus
F−1[U ] is open;

(2) If Y ∈ U , then by simplicity of Y , Z is finite, and thus F−1[U ] is open, as ν−1RX
[F−1[U ]] is

co-finite.

�

Definition 3.3. [20] Let R be an equivalence relation. An infinite subset X of VR is effectively
discrete if there is a computable function f such that

X = {[f(i)]R : i ∈ ω},
and

i 6= j ⇒ f(i) ��R f(j).

It is easy to see that if X is an effectively discrete subset of a Visser space VR, then X is (topolog-
ically) discrete.

This notion can be characterized in terms of the reducibility ≤, as pointed out in the following
lemma:

Lemma 3.4. Let R be an equivalence relation. The Visser space VR contains an effectively discrete
subset if and only if Id ≤ R.

Proof. Immediate. �

Corollary 3.5. If X is simple, then VRX
does not contain any infinite effectively discrete subset.

Proof. Any infinite effectively discrete subset of VRX
would consist of equivalence classes which are

all, with at most one exception, singletons of elements contained in Xc: thus we would get a c.e.
subset of Xc. �

We now give some sufficient condition for a Visser space relative to a ceer, to contain an infinite
effectively discrete subset.

Lemma 3.6. If R is a ceer, with an equivalence class [a]R, which is creative, then VR contains an
infinite effectively discrete subset.
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Proof. Let [a]R be creative, wit a total productive function p. Define a computable function f by
induction as follows:

Step 0. Let Wi0 = ∅, and let f(0) = p(i0).

Step n+ 1. Let Win =
⋃

i≤n[f(i)]R, and let f(n+ 1) = p(in).

It is easy to see that the family {[f(i)]R : i ∈ ω} is effectively discrete. �

Recall, see e.g. [16], that a pair of disjoint c.e. sets A,B is effectively inseparable if there is a partial
computable function p(u, v) (called, productive for the pair) such that, for all u, v,

A ⊆Wu &B ⊆Wv &Wu ∩Wv = ∅ ⇒ p(u, v)↓ /∈Wu ∪Wv,

A ceer E is effectively inseparable (see [1]) if every pair of disjoint equivalence classes is effectively
inseparable. Recall also that if A is a set that is half of a pair of effectively inseparable sets, then
A is creative.

As a consequence, we have the following corollary:

Corollary 3.7. The Visser space of any effectively inseparable ceer contains an infinite effectivey
discrete subset.

Proof. Immediate. �

The corollary applies to all u.f.p. ceers (thus including precomplete ceers) which are known to be
e.i., see [15].

Not all Visser spaces of weakly precomplete ceers contain infinite effectively discrete subsets. In
fact:

Theorem 3.8. There exist infinitely many non-isomorphic weakly precomplete ceers whose Visser
spaces do not contain infinite effectively discrete subsets.

Proof. By Theorem 2.6 and Lemma 3.4: recall that in the proof of Theorem 2.6, for every i, we
have Id 6≤ Ei. �

The following corollary remarks one more interesting difference between precompleteness and weak
precompleteness.

Corollary 3.9. There exist infinitely many non-isomorphic weakly precomplete ceers such that no
equivalence class is creative.

Proof. By the previous theorem and Lemma 3.6. �

Although not necessarily yielding creativity or effectively inseparability of equivalence classes,
weakly precomplete ceers however do yield partitions into computably inseparable equivalence
classes. We first recall the definition.

Definition 3.10. A pair of disjoint c.e. sets A,B is computably inseparable if there is no decidable
set X such that A ⊆ X and B ⊆ Xc.
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Theorem 3.11. If R is a weakly precomplete ceer, and a and b are not R-equivalent, then [a]R
and [b]R are computably inseparable.

Proof. Let a and b be non-R-equivalent, and suppose that X is a computable set that separates
the pair [a]R, [b]R. Define

f(z) =

{
b, if z ∈ X;
a, if z /∈ X.

Then f is total computable. By weakly precompleteness let n be a fixed point for f , i.e. nRf(n).
Then

n ∈ X ⇒ nRf(n) = b⇒ n ∈ [b]R ⊆ Xc

n /∈ X ⇒ nRf(n) = a⇒ n ∈ [a]R ⊆ X,
a contradiction. �

Question 3.12. Are the Visser spaces of weakly precomplete ceers all homeomorphic with each
other?

