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A preservation theorem for theories without the tree

property of the first kind

Jan Dobrowolski∗and Hyeungjoon Kim

Abstract

We prove that the NTP1 property of a geometric theory T is inherited by theories of lovely
pairs and H-structures associated to T . We also provide a class of examples of nonsimple
geometric NTP1 theories.

0 Introduction

One theme of research in model theory is to inquire whether some well-known properties are
preserved under a certain unary predicate expansions of a given structure. One of the motivations
for this is that positive theorems of this kind often allows us to obtain interesting and complicated-
looking theories which still satisfy some strong tameness conditions.

The study of expansions by unary predicates reaches back to the paper of Poizat on beautiful
pairs [10], and has been developed in various directions ever since. Remarkable papers on this sub-
ject include for example [5], where the stability condition is examined, and [1], which is dedicated
to studying expansions in simple theories (which generalize the stable ones).

The well-known equivalence TP ⇔ TP1∨ TP2 due to Shelah [11] (where TP denotes the tree
property while TP1 and TP2 denote the tree properties of the first and second kind, respectively),
suggests two natural generalizations of simple theories, namely NTP1 theories and NTP2 theories
(i.e., theories without TP1 and TP2, respectively). So far, NTP1 and NTP2 theories have been
studied much less extensively than the simple ones (i.e. theories without TP). However, recently
some interesting results on these theories began to appear, notably [6] and [7]. In particular,
natural examples of non-simple NTP1 thoeries were provided in [6], namely: ω-free PAC fields,
linear spaces with a generic bilinear form and a class of theories obtained by the “pfc” construction.

The study of expansions in the NTP2 context was undertaken in [2], where it was shown that the
NTP2 property is preserved under “dense and codense” unary predicate expansions of geometric
structures where the unary predicate is assumed to define either an algebraically independent
subset or an elementary substructure. In the present paper, we prove that the NTP1 property is
also preserved under such expansions. One of the main ingredients in our proof is the recently
proved fact (due to Chernikov and Ramsey [6]) that the TP1 property can, in any TP1 theory,
always be witnessed by some formula in a single free variable. We also prove (in Section 4) that
an NTP1 nonsimple geometric theory can be obtained from any Fräıssé limit which has a simple
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theory by applying some constructions from [6]. This yields a large class of nonsimple (so also not
NTP2) theories satisfying the assumptions of our main theorem.

Our paper is organized as follows. In Section 1, we review some essential facts about dense
codense predicate expansions from [2]. In Section 2, we state slightly modified versions of some re-
sults from [6] concerning SOP2 (equivalently TP1). In Section 3, we prove our main result, namely,
that NTP1 is preserved under the unary predicate expansions defined in Section 1. In Section 4,
we show that the “pfc” construction from [6] preserves a certain strengthening of geometricity,
and conclude from this that a class of geometric nonsimple NTP1 structures can be obtained via
imaginary cover and “pfc” operations.

1 Dense codense predicate expansion

In this section, we review some basic facts about the dense codense predicate expansions.

Recall that a theory is called geometric if (1) it eliminates the quantifier ∃∞, and (2) the
algebraic closure satisfies the exchange property. Examples of geometric theories include all SU-
rank 1 theories (in particular, strongly minimal theories). For nonsimple NTP1 examples see
Section 4.

Throughout, unless stated otherwise, variables may have an arbitrary length. The symbol |⌣
denotes the algebraic independence relation.

Definition 1.1 Let T be a geometric complete theory in a language L, and let LH := L∪ {H } be
the extended language obtained by adding a new unary predicate symbol H. For any model M � T ,
let (M,H(M)) denote an expansion of M to the extended language LH , where H(M) := {x ∈M |
H(x)}.

1. We say (M,H(M)) is dense codense if every non-algebraic 1-type in L over any finite di-
mensional subset A ⊆M has realizations both in H(M) and in M \ aclT (A ∪H(M)).

