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We consider semi-algebraic sets and properties of these sets that are expressible by sentences in first-order
logic over the reals. We are interested in first-order properties that are invariant under topological transforma-
tions of the ambient space. Two semi-algebraic sets are called topologically elementarily equivalent if they
cannot be distinguished by such topological first-order sentences. So far, only semi-algebraic sets in one and
two-dimensional space have been considered in this context. Our contribution is a natural characterisation of
topological elementary equivalence of regular closed semi-algebraic sets in three-dimensional space, extending
a known characterisation for the two-dimensional case. Our characterisation is based on the local topological
behaviour of semi-algebraic sets and the key observation that topologically elementarily equivalent sets can be
transformed into each other by means of geometric transformations, each of them mapping a set to a first-order
indistinguishable one.
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1 Introduction and summary

1.1 Introduction and context

In the broad area of spatial logics, formal languages for describing and querying geometric entities and configura-
tions are designed and their expressiveness and complexity properties are studied [1]. These logics are interpreted
over classes of structures featuring geometrical objects and relations, and may be first-order or higher-order lan-
guages, or fragments thereof. The structures over which these logics are interpreted range over topological
spaces, affine spaces, metric spaces, among others. Relations present in these structures can be topological (e.g.,
connectivity), affine (e.g., parallelism of lines), or metric (e.g., equidistance of points). Although this area was
pioneered long time ago by Whitehead [2] and Tarski [3], it has attracted renewed interest in the past decades
because of its applications in artificial intelligence, database theory, physics and philosophy.

In the present paper, we focus on first-order spatial logics motivated by applications in spatial databases, where
they are used as query languages. One particular model studied in spatial databases is the constraint database
model [4]. In this model, spatial data are described by systems of polynomial inequalities over the reals and are
known as semi-algebraic sets [5]. First-order logic over the reals, for which Tarksi proved a quantifier-elimination
property [6], serves as a language to express queries and properties of the spatial data. The theory of constraint
databases is closely related to embedded finite model theory [7] and o-minimal model theory in particular [8].

One particular class of properties, studied extensively in constraint databases, is topological in nature [4,9–15].
In this context, a property is called topological if it is preserved under some class of topological transformations.
In mereotopology [1] and constraint databases [4], it is common to work with homeomorphisms of the ambient
(Euclidean) space. The crucial question is which topological properties are expressible in first-order logic over
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2 F. Geerts and B. Kuijpers: Topological elementary equivalence of regular sets in R3

the reals, since the latter is the basic query language in the constraint database model. Answering this question
thus yields an understanding of the expressive power of first-order logic as a query language.

One aspect in studying the expressive power is the question of topological elementary equivalence: which
spatial figures can be distinguished by topological first-order properties? Most results in this context concern
closed semi-algebraic sets in R2 [9, 10, 12]. Apart from a conjecture (Conjecture 3.1 in [16]) for topological
elementary equivalence of sets in Rn, not much is known for sets in dimensions higher than two. In this paper,
we consider topological elementary equivalence for sets in R3, restricted to the regular open (or closed) semi-
algebraic sets. Regularity is a common assumption, also in mereotopology. In a broader context, topological
elementary equivalence stems from model theory. Our work is therefore related to topological model theory [17–
19].

1.2 Summary of results

In this paper, we work with semi-algebraic sets in the Euclidean space R3 [5] and study a topological equivalence
relation of such sets, referred to as topological elementary equivalence [12]. This equivalence relation is defined
in terms of topological invariants that can be expressed in first-order logic over the reals, augmented with a ternary
relation symbol S that is used to represent the semi-algebraic set under consideration [4]. More specifically,
a first-order sentence expresses a topological invariant if it is invariant under ambient orientation-preserving
homeomorphisms of R3. In other words, if a semi-algebraic set A satisfies such a sentence, then any semi-
algebraic set B that is (ambiently) homeomorphic to A, by means of an orientation-preserving homeomorphism,
also satisfies this sentence. We refer to such invariants as first-order topological properties, and say that two sets
are topologically elementary equivalent if and only if they have the same first-order topological properties. For
example, a sentence that expresses that a set has a non-empty interior is a first-order topological property; but a
sentence that expresses that a set contains a straight-line segment is not.

Clearly, the standard topological equivalence relation, based on ambient homeomorphisms, is finer than the
equivalence relation considered in this paper. Indeed, if A and B are ambiently homeomorphic by means of
an orientation-preserving homeomorphism, then they are also topological elementary equivalent. The converse,
however, is not true. Indeed, as our main result implies, there exists a connected set A and a disconnected
set B in R3 that satisfy exactly the same set of first-order topological sentences. As a consequence, topological
connectivity is not first-order expressible, neither by a single sentence nor by a countable family of sentences. For
the two-dimensional case this was already known [20–22]. For example, it is known that the connectivity of sets is
not a first-order topological property [20–22]. Similarly, the topological equivalence relation based on first-order
properties that are invariant under general, not necessarily orientation-preserving, ambient homeomorphisms is
finer than the topological elementary equivalence relation, but coarser than the standard topological equivalence
relation.

In this paper, we characterise topological elementary equivalence for so-called regular closed semi-algebraic
sets in R3, that is, sets that coincide with the closure of their interior. More specifically, we establish the following
result.

Let A and B be two regular closed semi-algebraic sets in R3. Then, A and B are topologically
elementary equivalent if and only if A can be transformed into B by means of a finite sequence of
cylindrical replacements, 3d-tube cut&paste transformations, complement 3d-tube cut&paste trans-
formations, wire cut&paste transformations, wire unknotting transformations, local surgeries, and
orientation-preserving ambient homeomorphisms.

All transformations mentioned here (apart from cylindrical replacement) are depicted in Figures 6, 7 and 9,
and are described in full detail in Section 4.

Furthermore, we provide another characterisation of topological elementary equivalence that avoids transfor-
mations altogether and directly relates to first-order topological properties. More specifically, this characterisation
is based on a well-known topological property of semi-algebraic sets, namely that locally around each point they
are “conical” [5], on the one hand, and on a characterisation of topological elementary equivalence of closed
semi-algebraic sets in R2 [12], on the other hand.

More precisely, if we denote by Cone(A, p̄) the cone with base A ∩ S2(p̄, ε) and top p̄, for small enough ε,
then locally around p̄ the set A is ambiently homeomorphic to Cone(A, p̄). Here, S2(p̄, ε) denotes the sphere
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with centre p̄ and radius ε. We observe that the base of such a cone can be seen as a semi-algebraic set in R2

(after a suitable stereographic projection). We then have the following characterisation.

Let A and B be two regular closed semi-algebraic sets in R3. Then, A and B are topologically
elementary equivalent if and only if there is a bijection f : A → B such that for any point p̄ ∈ A
and f(p̄) ∈ B, the bases of Cone(A, p̄) and Cone(B, f(p̄)) are topologically elementary equivalent,
when viewed as sets in R2.

That is, topological elementary equivalence of sets in R3 can be characterized in terms of topological elemen-
tary equivalence of sets in R2, by transitioning to the bases of cones. We observe that this characterisation in
terms of cones confirms the conjecture on topological elementary equivalence of sets in Rn, stated in [16], in the
restricted setting of regular closed semi-algebraic sets in R3.

1.3 Organisation of the paper

This paper is organised as follows. Basic definitions of semi-algebraic sets, first-order logic over the reals and
topological elementary equivalence are given in Section 2. Next, in Section 3, we describe the topology of semi-
algebraic sets in R, R2 and R3 and recall the characterisation of topological elementary equivalence of sets in
R and R2. Furthermore, in Section 3.5, we formally state our characterisation in terms of cones and provide
part of its proof. In Section 4, we present the transformations, also used to characterise topological elementary
equivalence, and show that these transformations preserve topological elementary equivalence. In Section 5, we
show that semi-algebraic sets can be brought into a canonical form. This property underlies the proofs of our
main results. Finally, in Section 6, we conclude the paper with a short discussion.

2 Preliminaries

In this section, we give the basic definitions concerning semi-algebraic sets and topological first-order sentences.
We give all definitions for general dimension n, but we mainly use them for n = 1, 2 and 3, in this paper.

We denote the set of real numbers by R and the n-dimensional real space by Rn, for n ≥ 1. Moreover, we
equip Rn with the standard Euclidean topology. Throughout this paper, we also use the symbol R to abbreviate
the standard first-order structure 〈R, 0, 1,+,×, <〉 of the real ordered domain.

2.1 Semi-algebraic sets

A semi-algebraic set in Rn is a subset of Rn that is definable by a first-order formula (without parameters)
over the alphabet (0, 1,+,×, <), viewed as an n-ary relation over the reals. Since first-order logic over the
reals allows quantifier elimination [6], we observe that semi-algebraic sets can be defined by quantifier-free first-
order formulas. This means that a semi-algebraic set in Rn is a Boolean combination (union, intersection and
complement) of sets that are described by inequalities of the form p(x1, ..., xn) > 0, where p is a polynomial in
the real variables x1, . . . , xn with integer coefficients.

A semi-algebraic set is called compact if it is topologically closed and bounded. A semi-algebraic set A is
called regular closed if it equals the closure of its interior, that is, if A = (A◦). A semi-algebraic set A is called
regular open if it equals the interior of its closure, that is, if A = (A)◦. In this paper, when we use the term
regular, we refer to regular closed. We always assume that semi-algebraic sets are bounded.1 The border ∂A of
A is defined as A \A◦.

2.2 First-order logic over the reals

To describe properties of a semi-algebraic setA in Rn, we use first-order logic over the alphabet L = (0, 1,+,×,
<, S), being the expansion of the language of the reals with an n-ary relation symbol S. A semi-algebraic subset
A in Rn can be naturally viewed as a first-order structure over L, namely the expansion 〈R, A〉 of the structure
R with A. Hence, the truth of a sentence ϕ(S) over L in 〈R, A〉 can be denoted by A |= ϕ(S).

1 The restriction to “bounded” sets is not essential. We discuss this issue in more detail in Section 6.
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We remark that, since semi-algebraic sets are first-order definable in R, the question of A |= ϕ(S), given
ϕ(S) and a (quantifier-free) description of the semi-algebraic set A, is effectively decidable, because the first-
order theory of R is decidable [6].

2.3 Topological elementary equivalence

We call two subsets A and B in Rn homeomorphic if there is a homeomorphism h of the ambient space Rn such
that h(A) = B. A sentence ϕ(S) is called invariant under homeomorphisms (abbreviated as Hn-invariant), if
for any two homeomorphic semi-algebraic sets A and B in Rn, A |= ϕ(S) if and only if B |= ϕ(S).

Finally, two semi-algebraic subsetsA andB in Rn are calledHn-equivalent if for eachHn-invariant sentence
ϕ(S), we have A |= ϕ(S) if and only if B |= ϕ(S). We remark that homeomorphic semi-algebraic sets are Hn-
equivalent, but as we will see later, the converse does not hold.

It is known (see, for example, [23]) that any homeomorphism h of Rn is either isotopic to the identity mapping
(in which case h is orientation-preserving) or isotopic to a reflection of Rn (in which case h is orientation-
reversing). We refer to an orientation-preserving homeomorphism of Rn as an isotopy of Rn. We call two
subsets A and B in Rn isotopic if there is an isotopy h of Rn such that h(A) = B. Hence, when A and B are
homeomorphic, either A is actually isotopic to B, or A is isotopic to a mirror image of B. A sentence ϕ(S) is
called invariant under isotopies (abbreviated as In-invariant), if for any two isotopic semi-algebraic sets A and
B, we have A |= ϕ(S) if and only if B |= ϕ(S). Finally, two subsets A and B in Rn are called In-equivalent
if for each In-invariant sentence ϕ(S), we have A |= ϕ(S) if and only if B |= ϕ(S). Of course, isotopic semi-
algebraic sets are In-equivalent, but, as mentioned above, the converse is not true. More colloquially, we call
In-equivalent sets, topologically elementarily equivalent.