4. Index sets

With the intent of further separating the notion of a precomplete ceer from the notion of a weakly
precomplete ceer, we also prove that the corresponding index sets are different. In the following,
we refer to an acceptable indexing {Rx : x ∈ ω} of all ceers, as the ones used in [1] or in [11].

4.1. The index set of the precomplete ceers.

Theorem 4.1. The index set P = {x : Rx precomplete} is Σ3-complete.

Proof. First of all, a simple calculation shows that P ∈ Σ3. To show Σ3-hardness, we use below that
for every Σ3-set S there exists a c.e. class {X〈i,j〉 : i, j ∈ ω} (meaning that the set {〈x, y〉 : x ∈ Xy}
is c.e.) such that

i ∈ S ⇔ (∃j)[X〈i,j〉 is infinite],

see [19, Corollary IV.3.7]. Uniformly in i, we construct a ceer E = Ei such that, for every i,

i ∈ S ⇔ E is precomplete.

Recall that, by definition, a precomplete ceer is nontrivial.

Requirements. We want to satisfy requirement C and all requirements Ne if i /∈ S, and some Pj ,
if i ∈ S:

C : 0 ��E 1

Ne : ϕe is not a reduction witnessing Id ≤ E
Pj : fj(e, x) is an E-totalizer of ϕe

where fj is a computable function built by us. If all N -requirements are met, then E is not universal
and thus not precomplete, as for every e, ϕe is not a reduction witnessing Id ≤ E; otherwise E is
precomplete.

The priority listing of the requirements is given by

N0 < P0 < N1 < P1 < · · · < Ne < Pe < · · · .
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The plan is the following: if i /∈ S, i.e. all X〈i,j〉 are finite, then E meets all requirements Ne,
thus E is not precomplete. Otherwise, if j is the least number such that X〈i,j〉 is infinite, then the
requirement Pj is attacked infinitely often, and thus the construction builds a total computable
function fj(e, x) which is a totalizer for E. In this case all Ne of lower-priority than Pj are initialized
infinitely often.

During the construction, a number is said to be new if it is bigger than all numbers already
equivalent to numbers so far used in the construction.

Strategy for Ne. Here is the strategy for Ne:

(1) appoint four new witnesses ae,r, r < 4;
(2) wait for ϕe(ae,r) to converge to, say, yr, all r < 4;
(3) if the yr are pairwise not E-equivalent, then at least two of then are not E-equivalent to

either 0 or 1; choose such yl, yh and E-collapse them.

Outcomes. If we wait forever at (2), then ϕe is not total, and thus it can not be a reduction; if
there are yl, yh which are already E-equivalent, then we win without any further action; otherwise,
we E-collapse some yl, yh and we win.

Strategy for Pj. Here is the strategy for Pj :

(1) extend fj to the least pair e, x on which fj is undefined: for this, choose a new y, and let
fj(e, x) = y;

(2) for all pairs e, x on which fj(e, x) has been defined at a previous stage, if ϕe(x) converges
to, say, z, and fj(e, x) is not as yet E-equivalent to z, then E-collapse fj(e, x) E z.

Outcomes. If X<i,j> is infinite then we build a total computable function fj(e, x) which is a totalizer
for E, so E is precomplete. If X<i,j> is finite then the outcome is finitary, and the strategy only
causes finite injury to lower priority strategies.

We use several parameters throughout the construction: ae,r(s) (r < 4), fj,s. We say that Ne

requires attention at stage s+ 1, if either

(1) all ar(s) are undefined, or
(2) for each r < 4, ϕe,s(ae,r(s)) converges (ϕe,s(ae,r(s))↓= yr, say), and Ne has not as yet acted

since when the ae,r(s) were last defined.

We say that Pj requires attention at stage s+ 1, if s+ 1 is an 〈i, j〉-expansionary stage, i.e.

X〈i,j〉,s+1 −X〈i,j〉,s 6= ∅.

At stage s, we say that we initialize Ne, if we set ae,r to be undefined; and we initialize Pj if we
cancel the current fj , i.e. we set fj,s = ∅.

The construction. The construction is by stages. At stage s we define an approximation Es to
E. In describing the construction, when referring to the various parameters, we omit for simplicity
to mention the stage.

