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SURJECTIVELY RIGID CHAINS

M. MONTALVO-BALLESTEROS AND J.K. TRUSS

Abstract. We study rigidity properties of linearly ordered sets (chains) under
automorphisms, order-embeddings, epimorphisms, and endomorphisms. We
focus on two main cases, dense subchains of the real numbers, and uncount-
able dense chains of higher (regular) cardinalities. We also give a Fraenkel–
Mostowski model which illustrates the role of the axiom of choice in one of the
key proofs.

1. Introduction

A classical construction by Dushnik and Miller [3] shows that there is a dense sub-
chain of the real numbers which is rigid, meaning that its only order-automorphism
is the identity map. This is constructed by transfinite induction using the fact that
the number of ‘potential’ order-automorphisms is 2ℵ0 . In fact the chain that they
construct has the stronger property that it has no non-trivial order-embeddings,
and in [2] it was shown that one can construct dense subchains of R which are
(automorphism-)rigid, but which nevertheless admit many embeddings.

It is our purpose in this paper to treat similar questions about epimorphisms, and
also to make some remarks about general endomorphisms. To make sense of this, we
have to work with the reflexive relation ≤ on a linear order, as any endomorphism
of the strict relation < is necessarily injective. An epimorphism of (X,≤) is then
a surjective map f from X to X which preserves ≤, that is, x ≤ y ⇒ f(x) ≤ f(y).
For a general class of maps we would say that (X,≤) is rigid with respect to that
class of maps if the only member of the class which preserves (X,≤) is the identity.
Thus the classical notion of Dushnik and Miller is automorphism-rigidity, and we
get corresponding notions of embedding-rigidity and epimorphism-rigidity.

The strongest possible notion that one could consider is ‘endomorphism-rigidity’,
where an endomorphism of (X,≤) is any map preserving ≤ (now not necessarily
injective or surjective). This is however an essentially vacuous notion, since any
constant map is clearly an endomorphism, and there are |X | of these. So the nearest
analogue of the notion of rigidity here is that the only endomorphisms which exist
are ones which, in a sense to be made precise, are ‘unavoidable’.

The correct context for these discussions seems to be that of certain monoids
which arise naturally in the study of the symmetry properties of chains. The most
obvious of these, corresponding to the above discussion, are the monoid (group actu-
ally) of all automorphisms, Aut(X,≤), and those of all the embeddings, Emb(X,≤),
epimorphisms Epi(X,≤), and endomorphisms End(X,≤). We write these as G, M ,
S, and E respectively. An extension of the problem of making one or other of these,
but not all, trivial, asks rather what the possible values of these monoids are. This
is clearly a lot more complicated, but we are able to give connections between these
monoids in a few cases. One of these is as follows. By applying the axiom of choice,
it is quite easy to see that if S is non-trivial, then so is M . A stronger version of
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SURJECTIVELY RIGID CHAINS 3

this would be to show either that there is a monoid embedding of S into M , or
that S is a homomorphic image of M . The use of AC is however quite blatant, and
so it is not clear whether either of these is true. We are able to show at least that
|S| ≤ |M |. Furthermore, we give a model of set theory (without choice) in which
M is trivial but S is not.

In the final section we adapt the other part of [2], which treats dense chains of
larger cardinalities, and we show that similar techniques, involving stationary sets,
can be used to give parallel results for epimorphisms in this context.

2. Preliminary results

Lemma 2.1. There are 2ℵ0 epimorphisms of (N,≤).

Proof. For each A ⊆ N define fA : N → N by
fA(2n) = n

fA(2n+ 1) =

{

n+ 1 if n ∈ A

n if n 6∈ A

Then {fA : A ⊆ N} is a family of 2ℵ0 distinct epimorphisms of (N,≤). �

Theorem 2.2. If (X,≤) is a chain having a non-identity epimorphism, then it has
at least 2ℵ0 epimorphisms (so if X is a dense subchain of R, (X,≤) has exactly 2ℵ0

epimorphisms). In fact, Epi(N,≤) can be embedded in Epi(X,≤), and so Epi(X,≤)
is not commutative.

Proof. Let f ∈ Epi(X,≤) be non-trivial. Then f moves some point a1 say. Let
a0 = fa1, and without loss of generality assume that a0 < a1. Since f is surjective
we may choose an ∈ X such that for each n, fan+1 = an. It follows that a0 < a1 <

a2 < . . . (since if an+1 ≤ an then by applying fn we would find that a1 ≤ a0).
For each epimorphism θ of (N,≤) we find a corresponding epimorphism fθ of

(X,≤). Since fθ will map an to aθ(n), distinct epimorphisms of (N,≤) give rise to
distinct epimorphisms of (X,≤).

Observe that θ(n) ≤ n, and for each n, θ(n + 1) = θ(n) or θ(n) + 1. Let fθ
fix all the points not in

⋃

n∈N
[an, an+1] and let fθ map an to aθ(n). Finally we

have to define fθ ‘in between’ on each [an, an+1]. This is done by mapping all of
[an, an+1] to {aθ(n)} if θ(n) = θ(n+ 1) and [an, an+1] to [aθ(n), aθ(n)+1] by fn−θ(n)

if θ(n+ 1) = θ(n) + 1.
It is easy to check that this is a monoid embedding of Epi(N,≤) into Epi(X,≤)

(essentially because fθ acts on {an : n ∈ N} in precisely the way that θ acts on N).
Hence |Epi(X,≤)| ≥ 2ℵ0 . One can verify directly that if X is a dense subchain of
R, then |Epi(X,≤)| ≤ 2ℵ0 (or else one may appeal to the next theorem).

For the final sentence it is checked that Epi(N,≤) is not commutative. �

Theorem 2.3. If (X,≤) is a chain such that Epi(X,≤) is non-trivial, then so is
Emb(X,≤). If (X,≤) is densely ordered, then |Epi(X,≤)| ≤ |Emb(X,≤)|.

Proof. Let f ∈ Epi(X,≤) be non-trivial. Define g by g(x) ∈ f−1x, which is possible
by the axiom of choice. Thus for all x, fg(x) = x. Hence if g is the identity, so is
f , and it follows that g is non-trivial. To see that g is an embedding, suppose for
a contradiction that a < b but gb ≤ ga. Then fgb ≤ fga which implies that b ≤ a,
which is a contradiction.

