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ON ELIMINATION OF QUANTIFIERS IN SOME NON-CLASSICAL

MATHEMATICAL THEORIES

GUILLERMO BADIA, ANDREW TEDDER

ABSTRACT. Elimination of quantifiers is shown to fail dramatically for a group
of well-known mathematical theories (classically enjoying the property) against a
wide range of relevant logical backgrounds. Furthermore, it is suggested that only
by moving to more extensional underlying logics can we get the property back.
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1. INTRODUCTION

The property of quantifier elimination for a theory has the following classical uses
([10], pp. 68-69): (1) classification of structures up to elementary equivalence, (2)
completeness and decidability proofs for theories, (3) description of elementary
embeddings, and (4) description of definable relations in a structure. In this pa-
per, we chose to focus on the latter and, as in [12], take it to be the fundamental
import of quantifier elimination. Our aim is to explore elimination of quantifiers
in the non-classical setting of quantificational logics which are sound with respect
to the Routley-Meyer semantic framework from relevant logic [23].1 Such quan-
tificational logics include many relevant and paraconsistent logics as well as, say,
classical logic.

We should alert the reader that the concern of the present pages will be with
mathematical theories (theories describing some mathematical structure), so we will
disregard things such as the pure theory of equality given that we will assume
equality to be a logical notion with a fixed interpretation.2 Some examples of
mathematical theories are the theory of dense linear orderings without endpoints, the
theory of real closed fields, the theory of ordered divisible abelian groups and Presburger
arithmetic. All these theories are known to have quantifier elimination in the classi-
cal setting [12]. Here we investigate the fate of this property in the Routley-Meyer
semantic framework.

1Quantifier elimination has been recently studied in [6] for the also non-classical context of intuitionistic
logic.
2Indeed, as can be extracted from §5, if = is taken as a non-logical symbol then the pure theory of
equality will certainly fail to have QE.
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2 GUILLERMO BADIA, ANDREW TEDDER

We also look at the minimal logical principles that can be added to our formal
systems to recover quantifier elimination. This is in line with some recent inves-
tigations into the non-classical models of mathematical theories.3 Our toy theory
will be the theory of dense linear orderings without endpoints (henceforth, DLO),
which is the simplest around.4

This paper is (fundamentally) a contribution to the study of paraconsistent
mathematical theories (i.e., theories where from a sentence and its negation not
everything follows). Our work is motivated by the need of understanding just
how different the behaviour of these theories is from that of their classical coun-
terparts. We would like to stress that, surprisingly, most of the research done in
this field with logics having a detachable conditional has used algebraic models.
In that sense, [22] seems to be the first (and likely only) place where Routley-Meyer
relational models have been employed in the study of substructural mathematical
theories as we will do below.

In §2, we review the details of the Routley-Meyer semantics as well as intro-
duce the fundamental definitions we will be working with. In §3, we present the
theories we will be studying. In §4, we show that quantifier elimination fails for
well-known mathematical theories when the underlying logic is any of the most
famous systems of relevant logic. In §5, we discuss how to get quantifier elimina-
tion back. Finally, in §6, we summarize our results.

2. LOGICAL PRELIMINARIES

All the languages we will be considering will have connectives ¬,∧,∨,→
, ∀, ∃,⊥,⊤ (with the usual arities) and a denumerable list of individual variables
x0, x1, . . . . As usual, by the signature of a language we will mean its relation, func-
tion and constant symbols.

We will be presenting relevant logics semantically rather than syntactically. The
reason for this is that Fine [8] has shown that the natural proof-theoretic formu-
lation of the well-know system R of relevant logic plus first order quantifiers is

incomplete with respect to the Routley-Meyer semantic framework.5 Hence, if
one desires to find a complete axiomatization for the systems we will call B, R and
RM they would need to go beyond what is usually understand proof-theoretically
by these calculi. It is not difficult to show, however, that our semantically defined
systems are indeed recursively axiomatizable using Craig’s method.

Models. We employ the standard ternary relation semantics, also routinely called
the “Routley-Meyer” semantics. A B-model is a structure M = 〈W, R, D,∗ , s, V〉
where W is a non-empty set (of worlds), R ⊆ W3, D is a set of objects (the domain),
∗ : W −→ W, s ∈ W, V is a valuation such that if w ∈ W and Pn is an n-ary
predicate, V(w, Pn) ⊆ Dn, and moreover:

• For any α ∈ W, Rsαα
• for any α, β, γ, δ ∈ W, Rsαβ and Rβγδ implies that Rαγδ

3Papers with results which are directly relevant to our work are [22, 17] and [7]. Other papers in
relevant arithmetic are [15], [16], and [9]. For the broader class of paraconsistent arithmetics, see [20],
[21], [18], and [19].
4Details on the classical model theoretic properties of DLO, and other mathematical theories considered
here can be found in [12], or any standard model theory textbook. Our axioms for RCF in §3.2 are found
in [24].
5A semantics which brings completeness back is given in [11].



ON ELIMINATION OF QUANTIFIERS IN SOME NON-CLASSICAL MATHEMATICAL THEORIES 3

• For any α ∈ W, α∗∗ = α
• For any α, β ∈ W, if Rsαβ then Rsβ∗α∗

• If R0αβ, then for any Pn, V(α, Pn) ⊆ V(β, Pn).

The special predicate = will always be interpreted as the metatheoretic classical
identity unless stated otherwise.