We remark that In-invariance implies Hn-invariance. The following property provides the link between Hn-
equivalence and In-equivalence. We denote by ρn the orientation-reversing reflection ρn : (x1, ..., xn−1, xn) 7→
(x1, ..., xn−1,−xn) of Rn. The property below trivially follows from the observation that an homeomorphism
of Rn is either an isotopy, or the composition of an isotopy and a reflection (such as ρn) of Rn.

Property 1 Let A and B be semi-algebraic sets in Rn. Then, A and B are Hn-equivalent if and only if A
and B are In-equivalent or A and ρn(B) are In-equivalent.

As a consequence, it suffices to focus solely on In-equivalence in the remainder of the paper.

3 The topology of semi-algebraic sets

In this section, we describe the topological structure of compact semi-algebraic sets in R1 and R2 and of bounded
regular semi-algebraic sets in R3, in more detail. To this aim, we use Whitney stratifications of semi-algebraic
sets and their local topological structure. For compact sets in R1 and R2, we also recall the characterisation of
topological elementary equivalence [12]. We end this section by stating the main result of this paper, that is, a
characterisation of topological elementary equivalence for bounded, regular semi-algebraic sets in R3.

3.1 The Whitney stratification of semi-algebraic sets

Semi-algebraic sets allow many different kinds of decompositions, each of which shows that they behave in a
nice and controlled manner [5]. The topological structure of semi-algebraic sets is best explained using the so-
called Whitney-stratifications of semi-algebraic sets [5, 24]. We refer to the literature for the exact definition of
Whitney-stratifications [5, 24] and only highlight those properties of these decompositions that are relevant for
this paper.

Let A be a semi-algebraic set in Rn. A Whitney-stratification Z of A is a partition of A into locally closed
smooth submanifolds Z0, . . . , Zk of Rn, called strata, such that adjacent strata satisfy certain regularity condi-
tions, also known as the Whitney conditions, and dim(Zi) = i, for 1 ≤ i ≤ k. Intuitively, strata in a Whitney-
stratification are such that within each connected component of a stratum, points have the same topological type,
as explained next.

We first introduce some more definitions. Let C be a semi-algebraic set in Rn. The cone with base C and top
p̄, denoted by Cone(C, p̄), is the set of points {x̄ ∈ Rn | ∃t ∈ [0, 1] ∃ȳ ∈ C, x̄ = tp̄+ (1− t)ȳ}. We denote the
closed ball in Rn with centre p̄ and radius ε, for ε > 0, by Bn(p̄, ε) and its bordering sphere by Sn−1(p̄, ε).
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Furthermore, we say that two smooth submanifolds M1 and M2 of Rn intersect transversally, which we
denote byM1 tM2, if for any point q̄ inM1∩M2 it is the case that Tq̄M1 +Tq̄M2 = Rn.2 Here, Tq̄Mi denotes
the tangent space of Mi in q̄, for i = 1, 2. If M1 tM2, then we necessarily have that dim(M1) + dim(M2) = n.

Let p̄ be a point in a semi-algebraic set A in Rn and let Z = {Z0, . . . , Zk} be a Whitney-stratification of
A. Moreover, let Z be the (unique) stratum containing p̄. Let M be a smooth submanifold of Rn that intersects
transversally each stratum of Z; intersects Z in the single point p̄; and satisfies dim(Z) + dim(M) = n. Then,
the normal slice N(p̄,Z, ε) through the stratum Z at p̄ is the set N(p̄,Z, ε) = M ∩ A ∩ Bn(p̄, ε), where ε is
such that Sn−1(p̄, ε) transversally intersects each stratum in Z and each stratum in Z ∩M . The link L(p̄,Z, ε)
of the stratum Z at p̄ is the set L(p̄,Z, ε) = M ∩ A ∩ Sn−1(p̄, ε). It can be shown that the topological types
of N(p̄,Z, ε) and L(p̄,Z, ε) are independent of the submanifold M [24]. It is thus safe to omit the chosen
submanifold M from the notations N(p̄,Z, ε) and L(p̄,Z, ε). Furthermore, we have the following property.

Property 2 ( [24]) Let A be a semi-algebraic set in Rn, p̄ be a point in A, and Z = {Z0, . . . , Zk} be a
Whitney-stratification of A. There exists an ε > 0 such that

• N(p̄,Z, ε) is ambiently isotopic to Cone(L(p̄,Z, ε), p̄); and

• A ∩ Bn(p̄, ε) is ambiently isotopic to [0, 1]s ×N(p̄,Z, ε), where s = dim(Z) and Z is the stratum in Z to
which p̄ belongs.

Of particular interest for this paper are links of strata at points that belong to a zero-dimensional stratum.
In this case, Property 2 implies that L(p̄,Z, ε) = A ∩ Sn−1(p̄, ε) and A ∩ Bn(p̄, ε) is ambiently isotopic to
Cone(A∩Sn−1(p̄, ε), p̄). We note that one can always consider a stratification Z such that a given p̄ belongs to a
zero-dimensional stratum. In this way, one retrieves the well-known topological property of semi-algebraic sets
in Rn, that says that they are conical, locally around each point [5].

Definition 3.1 The cone ofA in p̄ is L(p̄,Z, ε), such that ε satisfies the conditions of Property 2 and p̄ belongs
to a zero-dimensional stratum Z in Z . Furthermore, any such ε is called a cone radius of A in p̄.

3.2 The topology of compact semi-algebraic sets in R and their topological elementary equiv-
alence

Compact semi-algebraic sets in R have a very simple structure. Indeed, a compact semi-algebraic set A in R
is well-known to be isotopic to a collection of closed intervals and isolated points. This can also be seen by
considering a Whitney-stratification Z of A. Clearly, each stratum Z ∈ Z is either (a) (homeomorphic to) an
interval (in case dim(Z) = 1 and the link is necessarily empty); (b) a point inside an interval (in case dim(Z) = 0
and the cone consists of a two points); (c) an endpoint of an interval (in case dim(Z) = 0 and the cone consists
of a single point); or (d) an isolated point (in case dim(Z) = 0 and the cone is empty). In Figure 1 (top), we
depict a semi-algebraic set in R and a stratification Z (grey shaded lines) of this set. Points p̄1, p̄2, p̄3, p̄4, and
p̄5 correspond to Cases (a), (b), (c), (c) and (d), respectively. In the same figure, we also show the normal slices
and links for these points relative to the given stratification. For Case (c) one can further distinguish between the
Case (c’) when the cone is one point to the left (e.g., point p̄4 in Figure 1), or the Case (c”) when the cone is one
point to right (e.g., point p̄3 in Figure 1), according to the order relation < on R. This distinction is important
when dealing with isotopies.

We remark that all four cone types (corresponding to the zero-dimensional strata cases ((b), (c’), (c”), and
(d)) can be characterised by a formula in first-order logic over L. For example, the interior points x of S are
defined by the formula ∃ε > 0

(
∀ε′

(
ε′ < ε → ∀y((x − y)2 = (ε′)2 → S(y))

))
. Indeed, all instantiations of

the free variable x of this formula make up the interior of the one-dimensional set S. It is clear that the types of
cones that appear in a compact one-dimensional semi-algebraic set can be summed up exhaustively in increasing
order (using the order relation < on R). So, we obtain the following characterisation of topological elementary
equivalence for sets in R.

Theorem 3.2 ( [12]) Let A and B two compact semi-algebraic sets in R. Then A and B are isotopic if and
only if A and B are I1-equivalent. ut

2 Let U and V be two subspaces of a vector space X; then the sum U + V is the set of all vectors u+ v where u ∈ U and v ∈ V . The
set U + V is a subspace of X .
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Fig. 1 Normal slices, links and cones of points in semi-algebraic sets in R (top) and R2 (bottom). Light shaded parts
represent stratifications of the sets.

In combination with Property 1, we obtain that A and B are homeomorphic if and only if A and B are H1-
equivalent.

3.3 The topology of compact semi-algebraic sets in R2 and their topological elementary
equivalence

We next consider semi-algebraic sets in R2. LetA be a compact semi-algebraic set in R2 and letZ be a Whitney-
stratification of A. Let p̄ be a point of A and let Z ∈ Z be the stratum that contains p̄. Then, depending on the
dimension of Z and the link L(p̄,Z, ε) of Z at p̄, we distinguish between the following cases, also illustrated
in Figure 1 (bottom). In that figure, we have lifted the semi-algebraic set in order to reveal the underlying
stratification.
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Interior points. If either dim(Z) = 2 with empty link, dim(Z) = 1 and the link consists of two points, or
dim(Z) = 0 and the cone is S1(p̄, ε), then p̄ is an interior point. These cases are illustrated in Figure 1 by points
p̄1, p̄2, and p̄5, respectively.

2d-boundary points. If either dim(Z) = 1 and the link consists of a single point, or dim(Z) = 0 and the cone
consists of a single closed arc segment on S1(p̄, ε), then p̄ is a point on a smooth border of the interior, also
referred to as a 2d-boundary point. These two cases are illustrated in Figure 1 by points p̄3 and p̄6, respectively.

Points on curves. Points on curves correspond to the case when either dim(Z) = 1 and the link is empty, or
dim(Z) = 0 and the cone consists of two points. Points p̄4 and p̄7 in Figure 1 illustrate these two cases.

2d-singular points. Finally, the only remaining possible case is when dim(Z) = 0 and the cone is either empty,
or consists of a sequence of isolated points and closed arc segments, excluding the previous two cases. We call
such points 2d-singular points. In Figure 1, points p̄8, p̄9, p̄10, and p̄11 are 2d-singular points.

Clearly, there are only a finite number of 2d-singular points. We refer to the other types of points as 2d-regular
points. It is easy to see that if A contains a 2d-regular point of a certain type, then it contains infinitely many of
those points.

In [12], the following finite representation for cones of points in a semi-algebraic sets in R2 was introduced.
The cones of interior points are represented by the letter F (for “full” circle). Any other cone is represented
by a circular list of L’s and R’s (for “line” and “region”, respectively), which describes the cone in a complete
clockwise turn around the top. More specifically, each isolated point in the cone corresponds to an “L”; each
closed arc segment corresponds to an “R”. For example, the cones of 2d-boundary points are represented by (R),
the cones of points on curves by (LL), and the cones of points with empty cone are represented by the empty
circular list ( ). Similarly, the cones of the 2d-singular points p̄8, p̄9, p̄10, and p̄11 in Figure 1 are represented by
(L), (), (LR) and (RR), respectively.

We remark that in the case of a regular (closed) set A, cones can be either of type (F ) or represented by a
circular list containing k R’s, for k ≥ 1, abbreviated by (Rk). In other words, no L’s appear in the cones of any
point and neither do isolated points (with an empty cone) occur.

We represent the collection of all cones that occur in a semi-algebraic setA in R2 as a multi-set which consists
of cones (represented as circular lists, as described above) together with their multiplicities. We represent multi-
sets as follows. For example, for elements a and b and natural numbers n1 and n2, {{an1 , bn2}} denotes the
multi-set in which a and b occur n1 and n2 many times, respectively. We do allow these multiplicities to be
infinite (∞). For example {{a∞}} is the multi-set in which a occurs infinitely often.3

Definition 3.3 Let A be a compact semi-algebraic set in R2. The point structure of A, denoted by Π2(A), is
the multi-set consisting of all (representations of) cones (circular lists) occurring in A.

For example, for the semi-algebraic set A shown in Figure 1, the point structure is given by Π2(A) =
{{F∞, (R)∞, (LL)∞, (), (L), (LR), (RR)}}.

The following characterisation for I2-equivalence (and forH2-equivalence via Property 1) of compact sets in
R2 is established in [12].

Theorem 3.4 Let A and B be two compact semi-algebraic sets in R2. Then A and B are I2-equivalent if
and only if Π2(A) = Π2(B). ut

Here, we use the standard notion of multi-set equality: two multi-sets are equal if and only if they both
contain the same elements with the same multiplicities. Theorem 3.4 thus says that A and B are topologically
elementarily equivalent if and only if each cone occurs exactly the same number of times in both A and B.

