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Annotated Content
Introduction, pg.3
Axiomatizing [She90, Ch.VI,2.6], pg. 8

[We phrase and prove a theorem which axiomatizes [She90, Ch.VI,2.6]. The
theorem there says that if D is a regular ultra-filter on I and for every model
M of the theory of dense linear orders (or T' with the strict order property),
the model M!/D is A\*-saturated, then D is A*-good and A-regular.]

Applying the axiomatized frame, pg.12

[The axiomatization in §1 can be phrased as a set of sentences, surprisingly
moreover Horn ones (first order if 6, = Ng). Now in this case we can
straightforwardly derive [She78, Ch.VI,2.6]. However we can get more,
because the axiomatization being Horn, we can now deal also with the
(AT ,atomic)-saturation of reduced powers. We then deal with infinitary
logics and comment on models of Bounded Peano Arithmetic. After an
inquiring of G. Cherlin the proof of 2.10 was given.]

Criterion for atomic saturation of reduced powers, pg.19

[For a complete first order T' we characterize when a filter D on I is such
that M?/D is (\atomic)-saturated for every model M of T']

The counterexample, pg.25

[We prove that for reduced powers, the parallel of t < p in general fails.
Also, similarly the uniqueness of the dual cofinality. More specifically, for
A > Ny, for some regular filter D on A, the partial order (Q, <)A\/D has no
symmetric pre-cut of cofinality > A but has such an asymmetric pre-cut.]
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§ 0. INTRODUCTION

§ 0(A). Background, Questions and Answers.

We know much on saturation of ultrapowers, see Keisler [Kei67], [She90, Ch.IV]
and later mainly works of Malliaris and the author, e.g. ([MS16b], [MS16¢]). But
we know considerably less on reduced powers. For transparency, let 7" denote a
first-order complete countable theory with elimination of quantifiers and M will
denote a model of T. For D a regular filter on A > Ry we may ask: when is M*/D
At-saturated? For D an ultra-filter, Keisler [Kei64] proves that this holds for every
T iff D is AT-good iff this holds for T' = theory of Boolean algebras, such T is called

<Iy-maximal.

By [She78, Ch.VI,2.6] the maximality holds for T' = theory of dense linear orders or
just any T with the strict order property and by [She96], any T with the 3-strong
order property, SOPj3 is <y-maximal.

What about reduced powers for A-regular filter D on A? By [She72a], M*/D is
AT-saturated for every T (of cardinality < \) iff D is AT-good and £ (\)/D is a
At-saturated Boolean algebra. Parallel results hold when we replace A*-saturated
by (A", 2140 (Lr()))-saturated. We shall concentrate on (A, atomic)-saturated
and introduce the related partial order <\’, see definitions below.

Concerning ultrapowers, lately, Malliaris-Shelah [MS16b] proved that a regular
ultra-filter D on a cardinal X is A*-good iff for any linear order M we have M?*/D
has no symmetric pre-cut with cofinality < A. This was proved together with the
theorem p = t and “for a f.o. complete countable T, being SOP3 suffices for <y-
maximality”. In a later work [MS17a], it is proved that at least for a relative <
(see [She96]) this is “iff” assuming a case of G.C.H., relying also on works with
Dzamonja [DS04], and with Usvyastov [SU08]. Part of the proof is axiomatized by
Malliaris-Shelah [MS16a).

Note also that [Sheb] deals with saturation but only for ultrapowers by §-complete
ultra-filters for 6 a compact cardinal; and also with w-ultra-limits.

Now what do we accomplish here?

First, in §1 we axiomatize the proof of [She78, Ch.VI,2.6], i.e. we define when
r = (M,A) is a so-called RSP and for it to prove that the relevant model N,
is (min{py, t, }, A)-saturated. Second, in §2 we prove, of course, that [She78,
Ch.V1,2.6] follows, but also we show that the axiomatization of RSP is by Horn
sentences. Hence we can apply it to reduced powers. So T is <\’-maximal if
T = Th(Q, <) and moreover for every T' having the SOP3; lastly, we comment on
models of Peano Arithmetic.

In §3 we try to sort out when for models of T" we get the relevant atomic saturation.
Can we generalize also results [MS16b] to reduced powers?

The main result of §4 says that no. We also sort out the parallel of goodness,
excellence, and morality for filters and atomic saturation for reduced powers. In a
hopeful continuation [S*], we shall try to sort out the order <\, and in particular
consider non-maximality and parallel statements for infinitary logics (see [Sheb]).

The reader can ignore Boolean ultra-powers (that is 0.12, 0.13, 0.14 for sections
1,2 and can in first reading deal only with first-order logic (so 8 = Xy, and the
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assumptions concerning the completeness of filer disappear. We thank the referee
for many helpful comments.

Note that by 2.10
Conclusion 0.1. If (T, A) has the SOPg, then it is <\’ -mazimal.

Question 0.2. Do we have: if D is (A2, T')-good and regular then D is (A1, T)-good
when \; < A (or more)?

§ 0(B). Further Questions.
Convention 0.3. 1) Let T be a theory with elimination of quantifiers if not said
otherwise. Let Modr be the class of models of T'.

2) The main case is for T a countable complete first-order theory with elimination
of quantifiers, moreover, with every formula equivalent to an atomic one.

So it is natural to ask

Conjecture 0.4. The pair (7, A) is <;p-maximal iff (7, A) has the SOP3.

So which T (with elimination of quantifiers) are maximal under <\"? That is, when
for every regular filter D on A\, M*/D is (A*, atomic)-saturated iff D is AT-good?
Is Tteq maximal? (see [She93], it is a proto-typical non-simple T, but see more in
[She23]) As we have not proved this even for ultra-filters, the reasonable hope is
that it will be easier to show non-maximality for <\’. Also in light of [MS16¢| for
simple theories we like to prove non-maximality with no large cardinals. We may
hope to use just NSOP5, but still it would not settle the problem of characterizing
the maximal ones as e.g. SOP2 = SOP3 is open for such T'; for pairs (T, ¢(Z,7))
they are different.

Note that for first order 7', it makes sense to use uT-saturated models and D is
T -complete.

Also, the “T stable” case should be resolved.
Conjecture 0.5. M*/D is (X)/D, atomic)-saturated when :

(a) T a theory as in 0.3(2),
(b) T is stable without the fcp,
(¢) D is a regular filter on A.

Remark 0.6. Maybe given a 1 —¢-type p C {¢(x,a) : @ € ™(M?*?/D)} of cardinality
< Xin MT/D, we try just to find a dense set of A € D such that in M’ /(D + A)
the 1 — ¢-type is realized. Then continue; opaque.

§ 0(C). Preliminaries.

Notation 0.7. 1) T dnote a f.o. theory, usually complete.
2) Let 7 denote a vocabulary, 77 = 7(T") denote the vocabulary of the theory T

3) We use M, N to denote models, 7p; = 7(M) is the vocabulary of M and PM FM
denote the interpretation of P, F' respectively.

4) let L(7) denote the f.o. language for the vocabulary 7.

5) We allow function symbol F' € 7 to be interprated in a 7-model M as a partial
function, but with domain P with Pr € 7 a predicate with the same arity.
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Notation 0.8. 1) Let B denote a Boolean algebra, comp(B) its completion, B+ =
B\ {0 }, uf (B) the set of ultra-filters on B, fil(B) the set of filters on B. For a € B
let alf(true) — {if(1) he a and let aif(false) = aif(0) he 14 — a.

1A) Let B < By mean that By is a sub-algebra of By, and moreover, a complete
one, which means that every maximal anti-chain of B, is a maximal anti-chain of
Bo.

2) For a model M let mpy = 7(M) be its vocabulary.

3) For a filter D on aset [ let D™ ={BC1I:I\B¢ D}.

Now about cuts (they are closed to but different than gaps, see [MS17b]).
Definition 0.9. 1) For a partial order 7 = (7, <g), we say (Cy,C3) is pre-cut

when (but we may in this paper omit the “pre”):
(a) C1 UCy is a subset of 7 linearly ordered by <z,
(b) if a; € C1, a9 € Cy then a1 <7 as,
(¢) for no c € 7 do we have a1 € C1 = a1 <z cand as € Cy = ¢ < gz as.

2) Above we say (C1,C2) is a (K1, k2)-pre-cut when in addition:

(d) Ci has cofinality k1,
(e) C5, the inverse of Co, has cofinality kg,
(f) so k1, ko are regular cardinals, (here we ignore the case 0,1 if not said
otherwise).
2A) Above we call k1, ko the cofinalities of the pre-cut (Cq,C2). We say that the
pre-cut is symmetric when x; = ko and then we may say x; is its cofinality.

3) We may replace Cy by a sequence ay, if not said otherwise such that a; is <gz-
increasing and as is < z-decreasing.

4) We say (Cy,C3) is a (K1, k2)-linear-cut of 7 when it is a (K1, k2)-pre-cut and
C1 U5 is downward closed, so natural for .7 a tree.

5) We say (C1,Cs) is a weak pre-cut when (b),(c) of part (1) holds.

Remark 0.10. 1) If 7 is a (model-theoretic) tree, k2 > 0 and (C1, Cs) is a (K1, k2)-
pre-cut then it induces one and only one (k1, K2)-linear-cut (C}, C%), i.e. one sat-
istying C; C C},C2 C C4 such that C; U Cy is cofinal in C] U C4.

2) In 0.11 below, if L = IL(7) then § = Xy, o = 1 suffice, but not so in more general
cases.

Definition 0.11. 1) We say M is fully (A, 0, 0, L)-saturated (may omit the fully);
where L C Z(7p) and .Z is a logic; we may write .2 if L = % (7ar), when:

e if ['is a set of < A formulas from L with parameters from M with <1+ ¢
free variables, and I' is (< 6)-satisfiable in M, then I is realized in M.

2) We say “locally” when using one ¢ = o(Z,9) € £ with £g(z) <1+ 0, ie. all

members of T' have the form' ¢(z, b).

n [Sheb] we use a L C Lgg,0 a compact cardinal and if o > 6 we use a slightly different
version of the definition of local and of the default value of o was 6.
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3) Saying “locally/fully (A,.Z)-saturated” the default values (i.e. we may omit) of
oiso =40, of (0,0) is = Rg Ao =Ry and of £ is L (first order logic) and of L is
. Omitting A means A = || M]|.

4) If (z,9) € ZL(t:m) and @ € 99 M then o(M,a) := {b€ 9@ M : M = ¢[b,a}.
5) Let Zjy) = (s : 5 € u).

In 0.12. 0.13, 0.14 we shall deal with complete Boolean algebras and ultrapowers,
and then we define an order between theories.

