Refining the arithmetical hierarchy of classical principles

Fujiwara, Makoto
Kurahashi, Taishi
(Citation)
Mathematical Logic Quarterly, 68(3):318-345
(Issue Date)
2022-08
(Resource Type)
journal article
(Version)
Accepted Manuscript
(Rights)
This is the peer reviewed version of the following article: [Fujiwara, M. and
Kurahashi, T. (2022), Refining the arithmetical hierarchy of classical principles.
Math. Log. Quart., 68: 318-345.], which has been published in final form at
https://doi.org/10.1002/malq. 202000077. This article may be used for non-commercial... (URL)
https://hdl. handle. net/20.500.14094/90009587

Refining the arithmetical hierarchy of classical principles

Makoto Fujiwara* ${ }^{* \dagger}$ and Taishi Kurahashi ${ }^{\ddagger \S}$

Abstract

We refine the arithmetical hierarchy of various classical principles by finely investigating the derivability relations between these principles over Heyting arithmetic. We mainly investigate some restricted versions of the law of excluded middle, de Morgan's law, the double negation elimination, the collection principle and the constant domain axiom.

1 Introduction

The interrelations between weak logical principles over intuitionistic arithmetic have been studied extensively in these three decades (cf. [1, 6, 8, 10, 11, 14, 17]). In particular, Akama et al. [1] systematically studied the structure of the law of excluded middle LEM and the double negation elimination DNE restricted to prenex formulas and some related principles over intuitionistic first-order arithmetic HA. Interestingly, the derivability relation between them forms a beautiful hierarchy as presented in Figure 1 (cf. [1, Figure 2]).
By the prenex normal form theorem, which is first presented in [1] and corrected recently in [13], this arithmetical hierarchy covers LEM for arbitrary formulas. In this sense, the infinite hierarchy in Figure 1 represents a gradual transition of strength of semi-classical arithmetic from HA to the classical arithmetic $\mathrm{PA}=$ HA + LEM. This hierarchy plays an important role in several aspects. First, it is employed for the relativization of the relation between classical and intuitionistic arithmetic into the context of semi-classical arithmetic. For example, PA is Π_{k+2}-conservative over HA $+\Sigma_{k}$-LEM for all natural numbers k (see [13, Section $6]$ and $[2,12]$). In addition, for any theory T in-between HA and PA, the prenex normal form theorem for the classes of formulas $\mathrm{U}_{k^{\prime}}$ (introduced in [1]) and $\Pi_{k^{\prime}}$ holds in T for all $k^{\prime} \leq k$, if and only if, T proves $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE (see [13, Section 7]). Then the refinement of the hierarchy is also important for analyzing

[^0]

Figure 1: An arithmetical hierarchy of classical principles
the results on the relation between classical and intuitionistic arithmetic in more detail. Secondly, the hierarchy is employed as a framework for a sort of constructive reverse mathematics over HA (cf. [3, 4, 19]). For example, Ramsey's theorem for pairs and recursive assignments of 2 colors is located in the place of $\left(\Pi_{3} \vee \Pi_{3}\right)$-DNE (see [3]). Despite the fact that mathematical statements are usually not in prenex normal form, many of them are shown to be equivalent to some restricted logical principle in the arithmetical hierarchy (seemingly because the prenex normal form theorem is partly available in semi-classical arithmetic containing such logical principles). Then the refinement of the hierarchy makes it possible to classify the logical strength of mathematical statements in finer classes. After [1], in connection with the development of constructive reverse mathematics [15] over intuitionistic second-order arithmetic, further fine-grained analysis has been done for the principles with $k=1$ in the hierarchy ($[8,11$, 17]). More recently, some connection between those principles and some other principles has been also found $([6,10])$. Then it should be expected to recast the hierarchy in [1] based on these recent developments. The history of the research of this line until [11] is summarized in [11, Section 2.1].

Motivated from them, we study the interrelations between various principles from the previous research and the related principles comprehensively in the context of HA. In particular, we investigate principles more finely and more systematically than ever before. Such a fine-grained analysis reveals a more detailed hierarchical structure which the logical principles have. In addition to the principles dealt with in [1], we deal with de Morgan's law DML, the (contrapositive) collection principle $\mathbf{C O L L}{ }^{\mathbf{c p}}$ and the constant domain axiom $\mathbf{C D}$ systematically. Among many other things, we show that $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE, Σ_{k}-DML with respect to duals (which is Σ_{k}-LLPO in [1]), Σ_{k} - DML $+\Sigma_{k-1}$-DNE, $\Pi_{k}-\mathbf{C O L L}^{\mathbf{c p}}$ and $\left(\Pi_{k}, \Pi_{k}\right)$-CD are pairwise equivalent over HA for all natural numbers k greater than 0 (see Corollary 7.6).

The structure of the paper is as follows. In Section 3, we extract and investigate the principles concerning duals φ^{\perp} (which are prenex formulas classically
equivalent to $\neg \varphi$) of prenex formulas φ. In Section 4, we investigate variants of LEM. Section 5 is devoted to investigate several variations of DML. In particular, LEM for negated formulas is shown to be a variation of DML. In Section 6, we investigate variants of DNE. In particular, DML is shown to be a variation of DNE. Finally, we investigate CD in Section 7. The results established in this paper are summarized in Section 8, to which we refer the reader who merely wants to consult the results.

2 Preliminaries

In this paper, we work within the framework of first-order intuitionistic arithmetic with the logical connectives $\wedge, \vee, \rightarrow, \exists, \forall$ and \perp, where $\neg \varphi$ is the abbreviation of $\varphi \rightarrow \perp$. We may assume that the language of first-order arithmetic contains function symbols corresponding to all primitive recursive functions. Heyting arithmetic HA is an intuitionistic theory in the language of first-order arithmetic consisting of basic axioms for arithmetic, induction axiom scheme and axioms corresponding to defining equations of primitive recursive functions (see [16, Section 3.2]). Recall that $\varphi \rightarrow \neg \neg \varphi,(\varphi \rightarrow \psi) \rightarrow(\neg \psi \rightarrow \neg \varphi)$, $\neg \neg(\varphi \rightarrow \psi) \leftrightarrow(\neg \neg \varphi \rightarrow \neg \neg \psi), \neg \neg \neg \varphi \rightarrow \neg \varphi$ and $\forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$ etc. are intuitionistically derivable. For more information about the logical implications over intuitionistic logic, we refer the reader to [20, Section 6.2].

Throughout this paper, we assume that k always denotes a natural number $k \geq 0$. We define the family $\left\{\Sigma_{k}, \Pi_{k}: k \geq 0\right\}$ of sets of formulas inductively as follows:

- Let $\Sigma_{0}=\Pi_{0}$ be the set of all quantifier-free formulas;
- $\Sigma_{k+1}:=\left\{\exists x_{1} \cdots \exists x_{n} \varphi \mid \varphi \in \Pi_{k}, n \geq 1\right.$ and x_{1}, \ldots, x_{n} are variables $\} ;$
- $\Pi_{k+1}:=\left\{\forall x_{1} \cdots \forall x_{n} \varphi \mid \varphi \in \Sigma_{k}, n \geq 1\right.$ and x_{1}, \ldots, x_{n} are variables $\}$.

For convenience, we assume that Σ_{m} and Π_{m} denote the empty set for any negative integer m. We say that a formula is in prenex normal form if it is in Σ_{k} or Π_{k} for some k. Let $\mathrm{FV}(\varphi)$ denote the set of all free variables in φ. It is known that every formula φ in $\Sigma_{k+1}\left(\right.$ resp. $\left.\Pi_{k+1}\right)$ is HA-equivalent to a formula ψ in $\Sigma_{k+1}\left(\right.$ resp. $\left.\Pi_{k+1}\right)$ such that $\operatorname{FV}(\varphi)=\mathrm{FV}(\psi)$ and ψ is of the form $\exists x \psi^{\prime}$ (resp. $\forall x \psi^{\prime}$) where ψ^{\prime} is Π_{k} (resp. Σ_{k}).

Let Γ and Θ be sets of formulas. We define $\Gamma \vee \Theta, \Gamma^{\mathrm{n}}$ and Γ^{dn} to be the sets $\{\varphi \vee \psi \mid \varphi \in \Gamma$ and $\psi \in \Theta\},\{\neg \varphi \mid \varphi \in \Gamma\}$ and $\{\neg \neg \varphi \mid \varphi \in \Gamma\}$ of formulas, respectively. We adopt a convention that we write $\Gamma \subseteq \Theta$ if for any formula $\varphi \in \Gamma$, there exists a formula $\psi \in \Theta$ such that $\operatorname{FV}(\varphi)=\mathrm{FV}(\psi)$ and HA proves $\varphi \leftrightarrow \psi$. Then it is shown that $\Sigma_{k} \subseteq \Sigma_{k+1} \cap \Pi_{k+1}$ and $\Pi_{k} \subseteq \Sigma_{k+1} \cap \Pi_{k+1}$ (cf. [13]).

We introduce several principles which give semi-classical arithmetic as follows:

Definition 2.1. Let Γ be any set of formulas.

Γ-LEM	$\varphi \vee \neg \varphi$	$(\varphi \in \Gamma)$
Δ_{k}-LEM	$(\varphi \leftrightarrow \psi) \rightarrow \varphi \vee \neg \varphi$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Γ-DNE	$\neg \neg \varphi \rightarrow \varphi$	$(\varphi \in \Gamma)$

For each theory T and principle P, let $T+P$ denote the theory obtained from T by adding universal closures of all instances of P as axioms. Since HA proves $\varphi \vee \neg \varphi \rightarrow(\neg \neg \varphi \rightarrow \varphi)$ for any formula φ, the following fact trivially holds.

Fact 2.2. For any set Γ of formulas, $\mathrm{HA}+\Gamma$-LEM $\vdash \Gamma$-DNE.
Nontrivial implications between the principles defined in Definition 2.1 are investigated by Akama et al. [1]. The following fact is visualized in Figure 1 in Section 1.

Fact 2.3 (Akama et al. [1]).

1. Σ_{k}-LEM and $\Pi_{k}-\mathbf{L E M}+\Sigma_{k}$ - $\mathbf{D N E}$ are equivalent over HA ;
2. $\mathrm{HA}+\Pi_{k}$-LEM $\vdash\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE;
3. $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \Delta_{k}$-LEM;
4. $\mathrm{HA}+\Sigma_{k}$-DNE $\vdash \Delta_{k}$-LEM;
5. $\mathrm{HA}+\Delta_{k+1}-\mathbf{L E M} \vdash \Sigma_{k}$-LEM;
6. Σ_{k}-DNE and Π_{k+1}-DNE are equivalent over HA.

In the present paper, we also deal with other important principles based on such as the double negation shift, de Morgan's law and the constant domain axiom.

Definition 2.4. Let Γ and Θ be any sets of formulas.

Γ-DNS	$\forall x \neg \neg \varphi(x) \rightarrow \neg \neg \forall x \varphi(x)$	$(\varphi(x) \in \Gamma)$
Γ-DML	$\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi$	$(\varphi, \psi \in \Gamma)$
(Γ, Θ)-CD	$\forall x(\varphi \vee \psi(x)) \rightarrow \varphi \vee \forall x \psi(x)$	$(\varphi \in \Gamma, \psi(x) \in \Theta$ and $x \notin \mathrm{FV}(\varphi))$

The principle Σ_{k} - DML is introduced in [3]. The principles defined in Definition 2.4 have mainly been investigated for $k=1$ in the literature. For example, $\Sigma_{1}-\mathbf{D M L}$ and $\Pi_{1}-$ DML correspond to the principle LLPO and disjunctive Markov's principle, respectively (see [14]). Also the principle Δ_{1}-LEM corresponds to the principle (IIIa) in [8] and to the principle Δ_{a}-LEM in [11]. Notice that $[8,10,14]$ are studied in the context of second-order arithmetic. We have the following results from the proofs of the corresponding results in these papers.

Fact 2.5 (Ishihara [14, Proposition 1]).

1. $\mathrm{HA}+\Sigma_{1}-\mathrm{DNE} \vdash \Pi_{1}-\mathrm{DML}$;
2. $\mathrm{HA}+\Sigma_{1}-\mathrm{DML} \vdash \Pi_{1}$ - DML .

Fact 2.6 (Fujiwara, Ishihara and Nemoto [8, Proposition 2]). $\mathrm{HA}+\Pi_{1}$-DML \vdash Δ_{1}-LEM.

Fact 2.7 (Fujiwara and Kawai [10, Proposition 4.2]). $\left(\Pi_{1}, \Pi_{1}\right)$-CD and Σ_{1}-DML are equivalent over HA.

In the following sections, we investigate those principles more finely than ever before. In the process of the investigation, we also generalize the facts stated above.

Concerning Γ-DNS, we easily obtain the following proposition.

Proposition 2.8.

1. $\mathrm{HA}+\Sigma_{k}$-DNE $\vdash \Sigma_{k}$-DNS;
2. Σ_{k}-DNS and Π_{k+1}-DNS are equivalent over HA.

Proof. 1. Let φ be any Σ_{k} formula. Then HA $+\Sigma_{k}$ - DNE $\vdash \forall x \neg \neg \varphi \rightarrow \forall x \varphi$. We obtain HA $+\Sigma_{k}$-DNE $\vdash \forall x \neg \neg \varphi \rightarrow \neg \neg \forall x \varphi$.
2. We prove $\mathrm{HA}+\Sigma_{k}$ - DNS $\vdash \Pi_{k+1}$-DNS. Let $\forall y \varphi(x, y)$ be any Π_{k+1} formula where $\varphi(x, y) \in \Sigma_{k}$. Then HA $\vdash \forall x \neg \neg \forall y \varphi(x, y) \rightarrow \forall x \forall y \neg \neg \varphi(x, y)$. Let $(z)_{0}$ and $(z)_{1}$ be primitive recursive inverse functions of a fixed pairing function which calculate the first and the second components of z as a pair, respectively. Then HA $\vdash \forall x \neg \neg \forall y \varphi(x, y) \rightarrow \forall z \neg \neg \varphi\left((z)_{0},(z)_{1}\right)$. By applying Σ_{k}-DNS, we obtain HA $+\Sigma_{k}$-DNS $\vdash \forall x \neg \neg \forall y \varphi(x, y) \rightarrow \neg \neg \forall z \varphi\left((z)_{0},(z)_{1}\right)$. We conclude HA $+\Sigma_{k}$-DNS $\vdash \forall x \neg \neg \forall y \varphi(x, y) \rightarrow \neg \neg \forall x \forall y \varphi(x, y)$.

A detailed investigation of the principle Σ_{1}-DNS including Proposition 2.8.1 for $k=1$ is in [11].

3 The dual principles

In [13], the following result is proved.
Fact 3.1 (Fujiwara and Kurahashi [13, Lemma 4.7]).

1. For any Σ_{k} formula φ, there exists a Π_{k} formula φ^{\prime} such that $\mathrm{HA}+$ Σ_{k-1}-DNE $\vdash \neg \varphi \leftrightarrow \varphi^{\prime} ;$
2. For any Π_{k} formula φ, there exists a Σ_{k} formula φ^{\prime} such that $\mathrm{HA}+$ Σ_{k}-DNE $\vdash \neg \varphi \leftrightarrow \varphi^{\prime}$.

In this section, we investigate the dual principles and the weak dual principles (see Definitions 3.2 and 3.10) motivated from Fact 3.1.

3.1 The dual principles

First, we recall the notion of duals of formulas in prenex normal form, which is defined in [1] informally.

Definition 3.2 (cf. [1]). For any formula φ in prenex normal form, we define the dual φ^{\perp} of φ inductively as follows:

1. $\varphi^{\perp}: \equiv \neg \varphi$ if φ is quantifier-free;
2. $(\forall x \varphi(x))^{\perp}: \equiv \exists x \varphi^{\perp}(x)$;
3. $(\exists x \varphi(x))^{\perp}: \equiv \forall x \varphi^{\perp}(x)$.

The following proposition is a basic property of duals.
Proposition 3.3. Let φ be any formula in prenex normal form.

1. If φ is $\Sigma_{k}\left(\right.$ resp. $\left.\Pi_{k}\right)$, then φ^{\perp} is $\Pi_{k}\left(\right.$ resp. $\left.\Sigma_{k}\right)$;
2. $\mathrm{HA} \vdash \varphi^{\perp \perp} \leftrightarrow \varphi$;
3. $\mathrm{HA} \vdash \varphi^{\perp} \rightarrow \neg \varphi$;
4. $\mathrm{HA} \vdash \neg\left(\varphi \wedge \varphi^{\perp}\right)$.

Proof. 1. Trivial.
2. It is known that if φ is Σ_{0}, then HA $\vdash \neg \neg \varphi \leftrightarrow \varphi$. Then clause 2 is proved by induction on the number of quantifiers contained in φ.
3. Notice that HA proves the formulas $\exists x \neg \varphi \rightarrow \neg \forall x \varphi$ and $\forall x \neg \varphi \rightarrow \neg \exists x \varphi$. Then clause 3 is also proved by induction on the number of quantifiers in φ.
4. This is because HA $\vdash \varphi \wedge \varphi^{\perp} \rightarrow \varphi \wedge \neg \varphi$ by clause 3 .

From Propositions 3.3.(1) and (2), we have that the mapping $(\cdot)^{\perp}$ is a bijection between $\Sigma_{k}\left(\right.$ resp. $\left.\Pi_{k}\right)$ and Π_{k} (resp. Σ_{k}) modulo HA-provable equivalence.

