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A GAME-THEORETIC PROOF OF SHELAH’S THEOREM ON LABELED

TREES

TREVOR M. WILSON

Abstract. We give a new proof of a theorem of Shelah which states that for every family of
labeled trees, if the cardinality κ of the family is much larger (in the sense of large cardinals)
than the cardinality λ of the set of labels, more precisely if the partition relation κ → (ω)<ω

λ

holds, then there is a homomorphism from one labeled tree in the family to another. Our
proof uses a characterization of such homomorphisms in terms of games.

1. Introduction

We work in ZFC. For every set X we write X<ω for the set of all finite sequences from X

and [X ]<ω for the set of all finite subsets of X . For every natural number n < ω we write
Xn for the set of all n-length sequences from X and [X ]n for the set of all n-element subsets
of X . When X is a set of ordinals we may identify each element of [X ]<ω with its increasing
enumeration, which is an element of X<ω.

For a nonzero cardinal λ and an infinite cardinal κ, the partition relation κ → (ω)<ω
λ means

that for every function f : [κ]<ω → λ there is an infinite subset H ⊂ κ that is homogeneous

for f , meaning that f is constant on [H ]n for all n < ω. When λ = 1 this partition relation
holds trivially for every infinite cardinal κ, but already when λ = 2, the least κ such that
κ → (ω)<ω

λ is a large cardinal known as the Erdős cardinal κ(ω).
A tree on a set X is a nonempty subset of X<ω closed under initial segments, and the

root of such a tree is the empty sequence 〈〉.1 A homomorphism of trees is a function from
one tree to another that preserves lengths of sequences and the initial segment relation.
(Equivalently, it preserves the root and the predecessor relation.)

For a nonzero cardinal λ, a λ-labeled tree (or λ-colored tree) is a structure T = 〈T ; ℓT 〉
where T is a tree on some set X and ℓT is a function from T to λ. A homomorphism from
a λ-labeled tree T = 〈T ; ℓT 〉 to a λ-labeled tree U = 〈U ; ℓU〉 is a homomorphism of trees
h : T → U that preserves labels, meaning ℓU ◦ h = ℓT .

We now state a theorem connecting partition relations to labeled trees. It follows from
results of Shelah [5]; see Eklof and Shelah [1, Theorem 2.1] for a similar statement. The
converse also holds; Herden [2] is a good reference containing proofs of both directions.

Theorem 1.1 (Shelah). Let κ be an infinite cardinal and let λ be a nonzero cardinal. If the

partition relation κ → (ω)<ω
λ holds, then for every sequence of λ-labeled trees 〈Tα : α < κ〉

there is a homomorphism Tα → Tβ for some α < β < κ.

Remark 1.2. In the simplest case λ = 1, this theorem reduces to the statement that for
every sequence of (unlabeled) trees 〈Ti : i < ω〉 there is a homomorphism Ti → Tj for
some i < j < ω. This is true because otherwise the ranks of the trees would form an

1For a more abstract approach, we could equivalently use rooted trees in the sense of graph theory.
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infinite decreasing sequence in Ord∪{∞}, which is a contradiction. Nevertheless, it may be
interesting to observe that our game-theoretic proof works in this case also.

Existing proofs of Theorem 1.1 rely on the Nash-Williams theory of better-quasi-orderings.
We will give a short and simple proof avoiding this theory entirely, instead using the games
defined in the next section.

2. The game G(T ,U)

In this section we let λ be a nonzero cardinal and let T = 〈T, ℓT 〉 and U = 〈U, ℓU〉 be
λ-labeled trees with T ⊂ X<ω and U ⊂ Y <ω for some sets X and Y . In the following game,
we can think of the second player as continuously building finite partial homomorphisms
from T to U in response to challenges from the first player.

Definition 2.1. The game G(T ,U) is defined as follows. Players I and II alternately play
elements of X and Y respectively for ω rounds:

I x0 x1 x2 . . .

II y0 y1 y2 . . .