Definition 0.12. Assume we are given a Boolean algebra B usually complete and
a model or a set M and D a filter on comp(*8), the completion of 5.

1) Let M™® be the set of partial functions f from BT into M such that for some
maximal anti-chain (a; : i < i(*)) of B,dom(f) includes {a; : i < i(x)} and is
included in? {a € B+ : (Ji)(a < a;)} and f is a function into M and f[{a €
dom(f) : a < a;} is constant for each i.
1A) Naturally for fi, fo € M we say fi, fo are D-equivalent, or f; = fo mod D
when for some b € D we have a1 € dom(f1) A az € dom(fz) Aai NazNb > 0p =
fi(ar) = fa(az2).
2) We define M™ /D naturally, as well as TV pr(¢(fo, - -, fu_1)) € comp(B) when
0(x0,. - xn_1) € L(tar) and fo,..., fn_1 € M® where:

(a) TV stands for truth value,

(b) TVar(e(fo,---, fn-1)) is equal to

sup{a € BT :an ﬂ Dom(fe) : M = (e(fola), ..., fn_1(a)))},

l<n

(¢) M is defined by letting, for ¢ an atomic formulas
M?®/D = ¢[fo/D, ..., fa—1/D] ifft TVa(@(fo,- -, fn-1)) € D.

2A) Abusing notation, not only M** C M®2 but M®1/D; C M™®2/D, when
B <<By, Dy € ﬁl(%g) for{ =1,2and D; = B1ND>. Also [fl,fg e MP1 = fi=fo
mod Dy ¢ fi = fo mod Dy]. So for f € M®* we identify f/D; and f/Ds.

3) For complete B, we say (a, : n < w) represents f € N® when (a, : n < w) is
a maximal anti-chain of B (so a, = Oy is allowed) and for some f’ € N® which is
D-equivalent to f (see 0.12(1A)) we have f’(a,) = n.

4) We say {(an,kn) : n < w) represents f € N¥ when:

(a) the k,, are natural numbers with no repetition,

(b) (an :n < w) is a maximal anti-chain,

(©) flan) = kn.
5) If . is a maximal anti-chain of B and M = (M, : a € ) is a sequence
of 7-models, then we define M® as the set of partial functions f from BT to
U{M, : a € #} such that for some maximal anti-chain (a; : ¢ < i(*)) of B refining
F (le. (Vi <i(x))(3be F)(a; < b)) we have:

(a) {a;:i<i(x)} Cdom(f) C{be BT :b<y a; for some i < i(x)}
2for the Dy € uf(By) ultra-product, without loss of generality % is complete, then without

loss of generality f[{a; : i < i(x)} is one to one. But in general we allow a; = Oy, those are
redundant but natural in 0.12(3).
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(b) if a € dom(f) and a < a; then f(a) = f(a;)

(¢) if a; < b,b € F then f(a;) € M,.
6) For M,B,.# as above and a filter D on B we define M®/D as in part (2)
replacing M® there by M® here, see part (7).
7) For M,B, . as above, ¢ = ¢(%) = ¢(20,...,2n_1) € L(1ar) and f = (fs : £ < n)
where fo, ..., fn_1 € ME, let TV(¢[f]) = TV(¢[f], M®) be sup{a € Bt: if L <n
then a € dom(f;) and a < b € & then My = ¢[fo(b), ..., fn=1(b)]}.
8) We say B is (< o)-distributive when it is #-distributive for every 6 < o, where
8A) B is f-distributive when: if for a < 0, .7, is a maximal antichain of B then

there is a maximal antichain of 9B refining every .7, (a < 6); this holds, e.g. when
B = P(\) or just there is a dense Y C B+ closed under intersection of 6.

Definition 0.13. 1) Let 8 be a complete Boolean algebra and D a filter on B.
We say that D is (u,0)-regular when for some (¢, u) we have:

(a) € ={cq : a < a,) is a maximal anti-chain of B,
(b) 4= (ug : a < a,) with u, € [u]<?,
(¢) if i < p then sup{c, : « satisfies i € uq} € D.
2) A filter D is called A-regular when it is (A, Ng)-regular; the filter D on a set I

(that is the Boolean algebra Z2(I)) is called regular when it is a filter on a set I
and it is |I|-regular.

Claim 0.14. Assume B is a complete Boolean algebra which is (< \)-distributive
and D a filter on B and 6 = cf(0) < \.

1) Assume D is a 0-complete ultra-filter. The parallel of Los theorem holds for Lg g
and if D is A-complete even for Ly g which means: if M = (M, : b € &) is a
sequence of T-models, .9 is a mazimal antichain of the complete Boolean algebra B
ande < 0,0 = o(T}s) € Lag(r) and fc € M™® for ( < e then M® /D |= “o[(fc/D :
C<a iff TVum(e[{fe/D : ¢ <e)]) belongs to D.
2) If in addition D is (X, 0)-reqular and M, N are LLg g-equivalent then M /D, N* /D
are L+ g-equivalent.
Definition 0.15. 1) Assume Ay is a of set atomic formulas in L(7(7%)). Then
we say (T1, A1) <Y’ (T2, Az) when: if D is a (), 6)-regular filter on A and M, is
a At-saturated model of T for ¢ = 1,2 and M3 /D is (\*,0, Ay)-saturated then
M} /D is (A\,0, A;)-saturated.
2) For general Ay, Ay we define (T, Ay) <Py (To, Ag) as meaning (177, AT) <3P
(T, AY) where (as Morley [Mor65] does):

o T,;F = T,u{(VZ)(p(T) = P,(z)) : ¢(Z) € A} with (PS : ¢ € Ay) new

pairwise distinct predicates with suitable number of places

o Af = {PL(z,): € Ay}
3) In (2), T1 <Y’y T> means A, = the set of atomic Ly (77, )-formulas.
Observation 0.16. Assume A C L(7r) is closed under 3 and A. A model M of
T is (ut, u", A)-saturated iff it is (u*, 1, A)-saturated.
Question 0.17. 1) Under <, characterize the minimal/maximal pairs (7', A).
2) What about the parallel of <** (see [She93], [MS17a])?
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§ 1. AXIOMATIZING [She90, Ch.VI,2.6]

Note that while the notation t(.7) is obviously natural the notation p(.7) is really
justified just by the results here.

Definition 1.1. 1) For a partial order .7 = (7, <) let pz = p(7) be min{x; +
Ko : (K1, k2) € €7} and pg(T) = min{k1 + k2 : (K1, k2) € €7.9}; where:
2)69(7) = {(k1, k2): the partial order .7 has a (K1, k2)-cut and k1 > 0, k2 > Ng}.
If 6 = Ny then we may omit 0, (yes, when 6 > R this is not symmetric).

3) For a partial order 7 let to = t(.7) be the minimal k > Xj such that there is a
< z-increasing sequence of length x with no < z-upper bound.

4) Let p = p*(7) be min{tz,p7}.
5) po—sym(7) = min{k : (k, k) € €4(7)} and if § = Rg we may write pZ,. (7).
6) In Definition 1.2 below let t, = to., pr = po, ().

Definition 1.2. 1) For ¢ = 1,2 (the difference is only in closed (i)), we say r or
(M, A) is a (6, )-realization® spectrum problem, in short (#,¢) — RSP or (6,:) — 1-
RSP when r consists of (if « = 2 we may omit it, similarly if = Rg; we may omit
A and write M when A is the set of atomic formulas in L(7y,, ), see below, so M
below = M,, etc.):

(a) M a model,

(b) for the relations .7 = TM Sg:g% of M (i.e. ,<z are predicates from
Tv) we have J = (J,<5) a partial order (so definable in M) with root

M = 1t(.7), so ¢ € T is an individual constant and t € T = 1t(7) <7 t;
as in other cases we may write 7, <, for .7, <&; we do not require .7 to
be a tree; but do require t € 7 =t <o t,
(¢) amodel N = N, = Ny with universe PM, 7(N) C 7(M) such that
¢ QeTn= QY =Q",
e Fcry = FN = FM (we understand F™ FN to be partial func-
tions),
so every o € L(7xy) can be interpreted as ¢* € L(7/), all variables
varying on P (include quantification); we may forget the superscript
[]-

(d) the cardinal @ and A C {¢: ¢ = p(z,7) € Lo g(rn)} which is closed under
conjunctions meaning: if i(x,g,) € A for £ = 1,2 then p(z, 7, 75) =
<P1($7§ﬁ) A 902(1_7’ :'72/) € A,

(e) RM C |N| x M so0 a two-place relation; and let RM = {b : bRMt} for
te TM,

(f) IN| x {rtz} C RM ie. le\f(g) = |N]|,

)

(9) if s <z t then a € N AaRt = aRs, i.e. RM O RM,
)
)

(h) t€ 7 = RM +,
(i) if s € T,0(x,a) € AN) := {¢(x,a)) : p(z,7) € A and @ € Y@ N} and
for some b € RM N |= ¢[b,a] then there is t € 7 such that s <z t and
/' ={be RY: N = olbal},

3When P and 7y (hence N) are understood from the context we may omit them.
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(i)T if ¢ = 1 like clause (i) but* moreover ¢t = F2,(s,a) where F}) : 7 x
L@ (pMy - .,
(7) ift € Z and p(z,a) € A(N) and ¢(N,a) # 0 then
(a) s = FM(t,a) is such that R} Np(N,a) # 0 and s <7 t,
(B) if s = F)%(t,a), s1 <z t and R} N@(N,a) # 0 then 51 <z s.
(k) if 6 > R then in (7, <z) any increasing chain of length < 6 which has an
upper bound has a < g-lub.

Remark 1.3. We may consider adding: S™ a being successor, (but this is not Horn),
ie.:

(1) if © = 1 we also have SM is the set of pairs (a,b) such that b is a <g-
successor of a which means:
(o) if a <bAa#b then for some ¢, S(a,c) Ae <D,
(B) if b € T\{rtz} then for some unique a we have S™(a,b),
(v) S(a,b) = a<b,
(6) S’(a,bl) A S(a,bg) Aby # by = ﬁ(bl < bg),
() in clause (j) we can add SM(s,¢).

Remark 1.4. Presently, it may be that a < b <5 a but a # b. Not a disaster to
forbid but no reason.

How does this axiomatize realizations of types?

Claim/Definition 1.5. Let ¢ = {1,2},0 is Ny or just a regular cardinal.

1) For any model N and A C {¢ : ¢ = p(x,7) € Log(rr)} closed under con-
Junctions of < 6, the canonical (0,1) — RSP,r = r?V,A defined below is indeed a
6 — RSP.