We now modify this argument in the dense case, and we write g as θ(f) to
indicate its dependence on f , and show that θ is 1–1. For this we have to show
that for epimorphisms f1 and f2 and an embedding g, f1g = f2g = id ⇒ f1 = f2.
Take any x ∈ X , and let x1 = gf1x. Then f1x1 = f1gf1x = f1x. We show
that f2x = f1x. Note that f1x = f1x1 = f1gf1x = f2gf1x = f2x1, so we just
have to show that f2x = f2x1. Suppose not, for a contradiction, and without
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loss of generality, suppose that f2x1 < f2x. Since X is dense, there is y such
that f2x1 < y < f2x. Then x1 = gf1x = gf2x1 < gy < gf2x. If gy ≤ x then
y = f1gy ≤ f1x = f1x1 = f2x1, contrary to f2x1 < y. Otherwise, x < gy, which
gives f2x ≤ f2gy = y, contrary to y < f2x. �

The first part of this proof shows that any epimorphism f has a right inverse g,
and this is an embedding. The other direction does not work, that is, not every
embedding need have a left inverse, and indeed, this is a key point in the proof of
Theorem 3.1. For Q for instance, we may define an embedding g by letting g(x) = x

if x < π and g(x) = x+ 1 if x > π. If this had a left inverse f , then for any a and
b such that a < π < b, g(a) < 4 < g(b), and so a = fg(a) ≤ f(4) ≤ fg(b) = b, so
f(4) must lie above every rational < π and below every rational > π, so must equal
π, which is not rational. The best we can do is the following.

Lemma 2.4. If (X,≤) is an order-complete chain then any member g of
Emb(X,≤) whose image is coterminal has a unique left inverse f , which is an
epimorphism (and without the ‘coterminality’ hypothesis, one can show the existence
of f provided that also X has endpoints) .

Proof. Define ∼ on X \ im g by letting x ∼ y if there is no point of im g between
x and y. The ∼-classes are then convex, and as the image of g is coterminal, for
any ∼-class A, B = g−1(X<A) and C = g−1(X>A) are non-empty disjoint with
union equal to X . Since B is closed downwards and C is closed upwards, they are
semi-infinite intervals, and as X is order-complete, z = sup B = inf C lies in X .
We let f map all of A to z, and similarly for each ∼-class, and otherwise, f is g−1.
Clearly there is no other option, so f is unique.

If we relax the coterminality requirement, then B or C may be empty, in which
case the whole of A is sent to the least/greatest point of X respectively. �

We remark that in the proof of Theorem 2.2 there are actually a lot more epimor-
phisms of (X,≤) provided by the map f and the sequence a0 < a1 < a2 < . . . than
those we have described. Let b0 < b1 < b2 < . . . be a sequence in [a0, supm∈N am)
such that for each n, fknb2n+1 = b2n for some integer kn ≥ 1. Then we can de-
fine a corresponding endomorphism g of X thus: g fixes all points of X not in
⋃

n∈N
[bn, bn+1] and otherwise

gx =































b0 if b0 ≤ x ≤ b1
fk0x if b1 ≤ x ≤ b2
fk0b2 if b2 ≤ x ≤ b3
fk0+k1x if b3 ≤ x ≤ b4
fk0+k1b4 if b4 ≤ x ≤ b5

. . .

(Intuitively, each [b2n, b2n+1] is mapped to a singleton, and other points are mapped
by a suitable power of f to give continuity. This will be an epimorphism provided
that the supremum of {b0, fk0b2, f

k0+k1b4, . . .} equals that of the an.)
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There is a finite version of the same thing, where b0 < b1 < b2 < . . . < b2N =
supn∈N

an for which g fixes all points of X not in
⋃

0≤n<2N [bn, bn+1], and otherwise

gx =















































b0 if b0 ≤ x ≤ b1
fk0x if b1 ≤ x ≤ b2
fk0b2 if b2 ≤ x ≤ b3
fk0+k1x if b3 ≤ x ≤ b4
fk0+k1b4 if b4 ≤ x ≤ b5

. . .

fk0+k1+...+kN−1b2N−2 if b2N−2 ≤ x ≤ b2N−1

fk0+k1+...+kN−1x if b2N−1 ≤ x ≤ b2N

In this case, the last piece must be a translation, not a constant, and g is automat-
ically an epimorphism, since f fixes supan = b2N .

Let us say that epimorphisms g of this form are generated from f in a wide
sense. More accurately, they are generated from the action of f on

⋃

n∈N
[an, an+1]

together with a choice of bn and kn.
Thus if we are trying to construct a dense rigid subchain X of R which admits

an epimorphism f of the form

fx =







x if x ≤ 0
0 if 0 ≤ x ≤ 1
x− 1 if x ≥ 1

the above discussion shows that we cannot avoid also admitting all epimorphisms
generated from f in a wide sense.

Similar remarks apply to embeddings. Consider a non-trivial embedding f , and
suppose that a < f(a) for some a. Let b0 < b1 < b2 < . . . be a sequence in
[a, supm∈N

fma), and let h be a function on ω such that f(b0) ≤ h(0) ≤ fk0(b0),

and fki(bi+1) ≤ h(i + 1) ≤ fki+1(bi+1) for each i where 1 ≤ k0 ≤ k1 ≤ k2 ≤ . . .,
and supi∈N

fki(bi) = supi∈N
bi. Then we say that a function g which agrees with

f except on
⋃

n∈N
[bn, bn+1] where it is given by g(x) = fki(x) if bi < x < bi+1

and g(bi) = h(i) is generated from f in a wide sense. Since f is an embedding,
it follows easily that so is any such g. There are 2ℵ0 such maps arising from the
different choices of sequence (ki) and values of the function h. The same idea may
be applied if a > f(a) for some a.

Still, this is quite a restricted class of maps, and we want to show that X can be
constructed so that once we have decided to include f as an epimorphism or em-
bedding of X , there are no epimorphisms or embeddings apart from ones generated
from it in a wide sense.

Lemma 2.5. If Q ⊆ X ⊆ R then |End(X)| = 2ℵ0 .

Proof. If f ∈ End(X) then a ∈ R is a discontinuity of f if limx→a− f(x) <

limx→a+ f(x). Since Q is dense in R, any f can only have countably many dis-
continuities. For any countable subset C of R, let

FC = {f ∈ End(X) : lim
x→a−

f(x) < lim
x→a+

f(x) ⇒ a ∈ C}.

If f, g ∈ FC agree on (C ∩ X) ∪ Q, then they agree on the whole of X . For if
x ∈ X \ (C ∪ Q), let xn be a sequence of rationals tending to x. Then as f and
g agree on (C ∩ X) ∪ Q, fxn and gxn are equal, and as x 6∈ C, fx = gx. There
are 2ℵ0 choices of C. Also given a choice of C, any f ∈ FC is continuous at all
points of X \ C, so the restriction of f to X \ C is determined by its values on Q,
so there are just 2ℵ0 possibilities; also if x ∈ C then f(x) has at most 2ℵ0 possible
values. Putting these together gives at most 2ℵ0 × (2ℵ0)ℵ0 = 2ℵ0 values in all, and
it follows that |End(X)| = 2ℵ0 . �
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Lemma 2.6. If f : R → R is order-preserving with dense image, then it is a
continuous epimorphism.

Proof. First we see that f is surjective. If not, there is x ∈ R \ im f . Let A =
f−1(−∞, x) and B = f−1(x,∞). Then as f is order-preserving with dense image,
A and B are non-empty disjoint with union R and A < B. Hence for some a ∈ R,
A = (−∞, a] and B = (a,∞), or A = (−∞, a) and B = [a,∞), suppose the former.
Thus f(a) < x. By density of im f , there is y ∈ im f such that f(a) < y < x. Let
f(b) = y. Then b ∈ A so b ≤ a, but this implies that y ≤ f(a), a contradiction.