Remark 3.4. It is possible to extend the notion of duals in Definition 3.2 (from [1]) to arbitrary formulas by the operation $(\cdot)^{d}$ defined inductively as

1. $\varphi^{d}: \equiv \neg \varphi$ if φ is prime;
2. $(\varphi \wedge \psi)^{d}: \equiv \varphi^{d} \vee \psi^{d}$;
3. $(\varphi \vee \psi)^{d}: \equiv \varphi^{d} \wedge \psi^{d}$;
4. $(\varphi \rightarrow \psi)^{d}: \equiv \varphi \wedge \psi^{d}$;
5. $(\forall x \varphi(x))^{d}: \equiv \exists x \varphi^{d}(x)$;
6. $(\exists x \varphi(x))^{d}: \equiv \forall x \varphi^{d}(x)$.

In fact, φ^{d} is HA-equivalent to $\neg \varphi$ for quantifier-free φ, and hence, φ^{d} is HAequivalent to φ^{\perp} for prenex φ. On the one hand, clauses 3 and 4 in Proposition 3.3 hold for the operation $(\cdot)^{d}$. On the other hand, for clause $2, \varphi \rightarrow\left(\varphi^{d}\right)^{d}$ is not provable in HA for some (non-prenex) φ whereas the converse is always provable in HA.

In contrast to Proposition 3.3.(3), the formula $\neg \varphi \rightarrow \varphi^{\perp}$ cannot be proved in HA even for some prenex φ. For example, $\neg \operatorname{Con}(\mathrm{HA}) \rightarrow \operatorname{Con}(\mathrm{HA})^{\perp}$ is not provable in HA, where Con (HA) is a conventional Π_{1} consistency statement of HA (cf. [18, Section 4]). Thus, we introduce the following principle.
Definition 3.5 (The dual principles). Let Γ be any set of formulas in prenex normal form.
Γ-DUAL $\quad \neg \varphi \rightarrow \varphi^{\perp} \quad(\varphi \in \Gamma)$
The principle Σ_{1}-DUAL is provable in HA.
Proposition 3.6. HA $\vdash \Sigma_{1}$-DUAL.
Proof. Let $\varphi \equiv \exists x \psi$ be any Σ_{1} formula where ψ is Σ_{0}. Then φ^{\perp} is $\forall x \neg \psi$, and hence $\neg \varphi$ is equivalent to φ^{\perp} over HA.

Proposition 3.7. The following are equivalent over HA:

1. Σ_{k+1}-DUAL.
2. Π_{k}-DUAL.
3. Σ_{k}-DNE.

Proof. It is trivial that HA $+\Sigma_{k+1}$-DUAL proves Π_{k}-DUAL because $\Pi_{k} \subseteq$ Σ_{k+1}.

We prove HA $+\Pi_{k}$-DUAL $\vdash \Sigma_{k}$-DNE. Let φ be any Σ_{k} formula. By Proposition 3.3.(3), we have HA $\vdash \varphi^{\perp} \rightarrow \neg \varphi$. Then HA $\vdash \neg \neg \varphi \rightarrow \neg \varphi^{\perp}$. Since φ^{\perp} is Π_{k} by Proposition 3.3.(1), HA $+\Pi_{k}$-DUAL proves $\neg \varphi^{\perp} \rightarrow \varphi^{\perp \perp}$. By Proposition 3.3.(2), we conclude HA $+\Pi_{k}$-DUAL $\vdash \neg \neg \varphi \rightarrow \varphi$.

Finally, we prove HA $+\Sigma_{k}$ - DNE $\vdash \Sigma_{k+1}$-DUAL by induction on k. The case $k=0$ follows from Proposition 3.6. Suppose that the statement holds for all $k^{\prime}<k+1$, and we prove $\mathrm{HA}+\Sigma_{k+1}$-DNE $\vdash \Sigma_{k+2}$-DUAL.

Let $\exists x \forall y \psi$ be any Σ_{k+2} formula where ψ is Σ_{k}. Since HA $+\Sigma_{k}$-DNE proves $\neg \neg \psi \rightarrow \psi$, we have HA $+\Sigma_{k}$-DNE $\vdash \neg \exists x \forall y \psi \rightarrow \neg \exists x \forall y \neg \neg \psi$. Then,

$$
\mathrm{HA}+\Sigma_{k} \text { - DNE } \vdash \neg \exists x \forall y \psi \rightarrow \forall x \neg \neg \exists y \neg \psi .
$$

By induction hypothesis, HA $+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg \psi \rightarrow \psi^{\perp}$. Then,

$$
\mathrm{HA}+\Sigma_{k} \text { - DNE } \vdash \neg \exists x \forall y \psi \rightarrow \forall x \neg \neg \exists y \psi^{\perp} .
$$

Since $\exists y \psi^{\perp} \equiv(\forall y \psi)^{\perp}$ is Σ_{k+1},

$$
\mathrm{HA}+\Sigma_{k+1}-\mathbf{D N E} \vdash \neg \exists x \forall y \psi \rightarrow \forall x(\forall y \psi)^{\perp} .
$$

We conclude HA $+\Sigma_{k+1}$-DNE $\vdash \neg \exists x \forall y \psi \rightarrow(\exists x \forall y \psi)^{\perp}$.

From Propositions 3.3.(3) and 3.7, we obtain Fact 3.1.
We may introduce the following Δ_{k}-variations of the dual principle.
Definition 3.8 (Δ_{k} dual principles).

Δ_{k}-DUAL $^{\Sigma}$	$(\varphi \leftrightarrow \psi) \rightarrow\left(\neg \varphi \rightarrow \varphi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Δ_{k}-DUAL $^{\Pi}$	$(\varphi \leftrightarrow \psi) \rightarrow\left(\neg \psi \rightarrow \psi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$

However, each of them is trivially equivalent to the corresponding original dual principle.

Proposition 3.9.

1. Δ_{k} - $\mathbf{D U A L}{ }^{\Sigma}$ is equivalent to Σ_{k}-DUAL over HA ;
2. Δ_{k}-DUAL ${ }^{\Pi}$ is equivalent to Π_{k}-DUAL over HA .

Proof. 1. HA $+\Sigma_{k}$-DUAL obviously proves Δ_{k} - DUAL ${ }^{\Sigma}$. On the other hand, let φ be any Σ_{k} formula. Then $\mathrm{HA} \vdash \neg \varphi \rightarrow(\varphi \leftrightarrow \perp)$. Hence HA $+\Delta_{k}$ - DUAL ${ }^{\Sigma}$ proves $\neg \varphi \rightarrow\left(\neg \varphi \rightarrow \varphi^{\perp}\right)$. We conclude HA $+\Delta_{k}$ - DUAL ${ }^{\Sigma} \vdash \neg \varphi \rightarrow \varphi^{\perp}$.

2 is proved in a similar way.
Thus it follows from Proposition 3.7 that Δ_{k} - DUAL ${ }^{\Sigma}$ and Δ_{k} - DUAL ${ }^{\Pi}$ are HA-equivalent to $\Sigma_{k-1}-\mathbf{D N E}$ and Σ_{k}-DNE, respectively. In fact, Δ_{1}-DUAL ${ }^{\Pi}$ corresponds to the principle (VIb) in [8], and it is proved to be HA-equivalent to Σ_{1}-DNE (see [8, Proposition 1]).

3.2 The weak dual principles

In this subsection, we investigate weak variations of the dual principle, which we call the weak dual principles.

Definition 3.10 (The weak dual principles). Let Γ be any set of formulas in prenes normal form.
Γ-WDUAL $\quad \neg \varphi^{\perp} \rightarrow \neg \neg \varphi \quad(\varphi \in \Gamma)$
Of course Γ-DUAL implies Γ-WDUAL over $H A$. It is known that Σ_{1}-DNE is not provable in HA (cf. [1]), and so is $\Pi_{1}-\mathbf{D U A L}$ by Proposition 3.7. On the other hand, the following proposition shows that Π_{1}-WDUAL is HA-provable.

Proposition 3.11.

1. HA $\vdash \Sigma_{1}$-WDUAL;
2. HA $\vdash \Pi_{1}$-WDUAL.

Proof. 1. This follows from Proposition 3.6.
2. Let $\forall x \varphi$ be any Π_{1} formula where φ is Σ_{0}. Since $\neg(\forall x \varphi)^{\perp} \equiv \neg \exists x \neg \varphi$, we have

$$
\begin{array}{rlrl}
\mathrm{HA} \vdash \neg(\forall x \varphi)^{\perp} & \rightarrow \forall x \neg \neg \varphi, & \\
& \rightarrow \forall x \varphi, & & \text { (because } \varphi \in \Sigma_{0} \text {) } \\
& \rightarrow \neg \neg \forall x \varphi . & \square
\end{array}
$$

Unlike the situation of the dual principles, we show that Σ_{k+1}-WDUAL and Π_{k+1}-WDUAL are equivalent over HA.

Proposition 3.12. The following are equivalent over HA:

1. $\Sigma_{k+1}-\mathbf{W D U A L}$.
2. Π_{k+1}-WDUAL.
3. Σ_{k}-DNS.

Proof. First, we prove HA $+\Sigma_{k+1}$-WDUAL $\vdash \Sigma_{k}$-DNS. Let φ be any Σ_{k} formula. Since $\exists x \varphi^{\perp}$ is Σ_{k+1},

$$
\text { HA }+\Sigma_{k+1} \text {-WDUAL } \vdash \neg\left(\exists x \varphi^{\perp}\right)^{\perp} \rightarrow \neg \neg \exists x \varphi^{\perp}
$$

By Propositions 3.3.(2) and 3.3.(3), HA $+\Sigma_{k+1}$-WDUAL $\vdash \neg \forall x \varphi \rightarrow \neg \neg \exists x \neg \varphi$, and thus HA $+\Sigma_{k+1}$-WDUAL proves $\neg \exists x \neg \varphi \rightarrow \neg \neg \forall x \varphi$. Then, we obtain

$$
\mathrm{HA}+\Sigma_{k+1} \text {-WDUAL } \vdash \forall x \neg \neg \varphi \rightarrow \neg \neg \forall x \varphi
$$

Secondly, we prove HA $+\Pi_{k+1}$-WDUAL $\vdash \Sigma_{k}$-DNS. Let φ be any Σ_{k} formula. By Proposition 3.3.(3), $(\forall x \varphi)^{\perp} \equiv \exists x \varphi^{\perp}$ implies $\exists x \neg \varphi$ in HA. Thus HA $\vdash \neg \exists x \neg \varphi \rightarrow \neg(\forall x \varphi)^{\perp}$. Since $\forall x \varphi$ is Π_{k+1}, we obtain

$$
\mathrm{HA}+\Pi_{k+1} \text {-WDUAL } \vdash \forall x \neg \neg \varphi \rightarrow \neg \neg \forall x \varphi
$$

Finally, we show that HA $+\Sigma_{k}$-DNS proves both Σ_{k+1}-WDUAL and Π_{k+1}-WDUAL by induction on k. The case $k=0$ follows from Proposition 3.11. Suppose that the statement holds for k, and we prove
(i) $\mathrm{HA}+\Sigma_{k+1}$ - DNS $\vdash \Sigma_{k+2}$-WDUAL; and
(ii) $\mathrm{HA}+\Sigma_{k+1}$-DNS $\vdash \Pi_{k+2}$-WDUAL.
(i): Let $\exists x \varphi$ be any Σ_{k+2} formula where φ is Π_{k+1}. By induction hypothesis,

$$
\mathrm{HA}+\Sigma_{k} \text {-DNS } \vdash \neg \varphi^{\perp} \rightarrow \neg \neg \varphi .
$$

Then, HA $+\Sigma_{k}$-DNS proves the formula $\neg \varphi \rightarrow \neg \neg \varphi^{\perp}$, and hence it proves $\forall x \neg \varphi \rightarrow \forall x \neg \neg \varphi^{\perp}$. Since φ^{\perp} is Σ_{k+1}, by applying $\Sigma_{k+1}-\mathbf{D N S}$, we obtain

$$
\mathrm{HA}+\Sigma_{k+1}-\mathbf{D N S} \vdash \forall x \neg \varphi \rightarrow \neg \neg \forall x \varphi^{\perp}
$$

Then HA $+\Sigma_{k+1}$-DNS $\vdash \neg \forall x \varphi^{\perp} \rightarrow \neg \forall x \neg \varphi$. Therefore we conclude

$$
\mathrm{HA}+\Sigma_{k+1} \text {-DNS } \vdash \neg(\exists x \varphi)^{\perp} \rightarrow \neg \neg \exists x \varphi .
$$

(ii): Let $\forall x \varphi$ be any Π_{k+2} formula where φ is Σ_{k+1}. Since $\neg(\forall x \varphi)^{\perp} \equiv$ $\neg \exists x \varphi^{\perp}$ implies $\forall x \neg \varphi^{\perp}$ in HA, by induction hypothesis, we obtain

$$
\mathrm{HA}+\Sigma_{k} \text {-DNS } \vdash \neg(\forall x \varphi)^{\perp} \rightarrow \forall x \neg \neg \varphi
$$

Since φ is Σ_{k+1}, we conclude

$$
\mathrm{HA}+\Sigma_{k+1}-\mathrm{DNS} \vdash \neg(\forall x \varphi)^{\perp} \rightarrow \neg \neg \forall x \varphi .
$$

As in the case of the dual principles, we can introduce the Δ_{k}-variations of the weak dual principle, namely, Δ_{k} - WDUAL ${ }^{\Sigma}$ and Δ_{k} - WDUAL ${ }^{\Pi}$. Notice that any instance of Γ-WDUAL is HA-equivalent to a formula of the form $\neg \varphi \rightarrow$ $\neg \neg \varphi^{\perp}$. Then, as in the proof of Proposition 3.9, it is shown that Δ_{k} - WDUAL ${ }^{\Sigma}$ and Δ_{k}-WDUAL ${ }^{\Pi}$ are equivalent to Σ_{k}-WDUAL and Π_{k}-WDUAL over HA, respectively. So they are also equivalent to $\Sigma_{k-1}-\mathbf{D N S}$ by Proposition 3.12.

4 The law of excluded middle

In this section, we investigate variations of the law of excluded middle. This section consists of two subsections. First, we investigate the law of excluded middle with respect to duals. Secondly, we investigate the law of excluded middle for negated formulas.

4.1 The law of excluded middle with respect to duals

From the observations in Section $3, \varphi^{\perp}$ is stronger than $\neg \varphi$. Hence by replacing $\neg \varphi$ in Γ-LEM with φ^{\perp}, we can expect to get a stronger principle. As an example of an application of the investigations in Section 3, in this subsection, we study this kind of variation of the law of excluded middle.

Definition 4.1 (The law of excluded middle with respect to duals). Let Γ be any set of formulas in prenex normal form.

$\Gamma \mathbf{- L E M}^{\perp}$	$\varphi \vee \varphi^{\perp}$	$(\varphi \in \Gamma)$
$\Delta_{k} \mathbf{- L E M}^{\perp, \Sigma}$	$(\varphi \leftrightarrow \psi) \rightarrow \varphi \vee \varphi^{\perp}$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
$\Delta_{k}-\mathbf{L E M}^{\perp, \Pi}$	$(\varphi \leftrightarrow \psi) \rightarrow \psi \vee \psi^{\perp}$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$

The principle $\Delta_{1}-\mathbf{L E M}^{\perp, \Pi}$ corresponds to the principle (IIIb) in [8] and to the principle Δ_{b}-LEM in [11]. The following fact is already known.

Fact 4.2 (Fujiwara, Ishihara and Nemoto [8, Proposition 1]). The following are equivalent over HA:

1. $\Delta_{1}-\mathbf{L E M}^{\perp, \Pi}$.
2. $\Sigma_{1}-\mathrm{DNE}$.

The following proposition shows interrelations between the laws of excluded middle and their counterparts with respect to duals.

Proposition 4.3. Let Γ be any set of formulas in prenex normal form.

1. Γ-LEM ${ }^{\perp}$ is equivalent to Γ-LEM $+\Gamma$-DUAL over HA ;
2. $\mathrm{HA}+\Delta_{k}$-LEM ${ }^{\perp, \Sigma} \vdash \Delta_{k}$-LEM;
3. $\mathrm{HA}+\Delta_{k}$-LEM ${ }^{\perp, \Pi} \vdash \Delta_{k}$-LEM;
4. $\mathrm{HA}+\Delta_{k}$-LEM $+\Sigma_{k}$-DUAL $\vdash \Delta_{k}$ - LEM $^{\perp, \Sigma}$;
5. $\mathrm{HA}+\Delta_{k}$-LEM $+\Pi_{k}$-DUAL $\vdash \Delta_{k}$-LEM ${ }^{\perp, \Pi}$.

Proof. 1. By Proposition 3.3.(3), HA $+\Gamma$-LEM ${ }^{\perp} \vdash \Gamma$-LEM. Also HA + Γ-LEM ${ }^{\perp} \vdash \Gamma$-DUAL is evident because HA proves $\varphi \vee \varphi^{\perp} \rightarrow\left(\neg \varphi \rightarrow \varphi^{\perp}\right)$. On the other hand, HA $+\Gamma$-LEM $+\Gamma$-DUAL $\vdash \Gamma$ - $\mathbf{L E M}^{\perp}$ is easily obtained. Clauses 2, 3, 4 and 5 are proved similarly.

From Proposition 4.3, we obtain the exact strengths of the principles defined in Definition 4.1.

Proposition 4.4.

1. $\Sigma_{k}-\mathbf{L E M}^{\perp}$ is equivalent to $\Sigma_{k}-\mathbf{L E M}$ over HA ;
2. $\Pi_{k}-\mathbf{L E M}^{\perp}$ is equivalent to Σ_{k}-LEM over HA ;
3. $\Delta_{k}-\mathbf{L E M}^{\perp, \Sigma}$ is equivalent to $\Delta_{k}-\mathbf{L E M}$ over HA ;
4. $\Delta_{k}-\mathbf{L E M}^{\perp, \Pi}$ is equivalent to Σ_{k}-DNE over HA.