As a consequence, one disk in R2 is I2-equivalent to two disks in R2, illustrating that sets that are not isotopic
can indeed be I2-equivalent.

3 We use the symbol∞ to mean “uncountably infinite”, since semi-algebraic sets have cones that occur a finite or uncountably infinite
number of times.
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Fig. 2 A regular semi-algebraic set A in R3 and stratification Z of A. Points p̄1, p̄2, p̄4, and p̄7 are interior points, p̄3, p̄5
and p̄8 are 3d-boundary points, p̄6 and p̄10 are wire points with profile k = 2, p̄9 is a fake wire point, p̄11 is a 3d-singular
point and p̄12 is a fake 3d-boundary point.

3.4 The topology of regular semi-algebraic sets in R3

In this section, we describe the different kinds of cones that can appear in bounded regular (closed) semi-algebraic
sets in R3. LetA be a bounded regular semi-algebraic set in R3 and let p̄ be a point inA. We describe the different
cone types based on the cone representation of semi-algebraic sets in R2, as described in the previous section.
For this purpose, we regard the cone of a point p̄, that is, A ∩ S2(p̄, ε), as a regular semi-algebraic set in R2 by
projecting S2(p̄, ε) stereographically onto a tangent plane through a point whose antipodal point is not in A. We
denote this projection by σ2 and hence σ2(A∩S2(p̄, ε)) is the two-dimensional result of projecting A∩S2(p̄, ε)
using σ2.

We remark that, with the exception of interior points, σ2(A∩S2(p̄, ε)) is a regular and compact semi-algebraic
set in R2. For interior points, no antipodal point outside of A can be chosen (the cone consists of S2(p̄, ε)). In
this case, we choose an arbitrary antipodal point and σ2(A ∩ S2(p̄, ε)) is the two-dimensional plane. We use the
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following “finite” representation for the cone A ∩ S2(p̄, ε) of a point p̄. We encode the cone A ∩ S2(p̄, ε) as the
point structure Π2(σ2(A ∩ S2(p̄, ε))) of σ2(A ∩ S2(p̄, ε)).

Before defining the point structure of a semi-algebraic set A in R3, we describe the different kinds of points
that can occur in A. Let p̄ be a point of A and let Z be a Whitney-stratification of A. Let Z ∈ Z be the stratum
containing p̄. In Figure 2, we show a semi-algebraic set A in R3 and a Whitney-stratification Z of A. In that
figure, we group the strata together based on their dimension, starting from the strata of dimension three (top); two
(middle); one (bottom); and zero (also bottom). Exceptions are points p̄7 and p̄8 that reside in zero-dimensional
strata, although we show them together with the two-dimensional strata of A (middle). All these strata should be
combined to obtain a stratification of A.

Interior points. If dim(Z) = 3 with empty link, dim(Z) = 2 and the link consists of two points, dim(Z) = 1
and the link consists of a disk on S2(p̄, ε), or dim(Z) = 0 and the cone consists of the sphere S2(p̄, ε), then
clearly p̄ is a interior point of A. If there exists an interior point, there are infinitely many of them. We refer to
these points simply as as interior points and we say that their cone is “full”. The encoding of the cone of such
a point is the point structure Π2(σ2(S2(p̄, ε))), which is the multi-set {{F∞}} in which the symbol F appears
infinitely many times. In Figure 2, the points p̄1, p̄2, p̄4, and p̄7 illustrate the four different cases that lead to an
interior point of the set A.

3d-boundary points. In case that either dim(Z) = 2 and the link consists of a single point, dim(Z) = 1 and
the link consists of a single closed arc segment on S2(p̄, ε), or dim(Z) = 0 and the cone consists of a closed
disk in S2(p̄, ε). In other words, p̄ is a point on the boundary of the interior of A, where locally around p̄,
the boundary is a 2-manifold. Again, if A contains one such point, it must contain infinitely many of them.
We refer to these points as 3d-boundary points of A and the encoding of their cones is given by the multi-set
{{F∞, (R)∞}}, in which both F and (R) appear infinitely often as two-dimensional cone types. Indeed, this is
the cone representation of a closed disk in R2. In Figure 2, the points p̄3, p̄5 and p̄8 illustrate the three different
cases that result in a 3d-boundary point of the set A.

3d-regular points. The interior points and 3d-boundary points of A are called the 3d-regular points of A.

2d-membrane points. In regular semi-algebraic sets in R3, there are no points residing on 2d-membranes or
boundaries thereof. This implies that we do not have to consider the cases when dim(Z) = 2 and empty link,
dim(Z) = 1 and link containing isolated points, or dim(Z) = 0 and the cone consists of circles or closed arc
segments on S2(p̄, ε).

Point on curves and endpoints of curves. Similarly, a regular set cannot contain embeddings of circles, closed
arc segments or endpoints thereof. This rules out cases in which dim(Z) = 1 and empty link, and dim(Z) = 0
and cones containing isolated points.

Next, we investigate the remaining possible cases when either dim(Z) = 1 or dim(Z) = 0.

Wire points. Assume that dim(Z) = 1. Locally around p̄, the set A ∩ B3(p̄, ε) is homeomorphic to R ×
Cone(L(p̄,Z, ε), p̄). In view of the regularity assumption on A, we are only left with the case that L(p̄,Z, ε)
is not empty and consists of multiple closed arc segments. The same type of points can be obtained when
dim(Z) = 0 and the cone has a very particular form. Indeed, σ2(A∩S2(p̄, ε)) consists of two 2d-singular points,
q̄1 and q̄2 of the same type (Rk) = (R R · · ·R) of k R’s with k ≥ 2, and such that k distinct filled regions run
between q̄1 and q̄2 in σ2(A ∩ S2(p̄, ε)). Here, k corresponds to the number of closed arc segments in the link of
p̄ when dim(Z) = 1. We call such points wire points (with profile k) of A and if they appear in A, then there are
infinitely many of them.

The finite encoding of the cone of a wire point is again given by the point structure Π2(σ2(A ∩ S2(p̄, ε))),
that is, it is represented by the multi-set {{F∞, (R)∞, (Rk)2}}, which reflects that the cone has two 2d-singular
points of type (Rk).
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A wire with profile k = 2 is illustrated by points p̄6 and p̄10 in Figure 2. The encoding of the cone of p̄10 is the
multi-set {{F∞, (R)∞, (R2)2}}, which reflects that in σ2(A ∩ S2(p̄10, ε)), the cone of p̄10, the two-dimensional
cone (RR) appears twice.

Since we have exhausted the possibilities for dim(Z) = 1, it remains to consider the remaining cases for
dim(Z) = 0.

3d-singular points, fake 3d-boundary points and fake wire points. If dim(Z) = 0 and the cone σ2(A ∩
S2(p̄, ε)) is not covered by any of the previous cases, then we distinguish between three types of points depending
on whether or not their stereographic projected cones are topologically elementary equivalent (as semi-algebraic
sets in R2) to one of the previous cases:

• Fake wire points. These are points for which Π2(σ2(A ∩ S2(p̄, ε))) is equal to {{F∞, (R)∞, (Rk)2}} for
some k > 1, that is, the encoding of cones of wire points of profile k. In Figure 2, p̄9 is such a point.
As can be verified from the figure, σ2(A ∩ S2(p̄9, ε)) is indeed topological elementary equivalent to the
stereographic projection of a cone corresponding to a wire point of profile k = 2. Furthermore, it is not a
wire point since only one filled region connects the two 2d-singular points in σ2(A ∩ S2(p̄9, ε)).

• Fake 3d-boundary points. There are points for which Π2(σ2(A∩ S2(p̄, ε))) is given by {{F∞, (R)∞}}, that
is, the encoding of cones of 3d-boundary points. In Figure 2, p̄12 is such a point. As can be verified from the
figure, σ2(A ∩ S2(p̄12, ε)) consists of two disks and hence it is indeed topological elementary equivalent to
the stereographic projection of a cone consisting of a single disk, that is, to the cone of a 3d-boundary point.

• 3d-singular point. These are all remaining points, that is, points whose stereographic projected cones contain
2d-singular points, but which are not fake wire points. In Figure 2, p̄11 is such a point. Indeed, Π2(σ2(A ∩
S2(p̄11, ε))) is equal to {{F∞, (R)∞, (RR)}}. In fact, for regular sets, the encoding of cones of 3d-singular
points is always equal to the union of {{F∞}}, {{(R)∞}}, and distinct multi-sets of the form {{(Rki)`i}} with
ki > 1, `i ≥ 1, excluding the case {{F∞, (R)∞, (Rk)2}}, corresponding to wire points.

Since dim(Z) = 0, there are only a finite number of these kinds of points. We remark that singular points with
an empty cone, that correspond to isolated points, do not occur in a regular semi-algebraic set.

3.5 The main result

We are now ready to state the main theorem of this paper. The remainder of this paper is devoted to proving this
theorem. First, we define the three-dimensional equivalent of the point structure of a regular semi-algebraic set
in R3 in analogy with Definition 3.3 for sets in R2.

Definition 3.5 Let A be a bounded, regular semi-algebraic set in R3. The point structure of A is the multi-set
of multi-sets, denoted by Π3(A), consisting of the point structures Π2(σ2(A ∩ S2(p̄, ε))), where ε is the cone
radius of A in p̄, for all p̄ ∈ A.

For example, for the semi-algebraic set A shown in Figure 2, its point structure is given by

Π3(A) =
{{
{{F∞}}∞, {{F∞, (R)∞}}∞, {{F∞, (R)∞, (R2)2}}∞, {{F∞, (R)∞, (R2)}}2

}}
,

indicating that there are infinitely many 3d-regular points, infinitely many wire points of profile k = 2, and two
3d-singular points.

Our main result, which is a three-dimensional version of Theorem 3.4 from [12] for regular sets in R3, is the
following:

Theorem 3.6 Let A and B be (compact) regular semi-algebraic sets in R3. Then, A and B are I3-equivalent
if and only if Π3(A) = Π3(B). ut

Again, we obtain a characterisation ofH3-equivalence via Property 1 as a corollary. We remark that we cannot
expect more distinctive power from first-order logic. In particular, we cannot expect to be able to distinguish non-
isotopic cones and indistinguishable cones.
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P r o o f. To prove the if-direction of Theorem 3.6, we introduce a number of transformations that allow us
to locally modify regular semi-algebraic sets in R3. These transformations preserve I3-equivalence and are
used to transform a regular semi-algebraic set into canonical form, which is such that I3-equivalent sets can be
transformed into one and the same canonical set. Moreover, during the transformation process the point structure
of the set is not changed. The idea of transforming a semi-algebraic set into canonical form was also used in [12]
for the case of closed sets in R2. We describe the transformations that preserve I3-equivalence and detail how
sets can be brought into canonical form in Sections 4 and 5, respectively.

To prove the only-if-direction of Theorem 3.6, we show next that an I3-invariant L-sentence ϕ(S) can be
defined, such that, when Π3(A) 6= Π3(B) holds, we have A |= ϕ(S) and B 6|= ϕ(S). This indeed implies that if
A and B are I3-equivalent, then Π3(A) must be equal to Π3(B), as desired.

Let us first analyse the point structure Π3(A) for a regular semi-algebraic setA in R3. As previously discussed,
only a finite number of distinct encodings of cones of points in A can occur: 3d-interior points whose cone
encoding is given by {{F∞}}, 3d-boundary points whose cone encoding is given by {{F∞, (R)∞}}, wire points
whose cone encodings are given by {{F∞, (R)∞, (Rk)2}} for some profile k ≥ 2, and 3d-singular points whose
cone encodings are given by {{F∞, (R)∞, (Rk1)n1 , . . . , (Rk`)n`}} for some k1, . . . , k`, n1, . . . , n` with all ki >
1 and ni ≥ 1, excluding the case of wire points (that is, ` = 1 and n` = 2).