2. A dense codense expansion (M,H(M)) is called a lovely pair (resp. H-structure) if H(M)
happens to be an elementary substructure (resp. algebraically independent subset) of M .

Fact/Definition [3, 4] Let T be any geometric complete theory. Then all of its lovely pairs
have the same theory, i.e., they are elementarily equivalent to one another. The same holds for
H-structures. We let TP and T ind denote the common complete theories of the lovely pairs and
H-structures, respectively, associated with T . By T ∗, we shall mean either TP or T ind.

For the remainder of this section, we shall work inside some fixed, sufficiently saturated model
(M,H(M)) � T ∗ unless stated otherwise. When x is a tuple of variables, H(x) shall mean the
conjunction H(x1) ∧ · · · ∧H(xn) where xi’s are the variables occurring in x. When A is a subset
of M , H(A) denotes the set {x ∈ A | H(x)}.

Definition 1.2 For any subset B ⊆M , we define

scl(B) := aclT (B ∪H(M))

which is called the small closure of B. If A is any subset of scl(B), we shall say that A is B-small.

Definition 1.3 A subset A ⊆M is said to be H-independent if A |⌣H(A)
H(M).

The following two facts will be important tools in the proof of our main result.
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Fact 1.4 ([2]) For any LH-formula ϕ(x, a) where a is H-independent, there exists some L-formula
ψ(x, a) such that

ϕ(x, a) ∧H(x) ↔ ψ(x, a) ∧H(x).

Fact 1.5 ([2]) For any LH-formula ϕ(x, a) where x is a single variable and a is H-independent,
there exists some L-formula ψ(x, a) such that the symmetric difference ϕ(x, a)△ψ(x, a) defines an
a-small set.

We will also use the following observations:

Fact 1.6 ([2]) 1. For any finite tuple c, there exists some finite tuple h in H(M) such that
c |⌣h

H(M).

2. For any H-independent tuple c and any tuple h in H(M), ch is H-independent.

We end this section by remarking that all the results and their proofs in this paper may be
carried over to many-sorted contexts. However, for the sake of simplifying our arguments, we shall
assume that our theory T is one-sorted throughout the paper.

2 Overview of some results on SOP2 from [6]

In this section, we state some results about SOP2 from [6] in slightly modified (‘localized’) versions
which we will need later. But first, let us quickly review some basic terminologies. We consider
the language L0 := {⊳,<lex,∧} where ⊳ and <lex are binary relation symbols and ∧ is a binary
function symbol. Then any set α<β (where α and β are ordinals) admits a natural L0-structure
whereby ⊳ is interpreted as the prefix partial order, <lex as the lexicographic order and ∧ as the
infimum function (with respect to the prefix order). We will use the following ‘localized’ version
of SOP2:

Definition 2.1 A formula φ(x; y) is said to have SOP2 inside a type q(x) if there are tuples
(aη)η∈2<ω satisfying the following two properties:

1. For every ξ ∈ 2ω, the set q(x) ∪ {φ(x, aξ|n) : n < ω} is consistent;

2. For every pair of ⊳-incomparable elements η, ν ∈ 2<ω, the formula φ(x; aη) ∧ φ(x; aν) is
inconsistent.

And a theory has SOP2 inside of q(x) if some formula has it inside q(x).

(The original, non-localized definition of SOP2 is obtained by setting q = ∅.)

By compactness, we easily get:

Remark 2.2 If φ(x; y) has SOP2 inside a type q(x) witnessed by (aη)η∈2<ω , then for every ξ ∈ 2ω

the type q(x) ∪ {φ(x, aξ|n) : n < ω} is nonalgebraic.

Now, let us recall the notion of modeling property on strongly indiscernible trees, which we will
use repeatedly in the paper.