Proof. 1. By Proposition 4.3.(1), $\Sigma_{k}-\mathbf{L E M}^{\perp}$ is equivalent to Σ_{k}-LEM $+\Sigma_{k}$-DUAL. Since HA $+\Sigma_{k}$-LEM proves Σ_{k}-DUAL by Fact 2.3 and Proposition $3.7, \Sigma_{k}$-LEM ${ }^{\perp}$ is equivalent to Σ_{k}-LEM.
2. Since $\mathrm{HA}+\Pi_{k}$-LEM ${ }^{\perp}$ proves $\varphi^{\perp} \vee \varphi^{\perp \perp}$ for each Σ_{k} sentence $\varphi, \mathrm{HA}+$ $\Pi_{k}-\mathbf{L E M}^{\perp} \vdash \Sigma_{k} \mathbf{- L E M}^{\perp}$ follows from Proposition 3.3.(2). In a similar way, we have $\mathrm{HA}+\Sigma_{k}$ - $\mathbf{L E M}^{\perp} \vdash \Pi_{k}$ - $\mathbf{L E M}^{\perp}$. Hence by clause $1, \Pi_{k}-\mathbf{L E M}^{\perp}$ equivalent to Σ_{k}-LEM over HA.
3. Since HA $+\Delta_{k}$-LEM $\vdash \Sigma_{k-1}-\mathbf{D N E}$, this is immediately obtained from Propositions 3.7, 4.3.(2) and 4.3.(4).
4. Since HA $+\Sigma_{k}$-DNE proves Δ_{k}-LEM and Π_{k}-DUAL by Fact 2.3 and Proposition 3.7, we obtain HA $+\Sigma_{k}$ - DNE $\vdash \Delta_{k}$ - $\mathbf{L E M}^{\perp, \Pi}$ by Proposition 4.3.(5).

On the other hand, we prove HA $+\Delta_{k}$ - $\mathbf{L E M}^{\perp, \Pi} \vdash \Sigma_{k}$-DNE. Let φ be any Σ_{k} formula. Since $\neg \neg \varphi \rightarrow \neg \varphi^{\perp}$ is HA-provable by Proposition 3.3.(3), we obtain HA $\vdash \neg \neg \varphi \rightarrow\left(\varphi^{\perp} \leftrightarrow \perp\right)$. Since $\varphi^{\perp} \in \Pi_{k}$ and $\perp \in \Sigma_{k}$,

$$
\mathrm{HA}+\Delta_{k}-\mathbf{L E M}^{\perp, \Pi} \vdash \neg \neg \varphi \rightarrow \varphi^{\perp} \vee \varphi^{\perp \perp}
$$

Since HA $+\Delta_{k}$-LEM $^{\perp, \Pi} \vdash \neg \neg \varphi \rightarrow \neg \varphi \vee \varphi$ by Proposition 3.3, we conclude that $\mathrm{HA}+\Delta_{k}$-LEM $^{\perp, \Pi}$ proves $\neg \neg \varphi \rightarrow \varphi$.

Proposition 4.4.(4) is a generalization of Fact 4.2.

4.2 The law of excluded middle for negated formulas

In this subsection, we investigate the law of excluded middle for negated formulas, which are investigated in $[6,8]$ for $k=1$.

Definition 4.5 (The law of excluded middle for negated formulas). Let Γ be any set of formulas.

$$
\begin{array}{lll}
\Gamma^{\mathrm{n}} \text {-LEM } & \neg \varphi \vee \neg \neg \varphi & \left(\varphi \in \Gamma, \text { in other words, } \neg \varphi \in \Gamma^{\mathrm{n}}\right) \\
\Delta_{k}^{\mathrm{n}} \text {-LEM } & (\varphi \leftrightarrow \psi) \rightarrow \neg \varphi \vee \neg \neg \varphi & \left(\varphi \in \Sigma_{k} \text { and } \psi \in \Pi_{k}\right)
\end{array}
$$

Although the definition of Γ^{n}-LEM is included in Definition 2.1, we defined it individually to pay attention to its properties. The principle Δ_{1}^{n}-LEM corresponds to the principle (IVa) in [8] and Δ_{a}-WLEM in [6]. The following fact is already obtained.

Fact 4.6 (Fujiwara, Ishihara and Nemoto [8, Proposition 3]). The following are equivalent over HA:

1. Δ_{1}^{n}-LEM.
2. Δ_{1}-LEM.

Obviously, Γ^{n}-LEM is weaker than Γ-LEM, and we obtain the following proposition. Proposition 4.7.(2) is a generalization of Fact 4.6.

Proposition 4.7. Let Γ be any set of formulas.

1. $\Gamma^{\mathrm{n}}-\mathrm{LEM}+\Gamma$-DNE is equivalent to Γ-LEM over HA;
2. $\Delta_{k}^{\mathrm{n}}-\mathrm{LEM}+\Sigma_{k-1}-\mathrm{DNE}$ is equivalent to $\Delta_{k}-$ LEM over HA;
3. $\mathrm{HA}+\Sigma_{k}^{\mathrm{n}}$-LEM $\vdash \Delta_{k}^{\mathrm{n}}$-LEM;
4. $\mathrm{HA}+\Pi_{k}^{\mathrm{n}}$-LEM $\vdash \Delta_{k}^{\mathrm{n}}$-LEM.

Proof. 1. This follows from Fact 2.2.
2. This is a consequence of Facts 2.2 and 2.3.

3 and 4 are obvious.
From Fact 2.3, Σ_{k}-LEM and Π_{k}-LEM are equivalent modulo Σ_{k}-DNE. We prove an analogous result concerning Σ_{k}^{n}-LEM and Π_{k}^{n}-LEM.

Proposition 4.8. The following are equivalent over $\mathrm{HA}+\Sigma_{k-1}$-DNS:

1. Σ_{k}^{n}-LEM.
2. Π_{k}^{n}-LEM.

Proof. First, we show HA $+\Sigma_{k-1}-\mathbf{D N S}+\Sigma_{k}^{\mathrm{n}}$-LEM $\vdash \Pi_{k}^{\mathrm{n}}$-LEM. Let φ be any Π_{k} formula. Since φ^{\perp} is Σ_{k}, we have

$$
\mathrm{HA}+\Sigma_{k}^{\mathrm{n}}-\mathbf{L E M} \vdash \neg \varphi^{\perp} \vee \neg \neg \varphi^{\perp}
$$

Then, HA $+\Sigma_{k}^{\mathrm{n}}$-LEM $\vdash \neg \varphi^{\perp} \vee \neg \varphi$ by Proposition 3.3.(3). Since Π_{k}-WDUAL is equivalent to Σ_{k-1}-DNS over HA by Proposition 3.12, we obtain

$$
\mathrm{HA}+\Sigma_{k-1}-\mathbf{D N S}+\Sigma_{k}^{\mathrm{n}} \text {-LEM } \vdash \neg \neg \varphi \vee \neg \varphi .
$$

In a similar way, it is proved that $\mathrm{HA}+\Sigma_{k-1}-\mathbf{D N S}+\Pi_{k}^{\mathrm{n}}$-LEM proves Σ_{k}^{n}-LEM because Σ_{k}-WDUAL is also equivalent to Σ_{k-1} - DNS over HA by Proposition 3.12.

From Fact 2.3.(6), Propositions 2.8.(1), 4.7 and 4.8, we obtain the following corollaries.

Corollary 4.9. The following are equivalent over HA:

1. Π_{k}-LEM.
2. Σ_{k}^{n}-LEM $+\Sigma_{k-1}$-DNE.
3. Π_{k}^{n}-LEM $+\Sigma_{k-1}$-DNE.

Corollary 4.10. The following are equivalent over HA:

1. Σ_{k}-LEM.
2. $\Sigma_{k}^{\mathrm{n}}-\mathrm{LEM}+\Sigma_{k}$-DNE.
3. $\Pi_{k}^{\mathrm{n}}-\mathbf{L E M}+\Sigma_{k}$-DNE.

5 De Morgan's law

In this section, we extensively investigate principles based on de Morgan's law.
Definition 5.1 (De Morgan's law). Let Γ and Θ be any sets of formulas.

(Γ, Θ)-DML	$\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi$	$(\varphi \in \Gamma$ and $\psi \in \Theta)$
Δ_{k} - DML	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \wedge\left(\psi \leftrightarrow \psi^{\prime}\right)$	
	$\rightarrow(\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi)$	$\left(\varphi, \psi \in \Sigma_{k}\right.$ and $\left.\varphi^{\prime}, \psi^{\prime} \in \Pi_{k}\right)$
$\left(\Delta_{k}, \Theta\right)$-DML	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \rightarrow(\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi)$	$\left(\varphi \in \Sigma_{k}, \varphi^{\prime} \in \Pi_{k}\right.$ and $\left.\psi \in \Theta\right)$

Several variations of Δ_{1} - DML are extensively investigated in [6]. As in the case of the law of excluded middle, we also deal with the principles of the forms $\left(\Gamma^{\mathrm{n}}, \Theta\right)$-DML, $\left(\Delta_{k}^{\mathrm{n}}, \Theta\right)$ - $\mathbf{D M L}$, and so on. Of course, (Γ, Θ)-DML and (Θ, Γ) - $\mathbf{D M L}$ are equivalent.

This section consists of four subsections. First, we investigate several basic implications between the principles. Secondly, we study the interrelationship between de Morgan's law and the contrapositive version of the collection principle. Thirdly, Δ_{k} and Δ_{k}^{n} variants of de Morgan's law are explored. Finally, we investigate de Morgan's law with respect to duals.

5.1 Basic implications

In this subsection, we organize several versions of de Morgan's law. Some arguments in this subsection for $k=1$ can be found in [6]. The following proposition is trivially obtained.

Proposition 5.2. Let $\Gamma \in\left\{\Sigma_{k}, \Pi_{k}\right\}$ and Θ be any set of formulas.

1. $\mathrm{HA}+(\Gamma, \Theta)$ - $\mathrm{DML} \vdash\left(\Delta_{k}, \Theta\right)$ - DML ;
2. $\mathrm{HA}+\left(\Gamma^{\mathrm{n}}, \Theta\right)$ - $\mathbf{D M L} \vdash\left(\Delta_{k}^{\mathrm{n}}, \Theta\right)$ - $\mathbf{D M L}$.

We show that Γ^{n}-LEM and Δ_{k}^{n}-LEM are stronger than several versions of de Morgan's law.

Proposition 5.3. Let Γ and Θ be any sets of formulas.

1. $\mathbf{H A}+\Gamma^{\mathrm{n}}$-LEM $\vdash(\Gamma, \Theta)$-DML;
2. $\mathrm{HA}+\Gamma^{\mathrm{n}}$-LEM $\vdash\left(\Gamma^{\mathrm{n}}, \Theta\right)$ - $\mathbf{D M L}$;
3. $\mathrm{HA}+\Delta_{k}^{\mathrm{n}}-\mathrm{LEM} \vdash\left(\Delta_{k}, \Theta\right)$-DML;
4. $\mathrm{HA}+\Delta_{k}^{\mathrm{n}}-\mathrm{LEM} \vdash\left(\Delta_{k}^{\mathrm{n}}, \Theta\right)$-DML.

Proof. 1. Let $\varphi \in \Gamma$ and $\psi \in \Theta$. Since $\mathrm{HA} \vdash \neg(\varphi \wedge \psi) \rightarrow \neg(\neg \neg \varphi \wedge \psi)$, we get

$$
\mathrm{HA} \vdash(\neg \varphi \vee \neg \neg \varphi) \rightarrow(\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi)
$$

It follows that $\mathbf{H A}+\Gamma^{\mathrm{n}}$-LEM proves (Γ, Θ) - $\mathbf{D M L}$.
2,3 and 4 are proved as for clause 1 .

Corollary 5.4.

1. For any set Γ of formulas, $\mathrm{HA}+\Gamma^{\mathrm{n}}-\mathbf{L E M}$ proves Γ-DML and Γ^{n}-DML;
2. $\mathrm{HA}+\Delta_{k}^{\mathrm{n}}-\mathrm{LEM}$ proves $\Delta_{k}-\mathrm{DML}$ and Δ_{k}^{n}-DML.

Conversely, we show that the principles Γ^{n}-LEM and Δ_{k}^{n}-LEM are equivalent to some variations of de Morgan's law.

Proposition 5.5. For any set Γ of formulas, the following are equivalent over HA:

1. Γ^{n}-LEM.
2. $\left(\Gamma, \Gamma^{\mathrm{n}}\right)$-DML.

Proof. By Proposition 5.3, HA $+\Gamma^{\mathrm{n}}-\mathbf{L E M} \vdash\left(\Gamma, \Gamma^{\mathrm{n}}\right)$-DML. On the other hand, let φ be any Γ formula. Since HA $\vdash \neg(\varphi \wedge \neg \varphi)$, we obtain $\mathrm{HA}+\left(\Gamma, \Gamma^{\mathrm{n}}\right)$-DML \vdash $\neg \varphi \vee \neg \neg \varphi$.

Proposition 5.6. For $\Gamma \in\left\{\Sigma_{k}, \Pi_{k}\right\}$, the following are equivalent over HA :

1. Δ_{k}^{n}-LEM.
2. $\left(\Delta_{k}, \Gamma^{\mathrm{n}}\right)$-DML.
3. $\left(\Delta_{k}^{\mathrm{n}}, \Gamma\right)$-DML.
4. $\left(\Delta_{k}, \Delta_{k}^{\mathrm{n}}\right)$-DML.

Proof. By Proposition 5.3, Δ_{k}^{n}-LEM entails $\left(\Delta_{k}, \Gamma^{\mathrm{n}}\right)$-DML and ($\left.\Delta_{k}^{\mathrm{n}}, \Gamma\right)$-DML. By Proposition 5.2, each of $\left(\Delta_{k}, \Gamma^{\mathrm{n}}\right)$-DML and $\left(\Delta_{k}^{\mathrm{n}}, \Gamma\right)$-DML implies $\left(\Delta_{k}, \Delta_{k}^{\mathrm{n}}\right)$-DML. On the other hand, we can show that $\mathrm{HA}+\left(\Delta_{k}, \Delta_{k}^{\mathrm{n}}\right)$-DML proves $\Delta_{k}^{\mathrm{n}}-\mathbf{L E M}$ as in the proof of Proposition 5.5.

Here we investigate several equivalences of some variations of de Morgan's law over the theory $\mathrm{HA}+\Sigma_{k-1}$-DNS.

Proposition 5.7. Let Θ be any set of formulas.

1. $\left(\Sigma_{k}^{\mathrm{n}}, \Theta\right)$-DML is equivalent to $\left(\Pi_{k}, \Theta\right)$-DML over $\mathrm{HA}+\Sigma_{k-1}$-DNS;
2. $\left(\Pi_{k}^{\mathrm{n}}, \Theta\right)$-DML is equivalent to $\left(\Sigma_{k}, \Theta\right)$-DML over $\mathrm{HA}+\Sigma_{k-1}$-DNS.

Proof. Recall that each of Σ_{k}-WDUAL and Π_{k}-WDUAL is HA-equivalent to Σ_{k-1}-DNS (Proposition 3.12). Then for any $\varphi \in \Sigma_{k}$ and $\psi \in \Pi_{k}$, HA + Σ_{k-1}-DNS proves $\neg \varphi^{\perp} \leftrightarrow \neg \neg \varphi$ and $\neg \psi^{\perp} \leftrightarrow \neg \neg \psi$. Then clauses 1 and 2 follow from this observation and the fact that HA proves $\neg(\xi \wedge \delta) \leftrightarrow \neg(\neg \neg \xi \wedge \delta)$.

From Proposition 5.7, we obtain several equivalences over HA $+\Sigma_{k-1}$-DNS.

Corollary 5.8.

1. Σ_{k}^{n}-LEM, Π_{k}^{n}-LEM, $\left(\Sigma_{k}, \Sigma_{k}^{\mathrm{n}}\right)$-DML, $\left(\Pi_{k}, \Pi_{k}^{\mathrm{n}}\right)$-DML, $\left(\Sigma_{k}, \Pi_{k}\right)$-DML and $\left(\Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right)$-DML are equivalent over $\mathrm{HA}+\Sigma_{k-1}$-DNS;
2. Σ_{k}-DML, $\left(\Sigma_{k}, \Pi_{k}^{\mathrm{n}}\right)$-DML and Π_{k}^{n}-DML are equivalent over $\mathrm{HA}+\Sigma_{k-1}$ - $\mathbf{D N S}$;
3. $\Pi_{k}-\mathbf{D M L},\left(\Pi_{k}, \Sigma_{k}^{\mathrm{n}}\right)$-DML and $\Sigma_{k}^{\mathrm{n}}-\mathrm{DML}$ are equivalent over $\mathrm{HA}+\Sigma_{k-1}$-DNS;
4. For $\Gamma \in\left\{\Sigma_{k}, \Pi_{k}, \Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right\}$, each of $\left(\Delta_{k}, \Gamma\right)$-DML and $\left(\Delta_{k}^{\mathrm{n}}, \Gamma\right)$-DML is equivalent to Δ_{k}^{n}-LEM over $\mathrm{HA}+\Sigma_{k-1}$-DNS

Proof. 1. This is a consequence of Propositions 4.8, 5.5 and 5.7.
2 and 3 are immediate from Proposition 5.7.
4. The principles $\left(\Delta_{k}, \Sigma_{k}\right)$-DML, $\left(\Delta_{k}, \Pi_{k}\right)$ - $\mathbf{D M L},\left(\Delta_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$ - $\mathbf{D M L}$ and $\left(\Delta_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right)$-DML are equivalent to $\left(\Delta_{k}, \Pi_{k}^{\mathrm{n}}\right)$-DML, $\left(\Delta_{k}, \Sigma_{k}^{\mathrm{n}}\right)$-DML, $\left(\Delta_{k}^{\mathrm{n}}, \Pi_{k}\right)$-DML and $\left(\Delta_{k}^{\mathrm{n}}, \Sigma_{k}\right)$-DML over HA $+\Sigma_{k-1}$-DNS, respectively. Then, by Proposition 5.6 , each of them is equivalent to Δ_{k}^{n}-LEM.