To see that f is continuous, let (x, y) ⊆ R be an open interval. Then f−1(x, y)
is convex since z1 ≤ t ≤ z2 and z1, z2 ∈ f−1(x, y) implies that x < f(z1) ≤ f(t) ≤
f(z2) < y, and hence that t ∈ f−1(x, y). So f−1(x, y) is an interval. As in the first
part of the proof we see that it is an open interval. �

Lemma 2.7. (i) If f ∈ Epi(X,≤) for dense X ⊆ R, then f is the restriction to X

of a unique epimorphism of R.
(ii) If f ∈ Emb(X,≤) for dense X ⊆ R, then f is the restriction to X of an

embedding of R (which need not be unique).

Proof. (i) Let F (x) = sup{f(y) : y ∈ X, y ≤ x}. Clearly F extends f and is order-
preserving. To see that F is surjective, let y ∈ R. Let x = sup{z ∈ X : f(z) ≤ y}.
By definition of F , F (x) ≤ y. If F (x) < y then as X is dense, there is w ∈ X

with F (x) < w < y and as f is surjective on X , w = f(u) for some u ∈ X . Thus
f(u) < y so u ≤ x which gives w = f(u) ≤ F (x), a contradiction. For uniqueness,
we note by Lemma 2.6 that any epimorphism extending f is continuous, and since
any two continuous functions which agree on a dense set are equal, F is the unique
such extension.

(ii) We use the same definition of the extension as in the first part. To see that
this time F is an embedding, let x < y. Since X is dense, there are z, u ∈ X such
that x < z < u < y. Then F (x) ≤ f(z) < f(u) ≤ F (y) so F (x) < F (y). The exten-

sion doesn’t need to be continuous. For instance, if f(x) =

{

x if x < 0
x+ 1 if x > 0

where X = (−∞, 0) ∪ (0,∞), there are infinitely many extensions F to R, corre-
sponding to the possible values of F (0), which can be any member of [0, 1], none of
them continuous. �

We conclude this section by recalling the construction by Dushnik and Miller
[3], but modified to obtain an embedding-rigid chain.

Theorem 2.8. There is a dense embedding-rigid subchain X of the real line of
cardinality 2ℵ0 .

Proof. We remark that by Theorem 2.3 this is also epimorphism-rigid.
Let κ = 2ℵ0 . Enumerate the family of all non-identity embeddings of R as

{fα : α < κ} (using Lemma 2.5). We choose X0 ⊆ X1 ⊆ X2 ⊆ . . . and Y0 ⊆
Y1 ⊆ Y2 ⊆ . . . contained in R so that for α < κ, |Xα|, |Yα| < κ, and Xα ∩ Yα =
∅. The idea is that the Xα are approximations to X , and the Yα are sets that
will definitely be disjoint from X . Let X0 = Q and Y0 = ∅. Assuming that
Xβ, Yβ have been chosen for β < α, we shall let Xα =

⋃

β<α Xβ ∪ {xα} and

Yα =
⋃

β<α Yβ ∪ {fαxα} for some carefully chosen xα. To make everything work

we have to make sure that xα, fαxα 6∈
⋃

β<αXβ ∪
⋃

β<α Yβ and xα 6= fαxα. Since

fα is not the identity, there is x moved by fα. If x < fαx, let I = (x, fαx), and if
x > fαx, let I = (fαx, x). In each case, as fα is order-preserving, I ∩fαI = ∅. Pick
any xα ∈ I \ (

⋃

β<αXβ ∪
⋃

β<α Yβ ∪ f−1
α (

⋃

β<α Xβ ∪
⋃

β<α Yβ)), which is possible

since |I| = 2ℵ0 = κ. Then fαxα ∈ fαI so fαxα 6= xα, and xα is as desired.
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Finally we let X =
⋃

α<κ Xα. Since X ⊇ Q it is dense. Hence by Lemma 2.7(ii),
any non-identity embedding of X to itself is the restriction to X of a non-identity
embedding of R, which equals fα for some α. But by construction, fα does not
preserve X , so this cannot happen. �

3. Main results on subchains of R

We now move on to our main constructions in this case (dense subchains of R).
In all cases, the chain constructed will be automorphism-rigid. In view of the above
discussions, we expect to describe the following three possible scenarios:

G = M = S = {id}, and we discuss what E may then be,
G = S = {id}, G 6= M ,
G = {id}, S 6= {id}.
These are covered in Theorems 3.3, 3.1, and 3.2 respectively.

Theorem 3.1. There is a dense epimorphism-rigid subchain X of the real line of
cardinality 2ℵ0 admitting a non-identity embedding f such that every embedding of
X is generated from f in a wide sense.

Proof. Let f be the embedding of R given by fx =

{

x if x ≤ 0
x+ 1 if 0 < x

We shall construct a dense epimorphism-rigid subchain X of R which is fixed
setwise by f (so that the restriction of f to X gives an embedding of X). For this
we have to destroy many potential non-trivial epimorphisms.

We again choose subsets Xα, Yα of R of cardinality < κ where κ = 2ℵ0 such
that X0 ⊆ X1 ⊆ X2 ⊆ . . ., Y0 ⊆ Y1 ⊆ Y2 ⊆ . . ., and Xα ∩ Yα = ∅. In addition we
shall ensure that each Xα is closed under f . Since X0 is dense, so will be X , and
this means that any epimorphism or embedding of (X,≤) is the restriction of such
a map on R.

We start with X0 = Q and Y0 = ∅. Clearly X0 is closed under f so all the
required conditions hold. Let {fα : α < κ} be an enumeration of all the non-
identity epimorphisms and embeddings of R which are not generated from f in a
wide sense (using Lemma 2.5).

Now assume that Xβ and Yβ have been chosen for all β < α, and we need to
choose Xα and Yα. This hinges on the careful choice of a point xα ∈ R. Given
that, we let Xα =

⋃

β<α Xβ ∪{fnxα : n ≥ 0} and Yα =
⋃

β<α Yβ ∪{fαxα}. Clearly

|Xα|, |Yα| < 2ℵ0 and Xβ ⊆ Xα, Yβ ⊆ Yα, for all β < α. Also Xα is closed under f .
Now we see how xα has to be chosen. The fact that

⋃

β<α Xβ ∩
⋃

β<α Yβ = ∅
follows from the induction hypothesis. To ensure disjointness of Xα and Yα it is
required that for each n ≥ 0 and β < α, fnxα 6∈ Yβ , fαxα 6∈ Xβ , and fnxα 6= fαxα.

We split into the following two cases.