Definition 2.3 We say that a tree (aη)η∈S of compatible tuples of elements of a model M is
strongly indiscernible over a set C ⊆M , if

qftpL0
(η0, . . . , ηn−1) = qftpL0

(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1
/C) = tp(aν0, . . . , aνn−1

/C) for all n < ω and all tuples
(η0, . . . , ηn−1),(ν0, . . . , νn−1) of elements of S.
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The following fact comes from [13].

Fact 2.4 Let C be a monster model of a complete theory. Then for any tree of parameters (aη)η∈ω<ω

from C there is a strongly indiscernible tree (bη)η∈ω<ω based on the tree (aη)η∈ω<ω , which means
that for every η0, . . . , ηn−1 ∈ ω<ω there are µ0, . . . , µn−1 ∈ ω<ω such that qftpL0

(η0, . . . , ηn−1) =
qftpL0

(µ0, . . . , µn−1) and tp(bη0 , . . . , bηn−1
) = tp(aµ0

, . . . , aµn−1
).

Notice that if q is over ∅, then the consistency condition in Definition 2.1 is preserved under
tree modeling. Hence, inside of such a q, SOP2 is always witnessed by a strongly indiscernible tree
of parameters.

Remark 2.5 With the notation from the above definition, the set q(x) ∪ {φ(x, aξ|n) : n < ω} has
infinitely many realizations for any ξ ∈ 2ω.

By a very slight modification of the proof of Lemma 4.6 for [6], we get:

Fact 2.6 Suppose (aη)η∈2<ω is a tree strongly indiscernible over C such that (a0α : 0 < α < ω) is
indiscernible over cC. Let

p(y; z) = tp(c; (a0⌢0γ)γ<ω
)/C),

and let q(y) be a type over ∅ contained in tp(c). Then, if

q(y) ∪ p(y; (a0⌢0γ)γ<ω) ∪ p(y; (a1⌢0γ)γ<ω)

is inconsistent, then T has SOP2 inside of q.

Proof. By naming parameters we can assume that C = ∅. Suppose the type q(y)∪p(y; (a0⌢0γ)γ<ω)∪
p(y; (a0⌢1γ)γ<ω) is not consistent. By compactness and indiscernibility there is a formula ψ ∈ p
such that

q(y) ∪ {ψ(y, a0, . . . , a0⌢0n−1), ψ(y, a1, . . . , a1⌢0n−1)}

is inconsistent. Then as in [6], the n-fold elongation (see Definition 2.6 from [6]) of (aη)η∈2<ω

witnesses that ψ has SOP2 inside of q. �

Using the above fact and modifying the proof of Theorem 4.8 from [6] in the same manner as
above (i.e., replacing any set of formulas related to a consistency condition by its union with an
appropriate type over ∅), we obtain:

Fact 2.7 Suppose a theory T has SOP2 inside of some type q(x0, . . . , xn−1) =
⋃

i<n qi(xi). Then,
for some i < n, T has SOP2 inside of qi(xi).

3 The main result

The aim of this section is to prove our main result, i.e. Theorem 3.6. First, we give a characteri-
zation of SOP2 thoeries that we will need later.

Proposition 3.1 A theory T has SOP2 if there is a formula φ(x, y) and a strongly indiscernible
tree (aη)η∈2<ω , such that the set {φ(x, a0n) : n < ω} has infinitely many realizations, and the
formula φ(x, a0) ∧ φ(x, a1) has finitely many realizations.

4



Proof. Let φ(x, y) and (aη)η∈2<ω be as above. For a set B ⊆ 2<ω, we put

AB :=
⋂

η∈B

φ(C, aη),

and for a tuple b = (η0, . . . , ηn−1) ∈ (2<ω)n, we put

Ab :=
⋂

i<n

φ(C, aηi).