From Corollaries 4.9, 4.10, 5.8 and Proposition 5.5, we also obtain the following.

Corollary 5.9. Let P be one of $\left(\Sigma_{k}, \Sigma_{k}^{\mathrm{n}}\right)$-DML, $\left(\Pi_{k}, \Pi_{k}^{\mathrm{n}}\right)$-DML, $\left(\Sigma_{k}, \Pi_{k}\right)$-DML and $\left(\Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right)$-DML.

1. $P+\Sigma_{k-1}$-DNE is equivalent to Π_{k}-LEM over HA;
2. $P+\Sigma_{k}$-DNE is equivalent to Σ_{k}-LEM over HA.

The following corollary follows from Propositions 5.6, 4.7.(2) and Corollary 5.8.(4).

Corollary 5.10. Let $\Gamma \in\left\{\Sigma_{k}, \Pi_{k}, \Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right\}$. Let P be one of the principles $\left(\Delta_{k}, \Gamma\right)$-DML, $\left(\Delta_{k}^{\mathrm{n}}, \Gamma\right)$-DML and $\left(\Delta_{k}, \Delta_{k}^{\mathrm{n}}\right)$-DML. Then $P+\Sigma_{k-1}$-DNE is equivalent to Δ_{k}-LEM over HA.

We get the following corollary.
Corollary 5.11. Let $\Gamma \in\left\{\Sigma_{k}, \Pi_{k}, \Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right\}$.

1. $\mathrm{HA}+\Gamma-\mathrm{DML}+\Sigma_{k-1}-\mathrm{DNS} \vdash \Delta_{k}^{\mathrm{n}}-\mathrm{LEM}$;
2. $\mathrm{HA}+\Gamma$ - $\mathrm{DML}+\Sigma_{k-1}$-DNE $\vdash \Delta_{k}$-LEM.

Proof. 1. Since Γ-DML implies $\left(\Delta_{k}, \Gamma\right)$-DML by Proposition 5.2, the statement immediately follows from Corollary 5.8.(4).
2. This follows from Corollary 5.10.

Corollary 5.11.(2) generalizes Fact 2.6. Also we generalize Fact 2.5.(1).
Proposition 5.12. HA $+\Sigma_{k}$-DNE $\vdash \Pi_{k}$-DML.
Proof. Since HA $+\Sigma_{k}$-DNE proves $\Sigma_{k-1}-\mathbf{D N S}$, it is sufficient to show that HA $+\Sigma_{k}$-DNE $\vdash \Sigma_{k}^{\mathrm{n}}$-DML by Corollary 5.8.(3). Let φ and ψ be any Σ_{k} formulas. Since HA $\vdash \neg(\neg \varphi \wedge \neg \psi) \rightarrow \neg \neg(\varphi \vee \psi)$ and $\varphi \vee \psi$ is HA-equivalent to some Σ_{k} formula, we obtain

$$
\mathrm{HA}+\Sigma_{k} \text { - } \mathrm{DNE} \vdash \neg(\neg \varphi \wedge \neg \psi) \rightarrow \varphi \vee \psi
$$

Therefore

$$
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \neg(\neg \varphi \wedge \neg \psi) \rightarrow \neg \neg \varphi \vee \neg \neg \psi .
$$

By combining Corollary 5.11.(2) and Proposition 5.12, we obtain a proof of Fact 2.3.(4).

5.2 The collection principles and de Morgan's law

In this subsection, we investigate the so-called collection principles. The following proposition is stated in [5].

Proposition 5.13. For any formula $\varphi(y, z)$,

$$
\mathrm{HA} \vdash \forall y<x \exists z \varphi(y, z) \rightarrow \exists w \forall y<x \exists z<w \varphi(y, z) .
$$

Proof. Let $\psi(x)$ be the formula

$$
\forall y<x \exists z \varphi(y, z) \rightarrow \exists w \forall y<x \exists z<w \varphi(y, z)
$$

and this proposition is proved by applying the induction axiom for $\psi(x)$.
We introduce the following contrapositive version of the collection principle.
Definition 5.14 (The contrapositive collection principles). Let Γ be any set of formulas.
$\Gamma-\mathbf{C O L L}^{\mathbf{c p}} \quad \forall w \exists y<x \forall z<w \varphi(y, z) \rightarrow \exists y<x \forall z \varphi(y, z) \quad(\varphi(y, z) \in \Gamma)$
Proposition 5.15. The following are equivalent over HA:

1. $\Pi_{k+1}-$ COLL $^{\mathbf{c p}}$.
 2. $\Sigma_{k}-\mathrm{COLL}^{\mathrm{cp}}$.

Proof. By using a primitive recursive pairing function, it is easy to show that for any Σ_{k} formula $\varphi\left(y, z_{0}, z_{1}\right)$, HA $+\Sigma_{k}$ - COLL ${ }^{\mathbf{c p}}$ proves

$$
\begin{equation*}
\forall w \exists y<x \forall z_{0}<w \forall z_{1}<w \varphi\left(y, z_{0}, z_{1}\right) \rightarrow \exists y<x \forall z_{0} \forall z_{1} \varphi\left(y, z_{0}, z_{1}\right) \tag{1}
\end{equation*}
$$

From this observation, the equivalence of $\Sigma_{k}-\mathbf{C O L L}{ }^{\mathbf{c p}}$ and $\Pi_{k+1}-\mathbf{C O L L}^{\mathbf{c p}} \mathrm{im}-$ mediately follows.

The following proposition extends [10, Corollary 4.5].
Proposition 5.16. $\mathrm{HA}+\Sigma_{k+1}-\mathrm{DML}+\Sigma_{k}$ - $\mathrm{DNE} \vdash \Pi_{k+1}-$ COLL $^{\mathrm{cp}}$.
Proof. We simultaneously prove the following two statements by induction on k :
(i) $\mathrm{HA}+\Sigma_{k+1}-\mathrm{DML}+\Sigma_{k}-\mathrm{DNE} \vdash \Pi_{k+1}-$ COLL $^{\mathbf{c p}}$;
(ii) For any Π_{k+1} formula $\varphi(y)$, there exists a Π_{k+1} formula $\psi(x)$ such that

$$
\mathrm{HA}+\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k} \text { - } \mathbf{D N E} \vdash \exists y<x \varphi(y) \leftrightarrow \psi(x)
$$

We suppose that our statements hold for all $k^{\prime}<k$, and we prove (i) and (ii).
(i): Prior to proving our statement, we show that for any Π_{k} formula $\varphi(y, z)$,

$$
\begin{equation*}
\mathrm{HA}+\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg \forall y<x \exists z \varphi(y, z) \rightarrow \exists y<x \forall z \neg \varphi(y, z) \tag{2}
\end{equation*}
$$

which is a generalization of [10, Lemma 4.4].
Let $\psi(x)$ be the formula

$$
\neg \forall y<x \exists z \varphi(y, z) \rightarrow \exists y<x \forall z \neg \varphi(y, z)
$$

and we show that $\forall x \psi(x)$ is derivable by applying the induction axiom for $\psi(x)$. Since HA $\vdash \neg y<0$, we have HA $\vdash \forall y<0 \exists z \varphi(y, z)$. Thus we obviously obtain HA $\vdash \psi(0)$.

We prove induction step. We have

$$
\mathrm{HA} \vdash \neg \forall y \leq x \exists z \varphi(y, z) \rightarrow \neg(\forall y<x \exists z \varphi(y, z) \wedge \exists z \varphi(x, z))
$$

By Proposition 5.13, the formula $\forall y<x \exists z \varphi(y, z)$ is HA-equivalent to the formula $\exists w \forall y<x \exists z<w \varphi(y, z)$. If $k=0$, the formula $\exists z<w \varphi(y, z)$ is HA-provably equivalent to some Π_{0} formula $\rho(y, w)$. If $k>0$, by induction hypothesis (ii) for $k-1$, the formula $\exists z<w \varphi(y, z)$ is equivalent to some Π_{k} formula $\rho(y, w)$ in $\mathrm{HA}+\Sigma_{k}$ - $\mathbf{D M L}+\Sigma_{k-1}$ - DNE. Also $\exists w \forall y<x \rho(y, w)$ is HAequivalent to a Σ_{k+1} formula. Thus $\forall y<x \exists z \varphi(y, z)$ can be regarded as a Σ_{k+1}
formula in $\mathrm{HA}+\Sigma_{k}-\mathrm{DML}+\Sigma_{k-1}-\mathrm{DNE}$. Then HA $+\Sigma_{k+1}-\mathrm{DML}+\Sigma_{k-1}-\mathrm{DNE}$ proves

$$
\neg \forall y \leq x \exists z \varphi(y, z) \rightarrow \neg \forall y<x \exists z \varphi(y, z) \vee \neg \exists z \varphi(x, z)
$$

Hence it also proves

$$
\psi(x) \wedge \neg \forall y \leq x \exists z \varphi(y, z) \rightarrow \exists y<x \forall z \neg \varphi(y, z) \vee \forall z \neg \varphi(x, z)
$$

It follows that the theory proves

$$
\psi(x) \wedge \neg \forall y \leq x \exists z \varphi(y, z) \rightarrow \exists y \leq x \forall z \neg \varphi(y, z)
$$

This means HA $+\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \psi(x) \rightarrow \psi(x+1)$. We have proved (2).

We prove HA $+\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k}$ - DNE $\vdash \Pi_{k+1}$-COLL ${ }^{\mathbf{c p}}$. It suffices to prove Σ_{k} - COLL ${ }^{\mathbf{c p}}$ by Proposition 5.15. Let $\varphi(y, z)$ be any Σ_{k} formula. By Proposition 5.13 for the formula $\varphi^{\perp}(y, z)$, we have

$$
\mathrm{HA} \vdash \neg \exists w \forall y<x \exists z<w \varphi^{\perp}(y, z) \rightarrow \neg \forall y<x \exists z \varphi^{\perp}(y, z)
$$

In the light of Proposition 3.3.(3), we obtain

$$
\mathrm{HA} \vdash \forall w \exists y<x \forall z<w \varphi(y, z) \rightarrow \neg \exists w \forall y<x \exists z<w \varphi^{\perp}(y, z) .
$$

Therefore

$$
\mathrm{HA} \vdash \forall w \exists y<x \forall z<w \varphi(y, z) \rightarrow \neg \forall y<x \exists z \varphi^{\perp}(y, z)
$$

Since $(\varphi(y, z))^{\perp}$ is Π_{k}, from (2), we obtain that HA $+\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k-1}$ - DNE proves

$$
\forall w \exists y<x \forall z<w \varphi(y, z) \rightarrow \exists y<x \forall z \neg \varphi^{\perp}(y, z)
$$

Since Σ_{k}-DNE proves Π_{k}-DUAL, we conclude that HA $+\Sigma_{k+1}$ - DML $+\Sigma_{k}$-DNE proves

$$
\forall w \exists y<x \forall z<w \varphi(y, z) \rightarrow \exists y<x \forall z \varphi(y, z)
$$

by Proposition 3.3.(2). This completes the proof of (i).
(ii): Let $\forall z \varphi(y, z)$ be any Π_{k+1} formula where $\varphi(y, z)$ is Σ_{k}. Since $\varphi^{\perp}(y, z)$ is Π_{k}, by induction hypothesis (ii) for $k-1$, there exists a Π_{k} formula $\psi(y, w)$ such that

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \exists z<w \varphi^{\perp}(y, z) \leftrightarrow \psi(y, w)
$$

This is also the case for $k=0$. Then

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1} \text { - } \mathbf{D N E} \vdash \forall z<w \neg \varphi^{\perp}(y, z) \leftrightarrow \neg \psi(y, w)
$$

Since Σ_{k}-DNE implies Π_{k}-DUAL, we obtain

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k} \text { - } \mathbf{D N E} \vdash \forall z<w \varphi(y, z) \leftrightarrow \psi^{\perp}(y, w)
$$

By (i), we have that $\mathrm{HA}+\Sigma_{k+1}-\mathrm{DML}+\Sigma_{k}$ - DNE proves

$$
\exists y<x \forall z \varphi(y, z) \leftrightarrow \forall w \exists y<x \forall z<w \varphi(y, z) .
$$

Therefore we obtain that HA $+\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k}$ - DNE also proves

$$
\exists y<x \forall z \varphi(y, z) \leftrightarrow \forall w \exists y<x \psi^{\perp}(y, w)
$$

This completes the proof of (ii).
Remark 5.17. By Proposition $5.15, \Pi_{0}-\mathbf{C O L L}{ }^{\mathbf{c p}}$ is equivalent to $\Pi_{1}-\mathbf{C O L L}^{\mathbf{c p}}$ over HA. We will show in Proposition 5.22 that HA $+\Pi_{1}-\mathbf{C O L L}{ }^{\mathbf{c p}} \vdash \Sigma_{1}$-DML. Therefore $\mathrm{HA} \nvdash \Pi_{0}-\mathbf{C O L L}{ }^{\mathbf{c p}}$ because it is known that HA $\nvdash \Sigma_{1}$-DML (cf. [1]). Thus the statement of Proposition 5.16 for $k=-1$ does not holds.

Corollary 5.18.

1. For any Π_{k} formula $\varphi(y)$, there exists a Π_{k} formula $\psi(x)$ such that

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \exists y<x \varphi(y) \leftrightarrow \psi(x) ;
$$

2. For any Σ_{k} formula $\varphi(y)$, there exists a Σ_{k} formula $\psi(x)$ such that

$$
\mathrm{HA}+\Sigma_{k-1}-\mathrm{DML}+\Sigma_{k-2} \text { - } \mathrm{DNE} \vdash \forall y<x \varphi(y) \leftrightarrow \psi(x)
$$

Proof. 1. For $k=0$, this is trivial. For $k>0$, the statement is already proved in the proof of Proposition 5.16.
2. Since the statement obviously holds for $k=0$, we may assume $k>0$. Let $\exists z \varphi(y, z)$ be any Σ_{k} formula where $\varphi(y, z)$ is Π_{k-1}. By Proposition 5.13, we have

$$
\mathrm{HA} \vdash \forall y<x \exists z \varphi(y, z) \leftrightarrow \exists w \forall y<x \exists z<w \varphi(y, z) .
$$

By clause 1, there exists a Π_{k-1} formula $\psi(y, w)$ such that

$$
\mathrm{HA}+\Sigma_{k-1}-\mathrm{DML}+\Sigma_{k-2}-\mathbf{D N E} \vdash \exists z<w \varphi(y, z) \leftrightarrow \psi(y, w)
$$

Hence

$$
\mathrm{HA}+\Sigma_{k-1}-\mathbf{D M L}+\Sigma_{k-2}-\mathbf{D N E} \vdash \forall y<x \exists z \varphi(y, z) \leftrightarrow \exists w \forall y<x \psi(y, w)
$$

Since $\exists w \forall y<x \psi(y, w)$ is obviously equivalent to a Σ_{k} formula, this completes our proof of clause 2 .

Corollary 5.18 is very useful for exploring principles containing bounded quantifiers. For instance, it can be applied to the study of the least number principle.

Definition 5.19 (The least number principle). Let Γ be a set of formulas.
Γ-LN

$$
\exists x \varphi(x) \rightarrow \exists x(\varphi(x) \wedge \forall y<x \neg \varphi(y)) \quad(\varphi \in \Gamma)
$$

Theorem 5.20. Let Γ be either Σ_{k} or Π_{k}. Then Γ-LN and Γ-LEM are equivalent over HA.

Proof. First, we prove HA $+\Gamma$-LN $\vdash \Gamma$-LEM. Let φ be any Γ formula and let $\psi(x)$ be a Γ formula HA-equivalent to $\varphi \vee 0<x$, where x does not occur freely in φ. Notice that $0<x \wedge \forall y<x \neg \psi(y)$ implies $\neg \psi(0)$ which implies $\neg \varphi$. Hence we have

$$
\mathrm{HA} \vdash(\varphi \vee 0<x) \wedge \forall y<x \neg \psi(y) \rightarrow \varphi \vee \neg \varphi
$$

and thus

$$
\mathrm{HA} \vdash \exists x(\psi(x) \wedge \forall y<x \neg \psi(y)) \rightarrow \varphi \vee \neg \varphi
$$

Since HA $\vdash \exists x \psi(x)$, we have HA $+\Gamma-\mathbf{L N} \vdash \exists x(\psi(x) \wedge \forall y<x \neg \psi(y))$. Therefore we obtain HA $+\Gamma-\mathbf{L N} \vdash \varphi \vee \neg \varphi$.

Secondly, we prove HA $+\Pi_{k}$-LEM $\vdash \Pi_{k}$-LN. A proof for HA $+\Sigma_{k}$-LEM \vdash $\Sigma_{k}-\mathbf{L N}$ is similar. Let $\varphi(x)$ be any Π_{k} formula, and let $\psi(z)$ be the formula

$$
\exists x<z \varphi(x) \rightarrow \exists x<z(\varphi(x) \wedge \forall y<x \neg \varphi(y))
$$

We prove $\mathrm{HA}+\Pi_{k}$-LEM $\vdash \forall z \psi(z)$ by applying the induction axiom for $\psi(z)$. Since HA $\vdash \neg \exists x<0 \varphi(x)$, we obtain HA $\vdash \psi(0)$.