Furthermore, we observe that the existence of a 3d-singular point implies the existence of wire points of
profiles listed in the cone encoding of the 3d-singular point. Similarly, a wire point implies the existence of 3d-
boundary points and 3d-interior points, and for compact regular semi-algebraic sets, the existence of 3d-interior
points implies the existence of 3d-boundary points, and vice versa. This implies that Π3(A) can be completely
characterised, as follows:

• if A contains 3d-singular points or wire points, then it suffices to list the cone encodings of 3d-singular
points in A, taking multiple occurrences into account, together with a set of cone encodings of wire points
in A of different profiles, one for each such profile. Furthermore, cone encodings of wire points only need
to be listed separately if they do not already occur in the cone encoding of any 3d-singular point in A.

• If A does neither contain 3d-singular points nor wire points, then either Π3(A) is empty (in the case that A
is empty) or all encodings in Π3(A) correspond to 3d-regular points. In the latter case, it suffices to only
consider a single point in A (if A is non-empty) with cone encoding {{F∞}}.

Hence, if we assume that Π3(A) 6= Π3(B), then either A contains a 3d-regular point whereas B does not, or
vice versa; or A contains a wire point of profile k, whereas B does not, or vice versa; or there is particular cone
type of a 3d-singular point that occurs a different number of times in A than in B. It thus suffices to construct
a first-order sentence that expresses that a semi-algebraic set in R3 has a certain number of points with cones
of a pre-described type. Since the cone type is invariant under isotopies, such a sentence will be necessarily
I3-invariant. Furthermore, it should be clear that it suffices to show that there is such a first-order formula
ψτ (x, y, z, S) that expresses that point (x, y, z) has cone type τ in S. Such a formula ψτ can be constructed as
follows:

• Let ϕcradius(x, y, z, r, S) be a first-order formula that expresses that r is a cone radius for (x, y, z) in S. It
is known that this can be expressed in first-order logic [25].

• Let ϕstereo(x′, y′, x, y, z, r, S) be a first-order formula that returns the stereographic projection (in variables
x′ and y′) of S intersected with a sphere with centre (x, y, z) and radius r. As previously explained, this
projection is onto a tangent plane through a point whose antipodal point is not in A, if such a point exists,
and an arbitrary antipodal point otherwise.

• In [12], it was shown that for any closed semi-algebraic set D in R2, with point structure the multi-set
τ = Π2(D), there exists a “characteristic” formula ψ2

τ (S′) that expresses that the binary predicate S′, that
represents a two-dimensional semi-algebraic set, has the same point structure as D. Basically, the formula
ψ2
τ enumerates the cone types that occur in D with their multiplicities. This implies that there exists a first-

order formula ϕτ (x, y, z, r, S), such that for any semi-algebraic set A in R3, any point p̄ ∈ R3 and any
real number ε > 0, we have A |= ϕτ (x, y, z, r, S)[p̄, ε] if and only if the stereographic projection of the set
A ∩ S2(p̄, ε) has point structure τ .

Copyright line will be provided by the publisher
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We can conclude that the formula ψτ (x, y, z, S), that we are looking for, is

∃r ϕcradius(x, y, z, r, S) ∧ ϕτ (x, y, z, r, S).

This concludes the proof. ut

We observe the following. The characterisation of topological elementary equivalence given in Theorem 3.6
can be phrased as the characterisation given in the Introduction. Indeed, if Π3(A) = Π3(B) then it is easily
verified that there exists a bijection f from A to B such that Π2(σ2(A∩ S2(p̄, ε))) = Π2(σ2(B ∩ S2(f(p̄), ε))),
for any point p̄ in A and ε > 0 that is a cone radius for A and B in p̄ and f(p̄), respectively. By Theorem 3.4 this
implies that σ2(A ∩ S2(p̄, ε)) is I2-equivalent to σ2(B ∩ S2(f(p̄), ε)), or in other words, that the bases of the
cones Cone(A, p̄) and Cone(B, f(p̄)) are I2-equivalent when these are regarded as sets in R2. The latter trivially
implies again that Π3(A) = Π3(B), as desired.

Furthermore, the proof strategy of the if-direction of Theorem 3.6 reveals that Π3(A) = Π3(B) if and only
if A can be transformed into B by means of a sequence of transformations and isotopies. Indeed, A is to be
transformed into a regular semi-algebraic set in canonical form with the same point structure as A. Similarly, for
B. Since these transformations are reversible, when Π3(A) = Π3(B), then A can indeed be transformed into B,
via the canonical form. Since the transformations preserve the point structure, if A can be transformed into B,
then Π3(A) = Π3(B) must hold. Hence, as a corollary of Theorem 3.6, A is I3-equivalent to B if and only if A
can be transformed into B, as desired.

We end this section with another corollary of Theorem 3.6, that says that I3- andH3-equivalence coincide for
regular semi-algebraic sets in R3.

As we have already remarked in Section 2, it is well known that a homeomorphism of Rn (n ≥ 1) is either (a)
orientation preserving (and thus an isotopy) or (b) orientation reversing (and thus the composition of an isotopy
and an orientation-reversing reflection, such as ρn : (x1, ..., xn−1, xn) 7→ (x1, ..., xn−1,−xn)) [23]. From the
description in Section 3.3 of the possible cone types of closed semi-algebraic sets in R2, we know that only the
full cone and cones of type (Rk), for k ≥ 1, can appear in a regular semi-algebraic sets in R2. In this setting, it
is clear that these cones (and their encodings) are invariant under reflections of R2, such as ρ2. This implies that,
for a regular semi-algebraic set A in R2, also the point structure Π2(A) is invariant under orientation-reversing
reflections. So, in particular, we have Π2(A) = Π2(ρ2(A)). From Theorem 3.4, we can then see that I2- and
H2-equivalence coincide for regular semi-algebraic set in R2. This is not true for arbitrary closed semi-algebraic
sets in R2 [12].

We can lift this result for R2 to R3. Indeed, from the discussion in Section 3.4 of the possible cone types
in a regular semi-algebraic set in R3, we recall that the cones of points in such sets can be seen as regular
two-dimensional semi-algebraic sets (after a stereographical projection). Therefore, the orientation-reversing
reflection ρ3 of R3 maps cones of points in regular semi-algebraic sets to cones that have the same point structure
(seen as a two-dimensional set). So, we can conclude that ρ3 preserves the point structure of any regular semi-
algebraic set A in R3, that is, Π3(A) = Π3(ρ3(A)). Thus, if we have Π3(A) = Π3(B), for two regular
semi-algebraic sets A and B in R3, then we also obtain Π3(ρ3(A)) = Π3(A) = Π3(B) = Π3(ρ3(B)). This
proves the following corollary.

Corollary 3.7 LetA andB be (compact) regular semi-algebraic sets in R3. Then,A andB are I3-equivalent
if and only if A and B areH3-equivalent. ut

4 I3-preserving transformations of regular semi-algebraic sets

The transformations that we describe in this section preform local transformations on regular semi-algebraic sets
in R3. We always assume that these take place in some cube I3, which we can take to be [−2, 2]3, for instance,
and we refer to I3 as the working cube and to the square [−2, 2]2 × {0} as the working square in R3, which
we denote by I3

z=0. Similarly, I2 denotes the working square [−2, 2]2 in R2. We remark that these cubes and
squares are sometimes depicted in the figures in this section as beams and rectangles, respectively.
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(a)

(b)

Fig. 3 The weak strip cut&paste (a) and the strip cut&paste (b) in R2. The dashed blue rectangular area depicts the working
square I2.

4.1 A review of transformations in R2

We start by providing some insights in the transformations of regular closed sets in R2, taken from [12], that are
relevant for the proofs in this paper.

We first recall the (weak) strip cut&paste transformations which preserve I2-equivalence of regular sets in
R2. These transformations are illustrated in Figure 3. The strip cut transformation (see Figure 3, (b) left to
right), transforms regular sets locally within the working square I2, depicted by the blue dashed lines. The
transformation is applicable when the regular semi-algebraic set in R2 looks like a strip inside I2, and the result
of the transformation is that, within I2, the strip is cut into two pieces. The strip paste transformation is the
reverse transformation of the strip cut (see Figure 3, (b) right to left). In the weak versions of the strip cut&paste
transformations, a hole is present in one of the resulting strips after the cut (see Figure 3, (a)). The weak strip
cut&paste is of particular interest for our proofs and we give some more details about the proof showing that they
preserve I2-equivalence (which can be found, in detail, in [12]).

The preservation of I2-equivalence is based on the inexpressibility of the decision problem MAJORITY about
two finite sets R1 and R2 that is defined as MAJORITY(R1, R2) is true if and only if R1 ⊆ R2 and |R1| ≤ 2|R2|.
The decision problem MAJORITY(R1, R2) is not uniformly first-order expressible over the alphabet (<,R1, R2)
on finite ordered structures [20].4 The reduction argument uses a geometric construction, for two given finite sets
R1 and R2, as illustrated in Figure 4. Within a rectangular area J2 in the working square I2, R1 is placed in
the direction of the y-axis and R2 is placed in the direction of the x-axis and on the R2 × R1 raster, strips are
constructed (in first-order logic), as shown in Figure 4. Outside J2, but inside I2, some fixed strips are added.
We call the result D(R1, R2) and its construction is such that this set is homeomorphic to the right hand side of
Figure 3 (a) in case of majority and to the left hand side in the other case (see [12] for details).

The first-order inexpressibility of MAJORITY(R1, R2) implies that the weak strip cut&paste preserves I2-
equivalence. To obtain that the strip cut&paste transformation of Figure 3 (b) preserves I2-equivalence another
inexpressibility result on finite sets is used [12]. This reduction argument shows that inside the working square
an isolated regular part of a set in R2 can be replaced by any other isolated regular part. Figure 5 shows the
transformation process from the weak strip cut&paste to strip cut&paste: (a) a weak strip cut; (b) one disk is
replaced by two disks; and (c) & (d) three more weak strip cut&paste operations.

4.2 Flower normal form

The strip cut&paste transformations allow the transformation of any compact and regular set in R2 into a canon-
ical form, referred to as the flower normal form, which, in the presence of singular points consists of “flowers”
with a number of “petals”. The cone of the point p̄11 in Figure 1 is an example of a flower with k = 2 petals.
In general, if the singular point has cone type (Rk), then it corresponds to a flower with k petals. If there are
no singular points in a set, then the canonical form is either a disk or the empty set. The flower normal form
thus represents all topological information in a set that can be identified by first-order logic, that is, each regular
set A in R2 is I2-equivalent to a finite number of flowers, one for each singular point, or a single disk or empty

4 Here and in some proofs, we also use formulas in the language of the reals expanded with additional relation symbols, as well as
formulas in restrictions of the previous languages where 0, 1,+, and × are not used. In all these cases, similar definitions and notations are
used as in Section 2.
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R2

Fig. 4 The first-order construction of D(R1, R2) in R2, given two finite sets R1 and R2.

(a) (b)

(d)

(c)

Fig. 5 The process from weak strip cut&paste to strip cut&paste in R2.

set when no singular points are present. For example, the flower normal form (FNF) of the cones of the points
p̄8, p̄9, p̄10, p̄11, and p̄12 in Figure 2 are given by:

4.3 The transformations for regular semi-algebraic sets in R3

For regular semi-algebraic sets in R3, we introduce the following transformations:

• Cylindrical replacement, which enables to replace isolated sets of the form A′ × [0, 1] by B′ × [0, 1] if A′

is I2-equivalent to B′.

• 3d-tube cut&paste and complement 3d-tube cut&paste, three-dimensional counterparts of the two-dimensional
strip cut&paste transformations. These transformations are shown in Figure 6.

• Wire cut&paste, which does not have a two-dimensional counterpart. It allows to rewire wires that have
the same profile, as shown in Figure 7.

• Unknotting wires, which allows to unentangle wires, possibly of different profiles, as shown in Figure 9.