Claim 1 We can assume that

(∀n,m ∈ ω\{0})(A0,1 = A0n,1m). (*)

Proof of Claim 1. Since the set A{0k ,1k:k=1,2,3,...} is finite, by compactness, it is equal to D :=
A{0k ,1k:k=1,2,3,...K} for some K < ω. So for any positive, pairwise distinct k1, ..., k2K < ω, the set
A0k1 ,...,0kK ,1kK+1 ,...,1k2K is contained in D, but by indiscernibility it has the same (finite) cardinality
asD, so it is equal toD. Replacing φ(x, y) by ψ(x, y0, . . . , yK−1) =

∧
i<K φ(x, yi) and each aǫ0,...,ǫm−1

by aǫK
0
,...,ǫKm−1

we obtain a tree with the desired properties. �

So we will assume that (∗) holds.

Claim 2 We can assume (in addition to (∗)) that

A{0n1:n<ω} = ∅. (**)

Proof of Claim 2. Since the set A{0n1:n<ω} is finite, it is equal to D := A{0n1:n=0,1,2,...K−1} for
some K < ω. Then D = A0k01,...,0kK−11 for any pairwise distinct ki’s. Since the tree (a0K⌢η)η∈2<ω

is strongly indiscernible over {a0k1 : k = 0, 1, 2, . . . K − 1}, we can replace φ(x, y) by φ(x, y) ∧
¬ψ(x, y0, . . . , yK−1), where ψ(x, a1, . . . , a0k−11) defines D, and aη by (a0K⌢η, a1, . . . , a0K−11), guar-
anteeing (∗∗) while preserving (∗) and strong indiscernibility of the tree. �

Let us assume that (∗) and (∗∗) hold. Then there is a maximal n such that A{1,01,...,0n−11,0n,0n+1,...} is
nonempty. Put c = (a1, . . . , a0n−11), ψ(x, y0, . . . , yn−1) =

∧
i<K φ(x, yi) and φ

′(x, y, y0, . . . , yn−1) =
φ(x, y) ∧ ψ(x, y0, . . . , yn−1). We claim that the strongly indiscernible tree (bη)η∈2<ω , where bη :=
a0n⌢ηc, witnesses SOP2 of φ′(x, y). Indeed, by the choice of n (and by strong indiscernibility) all
paths are consistent. Moreover, by maximality of n, the set {φ′(x, b1c)}∪{φ

′(x, b0kc) : k = 1, 2, . . . }
is inconsistent, but by (∗) (and by the strong indiscernibility of the tree (aη)) this set is equivalent
to the formula φ′(x, b0c) ∧ φ

′(x, b1c), so we get that the latter formula is inconsistent, and we are
done. (Note that, a posteriori, by Remark 2.2, the n chosen above must be equal to zero, i.e. the
formula φ(x, a0) ∧ φ(x, a1) is already inconsistent if we assume (∗) and (∗∗).) �

For the remainder of this section, we will work inside a sufficiently saturated model (M,H(M)) �
T ∗.

Lemma 3.2 Let φ(x, y) be any LH-formula witnessing SOP2. Then for some dummy variables
z, the formula φ(x, yz) witnesses SOP2 with some strongly indiscernible tree consisting of H-
independent tuples.

Proof. Let (aη)η∈2<ω be a strongly indiscernible tree witnessing that φ(x, y) is SOP2. By Fact 1.6,
choose a finite tuple h∅ of elements of H(M) such that a∅h∅ is H-independent. For any η ∈ 2<ω

let hη be a conjugate of h∅ under an automorphism (in the sense of TH) sending a∅ to h∅. Then
any indiscernible tree based on (aηhη)η∈2<ω will satisfy the conclusion. �

We will need one more preparatory lemma.
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Lemma 3.3 If there is some LH-formula φ(x, y) such that φ(x, y) ∧ H(x) witnesses SOP2, then
T has SOP2.