Case 1: fα is a non-identity epimorphism.
In the first case, suppose that fαx < x for some x. We choose yα ∈ (fαx, x) \

(
⋃

β<α Xβ ∪ fα(
⋃

0≤n,β<α f−nYβ)). This is possible since |(fαx, x)| = 2ℵ0 and

|(
⋃

β<α Xβ ∪ fα(
⋃

0≤n,β<α f−nYβ))| < 2ℵ0 . Using the surjectivity of fα we now
choose xα such that fαxα = yα. Note that xα > x > yα, since if xα ≤ x then
yα = fαxα ≤ fαx, contrary to the choice of yα. The facts that fnxα 6∈ Yβ and
fαxα 6∈ Xβ for β < α follow from yα 6∈ fαf

−nYβ , and yα 6∈ Xβ . To see that
fnxα 6= fαxα we note that fαxα < xα but fnxα ≥ xα.

If x < fαx for some x < 0, we choose yα ∈ (x, fαx)\(
⋃

β<α Xβ∪fα(
⋃

0≤n,β<α f−nYβ)),
and xα such that fαxα = yα. This time, xα < x < yα, since if x ≤ xα then
yα = fαxα ≥ fαx, contrary to the choice of yα. To see that fnxα 6= fαxα, note
that as xα < 0, fnxα = xα.
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Next suppose that fα moves no point to the left, and it fixes all points less than 0.
As it is not the identity, it maps some point to the right. We write j(x) = fα(x)−x,
which we note is continuous, since fα is. As fαx ≥ x for all x, and fα is not the
identity, j(x) ≥ 0 for all x, and j(x) > 0 for some x. Since j is continuous, and is
zero for x < 0, by the Intermediate Value Theorem there is x such that 0 < j(x) < 1,
and by replacing x by inf{y : j(y) = j(x)}, we may also suppose that j(y) < j(x) for
all y < x. This time we choose yα ∈ (x, fαx) \ (

⋃

β<αXβ ∪ fα(
⋃

0≤n,β<α f−nYβ)),

which is possible since fαx = x+ j(x) > x. By surjectivity of fα, there is xα such
that fαxα = yα. Then xα < x < yα. As in the previous paragraphs, it remains
to check that fnxα 6= fαxα. But fαxα 6= xα, which covers the case n = 0, and if
n ≥ 0, fnxα ≥ xα + 1 whereas fαxα = j(xα) + xα < xα + 1.

Case 2: fα is an embedding not generated from f in a wide sense.
We choose a non-empty open interval I, and xα will be taken from

I \ (
⋃

0≤n,β<α f−nYβ ∪
⋃

β<α f−1
α Xβ). Then fnxα 6∈ Yβ and fαxα 6∈ Xβ are imme-

diately satisfied, and we have to concentrate on ensuring the third condition, that
fnxα 6= fαxα.

First suppose that fαx 6= x for some x < 0. If fαx < x we let I = (fαx, x)
and we see that provided xα is chosen in I, fnxα = xα for all n, and hence does
not equal fαxα which is < fαx. Similarly, if fαx > x, we let I = (x,min(0, fαx))
(which is non-empty open), and again fnxα 6= fαxα.

We now suppose that fαx = x for all x < 0. In the next case, there is a non-
empty open interval I such that j(I)∩N = ∅, where again j(x) = fα(x)−x. Hence
if we choose xα ∈ I \ (

⋃

0≤n,β<α f−nYβ ∪
⋃

β<α f−1
α Xβ), then for any n there is m

(= n or 0) such that fnxα = xα +m 6= xα + j(xα) = fαxα.
If this condition is violated, then j(I)∩N 6= ∅ for every non-empty open interval

I, and we shall show that fα must be generated from f in a wide sense, contrary to
our enumeration which was not meant to include any such maps. First we show that
a ≤ b ⇒ j(a) ≤ j(b). By cutting up [a, b] into intervals of length < 1 and verifying
this condition on each such interval, it suffices to prove this statement under the
assumption that b− a < 1. The hypothesis ensures that there are arbitrarily small
ε1, ε2 > 0 such that a+ ε1 < b− ε2 and j(a+ ε1), j(b − ε2) ∈ N. Then

j(b)− j(a) = (j(b− ε2)− j(a+ ε1)) + (j(b)− j(b − ε2)) + (j(a+ ε1)− j(a))

= (j(b−ε2)−j(a+ε1))+(fα(b)−b −fα(b−ε2)+b−ε2))+(fα(a+ε1)−a−ε1−fα(a)+a)

≥ (j(b− ε2)− j(a+ ε1))− ε2 − ε1

since fα(b − ε2) ≤ fα(b) and fα(a+ ε1) ≥ fα(a),
and

j(b− ε2)− j(a+ ε1) = (fα(b− ε2)− b+ ε2)− (fα(a+ ε1)− a− ε1)

≥ −b+ a+ ε2 + ε1 > −1

since fα(a+ ε1) ≤ fα(b− ε2) and b− a < 1, showing that j(b− ε2)− j(a+ ε1) ≥ 0
as these are integers. Hence j(b)− j(a) ≥ −ε2 − ε1. Since ε1 and ε2 are arbitrarily
small, j(b)− j(a) ≥ 0.

Let In = j−1{n}. Then a < b, a, b ∈ In ⇒ [a, b] ⊆ In. Hence In are intervals.
Clearly I0 < I1 < I2 < . . ., and

⋃

n∈N
In is dense in R. It is possible that some

In may be empty. This does not however apply to I0, which contains X ∩ (−∞, 0)
since we are assuming that fα fixes (−∞, 0) pointwise. Also some In for n > 0 is
non-empty, because fα is not the identity.

First suppose that there are infinitely many non-empty In, and let us enumerate
them as J0 < J1 < J2 < . . ., and we write bn−1 and bn for the endpoints of
Jn for n ≥ 1 (so that sup J0 = b0). We also let Jn+1 = Ikn

. Thus for each n,
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(bn, bn+1) ⊆ Jn+1 ⊆ [bn, bn+1]. Thus for x ∈ Jn+1, fα(x) = x + kn, and it follows
that fα is generated from f in a wide sense, so was not meant to have been listed. If
there are only finitely many non-empty Ins, and the greatest one is JN = (bN−1,∞)
(or [bN−1,∞)) we choose an unbounded sequence bN , bN+1, bN+2, . . . with bN−1 <

bN < bN+1 < . . . and replace JN by (bN−1, bN) ∪ (bN , bN+1) ∪ (bN+1, bN+2) ∪ . . .

and we again obtain an expression for fα generated from f is a wide sense (but this
time with eventually constant value of ki). �

We now set about obtaining the best result we can for epimorphisms. The
above discussion shows that if we try to do this, we cannot avoid also admitting
all epimorphisms generated from f in a wide sense (as well as many embeddings).
Still, this is quite a restricted class of maps, and we want to show that X can be
constructed so that there are no epimorphisms apart from this.

Theorem 3.2. There is a dense automorphism-rigid subchain X of the real line of
cardinality 2ℵ0 and a non-trivial epimorphism f of X such that every member of
Epi(X) is generated from f in a wide sense.