We prove induction step. Notice HA $+\Pi_{k}$-LEM proves $\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}$-DNE by Corollary 4.9 and Proposition 5.3.(1). Thus by Corollary 5.18.(1), the formula $\exists x<z \varphi(x)$ is equivalent to some Π_{k} formula in HA $+\Pi_{k}$-LEM. Therefore

$$
\begin{equation*}
\mathrm{HA}+\Pi_{k}-\mathbf{L E M} \vdash \exists x<z \varphi(x) \vee \neg \exists x<z \varphi(x) \tag{3}
\end{equation*}
$$

Since HA $\vdash \exists x \leq z \varphi(x) \leftrightarrow(\exists x<z \varphi(x) \vee \varphi(z))$, we obtain

$$
\mathrm{HA} \vdash \exists x \leq z \varphi(x) \wedge \neg \exists x<z \varphi(x) \rightarrow \varphi(z) \wedge \forall x<z \neg \varphi(x)
$$

and hence

$$
\mathrm{HA} \vdash \exists x \leq z \varphi(x) \wedge \neg \exists x<z \varphi(x) \rightarrow \exists x \leq z(\varphi(x) \wedge \forall y<x \neg \varphi(y))
$$

On the other hand, we obviously obtain

$$
\mathrm{HA} \vdash \psi(z) \wedge \exists x<z \varphi(x) \rightarrow \exists x \leq z(\varphi(x) \wedge \forall y<x \neg \varphi(y))
$$

Then by (3), we have

$$
\mathrm{HA}+\Pi_{k} \text {-LEM } \vdash \psi(z) \wedge \exists x \leq z \varphi(x) \rightarrow \exists x \leq z(\varphi(x) \wedge \forall y<x \neg \varphi(y))
$$

It follows $\mathrm{HA}+\Pi_{k}$-LEM $\vdash \psi(z) \rightarrow \psi(z+1)$. We have completed our proof.
By using Corollary 5.18 and Theorem 5.20 , we are able to generalize Fact 2.5.(2). The proof is similar to that of the implication $2 \Rightarrow 1$ of $[8$, Proposition $2]$.

Proposition 5.21. $\mathrm{HA}+\Sigma_{k}$ - $\mathrm{DML}+\Sigma_{k-1}$ - $\mathrm{DNE} \vdash \Pi_{k}$ - DML .

Proof. We may assume $k>0$. Let $\forall x \varphi(x)$ and $\forall y \psi(y)$ be any Π_{k} formulas where $\varphi(x)$ and $\psi(y)$ are Σ_{k-1}. We define the formulas $\xi(x)$ and $\eta(y)$ as follows:

- $\xi(x): \equiv \forall z<x(\varphi(z) \wedge \psi(z)) \wedge \varphi^{\perp}(x) ;$
- $\eta(y): \equiv \forall z<y(\varphi(z) \wedge \psi(z)) \wedge \psi^{\perp}(y) \wedge \varphi(y)$.

Since $\varphi(z) \wedge \psi(z)$ is HA-equivalent to a Σ_{k-1} formula, by Corollary 5.18.(2), $\forall z<x(\varphi(z) \wedge \psi(z))$ is equivalent to some Σ_{k-1} formula in HA $+\Sigma_{k-2}$ - DML + Σ_{k-3}-DNE. Thus the formula $\exists x \xi(x)$ is equivalent to a Σ_{k} formula in the theory. Similarly, $\exists y \eta(y)$ is also equivalent to some Σ_{k} formula in the theory.

By the definitions of $\xi(x)$ and $\eta(y)$, we obtain

- HA $\vdash \xi(x) \wedge \eta(y) \wedge x \leq y \rightarrow \varphi^{\perp}(x) \wedge \varphi(x)$, and
- $\mathrm{HA} \vdash \xi(x) \wedge \eta(y) \wedge y<x \rightarrow \psi(y) \wedge \psi^{\perp}(y)$.

Thus by Proposition 3.3.(4) and HA $\vdash x \leq y \vee y<x$, we have that HA proves $\neg(\exists x \xi(x) \wedge \exists y \eta(y))$. Then from the above observations, we obtain

$$
\begin{equation*}
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-3}-\mathbf{D N E} \vdash \neg \exists x \xi(x) \vee \neg \exists y \eta(y) \tag{4}
\end{equation*}
$$

Note that HA $+\Sigma_{k}$ - DML $+\Sigma_{k-1}$-DNE proves Σ_{k-1}-DUAL, Π_{k-1}-DUAL and Π_{k-1}-LEM. Then HA $+\Sigma_{k}$ - DML $+\Sigma_{k-1}$ - DNE proves

$$
\begin{array}{rlr}
\exists x \neg \varphi(x) & \rightarrow \exists x \varphi^{\perp}(x), \\
& \rightarrow \exists x\left[\varphi^{\perp}(x) \wedge \forall z<x \neg \varphi^{\perp}(z)\right], \quad\left(\text { by } \Sigma_{k-1} \text {-DUAL) } \Pi_{k-1}\right. \text {-LEM and Theorem 5.20) } \\
& \rightarrow \exists x\left[\varphi^{\perp}(x) \wedge \forall z<x \varphi(z)\right] .
\end{array}
$$

$$
\text { (by } \Pi_{k-1} \text {-DUAL and Proposition 3.3.(2)) }
$$

Hence, by the definition of the formula $\xi(x)$, we have

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \exists x \neg \varphi(x) \wedge \forall y \psi(y) \rightarrow \exists x \xi(x)
$$

Since HA $\vdash \neg \exists x \neg \varphi(x) \rightarrow \forall x \neg \neg \varphi(x)$ and HA $+\Sigma_{k-1}-$ DNE implies Σ_{k-1}-DNS by Proposition 2.8.(1), we obtain

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \forall y \psi(y) \wedge \neg \exists x \xi(x) \rightarrow \neg \neg \forall x \varphi(x) .
$$

On the other hand,

$$
\mathrm{HA} \vdash \neg(\forall x \varphi(x) \wedge \forall y \psi(y)) \wedge \forall y \psi(y) \rightarrow \neg \forall x \varphi(x) .
$$

Therefore we obtain

$$
\begin{equation*}
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg(\forall x \varphi(x) \wedge \forall y \psi(y)) \wedge \neg \exists x \xi(x) \rightarrow \neg \forall y \psi(y) \tag{5}
\end{equation*}
$$

In a similar way, we obtain

$$
\begin{equation*}
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg(\forall x \varphi(x) \wedge \forall y \psi(y)) \wedge \neg \exists y \eta(y) \rightarrow \neg \forall x \varphi(x) \tag{6}
\end{equation*}
$$

By combining (4), (5) and (6), we conclude

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg(\forall x \varphi(x) \wedge \forall y \psi(y)) \rightarrow \neg \forall x \varphi(x) \vee \neg \forall y \psi(y)
$$

Finally, we prove that the converse of Proposition 5.16 also holds. This is closely related to [5, Theorem 4.5].

Proposition 5.22. $\mathrm{HA}+\Pi_{k}$ - $\mathbf{C O L L}{ }^{\mathbf{c p}} \vdash \Sigma_{k}$-DML $+\Sigma_{k-1}$-LEM.
Proof. We prove by induction on k. For $k=0$, our statement obviously holds. Suppose that the statement holds for k, and we prove the case of $k+1$. We prove the following two statements:
(i) $\mathrm{HA}+\Pi_{k+1}-\mathrm{COLL}^{\mathbf{c p}} \vdash \Sigma_{k}$-LEM;
(ii) $\mathrm{HA}+\Pi_{k+1}-\mathrm{COLL}^{\mathbf{c p}} \vdash \Sigma_{k+1}-\mathrm{DML}$.
(i): Let $\exists x \varphi$ be any Σ_{k} formula where φ is Π_{k-1}. By induction hypothesis, $\mathrm{HA}+\Pi_{k}-\mathbf{C O L L}{ }^{\mathbf{c p}} \vdash \Sigma_{k}$ - DML $+\Sigma_{k-1}-\mathbf{L E M}$. By Fact 2.3, HA $+\Pi_{k}-\mathbf{C O L L}^{\mathbf{c p}}$ also proves $\Pi_{k-1}-\mathbf{L E M}$ and Σ_{k-1}-DNE. It follows from Corollary 5.18.(1), we have that $\exists x<z \varphi$ is equivalent to some Π_{k-1} formula in HA $+\Pi_{k}$ - COLL ${ }^{\mathbf{c p}}$. Then by applying Π_{k-1}-LEM, we obtain

$$
\mathrm{HA}+\Pi_{k}-\mathbf{C O L L}^{\mathbf{c p}} \vdash \exists x<z \varphi \vee \neg \exists x<z \varphi
$$

Then

$$
\mathrm{HA}+\Pi_{k}-\mathbf{C O L L}^{\mathbf{c p}} \vdash \exists w<2[(w=0 \rightarrow \exists x<z \varphi) \wedge(w=1 \rightarrow \neg \exists x<z \varphi)]
$$

Since HA $+\Pi_{k}$-COLL ${ }^{\mathbf{c p}}$ proves Π_{k-1}-DUAL, we obtain

$$
\mathrm{HA}+\Pi_{k} \mathbf{- C O L L}^{\mathbf{c p}} \vdash \exists w<2\left[(w=0 \rightarrow \exists x<z \varphi) \wedge\left(w=1 \rightarrow \forall x<z \varphi^{\perp}\right)\right] .
$$

Hence

$$
\mathrm{HA}+\Pi_{k}-\mathbf{C O L L}^{\mathbf{c p}} \vdash \forall z \exists w<2 \forall x<z\left[(w=0 \rightarrow \exists x \varphi) \wedge\left(w=1 \rightarrow \varphi^{\perp}\right)\right]
$$

Since $(w=0 \rightarrow \exists x \varphi) \wedge\left(w=1 \rightarrow \varphi^{\perp}\right)$ is equivalent to some Σ_{k} formula, by Proposition 5.15,

$$
\mathrm{HA}+\Pi_{k+1^{-}} \mathbf{C O L L}^{\mathbf{c p}} \vdash \exists w<2 \forall x\left[(w=0 \rightarrow \exists x \varphi) \wedge\left(w=1 \rightarrow \varphi^{\perp}\right)\right]
$$

Then

$$
\mathrm{HA}+\Pi_{k+1}-\mathbf{C O L L}^{\mathbf{c p}} \vdash \exists w<2\left[(w=0 \rightarrow \exists x \varphi) \wedge\left(w=1 \rightarrow \forall x \varphi^{\perp}\right)\right]
$$

Thus we obtain HA $+\Pi_{k+1}$ COLL $^{\mathbf{c p}} \vdash \exists x \varphi \vee \neg \exists x \varphi$ by Proposition 3.3.(3). This means HA $+\Pi_{k+1}-$ COLL $^{\text {cp }} \vdash \Sigma_{k}$-LEM.
(ii): Let $\exists x \varphi$ and $\exists y \psi$ be any Σ_{k+1} formulas where φ and ψ are Π_{k}. We have HA $\vdash \neg(\exists x \varphi \wedge \exists y \psi) \rightarrow \neg(\exists x<z \varphi \wedge \exists y<z \psi)$. From (i), we have that $\mathrm{HA}+\Pi_{k+1}-\mathbf{C O L L}{ }^{\mathbf{c p}}$ proves Σ_{k}-LEM. By Fact 2.3, Propositions 5.21 and 3.7, the theory also proves Σ_{k} - DML,Σ_{k}-DNE, Π_{k}-DML and Π_{k}-DUAL. Then by Corollary 5.18.(1), both $\exists x<z \varphi$ and $\exists y<z \psi$ are equivalent to some Π_{k}
formulas in $\mathrm{HA}+\Pi_{k+1}-\mathbf{C O L L}{ }^{\mathbf{c p}}$. By applying Π_{k} - $\mathbf{D M L}, \mathrm{HA}+\Pi_{k+1}$ - $\mathbf{C O L L}{ }^{\mathbf{c p}}$ proves

$$
\begin{aligned}
\neg(\exists x \varphi \wedge \exists y \psi) & \rightarrow \neg \exists x<z \varphi \vee \neg \exists y<z \psi, \\
& \rightarrow \exists w<2[(w=0 \rightarrow \neg \exists x<z \varphi) \wedge(w=1 \rightarrow \neg \exists y<z \psi)], \\
& \rightarrow \exists w<2\left[\left(w=0 \rightarrow \forall x<z \varphi^{\perp}\right) \wedge\left(w=1 \rightarrow \forall y<z \psi^{\perp}\right)\right], \\
& \quad\left(\text { by } \Pi_{k}-\text { DUAL }\right)
\end{aligned} \quad \begin{aligned}
& \rightarrow \exists w<2 \forall x<z \forall y<z\left[\left(w=0 \rightarrow \varphi^{\perp}\right) \wedge\left(w=1 \rightarrow \psi^{\perp}\right)\right] .
\end{aligned}
$$

Thus we have that $\mathrm{HA}+\Pi_{k+1}$ - COLL ${ }^{\mathbf{c p}}$ proves

$$
\neg(\exists x \varphi \wedge \exists y \psi) \rightarrow \forall z \exists w<2 \forall x<z \forall y<z\left[\left(w=0 \rightarrow \varphi^{\perp}\right) \wedge\left(w=1 \rightarrow \psi^{\perp}\right)\right] .
$$

Then, in the light of (1), HA $+\Pi_{k+1}-$ COLL $^{\mathbf{c p}}$ proves

$$
\begin{aligned}
\neg(\exists x \varphi \wedge \exists y \psi) & \rightarrow \exists w<2 \forall x \forall y\left[\left(w=0 \rightarrow \varphi^{\perp}\right) \wedge\left(w=1 \rightarrow \psi^{\perp}\right)\right] \\
& \rightarrow \exists w<2\left[\left(w=0 \rightarrow \forall x \varphi^{\perp}\right) \wedge\left(w=1 \rightarrow \forall y \psi^{\perp}\right)\right] \\
& \rightarrow \exists w<2[(w=0 \rightarrow \neg \exists x \varphi) \wedge(w=1 \rightarrow \neg \exists y \psi)]
\end{aligned}
$$

(by Proposition 3.3.(3))

$$
\rightarrow \neg \exists x \varphi \vee \neg \exists y \psi
$$

Therefore HA $+\Pi_{k+1}$ COLL ${ }^{\mathbf{c p}} \vdash \Sigma_{k+1}$-DML.
From Propositions 5.16, 5.22 and Fact 2.3, we get the following corollary.
Corollary 5.23. The following are equivalent over HA:

1. $\Pi_{k+1}-$ COLL $^{\mathbf{c p}}$.
2. $\Sigma_{k+1}-\mathrm{DML}+\Sigma_{k}$-LEM.
3. $\Sigma_{k+1}-\mathbf{D M L}+\Sigma_{k}-$ DNE.

5.3 The principles Δ_{k} - DML and Δ_{k}^{n}-DML

In this subsection, we mainly investigate the principles Δ_{k} - $\mathbf{D M L}$ and Δ_{k}^{n} - $\mathbf{D M L}$.

Proposition 5.24.

1. $\mathrm{HA}+\Delta_{k+1}-\mathrm{DML}+\Sigma_{k-1}$-DNS $\vdash \Sigma_{k}^{\mathrm{n}}$-LEM;
2. $\mathrm{HA}+\Delta_{k+1}^{\mathrm{n}}-\mathrm{DML}+\Sigma_{k-1}$-DNS $\vdash \Sigma_{k}^{\mathrm{n}}$-LEM.

Proof. Let φ be any Σ_{k} formula.

1. By Proposition 3.3.(4), HA $\vdash \neg\left(\varphi \wedge \varphi^{\perp}\right)$. Since both φ and φ^{\perp} are Δ_{k+1}, $\mathrm{HA}+\Delta_{k+1}$-DML $\vdash \neg \varphi \vee \neg \varphi^{\perp}$. Then HA $+\Delta_{k+1}$ - DML $+\Sigma_{k-1}$ - DNS proves $\neg \varphi \vee \neg \neg \varphi$ by Proposition 3.12.
2. Since HA $\vdash \neg(\neg \varphi \wedge \neg \neg \varphi)$, HA $+\Sigma_{k-1}$-DNS $\vdash \neg\left(\neg \varphi \wedge \neg \varphi^{\perp}\right)$. Then $\mathrm{HA}+\Delta_{k+1}^{\mathrm{n}}$ - $\mathrm{DML}+\Sigma_{k-1}$ - DNS $\vdash \neg \neg \varphi \vee \neg \neg \varphi^{\perp}$. We conclude that the theory proves $\neg \varphi \vee \neg \neg \varphi$.

From Corollaries 4.9, 4.10 and Proposition 5.24, we obtain the following.
Corollary 5.25. Let $\Gamma \in\left\{\Delta_{k+1}, \Delta_{k+1}^{\mathrm{n}}\right\}$.

1. $\mathrm{HA}+\Gamma$-DML $+\Sigma_{k-1}$-DNE $\vdash \Pi_{k}$-LEM;
2. $\mathrm{HA}+\Gamma$-DML $+\Sigma_{k}$-DNE $\vdash \Sigma_{k}$-LEM.

Furthermore, we prove the following proposition by adapting the proofs of Proposition 5.21 and [6, Lemma 2.14].