The additional ternary relation restrictions necessary for the logic R-mingle, or

RM, are as follows (the axioms enforced by the principles are included):6

• For any α, β, γ ∈ W, if Rαβγ then Rαγ∗β∗ (A → B) → (¬B → ¬A)
• For any α, β, γ, δ ∈ W, if Rαβγ then Rαγβ. CI

• For any α ∈ W, Rααα. WI

• If there is an x ∈ W s.t. Rαβx and Rxγδ then there is a y ∈ W s.t. Rαyδ and
Rβγy. B

• If Rαβγ then either Rsαγ or Rsβγ A → (A → A)

The correspondence between combinatory logic and propositional logic sup-
port the following pairs of combinators and valid formulae:

B (A → B) → ((C → A) → (C → B))
WI ((A → B) ∧ A) → B
CI A → ((A → B) → B)

Given a model M, we will use a to denote a sequence of individuals of the
domain of M. Truth of complex formulae at a world is defined as follows:

• M, w � ⊥ never
• M, w � A ∧ B[a] iff M, w � A[a] and M, w � B[a]
• M, w � (A ∨ B)[a] iff M, w � A[a] or M, w � B[a]
• M, w � ¬A[a] iff M, w∗ 2 A[a]
• M, w � (A → B)[a] iff if Rww1w2 and M, w1 � A[a] then M, w2 � B[a]
• M, w � ∀xA[a] iff for any y ∈ D, M, w � A[y/x, a]
• M, w � ∃xA[a] iff for some y ∈ D, M, w � A[y/x, a]

DEFINITION 1. For any logic L discussed here, set of formulas Γ and formula A,
we will say that A is deducible from Γ in L or, in symbols, Γ �L A when for every
L-model M, we have that M, s � Γ only if M, s � A. So deducibility only cares
about what happens at the distinguished world s. In particular if Γ = ∅ we get a
definition of theoremhood in L. In what follows, we will drop the subscript in �L

when the context makes clear about what system we are talking.

DEFINITION 2. A theory T admits quantifier elimination if, for any formula A, there
is a quantifier free formula B such that T � A ↔ B.

Next we make a couple of important observations which will be used (often
without explicit mention) throughout the paper.

PROPOSITION 1. (Hereditary condition) Let M be a B-model. If Rsαβ and A(x) is
any formula, M, α � A[a] only if M, β � A[a].

PROPOSITION 2. Let M be a B-model. Then M, s � A → B[a] iff for any α, M, α � A[a]
only if M, α � B[a].

6Sans-serif uppercase letters give the Combinatory names of implication axioms, and are used through-
out, in line with standard usage in the relevant literature. A good introduction to Combinatory logic
can be found in [2], and details regarding the correspondence between combinators and implicational
formulae can be found in [1][§71] or in [5].
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DEFINITION 3. Given some equivalence relation ≡ between models, where N ≡
M implies that all sentences true in one of the models are also true in the other,
a theory T is ω-categorical with respect to ≡ if for any countable models N, M � T,
N ≡ M.

DEFINITION 4. A theory T is negation-complete if for any formula A, either T � A
or T � ¬A.

DEFINITION 5. A theory T is complete if for any models M, N of T, M satisfies
exactly the same sentences as N.

Quantifier elimination is a model-theoretic property in the sense that it consid-
erably simplifies the theory of the definable sets of the models of a given theory:
these amount to the things one can define using quantifier free formulas.

3. SOME MATHEMATICAL THEORIES

In this section, we will review the axiomatizations of a our target mathematical
theories. The theories as presented are, of course, not the classical theories which
go by these names, as the underlying logic differs from classical logic. However,
we retain (roughly) the same axioms as the classical theories, though stated in non-
classical vocabulary. We shall be focused on properties had by classical formal
theories which are lost when the underlying logic is relevant, and so we shall use
the usual names for the classical theories to make explicit the comparison.

Dense Linear Orderings. In a signature with a binary relation symbol <, DLO

without endpoints is given by the following axioms:7

A1 ∀x(x < x → ⊥)
A2 ∀x, y(x = y ∨ x < y ∨ y < x)
A3 ∀x, y, z((x < y ∧ y < z) → x < z)
A4 ∀x, y(x < y → ∃z(x < z ∧ z < y))
A5 ∀x∃y(x < y)
A6 ∀x∃y(y < x)

If DLO is formulated with ∀x¬(x < x) instead of A1 it is a simple matter to
build a one element model for it, so the following result (though easy) is a neces-
sary preliminary.

PROPOSITION 3. DLO in any logic L extending B has no finite models.

Proof. This is easily seen essentially as in the classical case by constructing an in-
finitely ascending (descending) sequence (in the ordering holding at world s) of
distinct elements of the domain of objects of any B-model of DLO. In the reason-
ing one needs to use the property Rsss of B-models in an essential way but only
axioms A1, A5 (or alternatively A6) and A3. �

We have to insist that the failure of QE for DLO (which will be established below
in §4) holds, a fortiori, for DLO with ∀x¬(x < x) replacing A1. We do not have a
direct proof of the failure of QE for such alternative formulation of DLO. A similar
remark applies to all the theories we will examine in this paper, hence whenever
¬A occurs in a standard classical axiomatisation of some theory, we shall replace

7DLO with a paraconsistent underlying logic has been studied in [7] as formulated in the →-free frag-
ment of our language (where A → B is replaced by ¬A ∨ B).
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this with A → ⊥. For the QE result when the underlying logic is strengthened,
DLO in its current form looks like what is required.

Real Closed Fields. The signature of the real closed fields has a binary predicate

symbol <, binary function symbols +,×, unary function symbols −,−1, and con-

stants 0, 1. The theory RCF has the following axioms:8

A1 ∀x(x < x → ⊥)
A2 ∀x, y(x = y ∨ x < y ∨ y < x)
A3 ∀x, y, z((x < y ∧ y < z) → x < z)
A4 ∀x, y((0 < x ∧ 0 < y) → 0 < xy)
A5 ∀x, y, z(x < y → x + z < y + z)
A6 ∀x∃y(0 < x → x = yy)
A7 ∀x1, . . . , xn∃y(yn + x1yn−1 + · · ·+ xn = 0) for each odd n > 0.
A8 ∀x, y, z((x + y) + z = x + (y + z))
A9 ∀x(x + 0 = x)

A10 ∀x(x + (−x) = 0)
A11 ∀x, y(x + y = y + x)
A12 ∀x, y((xy)z = x(yz))
A13 ∀x(x1 = x)
A14 ∀x(¬(x = 0) → xx−1 = 1)
A15 ∀x, y(xy = yx)
A16 ∀x, y, z(x(y+ z) = (xy) + (xz))
A17 0 = 1 → ⊥

Presburger arithmetic. The signature of Presburger arithmetic has a binary pred-
icate symbol <, unary predicates Pn (n > 1), a binary function symbol +, and
constants 0, 1. The axioms are as follows:

A1 ∀x(x < x → ⊥)
A2 ∀x, y(x = y ∨ x < y ∨ y < x)
A3 ∀x, y, z((x < y ∧ y < z) → x < z)
A4 ∀x, y, z(x < y → x + z < y + z)
A5 ∀x, y, z((x + y) + z = x + (y + z))
A6 ∀x(x + 0 = x)
A7 ∀x, y(x + y = y + x)
A8 0 < 1
A9 ∀x((x = 0 ∨ x < 0) ∨ (1 < x ∨ x = 1))

A10 ∀x(Pn(x) ↔ ∃y(x = y + · · ·+ y
︸ ︷︷ ︸

n−times

)) for n > 1

A11 ∀x(
∨n−1

i=0 (Pn(x + 1 + · · ·+ 1
︸ ︷︷ ︸

i−times

) ∧
∧

i 6=j(Pn(x + 1 + · · ·+ 1
︸ ︷︷ ︸

j−times

) → ⊥))) for n > 1

Divisible Ordered Abelian Groups. The signature of the theory of divisible or-
dered abelian groups (DOAG) has a binary predicate symbol <, a unary function
symbol −, a binary function symbol +, and the constants 0. Here is the list of
axioms:

A1 ∀x(x < x → ⊥)
A2 ∀x, y(x = y ∨ x < y ∨ y < x)

8For a different (essentially second order) approach to R in a paraconsistent setting, see [14].
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A3 ∀x, y, z((x < y ∧ y < z) → x < z)
A4 ∀x, y, z(x < y → x + z < y + z)
A5 ∀y∃x(x + x . . . x

︸ ︷︷ ︸

n−times

= y) for n > 1.

A6 ∀x, y, z((x + y) + z = x + (y + z))
A7 ∀x(x + 0 = x)
A8 ∀x(x + (−x) = 0)
A9 ∀x, y(x + y = y + x)

Algebraically Closed Fields. The signature of the algebraically closed fields has

binary function symbols +,×, unary function symbols −,−1, and constants 0, 1.
The theory ACF has the following axioms:

A1 ∀x, y, z((x + y) + z = x + (y + z))
A2 ∀x(x + 0 = x)
A3 ∀x(x + (−x) = 0)
A4 ∀x, y(x + y = y + x)
A5 ∀x, y((xy)z = x(yz))
A6 ∀x(x1 = x)
A7 ∀x(¬(x = 0) → xx−1 = 1)
A8 ∀x, y(xy = yx)
A9 ∀x, y, z(x(y+ z) = (xy) + (xz))

A10 0 = 1 → ⊥
A11 ∀x1, . . . , xn∃y(yn + x1yn−1 + · · ·+ xn = 0) for each n > 0.

4. FAILURE OF QUANTIFIER ELIMINATION

In this section we study the failure of QE for most of the theories from §3. Note
that we employ the following seriality condition: ∀x∃y, z(Rxyz). This is need
for the proof, but is not motivated by any considerations other than that it is so
needed. We have not discovered a means of obtaining this important result with-
out the seriality condition.

LEMMA 4. Let L be any logic extending B such that its frames satisfy the condition
∀x∃y, z(Rxyz) (a seriality requirement). Then if A(x) is a quantifier free formula with
one free variable in DLO without endpoints, either A(x) ↔ x = x or A(x) ↔ x < x.

Proof. We proceed by structural induction on A(x):

Base: A(x) is atomic; hence A(x) is either x = x or x < x.

Induction step: We proceed by cases on the main connective of A(x), where the
induction hypothesis guarantees that any component formula B(x) of A(x) are
such that either B(x) ↔ x = x or B(x) ↔ x < x.

Case 1: A(x) is B(x) ∧ C(x). By induction hypothesis, we know that any of the
following four may be true of B(x), C(x).

(i) B(x) ↔ x = x,
(ii) B(x) ↔ x < x,

(iii) C(x) ↔ x = x,
(iv) C(x) ↔ x < x.

So, we have four possibilities to consider:
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(1) (i) and (iii)
(2) (i) and (iv)
(3) (ii) and (iii)
(4) (ii) and (iv)

Suppose (i) and (iii) hold. Then (B(x) ∧ C(x)) ↔ (x = x ∧ x = x) ↔ x = x.
The result for (ii) and (iv) is similar.

Suppose (i) and (iv) hold. Then (x = x ∧ x < x) ↔ (B(x) ∧ C(x)). So (B(x) ∧
C(x)) ↔ x < x given that (x = x ∧ x < x) ↔ x < x (the right to left implication
follows using A1). The result for (ii) and (iii) is similar.

Case 2: A(x) is B(x) ∨ C(x). By inductive hypothesis we have the same set of
possibilities as above.

Suppose that (i), (iii) hold. As in Case 1, (x = x ∨ x = x) ↔ x = x. For (ii), (iv),
(x < x ∨ x < x) ↔ x < x.

Suppose that (i), (iv) hold. That is, (B(x) ∨ C(x)) ↔ (x = x ∨ x < x). Well,
x = x → (x = x ∨ x < x). Obviously, x = x → x = x; we need merely note
that by A1 and the transitivity of →, x < x → x = x. Given this, we have
(x = x → x = x) ∧ (x < x → x = x), and we have as an instance of an axiom of
B that ((x = x → x < x) ∧ (x < x → x = x)) → ((x = x ∨ x < x) → x = x),
therefore (x = x ∨ x < x) → x = x. So (B(x)∨ C(x)) ↔ x = x.

Case 3: Suppose that A(x) is ¬B(x). By inductive hypothesis, either B(x) ↔ x = x
or B(x) ↔ x < x. Suppose that B(x) ↔ x = x. Then A(x) ↔ ¬x = x. It is easy to
check that ¬x = x → ⊥ is a theorem (recall that the interpretation of = has been
fixed at every world) and ⊥ → x < x, hence A(x) ↔ x < x using A1. Suppose
that B(x) ↔ x < x. Then A(x) ↔ ¬x < x. By A1, contraposition, the fixed
interpretation of = which makes x = x ↔ ⊤ hold, and transitivity of →, it follows
that x = x ↔ ¬x < x, hence A(x) ↔ x = x.

Case 4: Suppose that A(x) is B(x) → C(x). Again, we have the possibilities (1)–(4)
as in Case 1.

Suppose that (i), (iii) hold. Then (B(x) → C(x)) ↔ (x = x → x = x). Since x =
x ↔ ⊤, we know that (⊤ ↔ ⊤) ↔ (x = x ↔ x = x). Similarly, (⊤ ↔ ⊤) ↔ ⊤,
and so (x = x ↔ x = x) ↔ x = x, and A(x) ↔ x = x.