Proof. We follow a similar method to Theorem 3.1, this time adding an epimor-
phism f given by

fx =







x if x ≤ 0
0 if 0 ≤ x ≤ 1
x− 1 if 1 < x

and aim to construct a dense embedding-rigid subchain X of R closed under f .
The previous discussion shows that not only is each fn an epimorphism of X , but
so is each map of the form ϕ where for some sequence 0 ≤ b0 < b1 < b2 < . . . and
positive integers ki, ϕ is generated from f in a ‘wide sense’ as defined above. We
wish to arrange things so that X has no epimorphisms apart from these.

Let κ = 2ℵ0 and let {fα : α < κ} be an enumeration of all the epimorphisms of R
which are not generated from f in a wide sense. As before we choose two sequences
Xα and Yα contained in R for α < κ. We start with X0 = Q and Y0 = ∅.

Assume inductively that Xβ and Yβ have been chosen for β < α where α < κ,
and that Xβ ∩ Yβ = ∅, |Xβ |, |Yβ | < κ, and fXβ = Xβ. We aim to choose a
point xα 6= 0 such that if we let yα = fαxα, Xα =

⋃

β<α Xβ ∪ {fnxα : n ∈ Z},

and Yα =
⋃

β<α Yβ ∪ {yα}, then Xα ∩ Yα = ∅. Note that fnxα is a single point

(even if n is negative), which lies in (xα + Z) ∪ {0}, since f is 1–1 except at
0. Also f maps Xα onto itself, and since xα ∈ Xα, and fαxα = yα will not
lie in X , it will follow that fα 6∈ Epi(X,<). As usual we have to ensure that
xα 6∈ f−1

α

⋃

β<α Xβ ∪
⋃

n∈Z,β<α f
−nYβ and fnxα 6= fαxα.

First suppose that there is a non-empty open interval I whose image J under fα
is also open, and such that for all x ∈ I, fαx−x 6∈ Z. We pick yα ∈ J \ (

⋃

β<αXβ ∪

fα(
⋃

β<α Xβ ∪
⋃

n∈Z,β<α f−nYβ)) (noting that as 0 6∈ Yβ , |f−nYβ | = |Yβ |, which

guarantees that the set we are choosing from has cardinality κ), and xα ∈ I such
that fαxα = yα. By choice, xα 6∈ f−1

α

⋃

β<αXβ ∪
⋃

n∈Z,β<α f−nYβ , so it remains
to check that fnxα 6= fαxα. Since xα 6∈ X0, xα 6= 0. If xα < 0 then fnxα = xα,
which cannot equal fαxα since fαxα − xα 6∈ Z, so we now suppose that xα > 0. If
fnxα = 0, then it certainly cannot equal fαxα = yα, as this is chosen outside X0.
Otherwise, fnxα = xα−n (whether n is positive or negative), and so fnxα−xα ∈ Z,
and as fαxα − xα 6∈ Z we again deduce that fnxα 6= fαx.

Next suppose that fα moves some x < 0. Since fα is surjective, there is y such
that fαy = x and clearly if x < fαx then y < x, and if x > fαx then y > x.
Let J = (x, fαx) (or (fαx, x) respectively). In the first case, by continuity of fα,
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the supremum of the set of points which fα maps to x is also mapped to x, and
similarly the infimum of the set of points which fα maps to fαx is also mapped to
fαx. So by passing to a suitable open subinterval I of (y, x), we may assume that
fα(I) = J . Note that I ∩ J = ∅. We choose yα ∈ J and then xα ∈ I as before such
that fαxα = yα, and we just have to check that fnxα 6= fαxα. This time definitely
xα < 0, and so fnxα = xα, and this cannot equal fαxα by assumption. In the
second case, where J = (fαx, x), we similarly find a suitable subinterval I of (x, y)
which fα maps to J , and again choose yα ∈ J and xα mapping to it under fα. To
check that fnxα 6= fαxα, the same argument applies if xα < 0. If however xα > 0
then also fnxα ≥ 0, which cannot equal yα which is < x, hence < 0.

Now suppose that intervals I and J as in the first case do not exist, and also
that fα fixes (−∞, 0) pointwise. First we show that j defined by j(x) = fαx − x

is decreasing, that is, a ≤ b ⇒ j(a) ≥ j(b). If not, there are a < b such that
j(a) < j(b). By the Intermediate Value Theorem, j takes all values in [j(a), j(b)]
on [a, b], so by increasing a and decreasing b as necessary, we may suppose that
for a ≤ x ≤ b, j(x) 6∈ Z. By replacing a and b by sup{x ∈ [a, b] : j(a) = j(x)}
and inf{x ∈ [a, b] : j(x) = j(b)} respectively, we may also suppose that j maps
I = (a, b) onto (j(a), j(b)). It follows (using the continuity of fα) that fα maps
I onto J = (fα(a), fα(b)), and since for x ∈ I, fαx − x 6∈ Z, we have I and J as
desired. Since we are now assuming that such I and J do not exist, we conclude
that j is decreasing.

Now consider any a < b for which fα(a) < fα(b), and as in the previous para-
graph, by passing to a subinterval we may suppose that fα(a, b) = (fα(a), fα(b)).
Unless j is constant on (a, b) with an integer value, we can again pass to a suit-
able subinterval and find I and J as desired. Since we are assuming that they do
not exist, it follows that for any a < b such that fα(a) < fα(b) and fα(a, b) =
(fα(a), fα(b)), j is constant on (a, b) with integer value, so that for some fixed
n ∈ Z, fα(x) = x+ n for all x ∈ (a, b).

Now consider j−1{n} for various (integer) values of n. Since j is decreasing,
m < n ⇒ j−1{m} > j−1{n}. We only list non-empty sets of this form, and
as we have just shown that j−1{0} ⊇ (−∞, 0), it follows that j−1{0} 6= ∅, and
j−1{n} 6= ∅ ⇒ n ≤ 0. Listing the non-empty sets of the form j−1{n} in increasing
order as Jn, there is a strictly increasing sequence of integers (ln) with l0 = 0 and
such that J0 < J1 < J2 < . . . and Jn = j−1{−ln}. Write J0 = (−∞, a0), and
Jn = (a2n−1, a2n) for n > 0. Thus for x < a0, fαx = x and for a2n−1 < x < a2n,
fαx = x− ln. Now fα is increasing, and continuous, so it follows that a2n < a2n+1,
and also the above discussion shows that fα is constant on each interval of the form
(a2n, a2n+1). By continuity, it is actually constant on the closed interval [a2n, a2n+1],
and also fαx = x− ln for all x ∈ [a2n−1, a2n], so it follows that

fαx =







x if x ≤ a0
x− ln if a2n−1 ≤ x ≤ a2n
a2n − ln if a2n ≤ x ≤ a2n+1

and by continuity at a2n+1, a2n − ln = a2n+1 − ln+1. We can now see that fα is
generated from f in a wide sense. We consider two cases.
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In the first case, Jn exists for all n ≥ 0. Then fα fixes all points not in
⋃

n∈N
[an, an+1], and otherwise,

fαx =







































a0 if a0 ≤ x ≤ a1
x− l1 = f l1x if a1 ≤ x ≤ a2
a2 − l1 = f l1a2 if a2 ≤ x ≤ a3
x− l2 = f l2x if a3 ≤ x ≤ a4
a4 − l2 = f l2a4 if a4 ≤ x ≤ a5
x− l3 = f l3x if a5 ≤ x ≤ a6

. . .

and the expression in the desired form follows on letting k0 = l1 and kn = ln+1− ln
for n > 0 (and we note that fkna2n+1 = a2n+1 − kn = a2n − ln + ln+1 − kn = a2n).