Stage 0. Initialize all requirements. Let E0 = Id.
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Stage s+ 1. Let R be the highest-priority requirement that requires attention. (Notice that there
always is a requirement that requires attention.)

Suppose that R = Ne, for some e. We distinguish the following cases:

(1) if Ne requires attention through (1), then pick four new numbers ae,r(s + 1), r < 4, (we
may assume that ϕe is still undefined on all these ae,r(s+ 1));

(2) if Ne requires attention through (2), and all yr, r < 4, are pairwise non-E-equivalent, then
choose yl, yh, l 6= h, such that neither of these numbers are currently E-equivalent to either
0 or 1, and E-collapse them.

Suppose that R = Pj , for some j.

(1) let e, x be the least pair of numbers on which fj is undefined; choose a new y, and let
fj(e, x) = y;

(2) for all pairs e, x such that fj(e, x) has been defined at some previous stage, ϕe(x) converges
to, say, z, and fj(e, x) is not as yet E-equivalent to z, then E-collapse fj(e, x) E z.

Let Es+1 be the ceer resulting from the E-collapses introduced at this stage.

Initialize all requirements R′ > R, and go to stage s+ 2.

This ends the construction.

Verification. The verification is based on the following lemma.

Lemma 4.2. The following hold:

(1) if i /∈ S, then each requirement requires attention, and is initialized, only finitely many
times, and each Ne is met;

(2) if i ∈ S, then there are a least j and a stage s0, such that after s0, Pj is not initialized
anymore, and the total computable function fj =

⋃
s≥s0 fj,s is a totalizer of E;

(3) 0 ��E 1.

Proof. Assume i /∈ S. Assume that t0 is the least stage such that, no requirement R′ < R requires
attention or is initialized at any stage s ≥ t0. Then after this stage R is not initialized anymore.
If R = Pj for some j, then there is a least stage t1 ≥ t0 such that no s ≥ t1 is 〈i, j〉-expansionary,
thus R does not require attention at any s ≥ t1. If R = Ne then R requires attention at t0 when it
defines the last values ae,r of its parameters. If it never stops waiting for ϕe(ae,r) to converge, all
r < 4, then Ne never requires attention after t0 and is satisfied. Otherwise, there is a least t1 > t0
at which all these computations stop, and we complete the list of yr, r < 4. If there are l, h < 4,
l 6= h such that already yl E yh, then R is satisfied as ae,l and ae,h are not Id-equivalent; otherwise
we choose a pair yl, yh (with both numbers outside the current equivalence classes of 0 and 1) and
we E-collapse these numbers, so that, again, R is satisfied. After t1, R will not require attention
any more.

Assume i ∈ S. Then there is a least j, such that there are infinitely many 〈i, j〉-expansionary stages.
There exists a least stage t0 after which no higher priority requirement R′ ever requires attention
or acts. So at every 〈i, j〉-expansionary stage following t0, Pj acts, fj is no longer initialized, and
eventually fj is a total computable function, which is a totalizer witnessing that E is precomplete.
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Finally, we must show that 0 ��E 1.

This is an immediate consequence of the following claim, where we we say that a current witness
y = fj(e, x) od an Ne-requirement is active if ϕe(x) is still undefined, or ϕe(x) converges to z, say,
but y and z have not as yet made E-equivalent:

(?) for every s, the following hold: for every R, if R is a P -requirement and y is the current
value of an active parameter of R, then y does not lie in either of the Es-equivalence classes
of 0 or 1; and these two classes are disjoint.

The proof of the claim is by induction on s. It holds for s = 0. Suppose it holds of s. If at s+ 1 a
P -requirement acts, then the claim continues to be true; indeed, if an N -requirement acts, then the
claim continues to be true, since this requirement may only E-collapse numbers that lie in neither
of the equivalence classes of 0 and 1. �

This ends the proof of the theorem. �

Corollary 4.3. The index set U = {x : Rx is u.f.p.} is Σ3-complete.

Proof. It is an easy calculation to see that U ∈ Σ3. The rest of claim is an immediate consequence
of the proof of the previous theorem, where we show that for every Σ3 set S, and any i we can
effectively find a ceer Ri such that if i ∈ S then Ri is precomplete, and thus u.f.p.; and if i /∈ S
then Ri is not universal, and thus not u.f.p. . �

4.2. The index set of the weakly precomplete ceers.

Theorem 4.4. The index set WP = {x : Rx weakly precomplete} is Π3-complete.