• Local cone surgery, which allows to replace a cone of a point by a topologically elementary equivalent
cone. It does so by applying strip cut&paste transformations directly on the cones of points, rather than on
their stereographic projections, as shown in Figure 11.
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In the remainder of this section, we discuss these transformations in more detail and show that they indeed
preserve I3-equivalence.

4.4 Cylindrical replacement

We start by showing that in a semi-algebraic set A in R3 one can replace any isolated cylindrical set A′ × [0, 1]
in the working cube I3 by another cylindrical set B′ × [0, 1], provided that A′ and B′ are two-dimensional sets,
located in the interior of the working square I3

z=0, that are I2-equivalent. If we denote the resulting set by B,
than A is I3-equivalent to B. It is a transformation that directly “lifts” topological elementary equivalence in R2

to R3.
Proposition 4.1 If A and B are two regular sets in R3 that differ in the working cube I3 by A′× [0, 1] versus

B′ × [0, 1], where A′ and B′ are two-dimensional sets in the working square I3
z=0 that are I2-equivalent and if

∂I3 ∩A = ∅ and ∂I3 ∩B = ∅, then A and B are I3-equivalent.

P r o o f. LetA andB be as described in the statement of the proposition. We argue that if there is a topological
sentence ϕ3 that distinguishes between A and B (that is, A |= ϕ3 and B 6|= ϕ3), then there is also a topological
sentence ϕ2 that distinguishes between A′ and B′. This would give a contradiction. Let S be a binary relation
symbol representing sets in R2. We describe how ϕ2(S) is constructed. First, we scale and translate S into
s(S) to fit in the working square I2 (without touching its borders). Next, we construct s(S) × [0, 1] and we set
D(S) := s(S)× [0, 1] ∪ (A ∩ (R3 \ I3)). It is clear that D(S) is first-order constructible in the language of the
alphabet (0, 1,+,×, <, S). We also remark that A∩ (R3 \ I3), the part of A outside the working cube I3, equals
B ∩ (R3 \ I3), by assumption. We can then use ϕ3 to distinguish between A′ and B′. Indeed, D(A′) |= ϕ3 and
D(B′) 6|= ϕ3. It remains to be shown that this construction is invariant under isotopies of the plane.

Let A′1 and A′2 be sets in R2 such that there is an isotopy i : R2 → R2 with i(A′1) = A′2. Then it is clear that
s(A′1)× [0, 1] and s(A′2)× [0, 1] are isotopic in R3 and the same holds for s(A′1)× [0, 1]∪ (A∩ (R3 \ I3)) and
s(A′2)× [0, 1]∪ (A∩ (R3 \I3)). This shows that ϕ2(S) := ϕ3(s(S)× [0, 1]∪ (A∩ (R3 \I3))) is an I2-invariant
sentence and A′ |= ϕ2 whereas B′ 6|= ϕ2. This completes the proof. ut

4.5 3d-tube cut&paste and complement 3d-tube cut&paste

A 3d-tube is a part of a semi-algebraic set that is (locally in some region) isotopic to a full cylinder (that is,
S2(p̄, r)× (0, 1)). The transformation rules that we discuss in this paragraph are the 3d-tube cut and its inverse,
the 3d-tube paste. We also discuss the complement versions of these transformations. The 3d-tube cut&paste
transformations are the three-dimensional counterparts of the strip cut&paste transformations described earlier
and are illustrated in Figure 6 (top). More formally, let A be a regular semi-algebraic in R3. Suppose that within
the working cube I3 the set A is a 3d-tube (see Figure 6 (top, left)). Replacing I3 ∩ A by a cut 3d-tube (see
Figure 6 (top, right)) is an application of the 3d-tube cut transformation. Its inverse is the 3d-tube paste.

Proposition 4.2 Let A and B be regular semi-algebraic sets in R3. If B is obtained from A by a 3d-tube cut
or a 3d-tube paste transformation, then A and B are I3-equivalent.

P r o o f. We first consider a “weak” version of the 3d-tube cut&paste transformations, in which a hole appears
in one of the cut tube ends (like in the two-dimensional case, illustrated in Figure 3 (a)). To show that two sets A
and B in R3, that differ a weak 3d-tube cut or 3d-tube paste from each other, are I3-equivalent, we imitate the
proof of the two-dimensional weak strip cut&paste transformations, that uses a reduction to the inexpressibility
of the problem MAJORITY(R1, R2) for two given finite sets R1 and R2 (see Section 4.1). As in R2, we place the
finite setsR1 andR2 in a rectangular area J2 in the working square I3

z=0 of I3, and perform the same construction
D(R1, R2), which we now “multiply” with [0, 1] to obtain tubes rather than strips. Next, we add to this the part
of A (or B) outside I3, making sure that the 3d-tubes fit on the border of I3. The argumentation is now the same:
if there is an I3-invariant sentence that can distinguish between A and B that differ by a weak 3d-tube cut&paste
transformation from each other, then we obtain a first-order expression for MAJORITY(R1, R2), which gives a
contradiction.

To go from the “weak” 3d-tube cut&paste to the 3d-tube cut&paste, we can again follow an argumentation
from R2, which is already illustrated for the strip case in Figure 5. First, we perform a weak 3d-tube cut which
is a lifted version of (a) shown in Figure 5. Next, we double the isolated cube, using Proposition 4.1 (one filled
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(a)

(b)

(a)

(b)

Fig. 6 Top: The 3d-tube cut (a) and 3d-tube paste (b). Bottom: The complement 3d-tube cut (a) and complement 3d-tube
paste (b).

Fig. 7 The wire cut (a) and wire paste (b). The red lines represent wires of type k.

square and two filled squares are I2-equivalent). Finally, we perform three more weak 3d-tube cut&pastes to
obtain the 3d-tube cut. This completes the proof. ut

We also need a complement version of the 3d-tube cut&paste transformations, referred to as the complement
3d-tube cut&paste transformations, as is illustrated in Figure 6 (bottom). Here, inside the working cube I3 the
semi-algebraic set is isotopic to an empty cylinder (that is, I3 \ (S2(p̄, r)× (0, 1))◦) and the complement 3d-tube
cut transformation cuts this empty cylinder in two parts as shown in Figure 6 (bottom, right). The complement
3d-tube paste transformation glues two empty cylinders together as shown in Figure 6 (bottom, left). The proof
that this transformation preserves I3-equivalence is entirely analogous to the proof of Proposition 4.2. One only
needs to complement the construction given there.

4.6 Wire cut&paste

Consider the working cube I3 and two disjoint parallel cylindersC1 andC2 in I3. If in a setA in R3, we have two
wires W1 and W2 of the same profile k such that within C1 (resp., C2), W1 (resp., W2) is isotopic to [0, 1]×Pk,
where Pk is a 2d-cone of type (Rk), and C1 (resp., C2) does not contain anything else than W1 (resp., W2), then
these wires can be cut and rewired, as illustrated in Figure 7. We call this transformation, the wire cut&paste.
This transformation is its own inverse. The following property shows that rewiring produces I3-equivalent sets.

Proposition 4.3 Let A and B be regular semi-algebraic sets in R3. If B is obtained from A by a wire
cut&paste transformation, then A and B are I3-equivalent.

P r o o f. As before, we first consider a “weak” version of wire cut&paste. This transformation rewires two
wires of the same profile with a wire loop of that profile as a side effect. Assume that the profile of the wires is k.
To show that two sets A and B in R3, that differ a weak wire cut&paste from each other, are I3-equivalent, we
again imitate the proof of the two-dimensional weak strip cut&paste, that uses a reduction to the inexpressibility
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of the problem MAJORITY(R1, R2) for two given finite sets R1 and R2 (see Section 4.1). We assume that the
wires of A (and B) enter the working cube I3 in a “controlled” fashion, that is, they enter transversally the left
and right face of I3 and if we denote by I3

x=−2 and I3
x=2 the left- and right-hand face of I3, then A ∩ I3

x=−2

consists of two disjoint cones both having as base k line segments on I3
x=−2 ∩ I3

z=−1 and as top a point on
I3
x=−2 ∩ I3

z=0 (and similarly for A ∩ I3
x=2). We remark that this is possible because we assume these wires to be

isotopic to [0, 1]× Pk, where Pk is a 2d-cone of type (Rk).
As in R2, we place the finite sets R1 and R2 in a rectangular area J2 in the working square I3

z=0 and perform
the same construction D(R1, R2), of which, next, we take the topological border in order to obtain piecewise
linear curves. We connect these to the tops of the cones in the intersection of A with the border of I3. We recall
that these tops also lie on I3

z=0, as just explained. To conclude our construction, we turn the curves on I3
z=0 into

wires in I3 of the correct profile, ensuring that they seamlessly connect to A (or B) on the border of I3. This is
done in three steps:

1. We first smoothen the corner points (where two line segments meet) in D(R1, R2) by means of a simple
Bézier-curve construction (expressible in first-order). Here, care is needed to ensure that the curves do not
intersect with other line segments. This can be achieved by working locally around the corner points (e.g.,
within their cone radii).

2. Next, for each point p̄ on these curves a vertical plane Vp̄ orthogonal to the curve in p̄ is considered. We
note that this is possible because of the previous smoothing step. In the plane Vp̄, we construct a cone with
top p̄ and base consisting of k disjoint line segments that lie on the intersection of Vp̄ and I3

z=−1. We do this
for each point on the curves. Furthermore, we take the k line segments small enough so that no undesired
intersections take place. For this purpose we identify a uniform cone radius, that is, a radius that is a cone
radius for every point on the curves. It can be easily verified that such a uniform cone radius exists (see
also [26]). The k line segments are then chosen such that they are covered by an interval of length smaller
than the uniform cone radius. The result is that, within the cube J2 × [−1, 0], we have wires of the desired
profile.

3. As a final step, consider the left face I3
x=−2 on which we have two cones, both with a base consisting of

k line segments [a1, b1], [a2, b2], . . . , [ak, bk] on I3
x=−2 ∩ I3

z=−1. On the other hand, on the left face of
J2 × [−1, 0] we have also two cones that also have as base k line segments [a′1, b

′
1], [a′2, b

′
2], . . . , [a′k, b

′
k].

To glue these together, we add cones with appropriately scaled bases in the plane Vp̄, for each point p̄ on
the line segments connecting the points on the border of J2 with tops of the cones on I3

x=−2. We perform
a similar construction for the right face I3

x=2. As a result, we have wires of profile k inside I3 that connect
seamlessly with the intersection of A (or B) and the border of I3.

Given that the uniform cone radius can be expressed in first-order logic (Lemma 5.5. in [26]), it should be
clear that the entire construction can be expressed in first-order logic.

The argumentation is now the same: if there is an I3-invariant sentence that can distinguish between A and B
that differ a weak wire cut&paste from each other, then we obtain a first-order expression of MAJORITY(R1, R2),
which gives a contradiction.

To go from the “weak” wire cut&paste to the wire cut&paste, we follow the process illustrated in Figure 8.
First, a weak wire cut is performed in the blue working cube (see Arrow (a) in Figure 8). This weak cut causes
a wire loop of type k. Next (Arrow (b)), this wire loop can be replaced by two wire loops. To show that this
preserves I3-invariance, a similar argumentation as the one used in Lemma 5 in [12] can be used, by means of
a reduction to the first-order inexpressibility of PARITY(R). The decision problem PARITY(R) asks whether a
finite setR has an even number of elements. Finally, Arrow (c) shows another application of the weak wire paste,
eliminating the two wire loops. This completes the proof. ut

4.7 Unknotting wires

The wires in a regular semi-algebraic set A in R3 can form knots and links. It is known in knot theory [27, 28]
that each knot or link can be untangled by the unknotting operation. This transformation, illustrated in Figure 9,
allows to change an overcrossing to an undercrossing. More precisely, consider the working cube I3 and two
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18 F. Geerts and B. Kuijpers: Topological elementary equivalence of regular sets in R3

(a)

(b)

(c)

Fig. 8 The proof steps of going from weak wire cut&paste to wire cut&paste.

k1

k2

k1

k2

Fig. 9 The unknotting transformation. The red lines represent wires of profile k1 and the black lines wires of profile k2.

disjoint cylinders C1 and C2 in I3 that “cross” each other, that is, C1 is “above” C2 when viewed from the front
of I3. Then, if in a set A we have two wires W1 and W2 of profile k1 and k2, respectively, such that within C1

(resp., C2), W1 (resp., W2) is isotopic to [0, 1]× Pk1 (resp., [0, 1]× Pk2 ), where Pk1 is a 2d cone of type (Rk1),
and similarly Pk2 is a 2d cone of type (Rk2), and furthermore, C1 (resp., C2) does not contain anything else than
W1 (resp., W2), then the unknotting transformation brings W1 “below” W2, as is illustrated in Figure 9. The
following property shows that the unknotting transformation produces I3-equivalent sets.