In the second case, Jn exists just for 0 ≤ n ≤ N , and a similar calculation
applies. �

For the next result we observe that for any dense subchain X of R, there are
certain kinds of endomorphism which we cannot avoid. For f ∈ End(X,≤), let
Cf = {x ∈ X : ∃a, b(a < x < b ∧ f is constant on [a, x] or [x, b])}, and If = {x :
f(x) = x}. We say that f is locally identity-constant if Cf ∪ If is dense in X .
A typical locally identity-constant endomorphism may be constructed as follows.
Let C be a (necessarily countable) family of non-trivial pairwise disjoint intervals
(open, closed, or semi-open), and for each C ∈ C let aC ∈ C. Let I be any subset
of X \

⋃

C such that
⋃

C ∪ I is dense in X . Then we define f by letting f(x) = aC
if x ∈ C ∈ C, and f(x) = x if x ∈ I. It is easy to verify that this is so far order-
preserving. For instance, if x ≤ y and x ∈ C1 ∈ C, y ∈ C2 ∈ C, then C1 ≤ C2,
so aC1 ≤ aC2 ; and if x ∈ C ∈ C, y ∈ I then C < y, so f(x) = aC < y = f(y).
We still have to define f(x) for x 6∈

⋃

C ∪ I. Note that for all y < x lying in
⋃

C ∪ I, f(y) ≤ x, and for all y > x lying in
⋃

C ∪ I, f(y) ≥ x, which shows that
[sup{f(y) : y < x, y ∈

⋃

C∪I}, inf{f(z) : x < z, z ∈
⋃

C∪I}]∩X 6= ∅. So we let f(x)
be any member of [sup{f(y) : y < x, y ∈

⋃

C∪I}, inf{f(z) : x < z, z ∈
⋃

C∪I}]∩X .

Theorem 3.3. There is a dense subchain X of the real line of cardinality 2ℵ0 with
trivial embedding and epimorphism monoids, and such that every endomorphism of
X is locally identity-constant.

Proof. We use the model already described in Theorem 2.8, but modified if neces-
sary by excluding yet more functions. We showed there that the chain constructed
is embedding-rigid, and hence by Theorem 2.3 is also epimorphism-rigid. It remains
to analyze what the endomorphisms f can be. Using Lemma 2.5 we may enumer-
ate all endomorphisms of R that are not locally identity-constant. In our standard
construction of sets Xα and Yα we need to show how we can choose xα in such
a way that defining Xα to be

⋃

β<αXβ ∪ {xα} and Yα to be
⋃

β<α Yβ ∪ {fαxα},

Xα ∩ Yα = ∅. As seen in the proofs of Theorems 3.1, 3.2 if there is a non-empty
open interval I with image J under fα, such that J also has cardinality 2ℵ0 and
is disjoint from I, then there is a suitable choice of xα and yα. Namely we would
choose yα ∈ J \(

⋃

β<αXβ∪fα
⋃

β<α Yβ), and xα ∈ I such that fαxα = yα, and this

is sufficient to guarantee that xα 6∈
⋃

β<α Yβ and fαxα 6∈
⋃

β<α Xβ , and fαxα 6= xα.
So it remains to show that for any not locally identity-constant fα, such I and J

exist.
For this, observe that as fα is not locally identity-constant, there are x < y in

R such that no point of (x, y) lies in Cfα ∪ Ifα . Thus fα is strictly increasing,
hence 1–1, on (x, y). Also, as fα is not the identity on (x, y) there is z ∈ (x, y)
such that fαz 6= z. If z < fαz then (z, fαz) ∩ (fαz, f

2
αz) = ∅ (and if fαz < z then
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(fαz, z)∩ (f2
αz, fαz) = ∅). Since fα is 1–1 on (x, y) we may let I = (z,min(y, fαz))

(or (max(x, fαz), z) in the second case), and J = fαI. �

We remark that all locally identity-constant endomorphisms f constructed as
above have the property that f3 = f2 (they would be idempotent, f2 = f , apart
from ‘exceptional’ values which may be assigned in the final clause, at points of
X \

⋃

C ∪ I). However, a modification obtained by allowing C ∈ C to be cut into
infinitely many pieces, gives a more general class of such maps, and for these, all
powers of f can be distinct. In the simplest example of this type, there is a strictly
increasing unbounded sequence a0 < a1 < a2 < . . . in X such that f(x) = a0 if
x < a0 and f(x) = an+1 if an ≤ x < an+1. This is locally identity-constant, but
it has infinite order, since for every n, fn(a0) = an. It is easy to construct more
general examples of this type. This does mean that there are always necessarily
endomorphisms ofX having infinite order. It may be possible to construct examples
of dense subchains of R with trivial embedding and epimorphism monoids, but
admitting endomorphisms which are not locally identity-constant, but we have not
so far done so.

4. Results without the axiom of choice

The main result in this section is to show that the appeal to the axiom of choice
in the proof of Theorem 2.3 is really needed. We start by remarking in Theorem 4.1
on how things work out in the most well-known Fraenkel–Mostowski model in this
context, the so-called Mostowski ‘ordered’ model N . For this we start in a model
M of FMC (‘Fraenkel–Mostowski with choice’, obtained from ZFC by altering the
axiom of extensionality to allow the existence of ‘atoms’, non-sets which can be
members of sets), so that the set U of atoms is indexed by the rational numbers
Q, taking the order-preserving permutations as group G, and the normal filter of
subgroups generated by the pointwise stabilizers of finite subsets of U . If we want
to arrange embedding-rigidity but not epimorphism-rigidity, a modification to the
argument is required as in Theorem 4.2.

Theorem 4.1. In Mostowski’s ordered model, the set U of atoms is embedding and
epimorphism rigid, and any endomorphism f is locally identity-constant with just
finitely many intervals on which it is constant.