2)r = r?V)A (if 0 = Xg we may omit it) is defined by:

(a) Ay =A,N, =N and 0, =0,

(0) T = {{pe(z,ac) : € <) : ¢ <0 and for every € < ( we have p.(r,a.) €
A(N) and N = Bz)( N\ ¢e(x,a))},

e<(
(¢) <y= being the initial segment relation on T,

(d) M = M, is the model with universe J, U |N|; without loss of generality
Tr N |N| =0, with the relations and functions of N, 7., <, and,

. P N

o M=(eZ,

o RM = [(bt) : b € N;t = (pre(m,a1c) : € < () € T and N |=
ore(b,are) for every e < (i},

o FY, as in Definition 1.2(j),

e if L =1 then Fé‘fll is as in Definition 1.2(i)".

Remark 1.6. If we adopt 1.3 it is natural to add:

hwe may not add a function, maybe it matters when we try to build r with Th(My) nice first
order.
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(e) for v = 1,8M = {(@1,P2) : P2 = @1 {p(x,a)) € T for some p(x,a) €
A(N)}-

Proof. Obvious. U5
Main Claim 1.7. 1) Assume r is an RSP. If k = min{t,, p,} then the model N

is (K, 1, Ay)-saturated, i.e.
@ if p(x) C Ap(Ny) is finitely satisfiable in Ny (= is a type in Ny) of cardi-
nality < k then p is realized in Ny.
2) If 6 > Xg andr is a 0-RSP, then Ny is (k,1, Ay)-saturated where k = min{ty, p, }
recalling 1.1(6), i.e. pr =Pz, 0.
3) If 0 > Ro,r is a -RSP satisfying (k)™ below then Ny is (t, 1, Ay)-saturated
when :

(k)T in (7,<g) any increasing chain which has an upper bound, has a < z-lub.

Proof. This is an abstract version of [She78, Ch.VI,2.6] = [She90, Ch.VI1,2.6]; recall
that [She78, Ch.VI,2.7] translates trees to linear orders.

1) Let N = Ny, A = A, etc.
Let p be a (A, 1)-type in N of cardinality < x. Without loss of enerality p is infinite
and closed under conjunctions.

So let
(%)1 ax < Kyp = {pa(r,aq) : @ < o} € A(N),p is finitely satisfiable in N.
We shall try to choose t, by induction on o < «, such that:
(¥)2 (a) to€ T and f<a=tg <z g,
(b) if B < av then there is b € R} such that N = ¢g[b, ag),
() ifB<athenbeRM = N = palb,aa].
If we succeed, this is enough because if ¢ = t,, is well defined then RM # () by

Definition 1.2(h) and any b € RM realizes the type by (*)2(c) and Definition 1.2(h).
Why can we carry the definition?

Case 1: a = 0.

Let to = rt, hence R} = |N| by Definition 1.2(f). Now clause (a) of (x)2 holds
as to € Z and there is no § < . Also clause (b) of (*)2 holds because p is a type
and Rﬁ‘f(g) = |N;| by Definition 1.2(h).

Lastly, clause (c) of (x)2 holds trivially.

Case 2: a =+ 1.

Ife=1lett= F%ﬁl(tﬂ, ag) and see clause (i)* of Definition 1.2. If ¢ = 2 use clause
(i) of the definition recalling p is closed under conjunctions.

Case 3: « a limit ordinal

Astg. > Kk > a, by the claim’s assumption (on tz,, see Definition 1.1(2)) necessarily
there is s € .7 such that § < a = t, <z s. We now try to choose s; by induction
on 7 < v such that

(*)2.1 (CL) S; € 9,
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b)) B<a=ts<z s,

(¢c) j<i=si <z s,

(d) ifi=j+1 then R} is not disjoint to ¢;(N,a;).
If we succeed, then s,, satisfies all the demands on ¢, (e.g. (%)2(b) holds by
Definition 1.2(g) and (x)2.1(d)), so we have just to carry the induction for a. Now
if i = 0 clearly sg = s it as required. If i = j+ 1 let s; = Ff,‘ffz(sj, a;), by Definition
1.2(j) it is as required. For 4 a limit ordinal use x < pz hence carry the induction
on ¢ so finish case 3.

So we succeed to carry the induction on « hence (as said after (x)2) get the desired
conclusion.

2) Similar, except concerning case 3. Note that without loss of generality 6 > R
by part (1).

Case 3A: « is a limit ordinal of cofinality > 6.

As in the proof of part (1).

Case 3B: «a is a limit ordinal of cofinality < 6.

Again there is an upper bound s of {tg : 5 < a}. Now by clause (k) of Definition
1.2, without loss of generality s is a <z-lub of {tg : f < a}. So easily for every

1< Qu, Fé\fz(s, a;) is > tg for B < a hence is equal to s, S0 S, := s is as required.
3) Similarly. 017

Discussion 1.8. 1) What about “(A*, n, A)-saturation”? We can repeat the same
analysis or we can change the models to code n-tuples. More generally, replacing
©(Z(e), ) by e((Fe () : ¢ < ¢€),¥), using I € Tpr (though not necessarily F¢ € 7y, ),
so we can allow infinite €.

2) Hence the same is true for (A", Ng, A)-saturation, e.g. A*-saturated by an as-
sumption.
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§ 2. APPLYING THE AXIOMATIZED FRAME

Consider a filter D on a set I and cardinals A > p. We may ask for a model M of
cardinality > y, whether M?/D is (At atomic)-saturated, varying M.

We here apply §1 to show that: when D is an ultra-filter, the model (“~ p, <) is the
hardest, this is 2.1, We then (in 2.2) show that §1 has axiomatization which is a
Horn theory. Hence we can prove results like 2.1 below for filters D (not just for
ultra-filters),

Conclusion 2.1. 1) If D is an ultra-filter on a set I, N a model, = ||N|| + ||7n]]
and (“>p, <)t /D is (\*,atomic)-saturated then N'/D is \*-saturated.

2) Instead of {(“>u,<)!/D is (\*,1, atomic)-saturated” we can demand “J'/D is
(A1, 1,atomic)-saturated” where J is the linear order with set of elements {—1,1} x
“Zu ordered by (t1,m) < (t2,m2) iff t1 < 12 or 11 = =1 = 13 Ay <ilex M2 OT
1 =—-1=1wAn <iexmn.

Proof. 1) Let Ny = N. As D is an ultra-filter without loss of generality Th(Ny)
has elimination of quantifiers and even every formula is equivalent to an atomic
formula. Let A = L(7y), by 1.5 r1 := ry, a is an RSP. Let Ny = N{/D and let
M, = My,, My = M{/D and let ro be the RSP(M, , A). Clearly, ry is an RSP as
the demands in 1.2 are first order (see more in 2.2).

Now,
()1 Ty = (71, 9).
[Why? See 1.5(2).]
(¥)2 Ty = ()1 /D is (AT ,atomic)-saturated.
[Why? By an assumption.]
(%)3 t(F),p(Try) = AT
[Why? Follows by (*)2.]

Hence by 1.7, Ny is (AT, 1,1, A)-saturated which means Ny = (N;)!/D is A*-
saturated.

2) Easy (or see [She78, Ch.VI,2.7] or see [SheT2b]). 0o 1

To apply the criterion of the Main Claim 1.7 to reduced products we need:

Claim 2.2. If A is the set of conjunctions of atomic formulas (no negation!) in
L(ro) and 7 ={7,<7,R,P,c}U{F,;:p € A and { =2 or { =1 if relevant} Uy,
(disjoint union, recall ¢ is 1tz ), then there is a set T of Horn sentences from 1L(T)
such that for every T-model M

o (M,A) is a RSP (i.e. 2-RSP) iff M |=T.

Proof. Consider Definition 1.2. For each clause we consider the sentences expressing
the demands there.

Clause (a): Obvious.

Clause (b): Clearly the following are Horn:

e x<gy— TJ(xr)andx <7 y— T (y),
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*r<7YNYy<g7 2172,
o 7(rty) and T (s) > rty <s,
o J(x) =<z .
Note that (7, <) being a tree is not a Horn sentence but this is not required.
Clause (c):
o Q(xo,...,TpQ)—1) — P(x¢) when Q is an n(Q)-place predicate from 7(N)
and ¢ < n(Q); clearly it is Horn,
e for any n-place function symbol F' € 1y the sentence: P(zg)A.. . AP(Zyp_1) —
P(F(xg,...,xn—1)) and y = F(xg,...,Tn-1) = P(x¢).
Clause (d): nothing to prove - see the present claim assumption on A.
Recall that for F' € 7y, F' stand for a partial function symbol with domain Pg.
Clause (e): yRs — 7 (s),yRs — P(y) are Horn.
Clause (f): P(z) — zR(rtz) is Horn.
Clause (g): s <z t AxRt — xRs is Horn.
Clause (h): (vt)(3z)(7 (t) — zRt) is Horn.
Clause (i): Let ¢(z,7) € A.
First assume ¢ = 1. Note the following are Horn: for any ¢(z,y) € A,

o T(s)NzRsANop(z,y) N N Ply) Nt=F,1(s,9) = T(t)ANs<zt,
£<Lg(7)

o T(s)NeRs ANz, y) N N\ Plye) Nt =F,1(s,y) = xzRt,
£<Lg(y)

o J(s)Na'Rs Na'RF,1(s,y) = (', ).
This suffices. The proof when ¢ = 2 is similar.
Clause (j): Similarly but we give details.
Let ¢ = ¢(x,y) € A, so the following are Horn:

L4 QO(l'l,g)/\P(J;l)/\ /\ P(yf)ASZF¢)2(t,g) — S S? t7

£<Lg(7)
o plr,y) AP(i)A N Ply) As = Foalt,y) = (Jr)(zRs A (2, 7)),
£<tg(y)
e P(x)N N Ply)ANs=Fyo(t,y) Nz <z tNxRzN¢(z,§) = 2 <z s.
£<Lg(y)
Clause (k): As 6 = N this is empty.
This suffices. Ho.o

Claim 2.3. Also for 6 > X (see 1.2(2)) Claim 2.2 holds but some of the formulas
are in Lgg.

Proof. Clause (k): When 6 > Ny.

Should be clear because for each limit ordinal § < k, we have that the sen-

tences Y5 = (Va:o,...,:ca,...,:c(;)(zly)(Vz)(( N 2o <7 2B <7 y <z x5) A
a<fB<d
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(N 20 <9238 <7 2<gy<zgaz —>y= z)) is a Horn sentence and it
a<fB<é
expresses “any < g-increasing chain of length ¢ has a <-lub”. Uo 3

Conclusion 2.4. 1) Assume
(a) D be a filter on I,
(b) N a model, A\ = ||N|| + |7n|, A the set of atomic formulas (in L(tn)),
(©) 7 =(7,<7)=("\9)"/D,
(d) k=9p% =min{ts,pe(J1)} see Definition 1.1(6).
Then the reduced power N'/D is (k,1, A)-saturated.
2) Assume®
(a) D is a O-complete filter on I,0 = cf(0) > No,
(b) N is (0, A)-saturated, A a set of atomic formulas,
(e) Z1:=(""\9)!/D
(d) £ =min{tz, pe(71)}.
Then N'/D is (k,0,1,A)-saturated.