Proposition 5.26. $\mathrm{HA}+\Delta_{k}$ - $\mathrm{DML}+\Sigma_{k-1}$ - $\mathrm{DNE} \vdash \Delta_{k}^{\mathrm{n}}$ - DML .
Proof. We may assume $k>0$. Let $\exists x \varphi(x)$ and $\exists y \psi(y)$ be any Σ_{k} formulas where $\varphi(x)$ and $\psi(y)$ are Π_{k-1}, and let φ^{\prime} and ψ^{\prime} be any Π_{k} formulas. Let χ denote the formula $\left(\exists x \varphi(x) \leftrightarrow \varphi^{\prime}\right) \wedge\left(\exists y \psi(y) \leftrightarrow \psi^{\prime}\right)$. We define the formulas $\xi(x)$ and $\eta(y)$ as follows:

- $\xi(x): \equiv \forall z<x\left(\varphi^{\perp}(z) \wedge \psi^{\perp}(z)\right) \wedge \varphi(x) ;$
- $\eta(y): \equiv \forall z<y\left(\varphi^{\perp}(z) \wedge \psi^{\perp}(z)\right) \wedge \psi(y) \wedge \varphi^{\perp}(y)$.

As in the proof of Proposition 5.21, the formulas $\exists x \xi(x)$ and $\exists y \eta(y)$ are equivalent to some Σ_{k} formulas in the theory HA $+\Sigma_{k-2}$-DML $+\Sigma_{k-3}$ - DNE which is included in HA $+\Sigma_{k-1}$-DNE by Fact 2.3, Corollary 4.10 and Proposition 5.3. Also

$$
\begin{equation*}
\mathrm{HA} \vdash \neg(\exists x \xi(x) \wedge \exists y \eta(y)) . \tag{7}
\end{equation*}
$$

By Corollary 5.25.(1), $\mathrm{HA}+\Delta_{k}$ - $\mathbf{D M L}+\Sigma_{k-2}$ - DNE proves Π_{k-1}-LEM. Since Σ_{k-1}-DNE implies Π_{k-1}-DUAL, by Theorem 5.20 , we obtain

$$
\begin{equation*}
\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \exists x \varphi(x) \rightarrow \exists x\left[\varphi(x) \wedge \forall z<x \varphi^{\perp}(z)\right] \tag{8}
\end{equation*}
$$

In a similar way, we have

$$
\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \exists y<x \psi(y) \rightarrow \exists y<x\left[\psi(y) \wedge \forall z<y \psi^{\perp}(z)\right] .
$$

Then by the definition of $\eta(y)$,

$$
\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \forall z<x \varphi^{\perp}(z) \wedge \exists z<x \psi(z) \rightarrow \exists y \eta(y)
$$

From this with (8), $\mathrm{HA}+\Delta_{k}$ - $\mathbf{D M L}+\Sigma_{k-1}$-DNE proves

$$
\exists x \varphi(x) \wedge \neg \exists y \eta(y) \rightarrow \exists x\left[\varphi(x) \wedge \forall z<x \varphi^{\perp}(z) \wedge \forall z<x \psi^{\perp}(z)\right]
$$

It follows that the theory proves $\exists x \varphi(x) \wedge \neg \exists y \eta(y) \rightarrow \exists x \xi(x)$. On the other hand, HA proves $\exists x \xi(x) \rightarrow \exists x \varphi(x) \wedge \neg \exists y \eta(y)$ from (7). Therefore HA + Δ_{k} - DML $+\Sigma_{k-1}$ - DNE proves

$$
\chi \rightarrow\left[\exists x \xi(x) \leftrightarrow\left(\varphi^{\prime} \wedge \forall y \eta^{\perp}(y)\right)\right] .
$$

Also $\varphi^{\prime} \wedge \forall y \eta^{\perp}(y)$ is HA-provably equivalent to some Π_{k} formula.

In a similar way, we obtain that $\mathrm{HA}+\Delta_{k}$ - $\mathrm{DML}+\Sigma_{k-1}$ - DNE proves

$$
\chi \rightarrow\left[\exists y \eta(y) \leftrightarrow\left(\psi^{\prime} \wedge \forall x \xi^{\perp}(x)\right)\right]
$$

and $\psi^{\prime} \wedge \forall x \xi^{\perp}(x)$ is HA-provably equivalent to some Π_{k} formula.
Then by applying Δ_{k} - $\mathbf{D M L}$ to (7),

$$
\begin{equation*}
\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \chi \rightarrow \neg \exists x \xi(x) \vee \neg \exists y \eta(y) \tag{9}
\end{equation*}
$$

From (8) and the definition of $\xi(x)$,

$$
\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \exists x \varphi(x) \wedge \forall y \psi^{\perp}(y) \rightarrow \exists x \xi(x)
$$

Then

$$
\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg \exists x \xi(x) \wedge \neg \exists y \psi(y) \rightarrow \neg \exists x \varphi(x)
$$

Therefore we obtain
$\mathrm{HA}+\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg(\neg \exists x \varphi(x) \wedge \neg \exists y \psi(y)) \wedge \neg \exists x \xi(x) \rightarrow \neg \neg \exists y \psi(y)$.
In a similar way, we obtain
$\mathrm{HA}+\Delta_{k} \mathbf{-} \mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E} \vdash \neg(\neg \exists x \varphi(x) \wedge \neg \exists y \psi(y)) \wedge \neg \exists y \eta(y) \rightarrow \neg \neg \exists x \varphi(x)$.
By combining (9), (10) and (11), we conclude that HA $+\Delta_{k}$ - DML $+\Sigma_{k-1}$-DNE proves

$$
\chi \rightarrow[\neg(\neg \exists x \varphi(x) \wedge \neg \exists y \psi(y)) \rightarrow \neg \neg \exists x \varphi(x) \vee \neg \neg \exists y \psi(y)]
$$

5.4 De Morgan's law with respect to duals

In [1], principles based on de Morgan's law with respect to duals are introduced.
Definition 5.27 (De Morgan's law with respect to duals). Let Γ and Θ be any sets of formulas in prenex normal form.

$\Gamma-\mathbf{D M L}^{\perp}$	$\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}$	$(\varphi, \psi \in \Gamma)$
$(\Gamma, \Theta) \mathbf{- D M L}^{\perp}$	$\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}$	$(\varphi \in \Gamma$ and $\psi \in \Theta)$
Δ_{k}-DML $^{\perp}$	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \wedge\left(\psi \leftrightarrow \psi^{\prime}\right)$	
	$\rightarrow\left(\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}\right)$	$\left(\varphi, \psi \in \Sigma_{k}\right.$ and $\left.\varphi^{\prime}, \psi^{\prime} \in \Pi_{k}\right)$
$\left(\Delta_{k}, \Gamma\right)-\mathbf{D M L}^{\perp, \Sigma}$	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \rightarrow\left(\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}, \varphi^{\prime} \in \Pi_{k}\right.$ and $\left.\psi \in \Gamma\right)$
$\left(\Delta_{k}, \Gamma\right) \mathbf{- D M L}^{\perp, \Pi}$	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \rightarrow\left(\neg(\varphi \wedge \psi) \rightarrow\left(\varphi^{\prime}\right)^{\perp} \vee \psi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}, \varphi^{\prime} \in \Pi_{k}\right.$ and $\left.\psi \in \Gamma\right)$

Our $\Sigma_{k}-\mathbf{D M L}{ }^{\perp}$ is called Σ_{k} - LLPO in [1]. As in the case of Γ - $\mathbf{L E M}^{\perp}$ (Proposition 4.3), we show that the principles defined in Definition 5.27 are exactly de Morgan's laws equipped with the dual principles.

Proposition 5.28. Let Γ and Θ be any sets of formulas in prenex normal form.

1. $(\Gamma, \Theta)-\mathbf{D M L}^{\perp}$ is equivalent to $(\Gamma, \Theta)-\mathbf{D M L}+\Gamma$-DUAL $+\Theta-\mathbf{D U A L}$ over HA;
2. $\left(\Delta_{k}, \Theta\right)-\mathbf{D M L}^{\perp, \Sigma}$ is equivalent to $\left(\Delta_{k}, \Theta\right)-\mathbf{D M L}+\Sigma_{k}$-DUAL $+\Theta$-DUAL over HA;
3. $\left(\Delta_{k}, \Theta\right)$ - $\mathbf{D M L}{ }^{\perp, \Pi}$ is equivalent to $\left(\Delta_{k}, \Theta\right)$-DML $+\Pi_{k}$-DUAL $+\Theta$-DUAL over HA.

Proof. 1. By Proposition 3.3.(3), HA $+(\Gamma, \Theta)$ - $\mathbf{D M L}^{\perp} \vdash(\Gamma, \Theta)$-DML. Let $\varphi \in \Gamma$. Since HA $\vdash \neg \varphi \rightarrow \neg(\varphi \wedge \neg \perp)$, we have that HA $+(\Gamma, \Theta)$ - $\mathbf{D M L}^{\perp}$ proves the formula $\neg \varphi \rightarrow \varphi^{\perp} \vee(\neg \perp)^{\perp}$. Thus $\mathrm{HA}+(\Gamma, \Theta)-\mathbf{D M L}^{\perp} \vdash \neg \varphi \rightarrow \varphi^{\perp}$, and this means that Γ-DUAL is provable. Similarly, Θ-DUAL is also provable. On the other hand, (Γ, Θ) - $\mathbf{D M L}{ }^{\perp}$ is easily proved in $\mathrm{HA}+(\Gamma, \Theta)$ - $\mathbf{D M L}+\Gamma$-DUAL + Θ-DUAL.

2 and 3 are proved in a similar way.
Summarizing the results so far, we obtain the following corollary.
Corollary 5.29.

1. $\Sigma_{k}-\mathbf{D M L}^{\perp}$ is equivalent to Σ_{k} - $\mathbf{D M L}+\Sigma_{k-1}-\mathrm{DNE}$ over HA ;
2. $\left(\Sigma_{k}, \Pi_{k}\right)$-DML ${ }^{\perp}$ is equivalent to Σ_{k}-LEM over HA ;
3. $\left(\Delta_{k}, \Sigma_{k}\right)-\mathbf{D M L}^{\perp, \Sigma}$ is equivalent to $\Delta_{k}-\mathbf{L E M}$ over HA ;
4. $\Delta_{k}-\mathbf{D M L}^{\perp}$ is equivalent to $\Delta_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E}$ over HA ;
5. Each of the principles $\Pi_{k}-\mathbf{D M L}{ }^{\perp},\left(\Delta_{k}, \Sigma_{k}\right)-\mathbf{D M L}{ }^{\perp, \Pi},\left(\Delta_{k}, \Pi_{k}\right)-\mathbf{D M L}^{\perp, \Sigma}$ and $\left(\Delta_{k}, \Pi_{k}\right)$-DML ${ }^{\perp, \Pi}$ is equivalent to Σ_{k}-DNE over HA.

Proof. 1. This is a consequence of Propositions 3.7 and 5.28.(1).
2. By Propositions 3.7 and 5.28.(1), $\left(\Sigma_{k}, \Pi_{k}\right)-\mathbf{D M L}^{\perp}$ is HA-equivalent to $\left(\Sigma_{k}, \Pi_{k}\right)$-DML $+\Sigma_{k}$-DNE. Then it is also HA-equivalent to Σ_{k}-LEM by Corollary 5.9.(2).
3. From Propositions 3.7 and 5.28.(2), $\left(\Delta_{k}, \Sigma_{k}\right)$ - $\mathbf{D M L}^{\perp, \Sigma}$ is HA-equivalent to $\left(\Delta_{k}, \Sigma_{k}\right)$-DML $+\Sigma_{k-1}$-DNE. Then it is HA-equivalent to Δ_{k}-LEM by Corollary 5.10.

4 is proved as in the proof of Proposition 5.28.
5. By Propositions 3.7 and 5.28.(1), Π_{k} - $\mathbf{D M L}^{\perp}$ is HA-equivalent to Π_{k} - $\mathbf{D M L}+$ Σ_{k}-DNE. Since HA $+\Sigma_{k}$-DNE $\vdash \Pi_{k}$-DML by Proposition 5.12, Π_{k} - $\mathbf{D M L}^{\perp}$ is HA-equivalent to Σ_{k}-DNE. Similarly, each of $\left(\Delta_{k}, \Sigma_{k}\right)$-DML ${ }^{\perp, \Pi},\left(\Delta_{k}, \Pi_{k}\right)$ - $\mathbf{D M L}^{\perp, \Sigma}$ and $\left(\Delta_{k}, \Pi_{k}\right)$-DML ${ }^{\perp, \Pi}$ is HA-equivalent to Σ_{k}-DNE because each of them implies Σ_{k}-DNE over HA by Proposition 5.28 , and HA $+\Sigma_{k}$-DNE proves $\left(\Delta_{k}, \Sigma_{k}\right)$-DML and $\left(\Delta_{k}, \Pi_{k}\right)$-DML by Fact 2.3.(4) and Proposition 5.3.(3).

In [3, Theorem 14], it is proved that Σ_{k} - $\mathbf{D M L}^{\perp}$ is equivalent to Σ_{k} - $\mathbf{D M L}+$ Σ_{k-1}-LEM over HA. This result follows from Corollaries 5.23 and 5.29.(1).

6 The double negation elimination

In this section, we explore variations of the double negation elimination. As in the previous sections, we deal with the principles of forms $\left(\Gamma^{\mathrm{n}} \vee \Theta\right)$ - $\mathbf{D N E}$, $\left(\Delta_{k} \vee \Theta\right)$-DNE, and so on. As in the case of de Morgan's law, $(\Gamma \vee \Theta)$-DNE is obviously equivalent to $(\Theta \vee \Gamma)$-DNE. Interestingly, de Morgan's law can be seen as a variation of the double negation elimination.

Proposition 6.1. For any sets Γ and Θ of formulas, the following are equivalent over HA:

1. (Γ, Θ)-DML.
2. $\left(\Gamma^{\mathrm{n}} \vee \Theta^{\mathrm{n}}\right)$-DNE.

The analogous equivalences also hold for the versions of Δ_{k} and Δ_{k}^{n}.
Proof. Let $\varphi \in \Gamma$ and $\psi \in \Theta$. Since HA $\vdash \neg(\varphi \wedge \psi) \leftrightarrow \neg \neg(\neg \varphi \vee \neg \psi)$, HA proves

$$
[\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi] \leftrightarrow[\neg \neg(\neg \varphi \vee \neg \psi) \rightarrow \neg \varphi \vee \neg \psi]
$$

The last statement is also proved in a similar way.
We prove the following basic proposition concerning principles based on the double negation elimination.

Proposition 6.2. Let $\Gamma \in\left\{\Sigma_{k}, \Pi_{k}, \Delta_{k}\right\}$ and let Θ be any set of formulas.

1. $\mathrm{HA}+(\Gamma \vee \Theta)$-DNE $\vdash \Gamma$-DNE;
2. Suppose that for any $\varphi \in \Theta$, there exists $\psi \in \Sigma_{k}$ such that $\mathrm{HA}+\Sigma_{k}-\mathbf{D N E} \vdash$ $\varphi \leftrightarrow \psi$. Then $\left(\Sigma_{k} \vee \Theta\right)$-DNE is equivalent to Σ_{k}-DNE over HA;
3. $\left(\Sigma_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE $+\Sigma_{k-1}-\mathbf{D N E}$ is equivalent to $\left(\Pi_{k} \vee \Theta\right)$-DNE over HA;
4. $\left(\Sigma_{k}^{\mathrm{n}} \vee \Gamma\right)$-DNE is equivalent to $\left(\Pi_{k} \vee \Gamma\right)$-DNE over HA;
5. $\left(\Pi_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE $+\Sigma_{k}$-DNE is equivalent to $\left(\Sigma_{k} \vee \Theta\right)$-DNE over HA;
6. $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Theta\right)$-DNE is equivalent to $\left(\Pi_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE over $\mathrm{HA}+\Sigma_{k-1}$-DNS;
7. $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Gamma\right)$-DNE is equivalent to $\left(\Pi_{k}^{\mathrm{n}} \vee \Gamma\right)$-DNE over HA;
8. $\left(\Pi_{k}^{\mathrm{dn}} \vee \Theta\right)$-DNE is equivalent to $\left(\Sigma_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE over $\mathrm{HA}+\Sigma_{k-1}$-DNS;
9. $\left(\Pi_{k}^{\mathrm{dn}} \vee \Gamma\right)$-DNE is equivalent to $\left(\Pi_{k} \vee \Gamma\right)$-DNE over HA ;
10. $\left(\Delta_{k}^{\operatorname{dn}} \vee \Theta\right)$-DNE $+\Sigma_{k-1}$-DNE is equivalent to $\left(\Delta_{k} \vee \Theta\right)$-DNE over HA;
11. $\left(\Delta_{k}^{\mathrm{dn}} \vee \Gamma\right)$-DNE is equivalent to $\left(\Delta_{k} \vee \Gamma\right)$-DNE over HA .

Also these statements hold even if $\Theta \in\left\{\Delta_{k}^{\mathrm{n}}, \Delta_{k}^{\mathrm{dn}}\right\}$.

Proof. 1. This is because $0=0 \in \Theta$ and for any $\varphi \in \Gamma, \varphi \vee 0=0$ is HA-provably equivalent to φ.
2. From clause 1, $\mathrm{HA}+\left(\Sigma_{k} \vee \Theta\right)$-DNE proves Σ_{k}-DNE. On the other hand, let φ and ψ be any Σ_{k} formulas. Notice that $\varphi \vee \psi$ is HA-equivalent to $\exists x((x=$ $0 \rightarrow \varphi) \wedge(x=1 \rightarrow \psi))$. Then it is shown that $\varphi \vee \psi$ is provably equivalent to some Σ_{k} formula in HA (cf. [13, Lemma 4.4]). Therefore HA $+\Sigma_{k}$-DNE proves $\left(\Sigma_{k} \vee \Theta\right)$-DNE.
3. By Propositions 3.3.(3) and 3.7, for any $\varphi \in \Sigma_{k}$ and $\psi \in \Pi_{k}$, HA + Σ_{k-1}-DNE proves $\neg \varphi \leftrightarrow \varphi^{\perp}$ and $\neg \psi^{\perp} \leftrightarrow \psi$. Thus the principles $\left(\Sigma_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE and $\left(\Pi_{k} \vee \Theta\right)$-DNE are equivalent over $\mathrm{HA}+\Sigma_{k-1}-\mathbf{D N E}$. Also by clause 1 , $\mathrm{HA}+\left(\Pi_{k} \vee \Theta\right)$-DNE proves Σ_{k-1}-DNE.