Proof. By 2.7 (applied to φ(x, y) and q(x) := H(x)), we can assume that x is a single variable.
Let (aη)η∈2<ω be a strongly indiscernible tree witnessing SOP2 of φ(x, y) ∧H(x) such that (aη) is
H-independent. By Fact 1.4, there is an L-formula ψ(x, y) agreeing with φ on H . For any η ∈ 2<ω,
the formula ψ(x, aη⌢0) ∧ ψ(x, aη⌢1) is algebraic, since otherwise, by the density of H , it would be
realized inside of H , a contradiction. So, by Proposition 3.1, ψ(x, y) has SOP2. �

In the final proof we will use one more characterization of TP1 property, which was proved in
[9]. First, we remind the definition of k-TP1 from there:

Definition 3.4 A formula ψ(x, y) has k-TP1 if there are tuples cβ, β ∈ ω<ω such that for each
β ∈ ωω the set {ψ(x, cβ|m

) : m < ω} is consistent, and for any pairwise incomparable elements
β0, . . . , βk−1 ∈ ω<ω the set {ψ(x, cβi

: i < k} is inconsistent.

Fact 3.5 Suppose that an L formula φ(x, y) and a tree (aη)η∈ω<ω witness k-TP1 for some k ≥ 2.
Then for some d < ω, the L-formula ψ(x, y0, . . . , yd) = φ(x, y0) ∧ · · · ∧ φ(x, yd) witnesses 2-TP1.

Now we are in a position to prove the main result.

Theorem 3.6 If T ∗ has SOP2, then so does T .

Proof. Assume T ∗ has SOP2 witnessed by an LH-formula φ(x, y), where x is a single variable
(we can assume that by 2.7) and a strongly indiscernible tree A = {(aη)η∈2<ω}, where each aη is
H-independent.
Case 1: No realization of ∧iφ(x, a0i) is in scl(A). By Fact 1.5, let ψ(x, y) be a formula such that
for each η, φ(x, aη)△ψ(x, aη) defines an aη-small set. Then for any η, ψ(x, aη⌢0) ∧ ψ(x, aη⌢1) has
finitely many realizations, since otherwise, by the co-density condition, it would have a realization
outside of scl(A), so realizing the formula φ(x, aη⌢0) ∧ φ(x, aη⌢1). Also, every realization of
∧iφ(x, a0i) is a realization of ∧iψ(x, a0i), so we are done by Proposition 3.1.
Case 2: There is some b ∈ scl(A) satisfying ∧iφ(x, a0i). So b realizes some algebraic formula
θ(x, c, h), where c and h are tuples of elements of A and H , respectively. We can assume that
for any c′ and h′ the formula θ(x, c′, h′) has at most k realizations, where k < ω is fixed. Choose
N < ω such that c is contained in {aη : η ∈ 2<N}. Put dη := a0N⌢η. Then φ(x, y) together with
the tree (dη)η∈2<ω , which is strongly indiscernible over c, still witnesses SOP2. Put

µ(z, c, y) := H(z) ∧ ∃x(θ(x, c, z) ∧ φ(x, y)).

Then, since ∧nµ(z, c, d0n) is realized by h (this is is witnessed by substituting b for x), we get by
the indiscernibility of (dη)η over c that ∧nµ(z, c, dξ|n) is consistent for any ξ ∈ 2ω. Also, for any
pairwise incomparable η1, . . . , ηn ∈ 2<ω, the set {µ(z, c, dηi) : i ≤ n} is k + 1-inconsistent. Hence,
by compactness, µ(z, x, y) has (k + 1) − TP1. It follows from Fact 3.5 that some LH formula of
the form H(z) ∧ ν(z) has TP1, so also SOP2. We conclude by Lemma 3.3.

�
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4 Examples of geometric nonsimple NTP1 theories.

We start by outlining the “pfc” construction from Subsection 6.3 of [6]. For the reader’s conve-
nience, we repeat the definitions used there.

Definition 4.1 Suppose K is a class of finite structures. We say that K has the Strong Amalga-
mation Property (SAP) if given A,B,C ∈ K and embeddings e : A → B and f : A → C there is
D ∈ K and embeddings g : B → D and h : C → D such that
1) ge = hf and
2) im(g) ∩ im(h) = im(ge) (and hence = im(hf) as well).