3) We can above replace N'/D by NT /D where D is a filter on the complete
Boolean algebra B which has (< 0)-distributivity when 6 > Rq.

Proof. 1) Let 6 = Ry and rg = (Mo, A) be r?vA from 1.5, so 6, = 6.

By Claim 1.5, My is an RSP hence by Claim 2.2 also M = M{/D is an RSP. Now
apply the Main Claim 1.7(1).

2) Similarly using 1.7(2).

3) Similarly. 0o 4
Remark 2.5. 1) No harm in assuming A = {Q(7) : Q a predicate}. Note that

allowing bigger A is problematic except in trivial cases (¢ and —p are equivalent
to Horn formulas), see proof of clauses (i),(j) of Definition 1.2.

2) Using 2.4(1) above, if D is an ultra-filter, not surprisingly we get [She90, Ch.VI,2.6],
i.e. the theory of dense linear orders is <-maximal (well, using the translation from
dense linear orders to trees in 2.1(2) equivalently [She90, Ch.VI,2.7]). The new
point here is that 2.4 does this also for reduced powers, i.e. for D a filter.

3) So a natural question is: can we replace the strict property by SOP5? We shall
show that for reduced power we also have non-peculiar cuts, see §4.

4) Why is the reduced power of a tree not necessarily a tree? Let M be the tree
(“Zw,<). Let 1 9m2<n3 € “w and let Ay, A3 € DT be disjoint and define
fo: I —“>wfor{=1,2,3by:

o f3(s) =mns forsel,
o fo(s) is e if s € Ay and 1y otherwise,
o fi(s)ism if s € A7 and 1y otherwise.

Clearly if N = M!/D then in N we have:
e f1i/D<fs/D,

5Note that » here may be bigger than in part (1).
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f2/D<f3/D,

=(f1/D < f2/D),
=(f2/D < f1/D),
=(f1/D = f2/D).

Conclusion 2.6. N!/D is (k,1,A1)-saturated and x > 6 when :

(x) (a) D is a 0-complete filter on I,
( A C{p:o(z,9) € Lgo(rn) is atomic (hence € L(Tn))},

b)

(¢) Ay =cleg(A) = the closure of A under conjunction of < 0 formulas,
(d) N is (0,A)-saturated, i.e. if p(x) € A(N) = {¢(z,a) : ¢(z,79) €
Ajae lg(77)M} has cardinality < 0 and is finitely satisfiable in N then p is
realized in N,

() k=min{pz,te(T)} where 7 = (°>\,<)L/D and X\ = 9> (|| N||+|A)).

Proof. Let r = r§V,A1 recalling Definition 1.5 and My = M,.
Now apply 1.7(2) noting that:

(¥)1 Ny = N{/D satisfies: every set of <  formulas from A(N) which is finitely
satisfiable in Ny is realized in Nj.

[Why? Let (0a(z, fa,0/D, ... fan(a)—1/D) : a < ax) be finitely satisfiable in
Ny and a, < 0,0 < ax = ¢, € A. For every finite u C «, we have Ny |=
(Elx)( /\ @Q(Ia fa,O/Dv SRR foz,n(oz)—l/D)) hence the set

I, = {5 €el:N ': (317) /\ 4%704(:17, fa,O(S)a IR fa,n(a)—l(s))}

belongs to D. But D is #-complete, hence I, = N{I,, : u C a, is finite} belongs to
D. Now for each s € I, the set ps := {@a(z, fa,0(5), - s fana)—1(8)) : @ < ax}
is finitely satisfiable in IV, hence is realized by some a, € N. Let ¢ € TN be such
that s € I, = g(s) = as; clearly g/D realizes p, so we are done.]

Similarly
(*)2 in .7 = (>, Q)1 /D we have,
(a) every increasing sequence of length < 6 has an upper bound,

(b) any increasing sequence of length < 6 with an upper bound has a lub,

(¢)  there is no infinite decreasing sequence so (k1,k2) € € (7 ) = ko = 1.

[Why? For clause (a) note that (Vzo,...,Za,...)a<s(FY)( A 2o <z 23 —
a<f<d
N 2o <z y) is a Horn sentence. For clause (b) see 2.3, i.e. proof of clause

a<d
(k) in 2.3.]

(¥)3 My = M!/Dis a6 — RSP.
[Why? See above recalling 2.2, 2.3.]

(%)4 if @ > Ry then r satisfies (k)™ from 1.7(3).
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[Why? Easily as D is a Nj-complete ultra-filter.]
So we are done by 1.7(3). Os 6

It is natural to wonder

Question 2.7. Assume \ > 0 = cf(0) > V.

1) Is there a f-complete (), #)-regular ultra-filter D on A such that A < t((?>60, <
)*/D)?

2) Similarly for filters.

3) Use <g=<or <g= <7

4) If A = A<%. D a fine normal ultra-filter on I = [A\]<?, we get A\ < t(?>6,<)/D.

Remark 2.8. Now [MS16¢, §5] answers 2.7(1) positively for 6 a super-compact
cardinal.

Conclusion 2.9. Let B be a complete Boolean algebra and D a filter on *B.

1) For every model N, letting X\ = ||N|| + |7n|, we have N¥ /D is (u*,atomic)-
saturated if pt < min{p((“> X, Q)2 /D)), t((“>\,<)®/D)}.

2) Assume B is (< 0)-distributive

(e.g. for some denseY C B7F, for every decreasing sequence® in B of elements from

Y of length < 0 has a positive lower bound), and D is a 0-complete filter on B. If
N is (ut, atomic)-saturated then N /D is t((°> )\, <)® /D)-atomic saturated.

Proof. As, e.g. in 2.6 above or 2.13 below. Lo g

Conclusion 2.10. Assume (T, o(Z, 7)) has SOP3.
Then, recalling 0.15, T is <\’ -mazimal for every A and even (T,{¢(Z,y)}) is.

Proof. By [She78, Ch. VI.2.7] = [She90], but we elaborate.
Without loss of generality assume ¢ is an atomic formula.

Let (T1, A1) = (Th, {eo(x,y)}) and let Ty be a first-order theory, Ay a set of atomic
formulas in L(7(T3)), [T2| < A\, B = Z(\), D a regular filter on A, or, equivalently,
on the Boolean algebra 2. Finally, let M, be a AT-saturated model of T} for £ = 1, 2.
We assume M7 /D is (AT, A)-saturated and we should prove that also M3 /D is
(AT, Ag)-saturated. By Conclusion 2.9,

(¥)1 Tt suffice to prove p* < min{p((“>\, <)® /D), t((“>\, <)¥/D)}.
Next,

()2 Let I be the following linear order:
e the set of elements is {(n,¢): n € >\, € {1, -1}},
e the linear order < is: (n1,t1) < (11, t2) iff one of the following occurs:
(a) m <9 and 13 = —1,
(b) m2 <m and 11 =1,
(¢) m=mzand 1; = -1, 15 =1,
(d) for some k < Ig(m), lg(m), we have my [k =2 [k and m1 (k) <
W2(k)7

6can weaken the demand.
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Next, we can find a,,,) € M for (n,¢) € I such that (n1,t1) <7 (n2,12) = M =
<P[a(771,L1)’a(7727L2)]'
Let N = (|M;|, PV, RY), where:

PY ={ag: (n,0) € I} and RY = {(a(y,.0,)5 Gnoin) : (M1,01) <1 (12,02)}
Let M;" = (M, PN, RY). Now,

(¥)3 in (M;{)MP every set of formulas C {p(z,a),p(a,z): a € (M;")*/D} of
cardinality < A, which is finitely satisfiable is realized.

[Why? Think of M}/D]

(*)2 In N*/D every set of formulas C {xRa,aRz: a € N*/D} of cardinality
< )\, which is finitely satisfiable is realized.

So easily we are done. U2.10

* * *

On the connection to Peano arithmetic and to Pabion [Pab82], see Malliaris-Shelah
[MS17a]. We repeat some results of [MS17b] in the present context; but first re-
calling:

Definition 2.11. 1) PA, Peano arithmetic, is the f.o. theory consisting of:

(a) the obvious axioms on 0,1,z < y,z + y, zy
(b) all the cases of the induction scheme, i.e. for every f.o. ¢:
“if {a: p(x,7)} is not empty then it has a first member”,

2) BPA, the bounded Peano arithmetic, is defined similarly, but in clause (b), the
formulas ¢ is bounded, i.e. all the quantifications inside it are of the form (Vz < y)
or (I < y).

Definition 2.12. 1) N = BPA is boundedly k-saturated up to (ci,c2) where
c1,¢2 € N when: if p(x) U{z < ¢1} is a type in N (= finitely satisfiable) of
cardinality < s consisting of bounded formulas but with parameters < c¢g, then
p(z) U{x < 1} is realized in N.

2) If above ¢; = ¢ = ¢o we may write ¢ instead of (c1,¢2). We say N is strongly
boundedly k-saturated up to ¢ when it holds for (¢, c2),co = o0, i.e. we do not
bound the parameters.

3) Omitting “up to ¢” in part (3) means for every ¢ € N.

Conclusion 2.13. Assume N is a model of BPA.

1) Assume a. € N is non-standard and the power in the N-sense ¢® exists for
every c € N.

For any uncountable cardinal k the following conditions are equivalent:

(a) N is boundedly k-saturated up to ¢ for any c € N,

(b) if (C1,C2) is a cut of N of cofinality (k1,k2) and k1, k2 are infinite (so
C1,Cy #0) then k1 + k2 > K,

(c) like clause (b) but k1 = Ka, that is restricting ourselves to symmetric cuts.
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2) We can weaken the assumption of part (1) by fixing ¢, as well as N,a.. That
is, assume N = “n < a, and ¢, = cle)" exist” for every standard n from N. For
every uncountable cardinal k the following are equivalent:

(a) N is boundedly k-saturated up to ¢, for eachn
(b)" if (C1,C%) is a cut of N of cofinality (k1, k2) with k1, k1 infinite such that
cn € Coy for some n then k1 + Ko > K
(¢c) like clause (b)’ but k1 = Ka.
3) Moreover we can add in part (2):
(¢) N is strongly boundedly k-saturated up to c.