Clause 4 follows from clauses 1 and 3 because Γ-DNE entails Σ_{k-1}-DNE. Clause 5 is proved in a similar way as in the proof of clause 3. Clause 6 is a refinement of Proposition 5.7.(1) in the light of Proposition 6.1, and is proved in a similar way. Clause 7 follows from clause 6 and the fact that HA $+\Gamma$-DNE proves Σ_{k-1}-DNS. Clause 8 is a refinement of Proposition 5.7.(2). Clause 9 follows from clause 8 because HA $+\Gamma$-DNE proves Π_{k}-DNE. Clause 10 is proved in a similar way as in the proof of clause 3 . Clause 11 follows from clause 10.

We have the following corollary which shows that Σ_{k}-LEM and Π_{k}-LEM are also variations of the double negation elimination. A part of Corollary 6.3.(4) is stated in [1].

Corollary 6.3.

1. For $\Gamma^{\prime} \in\left\{\Sigma_{k}, \Delta_{k}, \Pi_{k}^{\mathrm{n}}, \Delta_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{dn}}, \Delta_{k}^{\mathrm{dn}}\right\},\left(\Sigma_{k} \vee \Gamma^{\prime}\right)$-DNE is equivalent to Σ_{k}-DNE over HA;
2. Σ_{k}-LEM, $\left(\Sigma_{k} \vee \Pi_{k}\right)$-DNE, $\left(\Sigma_{k} \vee \Sigma_{k}^{\mathrm{n}}\right)$-DNE and $\left(\Sigma_{k} \vee \Pi_{k}^{\mathrm{dn}}\right)$-DNE are equivalent over HA;
3. Π_{k}-LEM, $\left(\Pi_{k}^{\mathrm{n}} \vee \Pi_{k}\right)$-DNE and $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Pi_{k}\right)$-DNE are equivalent over HA ;
4. Σ_{k}-DML ${ }^{\perp}$, $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE, $\left(\Pi_{k} \vee \Sigma_{k}^{\mathrm{n}}\right)$-DNE and $\left(\Pi_{k} \vee \Pi_{k}^{\mathrm{dn}}\right)$-DNE are equivalent over HA ;
5. Let $\Gamma^{\prime} \in\left\{\Sigma_{k}, \Pi_{k}, \Delta_{k}, \Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right\}$ and $\Gamma^{\prime \prime} \in\left\{\Delta_{k}, \Delta_{k}^{\mathrm{n}}, \Delta_{k}^{\mathrm{dn}}\right\}$. Then Δ_{k}-LEM, $\left(\Delta_{k} \vee\left(\Gamma^{\prime}\right)^{\mathrm{n}}\right)$-DNE and $\left(\Gamma^{\prime \prime} \vee \Pi_{k}\right)$-DNE are equivalent over HA;
6. $\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE, $\left(\Delta_{k} \vee \Delta_{k}^{\mathrm{dn}}\right)$-DNE and Δ_{k}^{n}-DML $+\Sigma_{k-1}$-DNE are equivalent over HA.

Proof. 1. This follows from Proposition 6.2.(2).
2. By Corollary 5.9.(2), Σ_{k}-LEM is equivalent to $\left(\Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right)$-DML $+\Sigma_{k}$-DNE. By Proposition 6.1, it is equivalent to $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Pi_{k}^{\mathrm{dn}}\right)$-DNE $+\Sigma_{k}$-DNE. By Propositions 6.2.(5), 6.2.(7) and 6.2.(9), it is equivalent to $\left(\Sigma_{k} \vee \Pi_{k}\right)$-DNE. Also by Propositions 6.2.(4) and 6.2.(9), each of $\left(\Sigma_{k} \vee \Sigma_{k}^{\mathrm{n}}\right)$-DNE and $\left(\Sigma_{k} \vee \Pi_{k}^{\mathrm{dn}}\right)$-DNE is equivalent to $\left(\Sigma_{k} \vee \Pi_{k}\right)$-DNE.
3. By Corollary 5.9.(1), Π_{k}-LEM is equivalent to $\left(\Sigma_{k}^{\mathrm{n}}, \Pi_{k}^{\mathrm{n}}\right)$-DML $+\Sigma_{k-1}$ - DNE, and it is equivalent to $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Pi_{k}^{\mathrm{dn}}\right)$-DNE $+\Sigma_{k-1}$-DNE by Proposition 6.1. By Propositions 6.2.(6) and 6.2.(9), it is equivalent to $\left(\Pi_{k}^{\mathrm{n}} \vee \Pi_{k}\right)$-DNE. By Proposition 6.2. $(7),\left(\Pi_{k}^{\mathrm{n}} \vee \Pi_{k}\right)$-DNE is equivalent to $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Pi_{k}\right)$-DNE.
4. By Corollary 5.29.(1), Σ_{k} - $\mathbf{D M L}^{\perp}$ is equivalent to Σ_{k} - $\mathbf{D M L}+\Sigma_{k-1}$ - $\mathbf{D N E}$, and this is equivalent to $\left(\Sigma_{k}^{\mathrm{n}} \vee \Sigma_{k}^{\mathrm{n}}\right)$-DNE $+\Sigma_{k-1}$-DNE. Then by Propositions 6.2.(3), it is equivalent to $\left(\Sigma_{k}^{\mathrm{n}} \vee \Pi_{k}\right)$-DNE. It is equivalent to $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE by Proposition 6.2.(4), and hence, also to $\left(\Pi_{k} \vee \Pi_{k}^{\mathrm{dn}}\right)$-DNE by Proposition 6.2.(9).
5. By Corollary 5.10, Δ_{k}-LEM is equivalent to $\left(\Delta_{k}^{\mathrm{n}}, \Gamma^{\prime}\right)$-DML $+\Sigma_{k-1}$-DNE. And it is equivalent to $\left(\Delta_{k}^{\mathrm{dn}} \vee\left(\Gamma^{\prime}\right)^{\mathrm{n}}\right)$-DNE $+\Sigma_{k-1}-\mathbf{D N E}$. This is equivalent to $\left(\Delta_{k} \vee\left(\Gamma^{\prime}\right)^{\mathrm{n}}\right)$-DNE by Proposition 6.2.(10). Also each of $\left(\Delta_{k}^{\mathrm{dn}} \vee \Pi_{k}\right)$-DNE and $\left(\Delta_{k} \vee \Pi_{k}\right)$-DNE is equivalent to $\left(\Delta_{k} \vee \Sigma_{k}^{\mathrm{n}}\right)$-DNE by Propositions 6.2.(4) and 6.2.(10).

By Corollary 5.10, Δ_{k} - $\mathbf{L E M}$ is equivalent to $\left(\Delta_{k}, \Sigma_{k}\right)$ - $\mathbf{D M L}+\Sigma_{k-1}$ - DNE, and it is equivalent to $\left(\Delta_{k}^{\mathrm{n}} \vee \Sigma_{k}^{\mathrm{n}}\right)$-DNE $+\Sigma_{k-1}$-DNE. By Proposition 6.2.(3), it is equivalent to $\left(\Delta_{k}^{\mathrm{n}} \vee \Pi_{k}\right)$-DNE.
6. This is immediate from Propositions 6.1, 6.2.(10) and 6.2.(11).

Corollary 6.4. HA $+\Delta_{k}$-LEM $\vdash\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE.
Proof. This is because HA $+\Delta_{k}$-LEM $\vdash\left(\Delta_{k} \vee \Pi_{k}\right)$-DNE by Corollary 6.3.(5).

In Akama et al. [1], it is shown that HA $+\Delta_{k+1}$-LEM proves Σ_{k}-LEM. The following proposition is a refinement of their result from Corollary 6.4.
Proposition 6.5. $\mathrm{HA}+\left(\Delta_{k+1} \vee \Delta_{k+1}\right)$-DNE $\vdash \Sigma_{k}$-LEM.
Proof. Let φ be any Σ_{k} formula. Since HA $\vdash \neg(\neg \varphi \wedge \neg \neg \varphi)$, HA $+\Sigma_{k-1}-\mathbf{D N S} \vdash$ $\neg\left(\neg \varphi \wedge \neg \varphi^{\perp}\right)$ by Proposition 3.12. Then HA $+\Sigma_{k-1}-\mathrm{DNS} \vdash \neg \neg\left(\varphi \vee \varphi^{\perp}\right)$. Since both φ and φ^{\perp} are Δ_{k+1} and HA $+\left(\Delta_{k+1} \vee \Delta_{k+1}\right)$-DNE derives Σ_{k-1}-DNS, $\mathrm{HA}+\left(\Delta_{k+1} \vee \Delta_{k+1}\right)$-DNE $\vdash \varphi \vee \varphi^{\perp}$. Hence the theory proves $\varphi \vee \neg \varphi$ by Proposition 3.3.(3).

Finally, we introduce the following principle based on Peirce's law. We show that Peirce's law exactly corresponds to the double negation elimination.

Definition 6.6 (Peirce's law). Let Γ be any set of formulas.
Γ-PEIRCE $\quad((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi \quad(\varphi \in \Gamma$ and ψ is any formula)
Proposition 6.7. For any set Γ of formulas, Γ-PEIRCE is equivalent to Γ-DNE over HA.

Proof. First, we prove HA $+\Gamma$-PEIRCE $\vdash \Gamma$-DNE. Let $\varphi \in \Gamma$. Since $\neg \neg \varphi$ is $(\varphi \rightarrow \perp) \rightarrow \perp$, $\mathrm{HA} \vdash \neg \neg \varphi \rightarrow((\varphi \rightarrow \perp) \rightarrow \varphi)$. Thus HA $+\Gamma$-PEIRCE \vdash $\neg \neg \varphi \rightarrow \varphi$.

Secondly, we prove HA $+\Gamma$-DNE $\vdash \Gamma$-PEIRCE. Let φ be any Γ formula and ψ be arbitrary formula. Since HA proves $\neg \varphi \rightarrow(\varphi \rightarrow \psi)$, HA also proves $((\varphi \rightarrow \psi) \rightarrow \varphi) \wedge \neg \varphi \rightarrow \varphi$. Hence HA $\vdash((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \neg \neg \varphi$. We obtain HA $+\Gamma$-DNE $\vdash((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi$.

We get the table which summarizes principles equivalent to $(\Gamma \vee \Theta)$-DNE over the theory HA $+\Sigma_{k-1}$-DNS. Notice that from Propositions 6.2.(6) and 6.2.(8), $\left(\Sigma_{k}^{\mathrm{dn}} \vee \Theta\right)$-DNE and $\left(\Pi_{k}^{\mathrm{dn}} \vee \Theta\right)$-DNE are equivalent to $\left(\Pi_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE and $\left(\Sigma_{k}^{\mathrm{n}} \vee \Theta\right)$-DNE over HA $+\Sigma_{k-1}$-DNS, respectively. So Σ_{k}^{dn} and Π_{k}^{dn} are excluded from the table.

Γ	Σ_{k}	Π_{k}^{n}	Π_{k}	Σ_{k}^{n}
Σ_{k}	Σ_{k}-DNE	Σ_{k}-DNE	Σ_{k}-LEM	Σ_{k}-LEM
Π_{k}^{n}		Π_{k}-DML	Π_{k}-LEM	Σ_{k}^{n}-LEM
Π_{k}			Σ_{k} - DML $^{\perp}$	Σ_{k} - DML $^{\perp}$
Σ_{k}^{n}				Σ_{k}-DML

Γ	Δ_{k}	Δ_{k}^{n}	Δ_{k}^{dn}
Σ_{k}	Σ_{k}-DNE	Σ_{k} - DNE	Σ_{k}-DNE
Π_{k}^{n}	Δ_{k}-LEM	Δ_{k}^{n}-LEM	Δ_{k}^{n}-LEM
Π_{k}	Δ_{k}-LEM	Δ_{k}-LEM	Δ_{k}-LEM
Σ_{k}^{n}	Δ_{k}-LEM	Δ_{k}^{n}-LEM	Δ_{k}^{n}-LEM
Δ_{k}	$\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE	Δ_{k}-LEM	$\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE
Δ_{k}^{n}		Δ_{k}-DML	Δ_{k}^{n}-LEM
Δ_{k}^{dn}			Δ_{k}^{n}-DML

Table 1: Principles equivalent to $(\Gamma \vee \Theta)$-DNE over HA $+\Sigma_{k-1}$-DNS

7 The constant domain axiom

In this section, we investigate the principles of the form $(\Gamma, \Theta)-\mathbf{C D}$ in Definition 2.4 , and classify them in the arithmetical hierarchy of classical principles. Note that $(\Gamma, \Theta)-\mathbf{C D}$ is not equivalent to $(\Theta, \Gamma)-\mathbf{C D}$ in general.

In first-order intuitionistic Kripke semantics, the constant domain axiom corresponds to Kripke frames with constant domains (cf. [18, p. 328]). First of all, we show that in our framework of first-order intuitionistic arithmetic, the constant domain axiom is equivalent to the law of excluded middle despite its semantic origin. Let LEM and CD denote the principles Fml-LEM and ($\mathrm{Fml}, \mathrm{Fml}$)-CD respectively, where Fml is the set of all formulas.

Proposition 7.1. CD is equivalent to LEM over HA.
Proof. First, we prove HA $+\mathbf{C D} \vdash \varphi \vee \neg \varphi$ for any formula φ by induction on the construction of φ. If φ is an atomic formula, then the statement is obvious.

Assume that HA $+\mathbf{C D}$ proves $\psi \vee \neg \psi$ and $\rho \vee \neg \rho$, and suppose φ is one of the forms $\psi \wedge \rho, \psi \vee \rho$ and $\psi \rightarrow \rho$. Notice that $\neg \psi \vee \neg \rho \rightarrow \neg(\psi \wedge \rho)$, $\neg \psi \wedge \neg \rho \rightarrow \neg(\psi \vee \rho), \neg \psi \vee \rho \rightarrow(\psi \rightarrow \rho)$ and $\psi \wedge \neg \rho \rightarrow \neg(\psi \rightarrow \rho)$ are provable in HA. Therefore $\varphi \vee \neg \varphi$ is also provable in HA + CD.

Assume that HA + CD proves $\psi(x) \vee \neg \psi(x)$. Then $\forall x(\exists x \psi(x) \vee \neg \psi(x))$ and $\forall x(\psi(x) \vee \exists x \neg \psi(x))$ are also provable. By applying CD, we obtain that HA $+\mathbf{C D}$ proves $\exists x \psi(x) \vee \neg \exists x \psi(x)$ and $\forall x \psi(x) \vee \neg \forall x \psi(x)$. Therefore, if φ is of one of the forms $\exists x \psi(x)$ and $\forall x \psi(x)$, then $\varphi \vee \neg \varphi$ is provable in HA + CD.

Secondly, we prove HA $+\mathbf{L E M} \vdash \mathbf{C D}$. Let φ and $\psi(x)$ be any formulas with $x \notin \mathrm{FV}(\varphi)$. We have HA $\vdash \forall x(\varphi \vee \psi(x)) \wedge \neg \varphi \rightarrow \forall x \psi(x)$. Since HA + LEM proves $\varphi \vee \neg \varphi$, we conclude that HA $+\mathbf{L E M}$ also proves $\forall x(\varphi \vee \psi(x)) \rightarrow \varphi \vee$ $\forall x \psi(x)$.

Proposition 7.2.

1. $\left(\Gamma, \Pi_{k+1}\right)-\mathbf{C D}$ is equivalent to $\left(\Gamma, \Sigma_{k}\right)-\mathbf{C D}$ over HA ;
2. $\left(\Gamma, \Sigma_{k+1}^{\mathrm{n}}\right)$-CD is equivalent to $\left(\Gamma, \Pi_{k}^{\mathrm{n}}\right)-\mathbf{C D}$ over HA .

Proof. These statements are proved by using a primitive recursive pairing function.

As in the proof of Proposition 7.1, we can show that Γ-LEM and Δ_{k}-LEM are sufficiently strong for the constant domain axiom.

Proposition 7.3. Let Γ and Θ be any sets of formulas.

1. $\mathrm{HA}+\Gamma-\mathbf{L E M} \vdash(\Gamma, \Theta)-\mathbf{C D}$;
2. $\mathrm{HA}+\Delta_{k}$-LEM $\vdash\left(\Delta_{k}, \Theta\right)$-CD.

From the prenex normal form theorem proved in [1, Theorem 2.7] and [13, Theorem 5.7], LEM is equivalent to $\bigcup\left\{\Sigma_{k}\right.$-LEM $\left.\mid k \geq 0\right\}$ over HA. Therefore, the following proposition can be regarded as a stratification of Proposition 7.1.

Proposition 7.4. Let Θ be a set of formulas such that $\Sigma_{k-1} \subseteq \Theta$. Then the following are equivalent over HA:

1. $\left(\Sigma_{k}, \Theta\right)-\mathbf{C D}$.
2. Σ_{k}-LEM.