The players are subject to the following rules for all n < ω:

Tree membership for player I: 〈x0, . . . , xn〉 ∈ T .
Tree membership for player II: 〈y0, . . . , yn〉 ∈ U .
Label-matching for player II: ℓU(〈y0, . . . , yn〉) = ℓT (〈x0, . . . , xn〉).

The first player to break a rule loses. If both players follow the rules forever, then player II
wins. If the roots of T and U have different labels, we say that player II loses immediately
(this can be considered as the n = −1 case of the label-matching rule.)

For notational convenience we allow play to continue after a rule is broken, even though
it cannot affect the outcome. The fact that player II is considered the winner if both players
follow the rules forever means that G(T ,U) is a closed game for player II.

A winning strategy for player I in G(T ,U) is a function Σ : Y <ω → X such that for every
infinite sequence 〈yn : n < ω〉 of moves for player II, if xn = Σ(〈y0, . . . , yn−1〉) for all n < ω,
then player I wins. Similarly (with a minor change to account for player I moving first) a
winning strategy for player II in G(T ,U) is a function Σ : X<ω \ {〈〉} → Y such that for
every infinite sequence 〈xn : n < ω〉 of moves for player I, if yn = Σ(〈x0, . . . , xn〉) for all
n < ω then player II wins.

We will need the following simple observation relating winning strategies in this game to
homomorphisms. (They are essentially just different notations for the same thing.)

Lemma 2.2. There is a homomorphism from T to U if and only if player II has a winning

strategy in the game G(T ,U).

Proof. If h : T → U is a homomorphism, then the strategy Σ for player II in the game
G(T ,U) given by Σ(〈x0, . . . , xn〉) = yn where h(〈x0, . . . , xn〉) = 〈y0, . . . , yn〉 is clearly a
winning strategy. Conversely, if Σ is a winning strategy for player II in G(T ,U), then there
is a homomorphism h : T → U given by

h(〈x0, . . . , xn−1〉) =
〈

Σ(〈x0〉),Σ(〈x0, x1〉), . . . ,Σ(〈x0, . . . , xn−1〉)
〉

. �
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Remark 2.3. A consequence of Lemma 2.2 that we will not use in this article, but is never-
theless worth pointing out, is that the existence of a homomorphism between two λ-labeled
trees is absolute to any transitive model 〈M ;∈〉 of ZFC containing both of them, by closed
game absoluteness (see Kechris and Moschovakis [3, Section 9B]).

We will use an immediate consequence of Lemma 2.2 given by the Gale–Stewart theorem,
which says that closed games are determined, meaning that one player or the other (but
clearly not both) must have a winning strategy. This gives a “positive” criterion for the
nonexistence of a homomorphism:

Lemma 2.4. There is no homomorphism from T to U if and only if player I has a winning

strategy in the game G(T ,U).

Besides Lemma 2.4, the only other ingredient in our proof of Shelah’s theorem will be a
method of combining several strategies for different games. This method is often used to
prove consequences of the axiom of determinacy such as the first periodicity theorem (see
Moschovakis [4, Diagram 6B.5].)

3. Proof of Shelah’s theorem

Let κ be an infinite cardinal, let λ be a nonzero cardinal, let 〈Tα : α < κ〉 be a sequence
of λ-labeled trees, and assume κ → (ω)<ω

λ . Assume toward a contradiction that for all
α < β < κ there is no homomorphism from Tα to Tβ . Then by Lemma 2.4 we may choose a
winning strategy Σαβ for player I in the game G(Tα, Tβ) for all α < β < κ.

We will combine these strategies to define a function f : [κ]<ω → λ as follows. Given an
increasing finite sequence of ordinals 〈α0, . . . , αn〉 ∈ [κ]<ω, we can play the strategies Σαiαi+1

for i < n against each other to produce an n × n triangular array of moves. This is shown
for n = 3 in Figure 1, where the dashed arrows indicate copied moves (feeding the output of
one strategy into another) and the solid arrows indicate application of the chosen strategies
for player I. The initial moves for player I are also provided by the chosen strategies.
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Figure 1. Combining three strategies for player I
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We call the sequence of ordinals 〈α0, . . . , αn〉 good if all rules are followed in the resulting
n×n triangular array. In other words, player II has not yet lost, which implies that player I
also has not yet lost because the array was generated by winning strategies for player I. As
a trivial case, we consider every length-1 sequence 〈α〉 to be good.