Proof. 1) By (2).

2) (a) = (b)":

Trivial.

(0) = (a)':

Without loss of enerality ¢ is not standard (in N) and n = 0. Let N* = (N, ¢, a.)
and 7t =7(NT) =7(N)U{c,a.} and A = {p(z,9) Nz < c/\/)yz <c:p(z,y) €

L(7n) is a bounded formula}. We define r naturally - the tree of sequences of length
< a, of members of A(N<.) possibly non-standard but of length < a.. Now apply
1.7.

(b) = (c)':

Obvious.

(¢) = ()"

By [MS16b].

3) We just repeat the proof of 1.7 or see 2.16 below. O 13

Question 2.14. Ts a, necessary in 2.13(1)? We conjecture that yes.

A partial answer:

Fact 2.15. If N is a model of PA, then N is s-saturated iff cf(|N|, <) > x and
N is boundedly x-saturated.

Claim 2.16. If (A) then (B) where:
(A) (a) rq is an RSP for a < ¢,
b

C

Ay, = A is a set of quantifier-free formulas,

- =

Tro = T, and Ny is increasing with o,
Q € 7(Ny,) and QNre = QNro,
if p(,9) € Ay, and b € YO (N, ) then ¢(Ny,,b) C QNra,
5 = min{pa(Fon), (Ton)}.
model U{ Ny, : o < ¢} is (k, 1, A)-saturated.

U
~— =

e

(
(
(
(
(f
h

D ~—

(B) t

Proof. Asin 1.7. U2.16
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§ 3. CRITERION FOR ATOMIC SATURATION OF REDUCED POWERS

Malliaris-Shelah [MS16b] have dealt with such problems for ultra-filters (on sets).
The main case here is 6 = N,.

Definition 3.1. Assume D is a filter on the complete Boolean algebra 95,7 an
Lo g(7r)-theory, A C L(rr) and p > |A|. We say D is a (u, 0, !, A, T)-moral filter
on B (writing ¢ instead e! means for every &’ < 1+4¢; if B = Z(\) we may say good
instead of moral): when for every D — (u,0,e!, A, T)-problem there is a D — (u, )
-solution where:

(a) aisa D — (u,0,e!, A, T)-(moral)-problem when :
(0) a=(ay :ue[u]<"),
(B) a, € D (hence € B™),
(v) ais C-decreasing, that is u C v € [u]<? = a, < a, and ay = 1,
(6) for some sequence (@Yo (ZT[e], Ja) : @ < ) of formulas from A for every
a € Bt and v C p of cardinality < 6 we can find M E T and

by, € L9Wa) M for o € u such that:

e for every v C u we have: -
a<a,=ME “(37) A @a(Zy,ba)”
acv _

anda<1l—-a,= Mk “=(37) A ¢alZ, ba)”

acv
(b) bisa D—(u,0)-(moral)-solution of the D — (u, 0, ¢!, A, T)-(moral)-problem
a when:
(a) b= (by :ue [1]<?),
(8) by € D and by = 14,
(7) bu < ay,
(6) b is multiplicative, i.e. b, = M{b{a} : @ € u} and by = 1.

Remark 3.2. 1) The 6 here means “a type is (< 6)-satisfiable”.
2) The use of “c!” is to conform with Definition 0.11.

Recall (from 0.11):

Definition 3.3. 1) Let 7 be a vocabulary and A C {¢ € L(7) : ¢ = ¢(Z, )} but
©(Z,7) € A means we can add to Z dummy variables. Let A > 6 (dull otherwise).

A 7-model M is (A,0,¢!, A)-saturated when: if p C {o(Z(,a) : @(Z[,9) € A,a €
L9 M} has cardinality < A and is (< 6) satisfiable in M then p is realized in M.
Claim 3.4. 1) For a (p,0)-reqular 6-complete ultra-filter D on a set I and 0-
saturated or just (0, N, !, A)-saturated model M, a cardinal p and A = Lg o(Tar),
the following conditions are equivalent:

(a) D is (u,6,el, A, T)-moral ultra-filter on the Boolean algebra P (I),

(b) if M € Mody then M'/D is (1, 0,€!, A)-saturated.

2) Similarly for D a ultra-filter on a (< 0)-distributive (see 0.12(8)) complete
Boolean algebra *B.
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Proof. Similar to 3.5, it actually follows from it because as D is an ultra-filter, we
can start with M = T, expand it to M+ by adding a predicate to any definable
relation and applying 3.5 to Tt = Th(M ™). O34

Claim 3.5. 1) If (A) then (B) < (C) where:
(4) () B=2(I),
(b) D is a 0-complete (p,0)-regular filter on B,
(¢) 0 >c¢e orjust ut >e,
(d) T is an Lgg(T)-theory,
(e) A is a set of conjunctions of < 0 atomic formulas from Lgg(T).
(B) D is a (u,0,e!, A, T)-moral filter on B.
(C) if My is a model of T for s € I then [[ My/D is (ut,0,¢el, A)-saturated.
sel
2) If (A) then (B) < (C) where:
(A) (a) B is a (< 0)-distributive (see 0.12(8)) complete Boolean algebra,
(b) — (e)  as above (on regularity see Definition, 0.13)
(d)t T is a complete Lg g(7)-theory.
(B)" as (B) above.
(CY (a) if M is a model of T then M™®/D is (u*,0,¢!, A)-saturated,
(b) if F is a mazimal anti-chain of B and M = (M, : b€ .7) is a
sequence of T-models then M™® /D is (u't,0,¢!, A)-saturated.

Proof. 1) Proving (B) = (C): Let N = [[ M/D let & = T}, o = Pa (T, Ja) and
sel
assume that p(Z) = {pa(T,bs) : @ < ..} is (< 0)-satisfiable in N and || < g, so
without loss of generality a. = u; without loss of generality let v = ©0a (T, Jj¢.1)
80 by € S ([ Msy).

sel

Let by = (fae/D : € < &,) where fo¢ € [[ My and for s € I let by s = (fae(s) :
sel

€ < &,); now for u € [u]<? we let
(+)o au:={s € [ : My = (37) A\ &(Z,bas)}-

acu

Now
(*)1 a=(a,:u€ <% isa D — (u,0,¢e!, A, T)-problem.

[Why? We should check Definition 3.1, clause (a): now (a)(«) is trivial; also a,, € I
holds by the choice of a,. Toward clause (a)(3) fix a set u € [u]<%; some ¢ € °N
realizes the type pu (Z[s)) = {@a(Z,ba) : @ € u} in N because p(z) is (< 6)-satisfiable

in N, see Definition 3.3, so let ¢ = (g¢/D : { < ¢) for some gc € [[ M, for ( < e
sel

and let ¢5 = (g¢(s) : ¢ <€) € °(M;). Soal,, ={sel: M ¥alCs,bs]} belong
to D because N = 4], bo] by the definition of N if ¢, is atomic, but recalling
D is f-complete also for our ¢,, remembering clause (A)(e) of 3.5(1). As D is 0-
complete clearly, a), = N{a,,, : & € u} belongs to D and by our choices, &}, <o ay,
hence a,, € D so subclause (a)(3) of Def 3.1 holds indeed.

By the choice of a,,a is C-decreasing so subclause (a)(7) of Def 3.1 holds.
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Lastly, subclause (a)(d) of Def 3.1 holds by the definition of a,’s recalling p(z) is
(< 0)-satisfiable (and §) ¢ D).]

(¥)2 there is b, a D — (p, #)-solution of a in B.

[Why? Because we are presently assuming clause (B) of 3.5 which says that D is
(1,0, e!, A, T)-good, see Definition 3.1.]

(¥)3 without loss of generality s € I = {a < p: s € by, } has cardinality < 6.

[Why? As D is (u,0)-regular.]

Next for s € I let us = {or < p: s € byoy} but b is multiplicative (see 3.1(b)(6)) so
by, = N{ba} : @ € us} = N{b,: the ordinal « satisfies s € by, } hence s € by,
hence (see 3.1(b) recalling that |us| < 6 by (x)2) we have s € a,, hence (by the
choice of a,,) there is as € (M) realizing {©(Z[], (fa,e (5) 1 ¢ <€) : @ € us}.
Let as = (as,c : ¢ < €). Now for ¢ < ¢ = lg(%) let gc € [] M, be defined by
gc(s) = asc € My and let @ = (g¢/D : ¢ < &) noting gg/i)ele Il Ms/D = N.
Hence for every a < p,{s € I : My = ©va((gc(s) : ¢ < €>,Bo¢,s)}s§]b{a} € D so
N k= gfa, bl

Hence a realizes p(Z) in N as promised.

Proving (C) = (B):

To prove clause (B), let abe a D—(u,0,¢!, A, T)-problem and let ¢ = (pa (T[], Ya) :
a < p) be a sequence of formulas from A as in clause (a)(0) of Definition 3.1.

As D is (A, 0)-regular, we can choose w = (ws : s € I) a sequence of subsets of u
each of cardinality < 6 such that o < u = {s € [ : a € ws} € D. For u € [u]<? let
c, = {s €I :uCuws},soclearly ¢, € D and (c, : u € [\]<?) is multiplicative.

For each s € I applying Definition 3.1(a)(d) to a = {s} and u = ws we can find a
model M, of T and b, o € Zg(gf)(Ms) for o € wy satisying e there.

Now choose Bs,a also for s € I, € p\ws, as any sequence of members of M, of
length (g(ga). Now for every av < p and j < £g(yo) we define go; € [] M, by

_ sel
9aj(8) = (bs,a)j-
Hence go.c/D € [[ Ms/D = N and by = {ga.c/D : ¢ < £g(Fa)) € “¥=)N and
sel

consider the set p = {¢a(7,ba) : @ < p}. Is p a (< 0)-satisfiable type in N? We
shall prove that Yes, so let u € [u]<?, then recall ¢, = {s € I : u € W,} € D and
5 € ¢y Nay = {YalT),bs,a) : @ € u} is realized in My, [why? by the choice of
(bs,a 0 € wy).]

So let the type {¢a(Z[e),bs,a) : @ € ws} be realized a, = (as¢ : ¢ < ¢); for

s € I and let foc € [] Ms be fac(s) = as;. Easily (fo;/D : ¢ < €) realizes
sel
{0a(Z[) : @ € u} because a, N, € D. Hence p(7) is (< 0)-satisfiable indeed.