Proposition 4.4 Let A and B be regular semi-algebraic sets in R3. If B is obtained from A by an unknotting
transformation, then A and B are I3-equivalent.

P r o o f. Let us consider a wire of profile k1 and a wire of profile k2 in the working cube I3, as described
above. The proof argument is illustrated in Figure 10. First, the wire of profile k1 is “bend around” the wire of
profile k2, followed by a wire cut&paste on the wire of profile k1 (Arrow (a) in Figure 10). This results in the
wire of profile k1 moving from overcrossing to undercrossing the wire of profile k2, at the cost of an extra wire
loop of profile k1 around the wire of profile k2. Again, using a reduction to the first-order inexpressibility of
PARITY(R) (see Lemma 5 in [12]), this loop can be doubled (see Arrow (b) in Figure 10). Finally, using the wire
cut&paste, this double loop can be cut open into a single loop that is no longer around the wire of profile k2 (see
Arrow (c) in Figure 10). This loose loop can then be absorbed into the wire of profile k1, again using the wire
cut&paste transformation (see Arrow (d) in Figure 10). This completes the proof. ut
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k1

k2

(a) (b)
k1

k2

k1

k2

k1

k2

k1

k2

Fig. 10 The proof process for the unknotting transformation.

Fig. 11 Local cone surgery.

4.8 Local cone surgery

To conclude, we discuss a transformation that will allow us to bring cones of points into a canonical form. More
precisely, local surgery around a point is a local application of the strip cut&paste transformation on the cone of
that point. We have seen that in R2, every regular set can be brought into flower normal form (see Section 4.2),
and local surgery enables us to transform cones in R3 (when viewed as sets in R2) into this normal form.

Figure 11 illustrates the situation we discuss here. Instead of the working cube I3 we use working cone C3

given by Cone(I3
z=1, p̄) for a point p̄ under consideration. The cone of p̄ inC3 lies on the I3

z=0 plane and as shown
in the left part of Figure 11, withinC3 this cone consists of a strip (shown in red). Optionally, this strip can extend
to the boundaries of C3 (shown in green), and above the cone a filled area can be present (shown in blue). In
the right part of Figure 11, the base of this cone is a cut strip (shown in red) whereas the optional green and blue
parts are unchanged. Local surgery can be applied in both directions (Arrows (a) and (b) in Figure 11) and is
thus indeed a “lifted” strip cut&paste transformation to the cone of a point in R3, rather than its stereographic
projection.

To show that local surgery indeed preserves I3-equivalence, we need the following lemma.

Lemma 4.5 If A and B are two regular sets in R3 that differ in the working cone C3 by Cone(A′, p̄) versus
Cone(B′, p̄), where A′ and B′ are I2-equivalent subsets of I3

z=0 and if ∂C3 ∩A = p̄ and ∂C3 ∩B = p̄, then A
and B are I3-equivalent.

The proof of this lemma follows the same lines as the one of Proposition 4.1, with the modification that we
use Cone(s(S), p̄) instead of s(S)× [0, 1].

Lemma 4.5, when applied to the set A of Figure 2, shows that the two cones that touch in p̄12 can be replaced
by a single cone, which in fact is just a closed ball (since one and two closed disks are indistinguishable in R2).
This is precisely why p̄12 was called a fake 3d-boundary point, that is, its cone is equivalent to that of a regular
3d-boundary point.

We remark that the lemma also holds when, as depicted in Figure 11, a filled box resides above Cone(A′, p̄)
versus Cone(B′, p̄) in C3 (that is, when the blue part in Figure 11 is present). The proof is a simple extension of
the proof of Lemma 4.5. With Lemma 4.5 in place, we next show that local surgery preserves I3-equivalence.

Proposition 4.6 Let A and B be regular semi-algebraic sets in R3. If B is obtained from A by local cone
surgery, then A and B are I3-equivalent.

P r o o f. We first consider a “weak” version of local cone surgery, in which a hole appears in one of the cut
conical ends. This is illustrated in Figure 12, where only the situation in the plane z = 0 is depicted. This figure
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(a)

(b)

(c)

(d)

Fig. 12 The proof process for local cone surgery. Only the situation in the plane z = 0 is depicted here.

should be combined with Figure 11 to get a three-dimensional view. Weak local cone surgery is shown in (a) and
to show that two sets A and B in R3, that differ by a weak local cone surgery from each other, are I3-equivalent,
we again use a reduction to the inexpressibility of the problem MAJORITY(R1, R2) for two given finite sets R1

and R2 (see Section 4.1).
Arrow (b) in Figure 12 is another application of weak local cone surgery. Next, in Arrow (c), we apply

Lemma 4.5 which when applied to an isolated cone, replaces it by a cone with an equivalent (I2-equivalent) base.
We use it here to replace an annulus with a disk. Arrow (d) in Figure 12 is another application of weak local cone
surgery. This completes the sketch of the proof. ut

5 Transformation of regular semi-algebraic sets into their canonical form

In this section, we describe how an arbitrary regular semi-algebraic set in R3 can be transformed into a canonical
form. We start by defining the canonical form for point structures.

5.1 The canonical form of point structures

We define the canonical form of a point structure in a number of stages, depending on what cone types occur in
the point structure Π3(A) of a regular semi-algebraic set A in R3. If Π3(A) (and hence also A) is the empty set,
then the canonical form of Π3(A) is the empty set in R3. Next, if Π3(A) is not empty but does not contain cone
encodings of wire points, then we define the canonical form of Π3(A) to be the unit ball B3((0, 0, 0), 1) in R3.

The more interesting case is when Π3(A) does contain cone encodings of wire points. To define its canonical
form, we first represent Π3(A) by means of an undirected multigraph G, to encode the connectivity between
cone encodings of 3d-singular points by means of wires, and a set of profiles P of cone encodings of wire
points, to encode knotted wires whose profiles do not occur in the cone encodings of 3d-singular points. As we
have observed in the proof of “the only-if” direction of Theorem 3.6, this is precisely the information needed
to characterise Π3(A), with the addition of connectivity information between singular points. This connectivity
information (stored in the edges in G) is added to enable the construction of a regular semi-algebraic set AG in
R3 from G, as will become clear shortly. We ensure that G and P are uniquely determined by Π3(A).

More specifically, given Π3(A), we define the undirected edge-labeled multi-graph G = (V,E, λ) such that
each vertex v ∈ V corresponds to a cone encoding of a 3d-singular point in Π3(A), and each edge e = (v, w) ∈
E, running between the singular points represented by v and w, represents a wire of profile λ(e) ∈ N \ {0, 1}.

Clearly, the vertices in V can be easily inferred from Π3(A). As previously mentioned, Π3(A) does not store
information as to which vertices are connected with each other by means of wires. Indeed, Π3(A) only indicates
that there exists a regular semi-algebraic set (e.g., A) that has Π3(A) as point structure. Our aim, however, is to
associate a semi-algebraic set AG to G, by using the information in Π3(A) alone, such that Π3(AG) = Π3(A).
Furthermore, AG is uniquely determined by G (and hence also by Π3(A)).

For this purpose, we define an ordering on the vertices in V . For example, suppose that v is a vertex that
corresponds to the cone encoding {{F∞, (R)∞, (Rk1)n1 , . . . , (Rk`)n`}} of a 3d-singular point. We can associate
a unique natural number to v, denoted by p(v), and use these numbers to define an ordering on V . Indeed, let us
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denote by pi the ith prime number. Then we define p(v) = pn1

k1
· · · pn`

k`
. In this way, each cone encoding can be

associated with a unique number and we define v ≤ w if and only if p(v) ≤ p(w).
We next define the edges in G. Each edge represents a wire of certain profile and we need to ensure that the

number of types of edges is consistent with the cone encodings corresponding to their adjacent vertices. Consider
a vertex v that corresponds to the cone encoding {{F∞, (R)∞, (Rk1)n1 , . . . , (Rk`)n`}} of a 3d-singular point.
We observe that (Rki)2 can be interpreted as a single wire of profile ki that starts and ends in v. In general,
(Rki)ni can be seen as mi wires of profile ki, where ni = 2mi when ni is even, and ni = 2mi + 1 when ni is
odd, such that each of these mi wires starts and end in v. When ni is odd, we need one more wire of profile ki
that starts in v and ends in another vertex w. As before, let v be a vertex that corresponds to the cone encoding
{{F∞, (R)∞, (Rk1)n1 , . . . , (Rk`)n`}}. Based on this observation, we define E as follows:

(a) The multi-set E must contain M = m1 + · · · + m` distinct edges eji = (v, v) of profile λ(eji ) = ki, for
1 ≤ i ≤ ` and 1 ≤ j ≤ mi.

(b) Furthermore, v must be adjacent to n1 + · · · + n` − 2M other distinct edges f ji = (v, wji ) in E, of profile
λ(f ji ) = ki, and such that v 6= wji , for 1 ≤ i ≤ ` and 1 ≤ j ≤ ni −mi.

These two conditions ensure that vertex v is adjacent to n1 + · · · + n` edges, each of which representing a wire
occurring in the cone encoding of the 3d-singular point corresponding to v.

To make the definition of E canonical, it remains to clarify which vertices wji in Case (b) are selected. We
define wji as the smallest vertex in V , relative to the ordering defined previously, such that v ≤ wji and wji
corresponds to a 3d-singular point whose cone encoding has an odd number of cones of the form (Rki). In case
that multiple such vertices exist, this implies that they all represent the same cone, and we can safely break ties
arbitrarily. This concludes the definition of G.

We further have to account for cone encodings of knotted wires, that is, wires that are not attached to singular
points. To this aim, let P be a finite set of natural numbers in N \ {0, 1}, each element in P corresponding to
the profile ki of a wire, represented by an occurrence of {{F∞, (R)∞, (Rki)2}} in Π2(A). Furthermore, (Rki)2

should not appear in Π3(A) as part of the cone encoding of a 3d-singular point. Hence, each k ∈ P will
correspond to the profile k of a wire point that is not represented already by edges in G.

Next, we define the canonical form of Π3(A), given G and P . First, we turn G into a regular semi-algebraic
set in R3, as follows. Let ı be a so-called book embedding of G in R3 [29]. More specifically, all vertices in V
are embedded in the spine {(0, 0)} × R+ of the book, in an equidistant manner, as shown in Figure 13 (a) for
vertices v1, v2, v3 and v4, according to the order imposed on V .

Then, for each edge e in E we assign a different page in the book embedding. In Figure 13 (a), edge e1 is
embedded in the red page, e2 in the blue page, e3 in the green page and e4 in the yellow page. Each of these
pages are an angle of 360◦/|E| apart from each other; are vertical; and we assume a canonical assignment of
edges in E to each of these pages. The actual embedding ı(e) of e in a page is done by means of a semi-circle
that connects the points ı(v) and ı(w), where e = (v, w), as illustrated in Figure 13 (a). If e is a self-loop, such
as for edge e3 in Figure 13 (a), a circle is used instead. We omit the precise description of this embedding as it
should be clear from the figure that this can indeed be done in a canonical way.