Proof. It follows from Lemma 1.2 that WP ∈ Π3. To show that WP is Π3-hard, as in the proof of
the previous theorem let us fix a c.e. class {X〈i,j〉 : i, j ∈ ω}, and let

S = {i : (∀j)[Xi,j is finite]} :

uniformly in i, we will construct a ceer E = Ei such that

i ∈ S ⇔ E is weakly precomplete.

Requirements. We want to satisfy requirement C and all requirements Ne if i ∈ S, and some Pj ,
if i /∈ S,

C : 0 ��E 1

Pj : fj is a (total) E-diagonal function

Ne : ϕe total ⇒ (∃x)[ϕe(x) E x]

where fj is a computable function built by us. If i /∈ S, then fj , for some j, is total, and has no
fixed point.

The priority listing of the requirements is given by

N0 < P0 < N1 < P1 < · · · < Ne < Pe < · · · .
The plan is the following: if i ∈ S, i.e. all sets X〈i,j〉 are finite, then E meets all requirements
Ne, thus E is weakly precomplete. Otherwise, if j is the least number such that X〈i,j〉 is infinite,
then by attacking the requirement Pj infinitely often, the construction builds a total computable



18 S. BADAEV AND A. SORBI

function fj with no fixed point modulo E. In this case all Ne of lower-priority than Pj are initialized
infinitely often.

During the construction, a number is said to be new if it is bigger than all numbers already E-
equivalent to numbers so far used in the construction: in particular, a new number is out of the
current approximation to the equivalence classes [0]E , [1]E .

Strategy for Ne. Here is the strategy for Ne:

(1) appoint a new witness xe;
(2) wait for ϕe(xe) to converge;
(3) E-collapse xe and ϕe(xe)

Outcomes. if we wait forever at (2), then ϕe is not total; if we act through (3), then xe is a fixed
point modulo E of ϕe.

Strategy for Pj. The strategy for Pj can be described as follows:

(1) extend fj to the least number x on which fj is undefined: for this, choose a new y, let
fj(x) = y, and restrain x��E y.

Outcomes. If X<i,j> is infinite then Pj is attacked infinitely often, thus fj is a total E-
diagonal computable function, thus E is not weakly precomplete. If X<i,j> is finite then
the outcome is finitary, and the strategy only causes finite injury to lower priority strategies.

There is also the overall goal of restraining 0 ��E 1, to satisfy requirement C. The construction uses
initialization to restrain equivalence classes. Whenever a requirement R acts, it initializes lower-
priority requirements which, as a consequence of this initialization, choose new witnesses, whose
possible future E-collapse with other numbers, does not interfere with the restraints imposed by R
or by C.

We use parameters xe(s) and fj,s to approximate xe and fj as described above. We say that Ne

requires attention at stage s+ 1, if either

(1) xe(s) is undefined, or
(2) ϕe,s(xe(s)) converges, but we have not as yet E-collapsed xe(s) with ϕe,s(xe(s)).

We say that Pj requires attention at stage s+ 1, if s+ 1 is an 〈i, j〉-expansionary stage, i.e.

X〈i,j〉,s+1 −X〈i,j〉,s 6= ∅.

At stage s, we say that we initialize Ne, if we set xe(s) to be undefined; and we initialize Pj if we
cancel the current fj , i.e. we set fj,s = ∅.

The construction. The construction is by stages. At stage s + 1 we define an approximation
Es to E, which is obtained by Es, plus possibly the collapse of two Es-equivalence classes that is
performed at stage s+ 1. In describing the construction, when referring to the various parameters,
we omit for simplicity to mention the stage.

Stage 0. Initialize all requirements. Let E0 = Id.
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Stage s+ 1. Let R be the highest-priority requirement that requires attention. (Notice that there
always is a requirement that requires attention.)

Suppose that R = Ne, for some e. We distinguish the following cases:

(1) if Ne requires attention through (1), then pick xe to be a new number;
(2) if Ne requires attention through (2), then E-collapse xe and ϕe(xe).

Suppose that R = Pj , for some j: let x be the least number on which fj is undefined; choose a new
y, and let fj(x) = y

Let Es+1 be the ceer resulting from the E-collapses introduced at this stage.