Next, we apply clause (C) we are assuming hence p(Z[.) is realized in N. So let

a = (a¢c : ¢ <€) € °N realize p and let ac = h¢/D where h¢ € || M, and lastly
sel

let:

b, ={s€l:M;E=pu[lhc(s):(<e), bsq] for every a € u and s € ¢, }.
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Now check that (b, : u € [A<Y) is as required, recalling (c, : u € [A]<Y) is
multiplicative. So the desired conclusion of 3.1(B) holds indeed so we are done
proving (C) = (B).
2) Similarly; e.g. for clause (a) let p(Z) be as there but
e f.¢ € M™ is supported by the maximal anti-chain (ca¢; : i < i(a,§))
(¥)o a, =sup{c: we have & € uAN§ < & = (3d)(d € dom(fae) Ac < d) and
M () \ 9@, Faele) 1€ <€)

(*)1 a=(a,:ué€ <) isa D — (u,0,¢e!, A, T)-problem.
[Why? As there.]
(¥)2 let b be a D — (p, §)-solution.

[Why does b exist? By (B)’ recalling Definition 3.1.]
Also the rest is as above. O3 5

Remark 3.6. If . C [u]<? is cofinal, u € [u]<? = |2(u) N.¥| < 6; we may
consistently replace [u]<? by .# and 29 by 6.

Definition 3.7. 1) A filter D on a complete Boolean algebra B is (u, #)-excellent
when : if a = (a, : u € [u]<%) is a sequence of members of B, (yes! not necessarily
from D) then we can find b which is a multiplicative refinement of a for D, meaning:

(a) b= (by:u e [u<),

(b) b, <a, and b, = a, mod D,

(c) if ay, Nay,, = ay,nu, mod D then by, Nby, = by, Au,-
2) For a Boolean algebra B and filter D on B we say a is a D — (p, 6)-problem (or
a D — (pu,0)-moral problem) when clauses (a)(«), (8), (7) of Definition 3.1 holds.
3) A filter D on a complete Boolean algebra 9B is (u, #)-good when every D — (u, 6)-
problem has a D — (p, 0)-solution

Claim 3.8. 1) Assuming (%) below, the filler D on I (i.e. on the Boolean algebra
P(I)) is (p,0,¢!, A, T)-moral iff the filter D1 on By is (u,0,€!, A, T)-moral where:

(*) (a) B1 is a complete Boolean algebra,
(b) j is a homomorphism from Z2(I) onto B,
(¢) Do={ACT:j(A) =1w,} is a (u,0)-excellent filter on I,
(d) Dy is a filter on By,
() D={ACT:j(A) € Di}. is a filter on I
2) We can replace P (I) by a complete Boolean algebra Bs.

)

Proof. The “if” direction:

We assume D; is (u, 6, ¢!, A, T)-moral and should prove it for D. So let A = (A, :
u € [p]<%) be a D—(p,0,¢!, A, T)-problem and we should find a D — (1, 6)-solution
B of it.

Clearly a, := j(A,) € BT and a = (a, : v € [u<?) = (j(A,) : v € [p]<?) is a
Dy — (u,0,e!, A, T)-problem.
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Hence by our present assumption (D1 is (u, 6, €!, A, T')-moral) there is a D1 — (1, 6)-
solution b of a, let b = (b, : u € [u]<Y) so in particular u € [u]<? = b, €
D;. For u € [u]<? choose B} C I such that j(B}) = by, possible because j is a
homomorphism from Z(I) onto B1. So B! = (B} : u € [u]<?) is a multiplicative
modulo Dy, i.e. (BL/Dg : u € []<?) is a multiplicative sequence of members of
P(1)/Dy.
Let B2 = Bl N A,, let

[ Bi g Au mod Do.
[Note that we have written B} and not B2. So why this statement holds? As
i(B,) = by <a, =j(A.)]

e B2 C Bl and B2 C A, mod Dy,

e B2c D,

e (B2 :u € [p]<Y% is multiplicative modulo Dy (see 3.7).
By Definition 3.7(1) applied to (B2 : u € [4]<?) recalling clause (c) of the assump-
tion of the claim, we can find B = (B, : u € [u]<?) which is a multiplicative
refinement of B? and is multiplicative, and B, € D because B, = B2 modulo
Do € D and B2 € D.
So we are done for the “if” direction.

The “only if” direction:

So we are assuming D is a (u, 0,¢!, A, T)-good filter on I and we have to prove D,
is (p, 0, !, A, T)-moral.

So let a be a Dy —(u, 0, !, A, T)-moral problem (on B1), we have to find a solution.
For u € [u]<? choose AL C I such that j(Al) = a,, so AL € D (by clause (e)) and
uCwe [u<¥ = AL C Al modulo Dg. Now by 3.7, i.e. clause (b) of the assumption
of the claim there is A% = (A2 : u € [u]<%) such that A2 C AL A2 = AL mod Dy
hence A% € D and A? is C-decreasing [Why? Because A! is C-decreasing modulo
Dy as a is decreasing hence A2 is C-decreasing.]

As D is (u,0,¢!, A, T)-good filter on I there is a D-multiplicative refinement (B2 :
u € [u]<%) of (A2 :u € [u]<?). Let b, = j(B2), now (b, : u € [u]<?) is as required.
2) Similarly. Os g
Claim 3.9. Let D be a filter on I.

1) D is (p, 0)-excellent implies D is (u,0)-good, see 3.7(3).

2) D is (u,0)-good implies D is (p,0,e, A, T)-moral.

Proof. 1) Solet a = (a, : u € [u]<%) be a D-problem and we should find a D—(u, 6)-

solution b below a. As D is (u,0)-excellent we apply this to a and b as in 3.7(2).
Easily it is as required.

2) Just read the definitions: there are fewer problems. U39

Remark 3.10. We may wonder, e.g. in 3.5(1): can we remove the regularity demand
on the filter D from clause (A) to clause (B)? The answer is yes for most 7”s.

Claim 3.11. The filter D is (p,0)-regular when :
(4) (a) B=2()
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(b) D is a O-complete ultra-filter on B,
(¢c)  the demand 0 > ¢, is natural but not actually required,
(d) T is a complete g o(7)-theory, e.g. T'= Thy, ,(M), M a 0-saturated
model (note that T = To[e] where Ty = Thy, (M),
i.e. T is determined by Ty and 6),
(B) T has a model M and p = {pa(Z(),ba) : @ < 1}, 0a(Z[), Ja) € Lo,o, ba €
t9(We) M satisfying:
for every q C p,
e g is realized in M iff |q| < 0.
(C) if My is a model of T for s € I then [[ Ms/D is (u",0,e!,A)- saturated.

Proof. Should be clear. U311
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§ 4. A COUNTEREXAMPLE

In §2 we generalize [She90, Ch.VI, 2.6] to filters, using the class of relevant RSP’s r
being closed under reduced powers (being a Horn class, see 2.2). Can we generalize
the result of Malliaris-Shelah [MS16b]? Here we give a counter-example.

For this, we have to find:
(¥)1 D afilter of A such that the partial order Ny = (Q, <)*/D satisfies p*(N;) =
w1+ kg < pt < pln(N1), k1 # K, (K1, k2) € €(N1), so in fact Ny has no
(61, 02)-cut when 01 = cf(61) = 02 < pp and when 6, > ut Af3_, € {0,1},
(x)2 preferably: A = p
()3 or at least for some dense linear order M, there is a complete Boolean
algebra B and a filter D on B such that Ny = Mg® /D is as above.

We presently deal with the (main) case § = Ry and carry this out. It seems
reasonable that we can prove, e.g. Tceq #rp Tora but we have not arrived to it; see
[She23] on Teeq and [She93] on the closely related Trq. Later we hope to say more.
Clearly, we can control the set of non-symmetric pre-cuts.

Convention 4.1. Tq,q is the first order theory of (Q, <), see 4.4(1)(d).

Definition 4.2. Let x be a regular uncountable cardinal.

1) Let K be the class of m such that:
(CL) m = (%aD) = (%vam>a
(b) 9B is a complete Boolean algebra satisfying the k-c.c.,
(¢) D is a filter on 8.

2) Let <P be the following two-place relation on K2 : m <P? n iff:
(a) m,n € KP?,
(b) Bm < Bn,
(¢) Don=DnNBp,.
3) Let SP? be the class of <P2-increasing continuous sequences m which means:
(a) m = {(m, : a < fg(m)),
(b) mey € K’?a7
(e) if a« < B < fg(m) then m,, <P* mg,
(d) if B < £g(m) is a limit ordinal then:
(@) Bm, is the completion of U{Bp,, : a < 8},
(B) Dm, is generated (as a filter) by U{Dm,, : a < (}.
4) If K = Ny we may write K\, <{ .S, and if K = co we may write K72, , <%, SZ,
or Kba <ba gba
5) We say m is of cardinality A when B,, is of cardinality .
Claim 4.3. 1) For every \ there is m € KP* of cardinality \<".
2) <ba is a partial order on KP?.

3) If m = (m, : a < §) is a <Pr-increasing continuous sequence, then for some
my;, the sequence m” (mg) is <P*-increasing continuous.
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Proof. 1) E.g. By, is the completion of a free Boolean algebra generated by A<*
elements.

2) Easy.

3) If cf(6) > K, then By, = J Bm,, if cf(d) < &k it is the (pendantically a)
a<d

completion of the union. Dy, is the filter generated by U{Dp,,, : o < ¢}. Classically

k-c.c. is preserved. Uy 3

Definition 4.4. Let m € K7, and k1, k2 are (infinite) regular cardinals.
1) We say a is a Torq — (K1, £2)-moral problem in m when:
(a) m € KZ,, (actually already assumed),
(b) I = I(k1,k2) is the linear order I; + Iy where:
o I =I(k1)= {1} x K1),
o Iy =Ix(k2) = ({2} x K3),
(c) a=(as;t:5 <y(ni,ny) t) is a sequence of members of D,

(d) if w C I is finite, t : u x u — {0, 1} and ﬂ{aist;sft(s"t)) :8,t € u} > Oy, then
there is a function f:wu — {0,...,|u| — 1} such that:
o ifs,tewuthent(s,t)=11 f(s) < f(t).
(e) hence s1 <y s2 <y S2 = Qg5 NAsysy < Asy.5, and we stipulate a; 3 =
1w, as =as; when s <jt.
2) We say b is a solution of a in m where a is as above when :
(a) b= (by:secl),
(b) by € Dy,
(c) if s1 € I1, s2 € I then by, Nb,, < ag, ,.
Definition 4.5. 1) For : = 1,2 let S, be the class of tuples s = (I, Dy, j, B, D1, D)
such that:

(a) j is a homomorphism from £ (I) onto the complete Boolean algebra B,

(b) Dy is a filter on B,

(¢) Do={ACT:j(A)=1g} (or see §3),

(d) D={ACI:j(A)e D},

(e) the pair (B, D) belongs to K.
2) For s € S let mg = (Bs, Dy).
3) We say s € S is (1, 0)-excellent (if § = Xy may omit it) when Dy is an excellent
filter on I, see Definition 3.7(2).