Next, we turn each semi-circle ı(e) into a wire of the correct profile, that is, a wire of profile λ(e). This is done
in two steps, we first put a small cylinder C around the spine of the book, as shown in Figure 13 (b). Next, we
put the desired profile on each semi-circle ı(e) up the boundary of the cylinder C. More specifically, for a wire
of profile k, we put a flower with k petals on each point on the semi-circle, and this in a plane perpendicular to
that point. This is illustrated in Figure 13 (b), where ı(e1) and ı(e3) have profile k = 2, and ı(e2) and ı(e4) have
profile k = 3. Clearly, by constructing these profiles small enough compared to the positions of the pages of the
book, one can easily ensure that these profiles do not intersect with each other. We denote by We the (partial)
wire for e constructed in this way.

Finally, we connect the intersection of the partial wires and the cylinder C with their respective points on the
book’s spine, as shown in Figure 13 (c). More specifically, for each v ∈ V we construct a cones with top ı(v)
and base one of the two intersections of We ∩ C, and this for each e ∈ E adjacent to v. Clearly, these cones
seamlessly complete the partial wires into wires that run between two (not necessarily distinct) points on the
spine.
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(a)

Fig. 13 Canonical form based on book embeddings in R3 of graphs.

Given G = (V,E, λ) we denote by AG the regular semi-algebraic set obtained in this way.
We next construct from P a regular semi-algebraic set in R3, as follows. Suppose that P = {k1, . . . , kn}, that

is, P contains n distinct profiles of wires. Consider n horizontal planes H1, . . . ,Hn that are equally spaced out
along the z-dimension and all having negative z coordinates. The latter ensures that these planes do not intersect
with AG (we recall that the spine of the book embedding has positive z coordinates). Next, we embed the unit
circle S1((0, 0), 1) in each of the planes, and for each ki ∈ P , we turn the circle in Hi into a wire of profile ki in
a similar way as described earlier. We again ensure that none of these wires intersect with each other. We denote
by AP the regular semi-algebraic set obtained in this way, that is, it is a collection of n knotted wires that form
individual loops.

To conclude, if Π3(A) has wire points, then we define its canonical form as AG ∪AP . We note that Π3(AG ∪
AP) = Π3(A), as desired. We now say that a regular semi-algebraic set A in R3 is in canonical form if it is the
canonical form AG ∪AP of Π3(A).

5.2 Transformation process

Next, we show that a regular semi-algebraic set A in R3 can be transformed into a regular semi-algebraic set in
canonical form by means isotopies and the I3-preserving transformations of Section 4. We start from a regular
and compact semi-algebraic set A in R3 and let Z be a Whitney stratification of A. For a given point p̄ of A, we
denote by Z the unique stratum in Z to which p̄ belongs.

The transformation process consists of the following five steps.

5.2.1 Step 1. Local surgery.

We first deal with points p̄ for which dim(Z) = 0 and that correspond to fake 3d-boundary points, or 3d-singular
points. More specifically, by applying a number of local surgery transformations on A, resulting in a regular
semi-algebraic set A1, we ensure that for some ε > 0, σ2(A1 ∩ S2(p̄, ε)) is in flower normal form, for these
points, as defined in Section 4.2. Similarly, when p̄ is a fake wire point, we apply local surgery transformations
to turn this point into a proper wire point.

To identify which local surgery transformations we need to apply for fake 3d-boundary points or 3d-singular
points, we recall that from the characterisation of I2-equivalence, we know that when ε > 0 is a cone radius of p̄
inA, then σ2(A∩S2(p̄, ε)) can be transformed by means of number of strip cut&paste transformations into flower
normal form. For fake wire points, σ2(A∩S2(p̄, ε)) is I2-equivalent to two 2d-singular points that are connected
by means of k filled regions, that is, the cone of a wire point of profile k. This implies again the existence of a
sequence of strip cut&paste transformations that transform σ2(A ∩ S2(p̄, ε)) into the cone of a wire point.
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(a) (b) (c)

Fig. 14 Illustration of wire normalisation.

We can now use the local surgery transformation to simulate these sequences of strip cut&paste transfor-
mations on the actual cones, that is, on A ∩ S2(p̄, ε). In this way, A can be transformed into a set A1, in an
I3-equivalent way (by Proposition 4.6), such that

• fake 3d-boundary points p̄ in A are eliminated. Indeed, in A1 we have that σ2(A1 ∩ S2(p̄, ε)) is a single
disk, that is, the cone type of a regular 3d-boundary point;

• fake wire points p̄ in A are eliminated. Indeed, in A1 we have that σ2(A1 ∩ S2(p̄, ε)) consists of two
2d-singular points that are connected by means of k filled regions, that is, the cone type of a wire point; and

• σ2(A1 ∩ S2(p̄, ε)) is a flower normal form for every 3d-singular point p̄.

One can further ensure that local surgery transforms the stratification Z of A into a Whitney-stratification Z1

ofA1 such that the zero-dimensional strata inZ1 do neither include fake 3d-boundary points nor fake wire points.
Furthermore, local surgery does not introduce new 3d-singular points.

5.2.2 Step 2. Wire normalisation.

We next consider points p̄ for which dim(Z) = 1, for a Z in Z1, and that correspond to wire points of a certain
profile k. We assume that Z is a smooth curve in R3, which we refer to as the backbone of the wire. We distin-
guish between the following cases: (a) Z ends in two distinct (necessarily) 3d-singular points; (b) Z ends in the
same 3d-singular point; or (c) Z forms a knot. We note that these three cases are exhaustive since the previous
step eliminated fake wire points and hence we may assume that the zero-dimensional strata adjacent to Z, if any,
correspond to 3d-singular points. We first consider Cases (a) and (b).

We want to “isolate” wires such that they resemble wires in sets in canonical form. More specifically, we argue
that we only need to apply some isotopies to A1 and k 3d-tube cuts in order to obtain a regular semi-algebraic
set A2, such that the topological boundary of the 3d-regular part of the wire is only adjacent to Z and its adjacent
3d-singular points.

Figure 14 illustrates our intention: In Figure 14 (a), we show a wire of profile k = 2 that runs between two
points p̄1 and p̄2 and whose 3d-regular part may connect to other parts ofA1, as depicted by the dots. By contrast,
in Figure 14 (c), we show the desired resulting set A2. Here, the wire is detached and can be regarded as the
product of Z with a flower consisting of two petals.

We next describe the transformation process for wires of profile k. First, we construct two “pinched” cylinders
C1 and C2, locally around Z, such that both of them end in the 3d-singular endpoints p̄1 and p̄2 of Z (see
Figure 14 (b)). We distinguish between the inside and outside region defined by C1 and C2, in the usual way. Let
B1 be the inside region of C1 and B2 the inside region of C2. By applying isotopies to A1 and choosing C1 and
C2 small enough, we can ensure that

• C2 lies entirely inside B1 ∪ {p̄1, p̄2};

• A1 ∩B2 is isotopic to Z × Pk, where Pk ⊆ R2 is a flower with k petals; and
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• A1 ∩ (B1 \ (B2)◦) is isotopic to k disjoint balls in R3.

In other words, A1 ∩ B2 is only adjacent with other 3d-regular parts of A1 by means of the k balls in A1 ∩
(B1 \ (B2)◦). It now suffices to cut these k balls by means of 3d-tube cut transformations to obtain the desired
set A2.

For Case (c), we reduce it to Case (b) by introducing a temporary fake wire point that serves as the endpoint
of the backbone and then proceed as in Case (b), followed by the removal of the previously introduced fake wire
point, using local surgery.

We denote by A2 the regular semi-algebraic set obtained after normalising all wires in A1 and denote by Z2 a
stratification of A2.

5.2.3 Step 3. Cleaning up the three-dimensional parts.

Let D be the three-dimensional regular part of A2 that is not connected to wires. The boundary ∂D of D consists
of surfaces (two-dimensional manifolds without boundary) embedded in R3. We note that ∂D may consist of
multiple connected components, e.g., when D consists of multiple connected components itself or when D is
homeomorphic to ball with a hole inside. We show that, using a representation of the embedding of D in R3,
based on Morse theory [30], that D is topologically elementary equivalent to a ball in R3.

We start by describing this representation of ∂D and then indicate how to modify this into a representation
of D.Without loss of generality we may assume that the surfaces constituting ∂D are smooth (that is, C∞

manifolds). Furthermore, we may also assume that the height function h : R3 7→ R mapping (x, y, z) to
h(x, y, z) = z is a Morse function. Indeed, this can always be assumed by slightly perturbing ∂D [31]. Then, it
is shown in [30] that the embedding of ∂D in R3 can be described, up to isotopy, as follows. Denote by Γv the
set in R3 defined by h−1(v) = {(x, y, z) ∈ ∂D | z = v}. Although Γv is a set in R3, it is often regarded as
the set in R2 given by {(x, y) ∈ R2 | (x, y, z) ∈ ∂D, z = v)}. From the properties of Morse functions, it then
follows that for all values v ∈ R, except for a finite number of (so-called critical) values, Γv is a set consisting
of embeddings of circles in R2. Furthermore, for any two consecutive critical values v1 and v2, Γv is isotopic to
Γv′ for all v and v′ such that v1 < v < v′ < v2. Finally, locally around each critical value v and for small enough
ε > 0, the change in topology between Γv−ε and Γv+ε can be described by considering a finite number of cases,
as we explain below.

When applied to our setting, recall that we are considering a three-dimensional partD ofA. As a consequence,
we do not only have to consider ∂D but also the interior D◦ of D. We can, however, still describe the embedding
of D in R3, up to isotopy, by means of the height function as just explained and as reported in [30].

Indeed, it suffices to take into account that Γv , which is now the inverse image of D under h at height v,
is a 2d-regular set rather than a union of embedded circles when only ∂D was concerned. Furthermore, when
considering the local topological changes around critical values, the case analysis now also depends on which
side of the boundaries the interior of D lies. We describe these cases in more detail below.

First, we explain how this representation of the embedding of D in R3 will be used to show that D that
I3-equivalent to a ball in R3:

(A) For any two consecutive critical values v1 and v2, v1 < v2, we take a small ε > 0 and first detach {(x, y, z) ∈
R3 | (x, y) ∈ Γz, v1 + ε 6 z 6 v2 − ε} from the rest of D by means of complement 3d-tube paste
transformations (see the lower part of Figure 6 for this transformation). We then show that each of these
detached parts is I3-equivalent to a ball in R3, and that this ball can be merged with other 3d-regular parts
residing in a neighbourhood of Γv1 or Γv2 , using the 3d-tube paste transformation.

(B) Locally around each critical value v, we inspect {(x, y, z) ∈ R3 | (x, y) ∈ Γz, v−ε 6 z 6 v+ε}. We have
already hinted that only a finite number of local topological changes around a critical value can occur. We
inspect each of these cases and show that we can again transform these sets into a union of balls in R3 by
means of 3d-tube cut&paste transformations. Hence, these parts of D are I3-equivalent to a union of balls
in R3.

(C) Finally, we merge all balls into a single ball by means of the 3d-tube paste transformation, showing that D
is indeed I3-equivalent to a single ball in R3.
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Fig. 15 Illustration of the detachment process between critical values.

In other words, we use the Morse function-based representation of the embedding ofD in R3 to locally transform
D into balls, hereby only inspecting a finite number of cases. This local approach avoids the need to deal with
the possible complex manner in which D is globally embedded in R3. We next describe Steps A and B in more
detail. Step C is an obvious application of 3d-tube paste transformations and does not need further explanation.

Step A. Detachment between critical values. We describe how to detach D(v1+ε,v2−ε) = {(x, y, z) ∈ R3 |
(x, y) ∈ Γz, v1 + ε 6 z 6 v2 − ε} from the rest of D just above the critical value v1. How the set is detached
just below v2 is completely analogous.

In Figure 15, we illustrate the detaching process. We take a value v just above v1 + ε and consider Γv , viewed
as a 2d-regular set in R2, as shown in the lower part of Figure 15 (a). To make the distinction clear, D(v,v) will
denote Γv when viewed as a set in R3. We will detachD(v1+ε,v2−ε) aroundD(v,v). We note that we may assume
that for small enough η > 0, D(v−η,v+η) is isotopic to Γv × [v − η, v + η], as shown in Figure 15 (a).