Suppose that (ii), (iv) hold. Then (B(x) → C(x)) ↔ (x < x → x < x) ↔ (⊥ ↔
⊥) ↔ ⊤ ↔ x = x. So A(x) ↔ x = x.

Suppose that (i), (iv) hold. Then (B(x) → C(x)) ↔ (x = x → x < x). We
know that (x = x → x < x) ↔ (⊤ → ⊥). Note that using the seriality condition
on our frames, (⊤ → ⊥) ↔ ⊥ must hold. It suffices to note that never ⊤ → ⊥
holds at any world α of any model, for otherwise, using seriality, ⊥ would have to
hold at some world, which is impossible. Hence, (x = x → x < x) ↔ ⊥, and the
definition of ⊥ gives us that ⊥ ↔ x < x, so A(x) ↔ x < x.

Suppose that (ii), (iii) hold. Then (B(x) → C(x)) ↔ (x < x → x = x) and we
know that (x < x → x = x) → x = x. Similarly, we know that x = x → (x <

x → x = x) given that x < x → x = x holds at every world in every model, and
so A(x) ↔ x = x.

�

THEOREM 5. Let L be any relevant logic extending B up to RM. Then QE fails for DLO
in L.



8 GUILLERMO BADIA, ANDREW TEDDER

Proof. Let N = 〈W, D, R,∗ , s, V〉 the model where:

• W = {s, t}
• D = Q

• R = {〈s, s, s〉, 〈s, t, t〉, 〈t, s, s〉, 〈t, s, t〉, 〈t, t, s〉, 〈t, t, t〉, 〈s, t, s〉}
• V assigns formulae containing < the values consonant with the usual or-

dering on Q at world s. At world t, V assigns the usual ordering on <

for rationals in the interval [2, 3] and assigns false to any atomic formula
involving rationals outside this interval. At every world, = is interpreted
as real identity.

• s is the designated world.
• ∗ = {〈s, t〉, 〈t, s〉}

The reader can easily convince themselves that DLO is validated at s. On the other
hand, it is a tedious, but mechanical process to check that N satisfies the frame

conditions to validate the logic RM.9

The definition of {2} at world s is the formula

¬∃x(x < y) ∧ (∀x(x = x) → ∃x(y < x)).

This is due to the fact that for any a,

N, s � ¬∃x(x < y) ∧ (∀x(x = x) → ∃x(y < x))[a] iff a = 2.

First, it is easy to see that N, s � ¬∃x(x < y) ∧ (∀x(x = x) → ∃x(y < x))[2] since
N, t 2 ∃x(x < y)[2] by definition of N and N, s � ∀x(x = x) → ∃x(y < x)[2] given
that N, w � ∃x(y < x)[2] for any w ∈ W. Finally, note that by definition of N, 2 is
the only element a ∈ D for which N, t 2 ∃x(x < y)[a] and N, t � ∃x(y < x)[a].

These results show that ¬∃x(x < y) ∧ (∀x(x = x) → ∃x(y < x)) is not equiv-
alent to ⊤ or ⊥, (that is, is not equivalent to x < x or x = x). Now, given that the
models for RM satisfy the seriality condition, by Lemma 4, ¬∃x(x < y) ∧ (∀x(x =

x) → ∃x(y < x)) is not equivalent to a quantifier free formula.10
�

Failure of ω-categoricity with respect to an equivalence relation.

PROPOSITION 6. There exist countable models N, M � DLO s.t. not N ≡ M.

Proof. Let M = 〈W, D, R,∗ , s, V〉 where:

• W = {s}, R = W3, ∗ = W2

• D = Q

• s is the designated world
• V assigns the usual <-ordering on Q.
• V assigns = real identity.

Given the definition of V, M � DLO, and since D = Q, M is countable. M, s �

∀x(x = x) → A3 and M, s 2 A3 ∧¬ A3.

Let N = 〈W, D, R,∗ , s, V〉 where:

• W = {s, t}

9It has been verified using PROVER9, a computer proof assistant McCune [13]
10The formula ∀y, z(¬(x < y < z) ∨ x < y < z) is another example of something that has no quanti-
fierless equivalent in DLO. So, in fact, → is not essential to construct such a formula.
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• D = Q

• R = {〈s, s, s〉, 〈s, t, t〉}
• ∗ = {〈s, t〉, 〈t, s〉}
• s is the designated world
• V assigns the usual <-ordering on Q at s, and assigns < to ∅ at t.
• V assigns = real identity at every world.

Given the definition of V for < at s, N � DLO. Again, N is countable. We need
only note that N, s 2 ∀x(x = x) → A3 and N, s � A3 ∧¬ A3. Hence, we have
formulae A, B s.t. M � A and N 2 A, and M 2 B and N � B, and so not M ≡ N.

�

Failure of Negation Completeness.

PROPOSITION 7. There exists a formula A such that DLO in RM proves neither A nor
¬A.

Proof. Consider the RM model M where:

• W = {s}, R = W3, ∗ = W2

• D = Q

• s is the designated world
• V assigns the usual <-ordering on Q

On this model, the ‘classical’ model for RM, we have that M, s 2 ¬(∀x¬x < x →
∀x∃yy < x). In the model N defined in Theorem 3, we have that N, t 2 ∀x¬x <

x → ∀x∃yy < x because N, t � ∀x¬x < x and N, t 2 ∀x∃yy < x. Hence, it is the
case that DLO2 ∀x¬x < x → ∀x∃yy < x and DLO2 ¬(∀x¬x < x → ∀x∃yy < x).

�

So, for DLO, we have the failure of negation completeness, quantifier elimina-
tion, ω-categoricity, and it’s fairly obvious that we also have the failure of model-
completeness. Essentially, in any relevant logic, DLO fails to have any of the nice
model-theoretic properties it enjoys in the classical context. At base, one can chalk
this up to the fact that in the relevant setting, we have much more power to con-
struct countermodels.

THEOREM 8. Let L be any relevant logic between B and RM. Then QE fails for RCF in
L.