4) We say s € S is (p,0)-regular (if 6 = Ny we may omit §) when Dy is a (u, 0)-
regular filter.

5) Let S;, 4 be the class of (, 0)-excellent (u,0)-regular s € S,; we may omit 6 if
6 =N,

6) Let S,,0, be the class of s € Siﬁ such that B satisfies the s-c.c.
Claim 4.6. 1) Assume m = (B,D) € Ky, and k1,ke are infinite and regular

cardinals. Then for some M € ModTord,M%/D has a (K1, ke)-pre-cut iff some
Tord — (K1, k2)-moral problem in m has no solution.
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2) Let p > Ng=0. If s € S, 9 so is p-excellent and p-regular and k1, k2 > N are
reqular and k1 + ko < p then the following conditions are equivalent:

(a) for some linear order M, M'®) /Dy has a (r1, k2)-pre-cut,

(b) for every infinite linear order, M) /Dy has a (k1, ko)-pre-cut,

(¢) not every Tora — (K1, k2)-moral problem in mg has a solution.

Proof. As in the proof of 3.5(1), relying on Def 4.4 instead of Def 3.1; recalling

B if M. fors e I,. e {1,2} are 7-models, |7| < pu, D a p-regular filter on I and

M}, M? are elementarily equivalent, then Ny = [[ M}/D, Ny = [] M2/D
sel sel
are L+ ,+-equivalent (and more, see Kennedy-Shelah [KS02], [KS04] and

Kennedy-Shelah-Vaananen [KSV08] on the subject).
Hye

Observation 4.7. Assume m € Kga and a is a Tora — (K1, k1)-moral problem for
m so (see 4.5(5)) Ip = Iy(ke) for £ =1,2.
1) If I{ C I is cofinal in Iy and I5 C Iy is co-initial in Iy then a has a solution in
m iff &' =al(l] +13) = (as : s <yt and s,t € I] + I3) has a solution in m.
1A) Also, above, if b is a solution of a in m, then b[(I] + 1) is a solution of &’.
1B) Also above, if b’ is a solution of @, then b is a solution of a when,:

(a) if s € Iy and t € I] is minimal such that s <;t thenbs =bjNa,, if s <; t

and by = b} if s =1,

(b) like (a) replacing I, I, s <jt,as; by I, I5,t <j s,a;s.
2) If b is a solution of a in m and b), € DAb!, < b, for s € I + I then (b, : s € I)
is a solution of a for m.

Proof. 1) Easy using the proofs of 3.5, 4.6 or using (1A), (1B).
1A), 1B), 2) Check. Oy 7

A key point in the inductive construction is:
Claim 4.8. There is no solution to a in mgs when :
(a) m= (m,:a<d)€SE,
(b) ais a Tora — (K1, K2)-moral problem in my,
(¢) if o < d then a has no solution in my,
)

(d) cf(0) # K1 or cf(0) # ka.

Proof. Let m, = (%B,,D,) for v < d; by symmetry without loss of generality

cf(0) # k1 and toward contradiction assume b = (b : s € I + I5) is a solution of

a in my.

Hence by € D. Now Dj is not necessarily equal to |J Ds but recalling 4.2(3)(d)(8)
v<d

and (D, : v < §) being increasing, clearly, every member of Ds is above some

member of |J D,.
y<é
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So by Observation 4.7(2), without loss of generality s € I + o = b, € |J D, C
y<é
U B,.
y<d
As cf(6) # w1, for some v < ¢ we have k1 = sup{a < k1 : b4 € B,}, ie.
{s eI, : b, € B,} is co-final in I;. So by 4.7(1) without loss of generality
(a) sel, = b, e B,.
As D, = Ds NB, by 4.2(2)(c) clearly
(b) se I = bs € D,.
For t € I let by = min{b € B, : Bs; = b, < b}, well defined because B, is
complete.

Now

(¢) by € D, for t € I.
[Why? Clearly b; € B as b is a solution of a in ms and b; < b}, b/ € B, by its
choice. Also b, € Ds because by < b}, Ab; € Ds and Dy is a filter on B and lastly
b, € Dy as D, = D; N8|

(d) it s € I, t € I then by N b < ag .
[Why? Note Bs = “bs Nb; < ay;” because b is a solution of a in Bs hence
b, < a,;U(1—by) and the later € B.,. So by the choice of by, b; < a, ;U (1—by)
hence b, Nb} < ay,.]

(e) (bs:se 1) (b} :te ) solves ain B,.
[Why? By (a) + (b) + (c) + (d).]
But this contradicts an assumption. Uy8
Definition 4.9. Assume m € K2, and a is a Tyyq — (K1, k2)-moral problem in m.
We say n is a simple a-solving extension of m when :

(a) By is the completion of B2 where:

(b) B2 is the Boolean algebra generated by By, U {ys : s € I(k1,k2)} freely

except the equations which holds in By, and I'z = {ys, Nys, < a5, 5, 1 51 €
Il(lil) and So € IQ(IQQ)},

(¢) Dy, is the filter on B, generated by Dy U{ys : s € I(k1,K2)}.
Claim 4.10. Assume a is a Tora — (K1, k2)-moral problem in m € K2 and’ Kk =
cf(k) > K1 + Ka.
1) There is n € KP* which is a simple a-solving extension of m, unique up to
isomorphism over By,.

2) Above m <P n (son € KP?).

3) If a* is a Tora — (61,02)-moral problem of m with no solution in m and 01 ¢
{Kk1,k2} or s & {K1,ka} then &* has no solution in n.

Proof. 1) As above let Iy = Iy(kg) for £ =1,2 and [ = I + I5.

First,

"It seems that min{k1, ko} < « suffice; the only difference in the proof is in proving (*)s.
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()1 the set of equations I'; is finitely satisfiable in Byy,.
Why? We shall prove two stronger statements (each implying (*)1).

(¥)1.1 if t1 € I; then we can find (b) : s € I) € I8 such that:
(a) bl € Dy C B, if (s <y, t1) V (s € 1),
(b) if sy € I1, 82 € I then b, Nb,, < ay, ,.
[Why? Let b’ be:
® a,, if s <ty (sosel),
o a; ifsely,
e Oy ifty <y s€ 1.
Now clause (a) is obvious (recalling a;, ;, = lw,, and as for clause (b), let s; €
I, 55 € I, now if t; <y sy € I; then b} Nb), =0y, Nb,, =03, <a,, s, and if
51 <yt then bl Nb{, =a, s Nay s, whichis < ay, ,, by 4.4(1)(d),(e).]
(¥)1.2 if to € I then we can find (b) : s € I) € I8 such that:
(a) b, € Dpy € By, if s € 11 or to <y, s,
(b) if sy € I2,82 € I then bl Nb, <a, .
[Why? Similarly.]
Now (x); is easy: if IV C T's is finite let t. € I; be such that: if ¢t € I; and y,
appears in I then ¢ <; t,. Choose (b} : s € I) as in (x)11 for ¢, and let h be the
function y, — b, for s € I. Now think, so (x); holds indeed.
Clearly it follows by (x); that

(¥)2 (a) there is a Boolean algebra B? extending By, as described in
clause (b) of Definition 4.9,

(b)  there is a Boolean algebra B, as described in (a) of Definition 4.9:
the completion of B2,
(¢) Dy is chosen as the filter on B, generated by Dy, U {ys:s € I}
it satisfies Dy, = Dy N Bm, in particular Oy, & Dy,
(d) ‘B, satisfies the k-c.c.,
(e) Dn is generated (as a filter) by Dy N B
[Why? Clauses (a), (b) follows by (%); and for clauses (c),(d) see (%)s4 and (*)s5
in the proof of (2), respectively; in particular Ogm ¢ Dy, and clause (e) holds by
clause (c).]
Together we have n = (By, Dy) € KZ,, as for m <;, n, see part (2).
2) Now (by part (1) we have By, C By, but we shall show that moreover)

(%)3 B < B

[Why? If not, then some d € B} is disjoint to b for a dense subset of b € B},.
Let d = 0(ysg,---+Ys,_,,C) where o is a Boolean term, so <y ... <y $,—1 and ¢ is
from B,,. We may replace d by any d’ € B} satisfying d’ <o d. Hence without
loss of generality d = N{yX("“) : ¢ < p} N > 0, where ¢ € B, n(¢) € {0,1} for
{ < n; also without loss of generality for every ¢,k < n we have sy € I} Asg € Io =
(c<ag,s)V(cNas,s, =0%,).
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We now define a function A from {ys : s € I} into B, as follows: h(ys) is:

o ¢, if s=s,An{)=1,

oy Oy, if otherwise.
Now
o3 if tl S Il,tQ S IQ then %m ': “h(ytl) n h(yt2) S at11t2”.

[Why? If h(t1) = O, V h(t2) = O, this is obvious, otherwise for some ¢(1) <
£(2) < n we have t1 = sy1),t2 = sy2) and n(£(1)) = 1 = n(£(2)). So it suffice
to prove ¢ = cNc < a;, 4, but otherwise by the choice of ¢,c Nay, 1, = 0, hence
recalling 4.9(b) we have By, | “ys, Nys, N ¢ = 0”7 contradiction to our current
assumption B, = “d > 07; so e3 holds indeed.]

By the choice of I'z and of B,, recalling By, is complete, by the choice of h and e3
there is a projection h from By, onto By, extending h, so clearly ﬁ(d) = c and this
implies ¢; € By A0 <1 < e = By, E “crNd > 0,7 contradicting the choice of
d. So indeed (*)3 holds.]

(*)4 Dm = Dn n %m

[Why? Otherwise there are ¢; € Dy, c2 € By \Dm and so <j ... <; S,—1 such
that By E “ (N ys, N1 < ¢c2”. As ay, 4, € Dy for t1 <; t2, without loss of
<n
generality ¢; < ag, s, for £ <k <n,sp € I,s; € I>.
Now letting ¢ = ¢; — ¢o we continue as in the proof of ()3 defining h, h and apply
the projection i to “ () ys, N1 < 7]
<n

()5 By satisfies the k-c.c..

[Why? If not, then there are pairwise disjoint, positive d; € B, for ¢ < k. So as
in the proof of (x)s, without loss of generality d; = ﬁ{yisf((;'g’g)) < n@)}Ng
where ¢; € Bm,n(i,¢) € {0,1} and s(4,0) <7 s(4,1) <y ... <p s(i,n(i) — 1). Let
m(i) < n(i) be such that for every ¢ < n(i) we have s, € I iff £ < m(i).