Initialize all requirements R′ > R.

This ends the construction.

Verification. We just need to prove the following lemma.

Lemma 4.5. The following hold:

(1) if i ∈ S, then each requirement requires attention, and is initialized, only finitely many
times, and each Ne is met;

(2) if i /∈ S, then there are a least j and a stage s0, such that after s0, Pj is not initialized
anymore, and the total computable function fj =

⋃
s≥s0 fj,s is an E-diagonal function;

(3) 0 ��E 1.

Proof. Assume i ∈ S. Let R be a requirement, and assume by induction that t0 is the least stage
such that, no requirement R′ < R requires attention or is initialized at any stage s ≥ t0. Then
after this stage R is not initialized anymore. If R = Pj for some j, then there is a least stage
t1 ≥ t0 such that no s ≥ t1 is 〈i, j〉-expansionary, thus R does not require attention at any s ≥ t1.
If R = Ne then R can require attention at most once after t0: if it stops waiting for ϕe(xe) to
converge, then Ne is satisfied. Otherwise, we E-collapse xe and ϕe(xe), hence ϕe has a fixed point
and Ne is satisfied.

Assume i /∈ S. Let R be a requirement, and assume by induction that the claim holds of all
R′ < R. Then there is a least j, such that there are infinitely many 〈i, j〉-expansionary stages, and
there exists a least stage t0 after which no higher-priority requirement R′ ever requires attention
or acts. So at every 〈i, j〉-expansionary stage following t0, Pj acts, fj is no longer initialized, and
eventually fj is a total computable function witnessing that E is not weakly precomplete. Notice
that fj(x) ��E x is restrained since fj(x) is chosen new, and, when we choose it, lower-priority
requirements get initialized. Indeed, the fact that the restraints imposed by a P -requirement and
by C are respected by lower-priority requirements is a consequence of the following claim, where
we say that at stage s, a currently defined witness xe,s of a requirement Ne is active if it has not
been as yet collapsed to ϕe(xe,s):

(?) For every s, the following hold: for every R, if w is an active witness of an R′ > R, then w
does not lie in the equivalence classes restrained by R, nor does it lie in [0]Es ∪ [1]Es ; and
the equivalence classes restrained by R are disjoint at s, and the equivalence classes of 0
and 1 are disjoint at s.
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The claim is proved by induction on s, keeping in mind that the only requirements that E-collapse
elements are the N -requirement. Assume that it is true at s. To show for instance that the action
taken at s+ 1 by a requirement Ne does not collapse 0 and 1, notice that Ne can only E-collapse
pairs of numbers of the form xe and ϕe(xe) of which one of them, xe, is chosen out of the current
approximation of [0]E ∪ [1]E , and thus, even if ϕe(xe) ∈ [0]E ∪ [1]E , we simply enlarge one of the
two classes, without E-collapsing the two of them. �

This concludes the proof of the theorem. �

We now show how to modify the proof of the previous theorem, to show that the index set

E = {x : Rx is e-complete}
is Σ3-complete.

Corollary 4.6. The index set E is Σ3-complete.

Proof. It is routine to check that E ∈ Σ3. For Σ3-hardness, we can modify that proof of the previous
theorem to obtain that, whatever i one considers, the ceer E built uniformly in i, is u.f.p., and
thus in case i /∈ S, E is e-complete being u.f.p. and possessing a total E-diagonal computable
function. The modified proof combines the proof of the previous theorem, and elements of the
proof of Theorem 2.2. We outline a sketch of the proof.

Knowing that every ceer extending an e-complete ceer is u.f.p., see [4], we start up with a (non-
trivial) e-complete ceer L, and we consider a total strong L-diagonal computable function d. Then,
given i, we build E by stages, so that at each stage s, the current approximation Es to E is a ceer
extending Es−1 if s > 0, with E0 = L. The only other difference is a suitably modified version of a
“new” number: namely, where in the proof of the previous theorem a number is “new” if it is not
already E-equivalent to any number so far mentioned in the construction, now a number w is new
if w = d(X) where X is the set of numbers (witnesses) so far used in the construction: this allows
us to find numbers not already E-equivalent to any previous number, although now E is collapsing
pairs of full L-equivalence classes, instead of just pairs of finite sets of numbers. �
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