Proof. It suffices to verify the final statement, since any locally identity-constant
endomorphism which is also an embedding or an epimorphism must be the identity.
Since f ∈ N , there is a finite subset A = {a1, a2, . . . , an} of U such that (in M)
any automorphism of (U,<) fixing A pointwise also fixes f . Thus if g lies in the
stabilizer GA of A, gf = fg, which implies that for any x ∈ U , if g(x) = x then
g(f(x)) = f(g(x)) = f(x). If f(x) 6∈ A ∪ {x} then there is g ∈ G fixing A ∪ {x}
pointwise and moving f(x). Since we have just remarked that this does not happen,
we deduce that f(x) ∈ A∪{x}. Now f−1{ai} are finitely many intervals, and outside
⋃n

i=1 f
−1{ai} all points are fixed. Hence f is locally identity-constant. �

We note that in this model, any locally identity-constant endomorphism neces-
sarily has just finitely many intervals on which it is constant, as follows from the
above proof. This also follows from the fact that U is ‘o-amorphous’, in the sense
discussed in [1], as well as the slightly stronger statement that the intervals of con-
stancy have endpoints in U ∪{±∞}. Note that in addition, Cf ∪ If actually equals
U , and is not merely dense.

Theorem 4.2. It is relatively consistent with ZF set theory that there is a dense
chain (X,≤) such that Emb(X,≤) is trivial, but Epi(X,≤) is not.
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Proof. For this it suffices, by standard set-theoretical techniques, to find a Fraenkel–
Mostowski model in which the given statement holds. We let the set of atoms be
indexed by the family Q of all eventually zero sequences of rational numbers. Thus
U = {uσ : σ ∈ Q}. We linearly order Q, and hence also U , anti-lexicographically.
That is, σ < τ if there is i such that σ(i) < τ(i) and for all j > i, σ(j) = τ(j). If
we identify Qn with the set of members of Q which are zero from the nth place on,
each Qn is a convex subset of Q, and Q =

⋃

n<ω Qn.
Clearly as linearly ordered sets, Q and Q are isomorphic. We let f be the

function from U to U given by f(uσ) = uτ where τ(n) = σ(n + 1) for all n. (In
other words, f deletes the first entry of σ and moves all other entries one place to
the left.) We let G be the group of all order-preserving permutations of U under
the induced ordering which preserve the function f .

Now let U be the set of atoms in a model M of Fraenkel–Mostowski set theory
with choice, and let N be the Fraenkel–Mostowski submodel obtained from U , with
the group G and normal filter of subgroups generated by the stabilizers of finite
subsets of Q.

It is clear that f is a non-identity epimorphism of Q, and so in N , Epi(U,≤)
is non-trivial. We just have to show that Emb(U,≤) is trivial. Suppose for a
contradiction that g ∈ N is a non-identity order-embedding of U , and let u ∈ U

be moved by g. Then as g is order-preserving, gn(u) are all distinct and so U has
a countably infinite subset in N . Let this be supported by the finite subset X of
U . We suppose that u0ω (where 0ω is the all-zero sequence in Q, identified as the
unique member of Q0) lies in X , as it is fixed by every automorphism. Observe
that every member of U is mapped to u0ω by some power of f . Consequently, we
may assume that X is closed under f . If uh 6∈ X , then uh lies in an infinite orbit
of GX . Let n be greatest such that uh agrees with some member of X for the first
n places. Then for some q and r (or allowing q = −∞ and/or r = ∞ if necessary)
q is the greatest rational, and r is the least, such that some member of X agrees
with h for the first n places, and then has q < h(n) < r. Clearly the automorphism
group of Q acts transitively on sequences agreeing with h except on the nth place,
and with nth entry between q and r, and so the orbit of h is infinite as claimed.
Therefore no countably infinite subset of U can have finite support. �

We remark that in this model, |U | lies in ∆ \∆5 in the notation of [5]. (∆ is the
class of cardinals of sets admitting no injection to a proper subset, and ∆5 is the
class of cardinals of sets not admitting a surjection to a proper superset.)

5. Higher cardinalities

We return to the AC situation, but now at higher cardinalities. In [2] it was
shown how to construct dense chains in any uncountable cardinality κ which are
rigid but admit many embeddings. These ideas can be adapted to consider epi-
morphisms too. We give two constructions of (X,<), as in [2], first the basic one
which is rigid, and demonstrate that it is also epimorphism-rigid, and the other
which is still epimorphism-rigid, but admits embeddings into every interval (so is
far from embedding-rigid). The chains are exactly the same as before, but for com-
pleteness we give an outline of their construction, concentrating on establishing
epimorphism-rigidity. For ease we just deal with the case of κ regular.

Theorem 5.1. For any uncountable regular cardinal κ there is a dense epimorphism-
rigid chain (X,<) without endpoints of cardinality κ.

Proof. We consider Lκ = κ.Q under the lexicographic order, κ copies of Q. If S ⊆
κ\{0} is stationary, we also write Lκ,S for the union of Lκ with {(α,−∞) : α ∈ S},
also ordered lexicographically. Thus a new point is added immediately to the left
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of the αth copy of Q, for each α in S. We remark that there is a clear notion of
‘copy of Q’ in Lκ,S , namely, a point lies in a copy of Q if it has the form (α, q) for
some α < κ, q ∈ Q.

We start with a family S of κ pairwise disjoint stationary subsets of κ, which is
known to exist by [4], and write S as the disjoint union of ℵ0 pairwise disjoint sets
Sn of cardinality κ.

We build an increasing sequence of dense chains without endpoints X0 ⊆ X1 ⊆
X2 ⊆ . . . and the final chain is X =

⋃

n∈ω Xn. We start with X0 = Lκ. To perform
the extension from Xn to Xn+1 we require many stationary sets to ‘encode’ certain
cuts, and to stop there being unwanted epimorphisms, and use the families Sn just
introduced. Assume that Xn has been defined, and that there is a notion of ‘copy of
Q’ in Xn. For each point x of Xn which lies in a copy of Q, we adjoin immediately
to its left a set of the form Lκ,S , where the sets S are distinct (and hence disjoint)
members of Sn. Note that copies of Q which exist in Xn are thereby destroyed since
their members x now all have cofinality κ (meaning that κ is the least cardinality
of a well-ordered cofinal subset of (−∞, x)), but lots more copies of Q are added,
which in turn are destroyed in passing to Xn+2 and so on. The idea is that the
stationary set S = Sx such that Lκ,S is added immediately to the left of x acts as a
‘code’ for x, and that this is sufficiently robust to be recognizable even in X . Note
that a point gets encoded if and only if at some stage it lies in a copy of Q. Clearly
such points are dense in X . They have cofinality κ also in X , since no more new
points are ever added immediately to the left of x. All other points arise at some
intermediate stage, and since they do not lie in any copy of Q, must have the form
(α,−∞) for some α < κ; these have cofinality < κ, which they also retain in X .