Note that a necessary and sufficient condition for the sequence 〈α0, . . . , αn〉 to be good
is that the roots of the trees Tα0

, . . . , Tαn
all have the same label and copying moves via

the dashed arrows always satisfies the label-matching rule for player II. (This condition is
sufficient because each move is originally produced by a winning strategy for player I, and
the tree membership rules are the same for both players.)

If the sequence of ordinals 〈α0, . . . , αn〉 is good then the sequence of moves 〈x0
0, . . . , x

0
n−1〉

obtained in the top row of the resulting n× n triangular array is a member of the tree Tα0

and we may define f(〈α0, . . . , αn〉) as its label in that tree:

f(〈α0, . . . , αn〉) = ℓTα0 (〈x0

0, . . . , x
0

n−1〉).

As a trivial case, f(〈α〉) is the label of the root of Tα.
If the sequence 〈α0, . . . , αn〉 is not good, we arbitrarily define f(〈α0, . . . , αn〉) = 0 in order

to obtain a total function f : [κ]<ω → λ. (These arbitrary values will not be used.)
The partition relation κ → (ω)<ω

λ implies that some infinite subset H ⊂ κ is homogeneous
for f . Replacing H by an initial segment of itself if necessary, we may assume that H has
order type ω and let 〈α0, α1, α2, . . .〉 be its increasing enumeration. Homogeneity implies a
shift-invariance property for finite intervals in H :

f(〈αi, . . . , αn+i−1〉) = f(〈αi+1, . . . , αn+i〉)(1)

for all i, n < ω.2 We will use this to show that all finite intervals in H are good.

Claim 3.1. The sequence 〈αi, . . . , αn+i〉 is good for all i, n < ω.

Proof. By induction on n. The case n = 0 is trivial. For the induction step, let n ≥ 1. It
suffices to show that if 〈αi, . . . , αn+i−1〉 and 〈αi+1, . . . , αn+i〉 are good and the shift-invariance
property (1) holds, then 〈αi, . . . , αn+i〉 is good. We will show this using Figure 1 in the case
i = 0 and n = 3. (The general case is similar.)

Goodness of 〈α0, α1, α2〉 means that all rules are followed in the upper-left 2×2 subtriangle
generated by Σα0α1

and Σα1α2
, and goodness of 〈α1, α2, α3〉 means that all rules are followed

in the lower-left 2 × 2 subtriangle generated by Σα1α2
and Σα2α3

. Then the shift-invariance
property f(〈α0, α1, α2〉) = f(〈α1, α2, α3〉) means that ℓTα0

(〈x0
0, x

0
1〉) = ℓTα1

(〈x1
0, x

1
1〉), so the

label-matching rule for player II in the game G(Tα0
, Tα1

) is satisfied when we copy the move
x1
1 along the dashed arrow. Finally the top-right element x0

2 is given by a winning strategy
for player I, so all rules are followed in the 3× 3 triangle and 〈α0, α1, α2, α3〉 is good. �

The claim implies that when we play the strategies Σαiαi+1
for all i < ω against each other,

infinitely extending Figure 1 as shown in Figure 2, all rules are followed forever. This counts
as a win for player II in each game G(Tαi

, Tαi+1
), contradicting our choice of Σαiαi+1

as a
winning strategy for player I and completing the proof of the theorem.

2The statement that for every f : [κ]<ω → λ there is an infinite increasing sequence of ordinals with this

shift-invariance property implies Silver’s “weak” partition relation κ
w
→ (ω)<ω

λ
and can easily be proved

equivalent to it. Silver [6] proved that κ → (ω)<ω

λ
itself is equivalent to κ

w
→ (ω)<ω

λ
, but this is harder.
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Figure 2. Combining infinitely many strategies for player I
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