Proof. Consider the first order structure 〈R,<R,+R,−R,−1R ,×R, 0R, 1R〉. By
the upward Löwenheim-Skolem theorem, there is an elementary (in the sense

of classical first order logic) extension 〈R′,<R′ ,+R′ ,−R′ ,−1′R ,×R′ , 0R′ , 1R′〉 of

〈R,<R,+R,−R,−1R ,×R , 0R, 1R〉 such that |R′| = 22ω
. So in particular, 〈R′,<R′

,+R′ ,−R′ ,−1′R ,×R′ , 0R′ , 1R′〉 is a model of the classical theory of real closed fields.
Furthermore, it can be guaranteed that |R| < |{x ∈ R′ : 0R′ <R′ x}|.

Define the ordering <
′ on R′ as:

x <
′ y iff 0 <R′ y − x and y − x ∈ R,

where the expression y − x abbreviates y + (−x) as usual. First, we see that for
x ∈ R′, it cannot be the case that x <

′ x since 0 <R′ x − x = 0 is false. So <
′

is irreflexive. If x, y, z ∈ R′, x <
′ y and y <

′ z, i. e., 0 <R′ y − x ∈ R and 0 <R′

z− y ∈ R, then 0 <R′ z− x = (y− x)+ (z− y) ∈ R (for R is certainly closed under
+), which means that x <

′ z. So <
′ is transitive. Now if 0 <

′ x and 0 <
′ y, i.e.,
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0 <R′ x − 0 = x ∈ R and 0 <R′ y − 0 = y ∈ R then surely 0 <R′ xy − 0 = xy ∈ R

(for R is also closed under ×), i.e., 0 <
′ xy. Finally, if x <

′ y, i. e., 0 <R′ y − x ∈ R

then since z− z = 0, it follows that 0 <R′ (y+ z)− (x+ z) = (y− x)+ (z− z) ∈ R,
which means that x + z <

′ y + z.

Now consider a Routley-Meyer model N′ = 〈W, D, R,∗ , s, V〉 where

• W = {s, t}
• D = R′

• All constants and function symbols of the language of RCF are interpreted

on R′ as in 〈R′,<R′ ,+R′ ,−R′ ,−1′R ,×R′ , 0R′ , 1R′〉.
• R = {〈s, s, s〉, 〈s, t, t〉, 〈t, s, s〉, 〈t, s, t〉, 〈t, t, s〉, 〈t, t, t〉, 〈s, t, s〉}
• V assigns the symbol < the (strict) ordering <R′ on R′ at world s. At

world t, V assigns the ordering <
′ as the interpretation of the symbol <.

Note that since <′⊂<R′ , V is an admissible valuation in the Routley-Meyer
semantics. At every world, = is interpreted as real identity.

• s is the designated world.
• ∗ = {〈s, t〉, 〈t, s〉}.

This structure is a model of RCF. Next take any r ∈ {x ∈ R′ : 0R′ <R′ x} \ R

(recall that we made sure that such an r exists). Now, (r +R′ 1R′) − 1R′ = r. But
then it cannot be that 1R′ <

′ (r +R′ 1R′). Hence,

N′, s 2 ∀y, z((0 < y < z ∧ ¬(y < z)) → ¬∀x(x = x)).

Observe that in this model ¬∀x(x = x)) is essentially just ⊥.
Now take the model N′′ of RCF which is just N′ but with D = R. With this

modification, the ordering <
′ basically collapses to <R. It is easy to see then that

N′′, s � ∀y, z((0 < y < z ∧ ¬(y < z)) → ¬∀x(x = x)).

Finally, one can show by induction on formula complexity that if A(x) is a quan-
tifier free relevant formula in the full language of RCF and a a sequence of objects
from the domain R of N′′, w ∈ W, then

N′′, w � A[a] iff N′, w � A[a].

But with the above results this implies that the formula in the free variable x,

∀y, z((x < y < z ∧ ¬(y < z)) → ¬∀x(x = x))

cannot be equivalent to any quantifierless formula of the language of RCF11, so the
theory lacks QE.

�

THEOREM 9. Let L be any relevant logic between B and RM. Then QE fails for Presburger
arithmetic in L.

Proof. This follows as for RCF except that we work with Z rather than R, and a
smaller signature. The reader can fill in the details. �

THEOREM 10. Let L be any relevant logic between B and RM. Then QE fails for DOAG
in L.

11In fact, the presence of → is not essential here, the formula ∃y, z((x < y) ∧ (y < z) ∧ ¬(y < z))
would also do the trick.
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Proof. The proof is left to the reader and it follows as for the case of RCF again, by
using Q rather than R. �

To end this section we wish to remark that the failure of QE presented here
cannot be fixed by taking a weaker notion of QE where we merely demand inter-
deducibility with a quantifier free formula as opposed to equivalence in the sense
of a relevant biconditional. The reason is that our arguments show that the formu-
las witnessing the failure of QE cannot be interdeducible with any quantifierless
formula either. To see this note that, for instance, in the proof of Theorem 8, we
actually showed that there cannot be any quantifierless formula A(x) such that:

N′′, s � ∀y, z((0 < y < z ∧ ¬(y < z)) → ¬∀x(x = x)) iff N′, s � A[0],

which means that no such quantifierless formula can be interdeducible with
∀y, z((x < y < z ∧ ¬(y < z)) → ¬∀x(x = x)).

5. THEORIES WITH QUANTIFIER ELIMINATION

In this section we study under which circumstances can we get QE back. Some
proofs are simply arguments from [12], given in the Routley-Meyer semantic
framework.

PROPOSITION 11. Let L be any logic extending B + K such that its frames satisfy the
condition ∀x∃y, z(Rxyz), M = 〈W, R, D,∗ , s, V〉 an L-model for DLO, A(x) a formula
of DLO, and a a sequence of elements of D. Then for any w ∈ W, M, w � A[a] iff
M, s � A[a].

Proof. The frame condition for K (the principle A → (B → A)) is:

(1) Rαβγ only if Rsαγ.