We will say that a theory is SAP if it has a countable ultrahomogeneous model whose age is SAP.
The following criterion comes from [8].

Fact 4.2 Suppose K is the age of a countable structure M. Then the following are equivalent:
1) K has SAP
2) M has no algebraicity

Let K denote an SAP Fräıssé class in a finite relational language L = (Ri : i < k), where
each Ri has arity ni. Denote by T the theory of the Fräıssé limit of the class K. Then Lpfc is
defined to be a two-sorted language, with the sorts denoted by O and P , and relation symbols
Ri

x(x, y1, y2, . . . , yni
), where x is a variable of the sort P and yi’s are variables of the sort O. Given

an Lpfc-structure M = (A,B) and b ∈ B, the L-structure associated to b in M , denoted Ab, is
defined to be the L-structure interpreted in M with domain A and each Ri interpreted as Ri

b(A).
Put

Kpfc = {M = (A,B) ∈Mod(Lpfc) : |M | < ω, (∀b ∈ B)(∃D ∈ K)(Ab ≃ D)}.

Fact 4.3 ([6]) Kpfc is a Fräıssé class satisfying SAP.

Thanks to the above fact, there is a unique countable ultrahomogeneous Lpfc-structure with age
Kpfc. Let Tpfc denote its theory. Then Tpfc has quantifier elimination. Let us recall two facts from
[6] that will be crucial for us.

Fact 4.4 Suppose (A,B) |= Tpfc. Then, for all b ∈ B, Ab |= T .

Fact 4.5 Suppose T is a simple theory which is the theory of a Fräıssé limit of a SAP Fräıssé
class K. Then Tpfc is NSOP1. Moreover, if the D-rank of T is at least 2, then Tpfc is not simple.

Now, we aim to prove that the “pfc” construction applied to a geometric theory satisfying condition
acl(A) = A for any A, gives a geometric theory.

Let N = (A,B) be a monster model of Tpfc.

Lemma 4.6 For any A0 ⊆ A and B0 ⊆ B we have that acl(A0B0) ∩B = B0.

Proof. Clearly we can assume that both A0 and B0 are finite. Put C = A0B0, take any b ∈ B\B0

and fix any natural number n. We will show that the orbit of b over C has at least n ele-
ments. To see this, consider a finite Lpfc-superstructure E = (A0, D) of (A0, B0) ⊆ N , where
D = B0 ∪ {b, d1, . . . , dn} with dj’s being pairwise distinct elements not belonging to {b} ∪B0, and
for each i, j, Ri

dj
(A0) is equal to Ri

b(A0) in the sense of N . Then clearly E ∈ Kpfc, so we can

assume E = (A0, D) is a substructure of N (by changing di’s appropriately). Then, for every j,
we have that qftp(dj/C) = qftp(b/C), so we are done due to the quantifier elemination in Tpfc. �
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Lemma 4.7 Suppose φj(x, aj , bj) for j = 1, . . . , n are non-algebraic Lpfc-formulas in a single
variable of the first sort, where each aj is a tuple of elements of A and bj are pairwise distinct
elements of B. Then the conjunction φ := ∧jφj is non-algebraic.

Proof. Suppose for a contradiction that φ is algebraic, and denote by A0 the finite set φ(A). We con-
sider a finite Lpcf -structure E with universe (C,D), where C = A0∪{c}, c /∈ A0, D = {b1, . . . , bn},
and interpretation of symbols of Lpcf given as follows. For any j ≤ n, by the non-algebraicity of φi

we choose its realization cj ∈ A\A0. Now, let fj : C → A0∪{cj} be the bijection whose restriction
to A0 is the identity. We interpret every Ri

bj
in E as f−1

j [Ri(A0∪{cj})]. Then E belongs to Kpfc so

it embeds in N via some function g, and g(c) ∈ N\A0 is an realization of φ. This is a contradiction
to the choice of A0, so the lemma is proved. �

Corollary 4.8 If T is geometric and satisfies condition acl(A) = A for any A, then Tpfc is
geometric satisfying the same condition.