In D(v,v), we identify several paths (as will be explained in more detail shortly), that when complement 3d-
tube paste transformations are applied toD(v−η,v+η) along these paths,D(v−η,v+η) is isotopic to UD×[v−η, v+

η], where UD is a union of, say k, disjoint disks in R2. In this way, D(v1+ε,v2−ε) is shown to be I3-equivalent to
D(v1+ε,v−η) ∪ (UD× [v − η, v + η]) ∪D(v+η,v2−ε).

In Figure 15 (a), we have identified a single path in D(v,v). For illustrative purposes, this path is shown in red
in Γv in the lower part in Figure 15 (a). The result after applying a complement 3d-tube paste to D(v,v), along
this curve is shown in Figure 15 (b). We observe that Γv has indeed become isotopic to two disks.
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Fig. 16 Tree representations of Γv . Capital letters denote the embedded circles. Furthermore, (a) represents Γv , (b) represents
Γv after connecting holes at depth 2 with EXT, (c) represents Γv after further connecting holes at depth 4 with EXT. Moreover,
(c) is homeomorphic to a union of disjoint disks.

In Figure 15 (c), we have deformed D(v−η,v+η) such that it is isotopic two cylinders, one cylinder for each of
the two disks in Γv . Next, we apply 3d-tube cut transformations to each of the k cylinders in UD× [v− η, v+ η],
as shown in Figure 15 (d) for two cylinders. As a consequence, D(v1+ε,v2−ε) is I3-equivalent to D(v1+ε,v−η) ∪
D(v+η,v2−ε). We observe that in the latter set, Γv′ = ∅ for v′ ∈ (v−η, v+η) and hence we indeed detached a part
of D(v1+ε,v2−ε) around Γv . In a similar way, we can detach D(v1+ε,v2−ε) around a value w just below v2 − ε.
We may thus conclude that D(v1+ε,v2−ε) is I3-equivalent to the union of three disjoint pieces, D(v1+ε,v−η),
D(v+η,w−η), and D(w+η,v2−ε).

Let us first consider D(v+η,w−η). Clearly, it is isotopic to Γu × [0, 1], for some u ∈ (v + η, w − η). Since
Γu is I2-equivalent to a single disk (any non-empty 2d-regular set with no 2d-singular points is I2-equivalent to
a single disk) and D(v+η,w−η) is detached from anything else, Lemma 4.1 applies. We may thus conclude that
D(v1+ε,v2−ε) is I3-equivalent to D(v1+ε,v−η)∪C ∪D(w+η,v2−ε) for an isolated cylinder C in R3. However, this
cylinder can be removed. Indeed, since D(v1+ε,v−η) contains some 3d-regular parts, we apply a 3d-tube paste
transformation, connecting C with D(v1+ε,v−η). As a result, C is absorbed into D(v1+ε,v−η). In other words,
we have eliminated D(v+η,w−η) from D(v1+ε,v2−ε). The remaining parts, D(v1+ε,v−η) and D(w+η,v2−ε) will be
dealt with when considering the critical values v1 and v2.

Before considering the transformation process around critical values, it remains to explain which complement
3d-tube paste transformations are applied toD(v−η,v+η) to make this set I3-equivalent to a union of cylinders. In
view of the assumption that D(v−η,v+η) is isotopic to Γv× [v− η, v+ η], we describe the process by considering
the effect of these transformations on Γv , as shown in Figures 16 (a)–(c). First, we observe that Γv can be
represented as a tree in which each node (apart from the root node) corresponds to an embedding of a circle in
R2; the root node (at depth 0) corresponds to the exterior EXT of Γv; nodes at an odd depth indicate that the
inside of the corresponding embedded circle is “full”, that is, consists of 2d-regular points; whereas nodes at an
even depth indicate that the outside of the corresponding circle is full.5 Furthermore, for a node at odd (resp.,
even) depth, children indicate holes (resp., filled regions) in the full (resp., empty) region corresponding to the
parent node. We have illustrated this tree representation in Figures 16 (a)–(c).

More specifically, in these figures, we depict how we can recursively transform Γv into a number of disjoint
disks. Starting from Figure 16 (a), we identify simple paths from the embedded circles at Level 1 in the tree

5 The notion of inside and outside of an embedded circle in R2 are defined as usual [23].
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(a) (b) (c) (d)

Fig. 17 Local topological changes around a critical value v1. Inside I , Γv1+ε differs from Γv1−ε by the removal of an empty
region (a), the removal of a filled region (b), the splitting of an empty region in two parts (c), or the splitting of filled region
in two parts (d).

representation (A, B, and C) to their children, if any. In the figure we have shown the paths from A to D, A to E
and C to F in red. We then “drill” small tunnels in D(v−η,v+η), as explained earlier, following these red paths by
means of the complement 3d-tube paste transformation. The result is a set that is I3-equivalent with D(v−η,v+η)

but in which all holes are now connected to EXT. The effect of this process on Γv is shown in Figure 16 (b).
More specifically, all holes represented by D, E and F are “identified” with EXT. As a consequence, the depth
of tree representation of Γv has been reduced by 2. We then recursively apply this process. In the example, only
one more hole is present (represented by H). We again select a simple path from its parent G to H , drill a tunnel
in D(v−η,v+η) that connects the hole to EXT. The result of this process is shown in Figure 16 (c). In particular,
the depth of the tree representing Γv has been reduced by 1 and all leave nodes are now children of the root node.
This implies that Γv has been reduced to a disjoint set of disks A, B, C and D. In general, more steps may be
needed, each step decreasing the depth of the tree, until the tree has depth 1. Such trees naturally depict disjoint
unions of disks, as required, and hence D(v−η,v+η) is shown to be I3-equivalent to a number of cylinders.

Step B. Detachment around critical values. We next describe the transformation process around critical values.
Consider a critical value v1 and corresponding set D(v1−ε,v1+ε). From the case analysis given in [30], it follows
that we can identify a working beam I = [`x, ux]× [`y, uy]× [v1 − ε, v1 + ε] such that (i) outside I , the sets Γv
are the same for all v ∈ [v1 − ε, v1 + ε]; and (ii) inside I , the change from Γv1+ε to Γv1−ε is described by eight
possible cases, as depicted in Figure 17 (each of the four figures can be interpreted from top to bottom, or from
bottom to top).

From top to bottom, Cases (a) and (b) in Figure 17 correspond to the removal of a hole and filled region,
respectively. From bottom to top, these correspond to the creation of a hole and filled region, respectively.
Clearly, we can isotopically transform these case such that Γv1+ε = Γv1−ε. Indeed, for Case (a), we can push
out the hole and for Case (b), we can push down the filled region.

This implies that D(v1−ε,v1+ε) is isotopic to Γv × [0, 1] and since this part is isolated, Lemma 4.1 applies. As
argued earlier, any Γv is I2-equivalent to a single disk. Hence, in Cases (a) and (b),D(v1−ε,v1+ε) is I3-equivalent
to an isolated cylinder in R3, that is, a ball in R3.

For Cases (c) and (d), we follow a similar approach. From top to bottom, Cases (c) and (d) in Figure 17
correspond to the spliting into two parts of an empty region and full region, respectively. From bottom to top,
these correspond to the merging of two empty and full regions, respectively. It should be clear that by applying
a 3d-tube paste transformation in Case (c) and a 3d-tube cut transformation in Case (d), we can make Γv1+ε =
Γv1−ε and hence obtain that D(v1−ε,v1+ε) is I3-equivalent to Γv × [0, 1], which in turn is I3-equivalent to a ball
in R3, as desired.

By performing these transformations between any two critical values and around every critical value, we thus
have shown that D can be transformed into a number of balls in R3, and this in an I3-preserving way.

After Step C, D is transformed into a single ball in R3. We further observe that when wires are present
in A, an additional 3d-tube paste transformation results in the elimination of this ball. If no wires are present,
however, the ball cannot be eliminated as it is the only 3d-regular part. We denote by A3 the result of applying
the three-dimensional cleaning process on A2.
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5.2.4 Step 4. Connecting and unknotting wires.

At this point, A3 is either a single ball, if no wires are present, or A3 consists of a number of normalised wires
connecting 3d-singular points, possibly together with normalized wires that form knotted wires (when they are
not adjacent to 3d-singular points). We observe the following:

• Different knotted wires of the same profile can be joined together by means of wire cut&paste transforma-
tions. We can thus assume that A3 is I3-equivalent to a set in which no two distinct knotted wires of the
same profile occur.

• If the profile of a knotted wire also occurs as the profile of a wire between 3d-singular points, one can again
use the wire cut&paste transformation to merge these wires. We can thus assume that A3 is I3-equivalent to
a set in which knotted wires have profiles that do not occur as the profile a wire between 3d-singular points.

• The possible complex way that wires (either as a knot or between 3d-singular points) are embedded in
R3 can be simplified by means of the unknotting transformation. In this way, we may assume that A3

is I3-equivalent to a set in which every knotted wire has a simple circle in R3 as it backbone, and every
wire between 3d-singular points has a simple curve as backbone. In addition, none of these backbones are
entangled in each other.

Let A4 be a regular semi-algebraic set in R3 that is I3-equivalent to A3, and in which all wires have been
processed as just explained.

5.2.5 Step 5. Bringing in canonical form.

It should be clear that A4 is already very close to being in canonical form. In fact, when A4 consists solely
of a single ball, we only need to apply an isotopy to transform A4 into the unit ball B3((0, 0, 0), 1). If A4

contains singular points, we can again apply an isotopy that ensures that all these points lie exactly as in the
book embedding AG of the the graph G derived from Π3(A). We note, however, that these singular points may
be connected in a different way than in AG. This can be remedied by applying a sequence of wire cut&paste
transformations and unknotting transformations, followed by isotopies. In addition, the remaining knotted wires
in A4 can be isotopically deformed into AP , for the set of profiles P derived from Π3(A). As a consequence, A4

is indeed I3-equivalent to AG ∪AP , the canonical form of Π3(A).

6 Discussion and concluding remarks

In this paper, we have limited the discussion to bounded regular semi-algebraic sets in R3. This restriction is
not essential, however. For unbounded sets, we can obtain a similar characterisation of topological elementary
equivalence. Indeed, one can define the cone of the point at infinity in a similar way as for sets in R2 (see [12],
for more details). The point structure Π3(A) can then be extended to Π∞3 (A), which now includes the cone
encoding of the point at infinity. Two unbounded regular sets A and B in R3 are now I3-equivalent if and only
if Π∞3 (A) = Π∞3 (B).

For regular open sets, we get a characterisation of topological elementary equivalence by remarking that A
and B are I3-equivalent if and only if their complements are I3-equivalent. Indeed, since the complements of
regular open sets are regular closed, Theorem 3.6 also gives a characterisation for the regular open case.

The restriction to regular closed (or open) sets is not easily lifted, however. Although we believe that the
characterisation of topological elementary equivalence in terms of point structures, as given by Theorem 3.6,
carries over to general closed semi-algebraic sets in R3, additional transformations and a revised notion of the
canonical form are required to deal with the one and two-dimensional parts in such sets. In particular, it is unclear
how to eliminate obstructions, caused by membranes that separate distinct parts of the semi-algebraic set, when
transforming sets into a canonical form.

We further observe that Theorem 3.6 implies that I3-equivalence (and thus also H3-equivalence) is a decid-
able property of regular semi-algebraic sets in R3. Indeed, in a similar way as for I2-equivalence [12], the
characterisation given in Theorem 3.6 can be easily converted into an effective procedure for testing whether
two sets are topological elementary equivalent. Furthermore, the characterisation opens the way to the design of
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a multi-tiered cone-based topological query language that precisely captures the expressive power of first-order
logic with regard to first-order topological properties of sets in R3. A similar cone-based languages is known for
sets in R2 [9].
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