Now we proceed by induction of the complexity of A(x). Suppose first that A(x) is
an atomic formula of the form xi < yj. Then if M, s � A[a], M, w � A[a] follows by
the Hereditary condition and the fact that Rssw in the presence of (1) since Rsww.
For the converse suppose that M, w � A[a], which means that M, w � xi < yj[aiaj].
Now if M, s 2 xi < yj[aiaj], since M is a model for DLO, either M, s � xi = yj[aiaj]
or M, s � yj < xi[aiaj]. If the first, it must be that M, w � xi = yj[aiaj] and since

(xi = yj ∧ xi < yj) → xi < xi is a theorem of L, it follows that M, s � (xi =
yj ∧ xi < yj) → xi < xi[aiaj], so since Rsww, it must be that M, w � xi < xi[aiaj],
which is impossible. If, on the other hand, M, s � yj < xi[aiaj], then M, w � yj <

xi[aiaj] and given that Rsww it must be the case that M, w � xi < xi[aiaj], i.e.,

M, w � xi < xi[ai], which is impossible again. Hence, M, s � xi < yj[aiaj], as
desired.

Suppose next that A(x) is of the form ¬B(x). If M, s � ¬B[a] then M, w � ¬B[a]
by the Hereditary condition. Now if M, s 2 ¬B[a] then M, s∗ � B[a] and, by a
double application of the inductive hypothesis, M, s � B[a] and M, w∗ � B[a],
which in turn implies that M, w 2 ¬B[a], as wanted.

Let A(x) be of the form B → C. One direction of the result follows by the
Hereditary condition again. For the converse, suppose that M, s 2 B → C[a], so
there are y, z ∈ W such that M, y � B[a] and M, z 2 C[a]. By inductive hypothesis,
it follows that M, s � B[a] and M, s 2 C[a]. By assumption there are u, v ∈ W such
that Rwuv (this is the only point in the proof where we need this assumption).
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Consequently, by inductive hypothesis again that M, u � B[a] and M, v 2 C[a].
But then M, w 2 B → C[a], as desired.

The remaining cases are similarly straightforward. �

PROPOSITION 12. (Cantor’s Theorem) Let L be any logic extending B + K such
that its frames satisfy the condition ∀x∃y, z(Rxyz), M = 〈W, R, D,∗ , s, V〉, N =

〈W ′, R′, D′,∗
′
, s′, V′〉 two countable L-models for DLO, and a1, . . . , an ∈ D, b1, . . . , bn ∈

D′ sequences such that a1 < · · · < an and b1 < · · · < bn hold at s and s′ respectively.
Then there is a bijective mapping f : D −→ D′ such that f (ai) = bi and for any formula
A(x) of DLO and sequence of elements a of D,

M, s � A[a] iff N, s′ � A[ f (a)].

Proof. The function f is built by a back-and-forth argument.12 We make sure by
construction that M, s � x < y[a] iff N, s′ � x < y[ f (a)].

Let c0, c1, c2 . . . and d0, d1, d2 . . . be enumerations of D \ {a1, . . . , an} and D′ \
{b1, . . . , bn} respectively. Next we build a sequence f0 ⊆ f1 ⊆ . . . of bijections
fi : Di −→ D′

i such that Di ⊂ D and D′
i ⊂ D′ are finite and M, s � x < y[a, b] iff

N, s′ � x < y[ fi(a), fi(b)] for any a, b ∈ Di. The idea is to build the sequences such
that

⋃
Di = D and

⋃
D′

i = D′, so
⋃

fi would be the f required by the theorem.
STAGE 0: Just put D0 = {a1, . . . , an}, D′

0 = {b1, . . . , bn} and let f0 be the map-
ping ai 7→ bi.

STAGE n+1=2m+1: When cm ∈ Dn then just put Dn+1 = Dn, D′
n+1 and fn+1 =

fn. On the other hand suppose that cm /∈ Dn. We want Dn+1 to be Dn ∪ {cm} in
this case. This means that we need to choose d ∈ D′ \ D′

n carefully for fn+1 =
fn ∪ {〈cm, d〉} and D′

n+1 = D′
n ∪ {d} be as required by the construction.

Keep in mind that we are working with models of DLO. Hence, there are three
mutually exclusive possibilities:

(1) M, s � x < y[c, cm] for each c ∈ Dn

(2) M, s � x < y[cm, c] for each c ∈ Dn

(3) there are a, b ∈ Dn such that M, s � x < y[a, b], M, s � x < y < z[a, cm, b]
and for all c ∈ Dn either M, s � x < y ∨ x = y[c, a] or M, s � x < y ∨ x =
y[b, c].

If (1) holds, then since D′
n is finite, we can find d ∈ D′ \ D′

n such that N, s′ � x <

y[c, d] for each c ∈ D′
n (this comes essentially from the same argument showing

that DLO has no models with a finite domain). A similar thing is the case when
(2) holds. In case (3), given that N, s′ � x < y[ fn(a), fn(b)] by construction, since N
is a model of DLO just take d ∈ D′ \ D′

n such that N, s′ � x < z < y[ fn(a), d, fn(b)].
STAGE n+1=2m+2: When dm ∈ D′

n, we simply let Dn+1 = Dn, D′
n+1 = D′

n

and fn+1 = fn. Otherwise, we proceed in an analogous way to the previous case
making sure that Dn+1, D′

n+1 and fn+1 are such that dm ∈ D′
n+1.

After having constructed f , we establish the equivalence in the proposition by
induction on the complexity of A(x). If A(x) is atomic, then the result follows by
construction of f .

Suppose next that A(x) is of the form ¬B(x). If M, s � ¬B[a], so M, s∗ 2 B[a],
hence M, s 2 B[a] by Proposition 11. So N, s′ 2 B[ f (a)] by inductive hypothe-

sis, and N, s′∗
′
2 B[ f (a)] by the previous theorem again, so N, s′∗

′
� ¬B[ f (a)] as

desired. The converse is symmetric.

12See [12] for examples of such arguments in a classical setting.
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Now let A(x) be of the form B → C. Suppose that M, s � B → C[a]. Assume
further that N, s′ � B[ f (a)], so by inductive hypothesis, it must be that M, s � B[a].
Since Rsss, M, s � C[a], which, by inductive hypothesis, means that N, s′ � C[ f (a)].
Then, by Proposition 11, it must be that N, w � B[ f (a)] only if N, w � C[ f (a)] for
any w ∈ W ′, so, in particular, N, s′ � B → C[ f (a)] holds. The converse follows by
symmetry.

The remaining cases are straightforward and the quantificational case uses the
fact that f is surjective. �

PROPOSITION 13. Let L be any logic extending B + K such that its frames satisfy the
condition ∀x∃y, z(Rxyz). Then DLO in L is complete.