Proof. First, we show the definability of infinity. If φ(x, y) is a formula with x being a single
variable of the sort P (and y of any lenght), then by Lemma 4.6, for any c, if φ(x, c) is algebraic
then each of its realizations belongs to c, so φ(x, c) is algebraic iff it has at most |y| realizations.
Now, if x is a variable of the sort O, then any formula in variable x can be presented in the form
φ(x, yj,l, zj,l)j,l := ∨l ∧j φj,l(x, yj,l, zj,l), where each zj,l is a single variable of the sort P , and yj,l are
tuples of variables of the sort O (we can obtain such a presentation since atomic formulas in Lpfc

can involve only a single variable from the sort P ). Then φ(x, aj,l, bj,l)j,l is algebraic if and only if
for each l0 the formula ∧jφj,l0(x, aj,l0 , bj,l0) is algebraic. But by Lemma 4.7 this holds iff there are
j1, . . . , js such that bj1,l0 = bj2,l0 = · · · = bjs,l0 and ∧t≤sφj,l0(x, ajt,l0 , bjt,l0) is algebraic. By Fact 4.4
the latter is a definable condition on aj,l0, bj,l0, so we obtain the definability of infinity.

As to the condition acl(A) = A, by Lemma 4.6 it is enough to check that for any finite
A0 ⊂ A and B0 ⊂ B we have that acl(A0B0) ∩ A = A0. Consider any a ∈ acl(A0B0) ∩ A.
Then there are formulas φj(x, aj , bj) as in the statement of Lemma 4.7, such that the conjunction
φ(x) := ∧jφj(x, aj, bj) is algebraic and satisfied by a. By Lemma 4.7, for some j the formula
φj(x, a0, bj) is algebraic. By Fact 4.4 and the assumptions on T this implies that a in acl(aj) = aj
in the sense of the structure Abj , so a ∈ A0.

�

Remark 4.9 By a similar argument we can show, assuming only that T is geometric, that in Tpfc
we have definability of infinity, and the following weaker form of exchange principle:

a ∈ acl(Ab)\acl(A) =⇒ b ∈ acl(Aa).

for any parameter set A and a belonging to the same sort as b. However, this condition seems not
to be sufficient to prove a generalization of Theorem 3.6 by our methods.

Let us recall one more operation from [6] which we need to obtain examples of nonsimple NTP1

theories. Given an L-structure M , the imaginary cover M̃ of M is defined to be the structure in
language L′ obtained from L by adding a binary relation symbol E, constructed by replacing each
element of M with an infinite E-class and interpreting the symbols of L in the natural way. By
Remark 6.19 from [6] we have:

Fact 4.10 If T = Th(M) is simple and SAP, then T̃ := Th(M̃) is simple of D rank at least 2
and SAP.

8



Let us notice the following.

Remark 4.11 The theory T̃ has definability of infinity and for any A in a model of T̃ we have
that acl(A) = A.

Proof. The second clause is obvious, and for the first one notice that any atomic formula φ(x, a)
in T̃ has either infinitely many or at most one realization. Hence, by the quantifier elimination we
get definability of infinity for any formula. �

Now we obtain the final corollary which yields a class of examples of nonsimple NTP1 geometric
theories.

Corollary 4.12 If T is any SAP simple theory then (T̃ )pfc is a geometric nonsimple NTP1 theory.

Proof. By Remark 4.11, T̃ is geometric and satisfies the condition acl(A) = A for any A, so by
Corollary 4.8 the same is true about (T̃ )pfc. Moreover, (T̃ )pfc is NTP1 and nonsimple by Facts 4.5
and 4.10. �
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