Again as there, without loss of generality for every ¢ < m(i) < k < n(i) we have
(As(i0),s(ik) <€)V (As(ip),si,k) Nci = 0) son(i,0) =1 =n(i,k) N <m(i) <k <
n(i) = ¢i < ag(,0),5(i,k)-

As k = cf(k) > k1 + k2 by an assumption of 4.10 without loss of generality n(i) =
n,m(i) = m,n(i,£) = n(¢) and s(i,£) = sg for i < k,¢ < n and as By, satisfies the
k-c.c. we can find i < j < k such that By, = “0 < ¢;Ne;” and let ¢ = ¢; Nej so we
can continue as before.]

So together by ()3, (%)4, (¥)5 we have m <P* n € KP* as promised.

3) Let I* = I(01,02), I} = I1(h),I5 = I2(02) and recall a* = (a;, : s <y t)
is a Topa — (01, 02)-moral problem in m. Toward a contradiction assume that the
sequence b = (b, : t € I*) solve the problem a* in n so b; € Dy, and let b, =
Tt (Ys(£,0) - - s Ys(tn(t)=1)5 Ct,05 - - - » Ct.m(t)—1) With ¢ € B, s(t,£) € I and without
loss of generality s(t,£) < s(t,¢+ 1) for £ < n(t) — 1 so s(t, k) € I for k < n(t).
The reader may wonder: we have to prove that there is no solution in 5, , not

just in B¢ , so how can we use finitary terms? The point is that though By, is the
completion of B, the filter Dy, is generated (as a filter) by 8% N Dy,.
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By symmetry without loss of generality,

(¥)g 01 ¢ {K1,Ka}-
Recalling 4.7, we can replace by by any b} < b; which is from Dy, so as A Ys(t,0) €
Dy, without loss of generality £ < n(t) = b; < ys,0), s0 without loss of gzenerality
(*)7 by = Myset,0) : £ <n(t)} N for some ¢; € Dy recalling Dy = Dy N By
By the A-system lemma (recalling 4.7(1)) without loss of generality,
@ if 61 > Ny then,
(a) t €Iy = n(t) =n(x),
(b) if t € I} then s(t,0) € If & £ < £(x),
(¢) ((s(t,0) : £ <n(x)):telf)is an indiscernible sequence in
the linear order I = I(k1, k2), for quantifier free formulas.
But we shall not use @. As 01 # k1, k2, by 4.7(1),(1A) it follows that without loss
of generalityfor some s}, s5 we have:
(¥)s sy € I1,s5 € Iy and s(t,0) ¢ [s3, s5]1 for every ¢ € If, ¢ < n(t).
Again by 4.7(2) without loss of generality,
(x)g if t € I5 then by < Yso M Ysg -
We now define a function h from {ys : s € I} into By, (yes! not Byy,) by:
(*)10 h(ys) is:
® a, o MNage s if s <7 57,
® as s NysNassg if s € 1,57 <ys<gs3,
® a s MNagg s if 53 <7 8.
Note
(*)11 h(ys) € Dy for s € I.
[Why? Because as; € Dy, for S € I,t € I)2 and ys € Dy, for s € I.]
(#)12 h(ys,) Nh(ys,) < as, s, for s1 € I, 59 € Io.
[Why? If s1,s2 € [s7,s9]r this holds by the definition of B,, i.e. as h(ys,) <
Ysis h(Ys,) < Ys, and B = “Ys, Nys, < a5,.5,7

If 51 <p+ s As§ <y- sz then (¥)11 says: as, so Nas g Nasys, < ag;,5, Which
obviously holds (as a is a Toprq — (K1, £2)-problem in m).

If 51 <7+ 87 Asg € [s7,55]7- then this means: (as, soNage s3)N(ase s, NYs, NAs s3) <
ag, s,; but as we have As,,50 N Asg 5, < Asy s this holds.

If s1 € [s9, 5]~ and s§ <y« s2 this means (aS%Sl NYs;, Nag, s,) N (asg,sg n asg,s) <
as, s, which holds for similar reasons. So (x)12 holds indeed.]

By the choice of 87 and 9B,, there is a homomorphism h from B, into B, extending
ids,, and extending h. Now easily h(b;) € D for t € I* because by = N{ygp) : £ <
n(t)} N ey, ¢ € Dy hence h(c;) = ¢; € Dy and by (%)19 we have ﬁ(ys(“)) € Dpy.

Now (h(by) : t € I'*) still form a solution of a* and by (*)7 + (x)s + ()10 we have
t € If = h(b;) € B hence without loss of generality :
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(¥)13 t € If = by € B,
Now define bj for t € I* by: bj is:
o by iftelr
o ¢ ift eI,
It suffices to prove that (b; : ¢ € I*) solves a* in m. Clearly t € I* = b} € Dy,

so let t; € If,ta € I3. We have to prove that b Nbj, < a; ;, but we know
only that b;, Nby, < a;, ¢, which means az, ¢, > by, N ([ Ystar) NCry) =

£<n(tz2)
(b, b5,) N Ws(ea,0) + £ < nlta)}-
Let hy, be a projection from B, onto By, such that Ay, (Yse,,e) = ¢ if £ < n(t)
and he, (ys) = Omsm if s € I\{s(t2,¢) : £ < n(t2)}, as earlier it exists and applying
it we get the desired inequality. U410

Theorem 4.11. For any A and regqular 61,02 < X\ such that 61 + 02 > Xy there is
a reqular filter D on X\ such that:

(a) for every dense linear order M, in M*/D there is a (01, 02)-pre-cut but no
(K1, k2)-pre-cut when K1, ke are reqgular < X and {61,602} g_ {k1, K2}
(b) if M is (“>2,<))/D then t(M) > \*.
Remark 4.12. 1) Why do we need 61 + 02 > Ry? To prove (x);.
2) In fact, this demand is necessary, see 4.14 below.

Proof. We prove clause (a), which is the main result, clause (b) holds by 4.15. Let
K= AT,
(x)1 there are mg,a such that:

(a) mg € K,

(b) ais a Topq — (01, 02)-moral problem in mg not solved in it.
[Why? By [She90, Ch.VI,§3] there is an ultra-filter D on A such that in (Q <)*/D
there is a (01, 03)-cut. Define m by By, = Z(\), Dm = D, now check. E.g. as
k = AT, easily the Boolean algebra B, satisfies the x-c.c.; alternatively let B,

be generated by {as; : s € I,t € I>} freely; and let D, be the ultra-filter on B,
generated by {as, : s € I,t € I,}. Now check.]
Let (W, : a < 2*) be a partition of 2* to sets each of cardinality 2* such that
WoNa=10.

(*)2 we can choose m,, and (a, : v € W,) by induction on a < 2* such that:

(a) m, € KP* has cardinality < 27,

(b) (mg: B <a)e s,
(¢) mg is as in (*)q,
(d) (a,: v € W,) be such that a, is a Tora — (K+,1,K+,2) problem in m,
and K1, K,2 are regular < X and {61,602} € {k4,1,ky,2} and any such
a appears in the sequence,

(e) if @ =+ 1 then necessarily v € W3 for some < a and in m,, there
is a solution for a,,

(f) in m, there is no solution to a*.
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[Why can we carry the induction?

Now for aw = 0 use (x)1, for a limit use 4.8 and for « successor use 4.10.]

(¥)3 letting m = myx we have By, = U{By,, : a < 2*} and Dy, = U{Dp,, :
a < 2}

[Why? Because (m, : a < 2*) € SP2 and cf(2}) > &.]

(%)4 there is a regular excellent filter Dy on A and homomorphism j from Z2(\)
onto By,.

[Why? See [MS14].]
(¥)5 let D =j~Y(Dm).

So D is a filter on A, and by 3.8 for § = X, (or Malliaris-Shelah [MS14]) we are
done. U411

Conclusion 4.13. If A > Ny then the results of Malliaris-Shelah [MS16b] cannot
be generalized to reduced powers (atomic types, of course), that is (clause (A) is
in contrast to [MS16b, Th.10.25(b)=- (d)]; clause (B) is in contrast to [MS16b,
Th.10.1], and clause (C) is in contrast to [MS16b, Th.3.1])

(A) If A > Ry then for some regular filter D on A we have: in ultra-powers
of infinite linear orders we have a pre-cut with small cofinalities, but no
symmetric pre-cut, that is:

(a) in the ultra-power (Q, <)*/D there is a (R1,Ng)-pre-cut,
(b) in this ultra-power, there is no symmetric pre-cut of cofinality o for
o<\

(B) treetops: we can add above that in (“w,<)*/D every increasing sequence
of length < X\ has an upper bound;

(C) if A < Ny then we can add in part (A), there are two pre-cuts with the same
small left cofinality but a different small right cofinalities, e.g. Wy from the
left and No, Ng from the right.

Proof. For clause (A) we apply clause (a) of 4.11 choosing the pair (01,63) as
(N1, o).
For clause (B) apply clause (b) of 4.11.

For clause (C) we repeat the proof of 4.11 but starting (with x = AT as there) and
choose as there my € K,; of cardinality < 22 such that some (N1, Rg)-moral problem
and (X1, Nz)-moral problem in mg are not solve. Then continue as there. [y 13

Observation 4.14. If m € KP® then any Tora — (o, Ng)-problem a in m has a
solution.

Proof. Let b(l,n) = b(2,n) =b, = ﬂ{a(l)g))(zk) Uk < n}, clearly s € I(Rg,Rg) =
b, € D and (s,1) € I(1,R0) x [(2,R0) = by N by < a, . 04 14

Claim 4.15. In M2 /D, any increasing sequence of length < k+ has an upper
bound when (A) or (B) holds, where:
(4) (@) M. =(*"p,9),
(b) B is a complete Boolean algebra which is (< 0)-distributive,
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(¢) D isa(u,0)-regular, 0-complete filter on B,
(d) (Q,<)®/D has no (0,0)-pre-cut for any reqular o < ,
() m=(B,D).
(B) (a) —(c) as above,
(d) every Ty — (0,0)-moral problem in m has a Ty, — (0, 0)-moral,

solution in m where:
(o) a is a Tie-moral problem when:
o a=(a,p:a<pf<o),
e a,gcD,
o ifuC o is finite and c € BT then for some 7] = (o : @ € u)
we have Ny € "> |u| for a € u and ¢ < agp = N0 A1
and cNag,g =0 = (N Ing) for a < f from u.

(B) b= (b, :a<0o)isaTy—(00)-solution of a when b, € D and
b, Nbg <agg fora<f<o.

Proof. If clause (A), as in [She78, Ch.VI,2.7] or [MS16b].
If clause (B), as above. 0415
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