Proof. Suppose not, that is, there are two L-models M = 〈W, R, D,∗ , s, V〉 and

N = 〈W ′, R′, D′,∗
′
, s′, V′〉 for DLO such that there is a sentence A of DLO for

which M, s � A but N, s′ 2 A. The cardinality of both D and D′ has to be infi-
nite. Since the language of quantificational relevant logic can be embedded in a
satisfaction preserving way into the language of classical first order logic, by the
classical downward Löwenheim-Skolem theorem, M and N can both be assumed
to be countable. By Proposition 12, they have to make exactly the same sentences
hold at s and s′, which contradicts our assumption. �

PROPOSITION 14. Let L be any logic extending B + K such that its frames satisfy the
condition ∀x∃y, z(Rxyz) and L is strongly complete with respect to the Routley-Meyer
semantics. Then DLO in L is negation complete.

Proof. Take any sentence A of DLO. Consider an arbitrary L-model M for DLO.
Then either M, s � A or M, s 2 A. The second implies M, s∗ 2 A by Proposition
11, with s∗ substituted for w. This is equivalent to M, s � ¬A. Since, according
to Proposition 13, all L-models of DLO make exactly the same sentences true, it
must be the case that either every L-model for DLO make A the case or that every
L-model for DLO make ¬A hold. Hence, either DLO � A or DLO � ¬A.

�

THEOREM 15. Let L be any logic extending B + K such that its frames satisfy the condi-
tion ∀x∃y, z(Rxyz) and L is strongly complete with respect to the Routley-Meyer seman-
tics. Then DLO in L has QE.

Proof. Take any countable model M = 〈W, R, D,∗ , s, V〉 of DLO in L. First, if A is
a sentence and M, s � A, using Proposition 11, it must be that M, s � A ↔ x = x,
which means that DLO � A ↔ x = x by the completeness of DLO. On the other
hand if M, s 2 A, we similarly obtain that DLO � A ↔ x < x.

Suppose now that A(x) is a formula in the free variables x1, . . . , xn. Let h :
{〈i, j〉 : 1 ≤ i < j ≤ n} −→ {0, 1, 2} and consider the formula Bh(x1, . . . , xn)
defined as follows:

∧

h(i,j)=0 xi = xj ∧
∧

h(i,j)=1 xi < xj ∧
∧

h(i,j)=2 xj < xi.

Write ΛA for the set of all Bh(x1, . . . , xn) with h : {〈i, j〉 : 1 ≤ i < j ≤
n} −→ {0, 1, 2} such that there is a sequence of elements a of D for which
M, 0 � A(x1, . . . , xn) ∧ Bh(x1, . . . , xn)[a]. ΛA will, of course, always be finite.

If ΛA = ∅, then for all sequences a of D it must be that M, s 2 A[a] for
note that every a would satisfy some Bh(x1, . . . , xn). This means that M, s �
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∀x1, . . . , xn(A ↔ xn+1 < xn+1), which implies that DLO � ∀x1, . . . , xn(A ↔
xn+1 < xn+1).

On the other hand, if ΛA 6= ∅, we claim that M, s � ∀x1, . . . , xn(A ↔
∨

ΛA), which implies that DLO � ∀x1, . . . , xn(A ↔
∨

ΛA). The half M, s �

∀x1, . . . , xn(A →
∨

ΛA) is clear since, as we said, every sequence of objects of
D satisfies some Bh(x1, . . . , xn). For the other half, let a1, . . . an ∈ D and M, s �

Bh[a1, . . . an] for some Bh(x1, . . . , xn) ∈ ΛA. By definition of ΛA there is a sequence
of objects b1, . . . bn ∈ D such that M, s � A(x1, . . . , xn) ∧ Bh(x1, . . . , xn)[b1, . . . bn].
Now take the mapping f : D −→ D such that f (ai) = bi given by our version
of Cantor’s theorem. Since M, s � A[b1, . . . bn], it must be that M, s � A[a1, . . . an].
This shows that M, s � ∀x1, . . . , xn(

∨
ΛA → A), as desired.

�

An example of a logic in which DLO will have all the nice features described
above is B + C +K (since all frames for this logic satisfy ∀x(Rxsx)).

PROPOSITION 16. Let L be any logic extending B + K. Then for any model M =
〈W, R, D,∗ , s, V〉 of DLO in L and formula A(x) there is a quantifier free formula B(x)
such that for every sequence of objects a in D, M, s � A[a] iff M, s � B[a].

Proof. Using the downward Löwenheim-Skolem theorem and the fact that
Routley-Meyer models are first order structures, it is not difficult to see that it
suffices to establish the theorem for models with a countable domain of objects.
By examining the proof of the previous theorem, it is easy to see how it can be
adapted mutatis mutandis up to the case that ΛA 6= ∅. At this point what is re-
quired is an instance of Cantor’s theorem saying that where M = 〈W, R, D,∗ , s, V〉
is a countable L-model for DLO, and a1, . . . , an ∈ D, b1, . . . , bn ∈ D sequences such
that a1 < · · · < an and b1 < · · · < bn hold at s, then there is a bijective mapping
f : D −→ D such that f (ai) = bi and for any formula A(x) of DLO, w ∈ W and
sequence of elements a of D,

M, w � A[a] iff M, w � A[ f (a)].

A simple modification of the proof of Cantor’s theorem suffices to establish it. The
construction of f is basically as before. To prove the above equivalence we need
to note first that for any sequence of objects a, M, w � A[a] iff M, s � A[a] if A
is atomic. This follows by the same argument used for the basis of the inductive
proof of Proposition 11. Now a simple induction on formula complexity takes care
of the rest.

�

So if the interest in QE was to reduce the complexity of the definable sets of any
given model of DLO, B + K is a logic extending B which has this effect, and we see
no way to regain this result without employing K, or some similar principle which
has the effect of eliminating all the worlds in the Routley-Meyer model except the
designated world. It is important to note that this theorem implies that one cannot
use the same strategy we used to refute QE for DLO in B in order to refute QE for
DLO in B + K. For there is no model M for DLO in B + K and formula A(x) such
that A(x) does not define a set already definable by a quantifierless formula at s in
M.
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THEOREM 17. Let L be any logic extending B such that its frames satisfy the condition
∀x∃y, z(Rxyz). Then ACF in L has QE.