It was shown in [2] that X is (automorphism-)rigid. We adapt that argument
to show that it is also epimorphism-rigid. The key point is that any epimorphism
f extends (uniquely) to the order-completion X , where it is continuous. These
statements are proved as in Lemmas 2.7(i) and 2.6. Now suppose for a contradiction
that f is a non-identity epimorphism ofX , and let x′ be moved by f . Let y′ = f(x′),
so that y′ 6= x′. Suppose that x′ < y′ (a similar argument applying if x′ > y′).
Since the set of coded points is dense, there is a coded point y such that x′ < y < y′.
As f is surjective, f−1(y) is non-empty, and is clearly bounded below. Let x be the
infimum of f−1(y). By continuity of f , f(x) = y, and also for all z < x, f(z) < y.
Also, x < y. Let x have cofinality λ. Then the image of an increasing sequence
witnessing this is cofinal in (−∞, y), so as y has cofinality κ, it follows that λ = κ,
and hence that x has cofinality κ. To see that x is also coded, it suffices to note
that x ∈ X . Suppose not, for a contradiction, and let xα for α < κ be a strictly
increasing sequence of points of X with supremum equal to x. Now X =

⋃

n∈N
Xn,

so as κ > ω is regular, we may pass to a subsequence of (xα) all of whose entries
lie in the same Xn, and we take minimal such n. Since any increasing κ-sequence
in Lκ is unbounded, n > 0. Since xα ∈ Xn \ Xn−1, xα lies in a copy of some
Lκ,S immediately to the left of a unique x′

α in a copy of Q in Xn−1. Since Lκ,S

has no bounded increasing κ-sequence, κ of the x′
α are distinct, and this gives a

strictly increasing sequence of points of Xn−1 having x as supremum, contrary to
minimality of n. Hence x lies in X and is coded.

Let Lx be the subset of the order-completion of Lκ,Sx
of ‘infinite’ points xα =

(α,−∞) for α ∈ κ \ {0}, where this is the set that was added immediately to the
left of x at stage n in the construction. Then Lx is a closed unbounded subset
of (−∞, x) ∩ Xn+1, and it is also closed unbounded in (−∞, x) ∩ X since no cut
immediately to the left of any of its points is ever realized. Moreover, Lx∩X = Sx.
The same remarks apply to y and points yα. In particular, Ly ∩X = Sy. We can
now see that C = {α ∈ κ : f(xα) = yα} is a closed unbounded subset of κ. Closure
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follows from the facts that Lx and Ly are closed, and that f is continuous. For
unboundedness, consider any α ∈ κ. We form a sequence α = α0 ≤ α1 ≤ α2 ≤ . . .

in κ thus. Suppose that αn has been chosen, n even. Then f(xαn
) < y and so

f(xαn
) ≤ yαn+1 for some αn+1 ≥ αn. If αn has been chosen, n odd, f−1(yαn

) is
bounded below x, and so there is some αn+1 ≥ αn such that f−1(yαn

) ≤ xαn+1 .
Hence yαn

≤ f(xαn+1). Let β be the supremum of the increasing sequence (αn :
n ∈ ω). Thus f(xα0 ) ≤ yα1 ≤ f(xα2) ≤ yα3 ≤ . . ., so supn∈N

f(xαn
) = supn∈N

yαn
.

By continuity of f , f(xβ) = f(supn∈N xαn
) = supn∈N f(xαn

) = supn∈N yαn
= yβ ,

so β ∈ C.
Since Sx is stationary, it intersects C. Let α ∈ Sx ∩ C. Then xα ∈ X since

α ∈ Sx, and f(xα) = yα since α ∈ C. Therefore yα ∈ X , and so α ∈ Sy. This
contradicts the assumption that Sx ∩ Sy = ∅. �

We have been unable to determine whether the chain constructed in this theo-
rem is also embedding-rigid, the main problem being that there is no reason why
embeddings should be continuous.

The second result is a strengthening of the first in which it is very much not
embedding-rigid.

Theorem 5.2. For any uncountable regular cardinal κ there is a dense chain (X,<)
without endpoints of cardinality κ that is epimorphism-rigid but which embeds into
any non-empty open interval.

Proof. We modify the basic construction of 5.1. First we work instead with finite
sequences S = (S0, . . . , Sm−1) of stationary sets rather than single ones, and write
Lκ,S for the concatenation LS0

∧ . . .∧ LSm−1 . If A is a family of κ finite non-empty
sequences of stationary subsets of κ \ {0}, whose final entries are pairwise disjoint,
divided into ℵ0 disjoint subsets An of size κ, we let XA =

⋃

n∈ω Xn where X0 = Lκ,
and Xn+1 is obtained from Xn by inserting sets of the form Lκ,S for s ∈ An

immediately to the left of all points of Xn lying in a copy of Q. This is exactly as in
5.1, except that ‘larger’ sets are inserted at each stage. The pairwise disjointness of
the final entries guarantees that a dense set of points is again ‘coded’ by stationary
sets.

In order to construct a chain which also admits many embeddings, we modify
this construction. We let S be a family of κ pairwise disjoint stationary subsets of
κ\{0}, and let I0 ⊂ I1 ⊂ I2 ⊂ . . . be sets of cardinality κ such that each In+1\In also
has cardinality κ. If Σ is the family of all finite sequences (i0, i1, . . . , in−1) such that
ij ∈ Ij for each j, then |κ×Σ| = κ, so we may let S = {Sασ : α ∈ κ, σ ∈ Σ}. For each
σ ∈ Σ, we let Aσ be the family of all sequences (Sα(), Sα(σ(0)), Sα(σ(0)σ(1)), . . . , Sασ)
for α < κ. A key point is that the stationary sets which arise as the final entry
of some such sequence are pairwise disjoint. Using the method described in the
previous paragraph, we let Xσ = XAσ

for each σ ∈ Σ.
Now L(Sα(),Sα(σ(0)),Sα(σ(0)σ(1)) ,...,Sασ) embeds naturally into

L(Sα(),Sα(σ(0)),Sα(σ(0)σ(1)) ,...,Sασ,Sα,σ∧〈i〉)
, and we want to ensure that there is a corre-

sponding embedding fσi of Xσ into Xσ∧〈i〉 (which will definitely not be continuous),
and to achieve this, we have to choose Xσ rather more carefully, using induction
on the length of σ. For the empty sequence, the construction is as usual. Now
assuming that Xσ has been chosen, embed each L(Sα(),Sα(σ(0)),Sα(σ(0)σ(1)) ,...,Sασ) into
L(Sβ(),Sβ(σ(0)),Sβ(σ(0)σ(1)) ,...,Sβσ,Sβ,σ∧〈i〉)

for some β, leaving κ values of β untouched,

and use these ‘spare’ copies to fill in all the additional points which have now
arisen and which need to be filled during the construction. By composing, we get
embeddings fσ,τ of Xσ into Xσ∧τ .

The final chain X is the disjoint union of all the Xσ for σ ∈ Σ, and the relation
between points lying in distinct Xσs is determined by inserting the whole of X〈i〉∧σ
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into a certain irrational cut of Xσ, where by ‘irrational cut’ we mean, an irrational
cut in a copy of Q that appears at some stage. The full details as given in [2] are
omitted. The main points are that the fact that this X is epimorphism-rigid is
proved just as in the previous theorem, since the set of encoded points is dense,
and each encoded point is coded by a distinct stationary set, and again as in [2]
one checks using the embeddings fσ,τ that the whole of X can be embedded into
every non-trivial interval. �
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