Proof. We start by showing that if M = 〈W, R, D,∗ , s, V〉 is an L-model for ACF,
A(x) a formula of ACF, and a a sequence of elements of D. Then for any w ∈
W, M, w � A[a] iff M, s � A[a]. This follows by an easy induction on formula
complexity as before. So, in these models, a formula of the form A → B comes
down semantically to the same as a formula of the form ¬A ∨ B, which means that
all relevant formulas in these models are equivalent to →-free formulas. Since
ACF based on classical logic has QE, it suffices to show that every theorem of
classical ACF is also a theorem of ACF in L. But the contrapositive of this is easily
established, for if M = 〈W, R, D,∗ , s, V〉 is an L-model for ACF and M, s 2 A for
some relevant formula A (which without loss of generality can be taken to be →-
free), then a classical model refuting A is easily extracted by interpreting function

symbols in D as they are interpreted at world s in the Routley-Meyer model.13
�

The above proof works, in fact, for any theory whose classical counterpart has
QE and that does not contain non-logical symbols other than function and con-
stants.

This positive result (as the one for DLO) is, of course, sensitive to a change of
our background assumptions on equality. In this paper we have taken the pred-
icate to mean real identity under all circumstances. This position is certainly re-
jected by most relevant logicians, though. This is because it produces validities
like A → ∀x(x = x) for any arbitrary A. Relevant logicians would normally re-
quire just something like principles (R), (T) and (L) in the theorem below to hold.
In such case, QE can be shown to fail by arguments similar to the ones in §4. This
indicates that there is very little hope for positive results on QE when = is allowed
all the freedom most relevant logicians would grant it. In other words, for the ded-

icated relevant logician, QE fails for quite simple reasons in most circumstances.14

THEOREM 18. Suppose that all we require semantically from the predicate = is that it
satisfies the principles of reflexivity, transitivity, and a version of Leibniz’s law

(R) ∀xx = x,
(T) ∀x, y, z(x = y ∧ y = z → x = z),
(L) ∀x, y(x = y ∧ A(x) → A(y)) for all relevant formulas A.

Let L be any logic between B and RM. Then QE fails for ACF in L.

Proof. We argue in a rather similar way as in the failure of QE for RCF. However,

this time we use the classical structure 〈A,+A,−A,−1A ,×A, 0A, 1A〉 of algebraic
numbers and some uncountable elementary extension (again in the classical sense)

〈A′,+A′ ,−A′ ,−1′A ,×A′ , 0A′ , 1A′〉.
Now consider a Routley-Meyer model N′ = 〈W, D, R,∗ , s, V〉 where

• W = {s, t}
• D = A′

13This kind of argument would have also established QE for DLO for logics extending B + K and with
frames satisfying seriality. However, our previous argument for DLO was much more informative.
14Note, our results do not directly rule out building theories with QE by means of Skolemization, so
we cannot make this claim quite unequivocally.
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• All constants and function symbols of the language of ACF are interpreted

on A′ as in 〈A′,+A′ ,−A′ ,−1′A ,×A′ , 0A′ , 1A′〉.
• R = {〈s, s, s〉, 〈s, t, t〉, 〈t, s, s〉, 〈t, s, t〉, 〈t, t, s〉, 〈t, t, t〉, 〈s, t, s〉}
• V assigns to the symbol = real equality on A′ at world s. At world t,

V assigns equality restricted to A as the interpretation of the symbol =.
Note that since V(=, t) ⊂ V(=, s), V is a valuation in the Routley-Meyer
semantics.

• s is the designated world.
• ∗ = {〈s, t〉, 〈t, s〉}.

This structure is a model of ACF. Next take any r ∈ A′ \A (recall that we made
sure that such an r exists since A′ is uncountable while A is countable). Now,

N′, s � ¬(r = 0) ∧ ¬(r = r),

so,

N′, s � ∃x(¬(x = 0) ∧ ¬(x = x)).

Now take the model N′′ of ACF which is just N′ but with D = A. With this
modification, the predicate = becomes real equality at every world in the model,
so

N′′, s 2 ∃x(¬(x = 0) ∧ ¬(x = x)).

One can show by induction on formula complexity that if A(x) is a quantifier free
relevant formula in the language of ACF and a a sequence of objects from the
domain A of N′′, w ∈ W, then

N′′, w � A[a] iff N′, w � A[a].

But with the above results this implies that the formula in the free variable y,

∃x(¬(x = y) ∧ ¬(x = x))

cannot be equivalent to any quantifierless formula of the language of ACF, so the
theory does not have QE.

�

6. CONCLUSION

One of the main morals is that the property of quantifier elimination for a num-
ber of well-known mathematical theories (involving non-logical predicate – and not
just function – symbols) is easily lost in many relevant logics. Naturally, this is be-
cause logics that bring the property back are nearly classical, in that they enforce
strong extensional equivalences which are rejected in a relevant setting. So when
working in a more fine-tuned context, with fewer principles available, a property
like QE which marks a theory’s simplicity should no longer be expected to hold.
As anyone who has tried to do non-classical mathematics can testify, there is a
substantial jump in complexity from classical to non-classical mathematics.

It is of definite importance to the study of relevant logic and mathematics that
K plays a key role in capturing classical results for DLO. Thinning does play a key
role, and if the relevance properties of the logic involve rejecting K, then logics
which respect relevance provide a view of standard mathematical theories far dif-
ferent from the orthodoxy. This should not be particularly surprising in itself, but
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what is surprising is that in a logic as weak as B, the addition of just K and a plau-
sible seriality condition on Routley-Meyer frames goes a long way to capturing
classical results. That is, insofar as one may want QE and categoricity consider-
ations are useful for purposes (1)–(4) in §1, at least K is required (and indeed, in
addition to K nothing beyond B is required). The dedicated relevantist, classical
logician, or non-partisan observer can, of course, take these results negatively, as
showing that irrelevance really plays a core role in standard mathematical model-
theoretic reasoning. However, there is a more interesting response available, to
which we have gestured. This is that even in the case of simple mathematical the-
ories like those considered here, a logical approach maintaining relevance opens
a view which, as Meyer and Mortensen claimed, “cannot impoverish insight into
the nature of mathematical structures, but rather can only enrich it” [16].
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