Proof. First, we prove $\mathrm{HA}+\left(\Sigma_{k}, \Sigma_{k-1}\right)$ - $\mathbf{C D} \vdash \Sigma_{k}$-LEM by induction on k. For $k=0$, the statement is trivial. Suppose that the statement holds for k, and we prove $\mathrm{HA}+\left(\Sigma_{k+1}, \Sigma_{k}\right)$ - CD $\vdash \Sigma_{k+1}$-LEM. Let $\exists x \varphi(x)$ be any Σ_{k+1} formula with $\varphi(x) \in \Pi_{k}$. By induction hypothesis and Fact 2.3, HA $+\left(\Sigma_{k}, \Sigma_{k-1}\right)$-CD proves Π_{k}-LEM $+\Sigma_{k}$-DNE. Thus HA $+\left(\Sigma_{k}, \Sigma_{k-1}\right)$-CD $\vdash \varphi(x) \vee \neg \varphi(x)$. We get HA $+\left(\Sigma_{k}, \Sigma_{k-1}\right)$ - CD $\vdash \forall x\left(\exists x \varphi(x) \vee \varphi^{\perp}(x)\right)$ by using Π_{k}-DUAL. Then

$$
\mathrm{HA}+\left(\Sigma_{k+1}, \Sigma_{k}\right)-\mathbf{C D} \vdash \exists x \varphi(x) \vee \forall x \varphi^{\perp}(x)
$$

This implies HA $+\left(\Sigma_{k+1}, \Sigma_{k}\right)$-CD $\vdash \exists x \varphi(x) \vee \neg \exists x \varphi(x)$.
On the other hand, $\mathrm{HA}+\Sigma_{k}$ - $\mathbf{L E M} \vdash\left(\Sigma_{k}, \Theta\right)$ - $\mathbf{C D}$ follows from Proposition 7.3.(1).

Fact 2.7 states that $\left(\Pi_{1}, \Pi_{1}\right)$ - CD is HA-equivalent to Σ_{1} - DML. By Corollary 5.29.(1), Σ_{1} - DML is HA-equivalent to $\Sigma_{1}-\mathbf{D M L}^{\perp}$. So the following proposition is a generalization of Fact 2.7.

Proposition 7.5. The following are equivalent over HA:

1. $\left(\Pi_{k}, \Pi_{k}\right)$-CD.
2. $\Sigma_{k}-\mathrm{DML}^{\perp}$.

Proof. First, we prove HA $+\Sigma_{k}$ - $\mathbf{D M L}^{\perp} \vdash\left(\Pi_{k}, \Pi_{k}\right)$-CD. Let $\varphi, \psi(x) \in \Pi_{k}$ with $x \notin \mathrm{FV}(\varphi)$. Since HA $\vdash \forall x(\varphi \vee \psi(x)) \wedge \neg \varphi \rightarrow \forall x \psi(x)$, HA proves $\forall x(\varphi \vee$ $\psi(x)) \rightarrow \neg(\neg \varphi \wedge \neg \forall x \psi(x))$. By Proposition 3.3.(3), HA $\vdash \forall x(\varphi \vee \psi(x)) \rightarrow$ $\neg\left(\varphi^{\perp} \wedge(\forall x \psi(x))^{\perp}\right)$. Then we obtain

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}^{\perp} \vdash \forall x(\varphi \vee \psi(x)) \rightarrow \varphi^{\perp \perp} \vee(\forall x \psi(x))^{\perp \perp}
$$

By Proposition 3.3.(2), we conclude

$$
\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}^{\perp} \vdash \forall x(\varphi \vee \psi(x)) \rightarrow \varphi \vee \forall x \psi(x)
$$

Secondly, we prove $\mathrm{HA}+\left(\Pi_{k}, \Pi_{k}\right)$ - $\mathbf{C D} \vdash \Sigma_{k}$ - $\mathbf{D M L}{ }^{\perp}$. We may assume $k>0$. Let $\exists x \varphi(x)$ and $\exists y \psi(y)$ be any Σ_{k} formulas where $\varphi(x)$ and $\psi(y)$ are Π_{k-1}. Since $\psi(y)$ implies $\exists y \psi(y)$, we obtain

$$
\begin{equation*}
\mathrm{HA} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \wedge \psi(y) \rightarrow \neg \exists x \varphi(x) \tag{12}
\end{equation*}
$$

Since HA $+\left(\Pi_{k}, \Pi_{k}\right)$-CD entails $\left(\Sigma_{k-1}, \Pi_{k}\right)$-CD, we obtain that HA $+\left(\Pi_{k}, \Pi_{k}\right)$ - CD proves $\Pi_{k-1}-\mathbf{L E M}+\Sigma_{k-1}$-DNE by Proposition 7.4 and Fact 2.3. Hence HA + $\left(\Pi_{k}, \Pi_{k}\right)$ - CD $\vdash \psi(y) \vee \neg \psi(y)$. From this with (12), we have

$$
\mathrm{HA}+\left(\Pi_{k}, \Pi_{k}\right)-\mathbf{C D} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow \forall y(\neg \exists x \varphi(x) \vee \neg \psi(y))
$$

By using Σ_{k}-DUAL, we get

$$
\mathrm{HA}+\left(\Pi_{k}, \Pi_{k}\right)-\mathbf{C D} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow \forall y\left((\exists x \varphi(x))^{\perp} \vee \psi^{\perp}(y)\right)
$$

Since $(\exists x \varphi(x))^{\perp} \in \Pi_{k}$ and $\psi^{\perp}(y) \in \Sigma_{k-1}$, we obtain

$$
\mathrm{HA}+\left(\Pi_{k}, \Pi_{k}\right)-\mathbf{C D} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow(\exists x \varphi(x))^{\perp} \vee \forall y \psi^{\perp}(y)
$$

Therefore

$$
\mathrm{HA}+\left(\Pi_{k}, \Pi_{k}\right)-\mathbf{C D} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow(\exists x \varphi(x))^{\perp} \vee(\exists y \psi(y))^{\perp}
$$

From Corollaries 5.29.(1) and 6.3.(4) and Propositions 5.16, 5.22 and 7.5, we have the following result.

Corollary 7.6. For $k \geq 1$, the following are equivalent over HA:

1. $\Sigma_{k}-\mathrm{DML}+\Sigma_{k-1}-\mathrm{DNE}$.
2. $\Sigma_{k}-\mathrm{DML}^{\perp}$.
3. $\left(\Pi_{k}, \Pi_{k}\right)$-CD.
4. $\Pi_{k}-$ COLL $^{\mathbf{c p}}$.
5. $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE.

Corollary 7.7. For $k \geq 1$, each of Σ_{k} - $\mathbf{D M L}^{\perp},\left(\Pi_{k}, \Pi_{k}\right)-\mathbf{C D}, \Pi_{k}$ - $\mathbf{C O L L}^{\mathbf{c p}}$ and $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE implies Π_{k}-DML over HA.

Proof. This is immediate from Proposition 5.21 and Corollary 7.6.
Proposition 7.8. Let Θ be a set of formulas such that $\Sigma_{k-1} \subseteq \Theta$. Then the following are equivalent over HA:

1. $\left(\Delta_{k}, \Theta\right)-\mathbf{C D}$.
2. Δ_{k}-LEM.

Proof. Notice that $\left(\Delta_{k}, \Sigma_{k-1}\right)$-CD implies $\left(\Sigma_{k-1}, \Sigma_{k-1}\right)$-CD. Then by Proposition 7.4 and Fact 2.3, $\mathrm{HA}+\left(\Delta_{k}, \Sigma_{k-1}\right)$ - CD proves $\Pi_{k-1}-\mathbf{L E M}+\Sigma_{k-1}$-DNE. Therefore the statement HA $+\left(\Delta_{k}, \Sigma_{k-1}\right)$ - CD $\vdash \Delta_{k}$-LEM is proved as in the proof of Proposition 7.4. On the other hand, $\mathrm{HA}+\Delta_{k}$-LEM $\vdash\left(\Delta_{k}, \Theta\right)$ - CD follows from Proposition 7.3.(2).

Next, we investigate the principles $\left(\Gamma^{\mathrm{n}}, \Theta\right)-\mathbf{C D}$ and $\left(\Delta_{k}^{\mathrm{n}}, \Theta\right)-\mathbf{C D}$. In the light of Proposition 7.3, they are derived from Γ^{n}-LEM and $\Delta_{k}^{\mathrm{n}}-\mathbf{L E M}$, respectively. In addition, for $\Theta=\Sigma_{k}^{\mathrm{n}}$, we obtain the following proposition.

Proposition 7.9. Let Γ be any set of formulas.

1. $\mathrm{HA}+\left(\Gamma, \Sigma_{k}\right)-\mathbf{D M L} \vdash\left(\Gamma^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}$;
2. $\mathrm{HA}+\left(\Delta_{k}, \Sigma_{k}\right)$-DML $\vdash\left(\Delta_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD.

Proof. 1. By Proposition 7.2.(2), it suffices to show that HA $+\left(\Gamma, \Sigma_{k}\right)$-DML proves $\left(\Gamma^{\mathrm{n}}, \Pi_{k-1}^{\mathrm{n}}\right)$-CD. Let $\varphi \in \Gamma$ and $\psi(x) \in \Pi_{k-1}$ with $x \notin \mathrm{FV}(\varphi)$. Then we have

$$
\begin{aligned}
\mathrm{HA} \vdash \forall x(\neg \varphi \vee \neg \psi(x)) & \rightarrow \forall x \neg(\varphi \wedge \psi(x)), \\
& \rightarrow \neg \exists x(\varphi \wedge \psi(x)), \\
& \rightarrow \neg(\varphi \wedge \exists x \psi(x)) .
\end{aligned}
$$

Thus

$$
\mathrm{HA}+\left(\Gamma, \Sigma_{k}\right)-\mathbf{D M L} \vdash \forall x(\neg \varphi \vee \neg \psi(x)) \rightarrow \neg \varphi \vee \neg \exists x \psi(x)
$$

We conclude

$$
\mathrm{HA}+\left(\Gamma, \Sigma_{k}\right) \text {-DML } \vdash \forall x(\neg \varphi \vee \neg \psi(x)) \rightarrow \neg \varphi \vee \forall x \neg \psi(x) .
$$

2 is proved similarly.

With the help of Σ_{k-2} - DNS, the converse implications also hold.

Proposition 7.10.

1. $\mathrm{HA}+\left(\Pi_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-2}$-DNS $\vdash\left(\Sigma_{k}, \Pi_{k}\right)$-DML;
2. $\mathrm{HA}+\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-2}-\mathrm{DNS} \vdash \Sigma_{k}$-DML;
3. $\mathrm{HA}+\left(\Delta_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-2}$-DNS $\vdash\left(\Delta_{k}, \Sigma_{k}\right)$-DML.

Proof. 1. We prove by induction on $k \geq 0$. The statement for $k=0$ is trivial. We assume that our statement holds for k, and we prove $\mathrm{HA}+\left(\Pi_{k+1}^{\mathrm{n}}, \Sigma_{k+1}^{\mathrm{n}}\right)$-CD+ Σ_{k-1}-DNS $\vdash\left(\Sigma_{k+1}, \Pi_{k+1}\right)$-DML. Let $\exists x \varphi(x) \in \Sigma_{k+1}$ and $\psi \in \Pi_{k+1}$ where $\varphi(x) \in \Pi_{k}$. We have

$$
\begin{aligned}
\mathrm{HA} \vdash \neg(\exists x \varphi(x) \wedge \psi) & \rightarrow \neg \exists x(\varphi(x) \wedge \psi), \\
& \rightarrow \forall x \neg(\varphi(x) \wedge \psi), \\
& \rightarrow \forall x \neg(\neg \neg \varphi(x) \wedge \neg \neg \psi) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\mathrm{HA} \vdash \neg(\exists x \varphi(x) \wedge \psi) \wedge \neg \neg \varphi(x) \rightarrow \neg \psi \tag{13}
\end{equation*}
$$

By induction hypothesis, $\mathrm{HA}+\left(\Pi_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$ - CD $+\Sigma_{k-2}$-DNS $\vdash\left(\Sigma_{k}, \Pi_{k}\right)$-DML. By Corollary 5.8.(1), $\mathrm{HA}+\left(\Pi_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$ - $\mathbf{C D}+\Sigma_{k-1}-\mathrm{DNS}$ proves Π_{k}^{n}-LEM. Thus we have that HA $+\left(\Pi_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$ - CD $+\Sigma_{k-1}$ - DNS proves $\neg \neg \varphi(x) \vee \neg \varphi(x)$. From this with (13), we obtain

$$
\mathrm{HA}+\left(\Pi_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-1}-\mathbf{D N S} \vdash \neg(\exists x \varphi(x) \wedge \psi) \rightarrow \forall x(\neg \psi \vee \neg \varphi(x))
$$

By applying $\left(\Pi_{k+1}^{\mathrm{n}}, \Sigma_{k+1}^{\mathrm{n}}\right)-\mathbf{C D}$, we have

$$
\mathrm{HA}+\left(\Pi_{k+1}^{\mathrm{n}}, \Sigma_{k+1}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-1}-\mathbf{D N S} \vdash \neg(\exists x \varphi(x) \wedge \psi) \rightarrow \neg \psi \vee \forall x \neg \varphi(x)
$$

We conclude

$$
\mathrm{HA}+\left(\Pi_{k+1}^{\mathrm{n}}, \Sigma_{k+1}^{\mathrm{n}}\right) \mathbf{- C D}+\Sigma_{k-1}-\mathbf{D N S} \vdash \neg(\exists x \varphi(x) \wedge \psi) \rightarrow \neg \exists x \varphi(x) \vee \neg \psi
$$

2. We may assume $k>0$. Let $\exists x \varphi(x)$ and $\exists y \psi(y)$ be any Σ_{k} formulas with $\varphi(x), \psi(y) \in \Pi_{k-1}$.

$$
\begin{aligned}
\mathrm{HA} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) & \rightarrow \neg \exists x \exists y(\varphi(x) \wedge \psi(y)), \\
& \rightarrow \forall x \forall y \neg(\varphi(x) \wedge \psi(y)) .
\end{aligned}
$$

Since $\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD entails $\left(\Pi_{k-1}^{\mathrm{n}}, \Sigma_{k-1}^{\mathrm{n}}\right)$-CD, by clause 1, we have that HA + $\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD $+\Sigma_{k-3}$-DNS proves $\left(\Sigma_{k-1}, \Pi_{k-1}\right)$-DML. Then by Corollary 5.8.(1), HA $+\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$ - CD $+\Sigma_{k-2}$ - DNS proves Π_{k-1}^{n}-LEM. By Proposition 5.3.(1), it also proves Π_{k-1}-DML. Thus

$$
\mathrm{HA}+\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-2} \text { - } \mathbf{D N S} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow \forall x \forall y(\neg \varphi(x) \vee \neg \psi(y))
$$

By applying ($\left.\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD twice, we obtain
$\mathrm{HA}+\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-2}-\mathbf{D N S} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow \forall x \neg \varphi(x) \vee \forall y \neg \psi(y)$.
We conclude
$\mathrm{HA}+\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)-\mathbf{C D}+\Sigma_{k-2}-\mathbf{D N S} \vdash \neg(\exists x \varphi(x) \wedge \exists y \psi(y)) \rightarrow \neg \exists x \varphi(x) \vee \neg \exists y \psi(y)$.
3 is proved as in the proof of clause 2 .
We obtain the following corollary.
Corollary 7.11. Let Θ be any set of formulas such that $\Pi_{k-1}^{\mathrm{n}} \subseteq \Theta$.

1. $\left(\Pi_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD is equivalent to $\left(\Sigma_{k}, \Pi_{k}\right)$-DML over $\mathrm{HA}+\Sigma_{k-2}$-DNS;
2. $\left(\Pi_{k}^{\mathrm{n}}, \Theta\right)$-CD is equivalent to $\Pi_{k}^{\mathrm{n}}-\mathbf{L E M}$ over $\mathrm{HA}+\Sigma_{k-1}$-DNS;
3. $\left(\Sigma_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD is equivalent to Σ_{k} - DML over $\mathrm{HA}+\Sigma_{k-2}$-DNS;
4. $\left(\Delta_{k}^{\mathrm{n}}, \Sigma_{k}^{\mathrm{n}}\right)$-CD is equivalent to $\left(\Delta_{k}, \Sigma_{k}\right)$-DML over $\mathrm{HA}+\Sigma_{k-2}$-DNS;
5. $\left(\Delta_{k}^{\mathrm{n}}, \Theta\right)$-CD is equivalent to Δ_{k}^{n}-LEM over $\mathrm{HA}+\Sigma_{k-1}$-DNS.

Proof. 1. This is immediate from Propositions 7.9.(1) and 7.10.(1).
2. From clause 1, Proposition 7.2 and Corollary 5.8.(1), we have that $\mathrm{HA}+\left(\Pi_{k}^{\mathrm{n}}, \Pi_{k-1}^{\mathrm{n}}\right)$-CD $+\Sigma_{k-1}$-DNS proves Π_{k}^{n}-LEM. On the other hand, HA $+\Pi_{k}^{\mathrm{n}}$-LEM proves $\left(\Pi_{k}^{\mathrm{n}}, \Theta\right)$-CD by Proposition 7.3.(1).
3. This is a consequence of Propositions 7.9.(1) and 7.10.(2).
4. Immediate from Propositions 7.9.(2) and 7.10.(3).
5. As in the proof of clause 2 , we obtain the statement from clause 4 , Propositions 7.2, 7.3.(2) and Corollary 5.8.(4),

Problem 7.12.

- Is there a set Θ of formulas such that $\mathrm{HA}+\left(\Pi_{k}, \Theta\right)$-CD proves Π_{k}-LEM?
- Is there a set Θ of formulas such that $\mathrm{HA}+\left(\Sigma_{k}^{\mathrm{n}}, \Theta\right)-\mathbf{C D}+\Sigma_{k-1}$-DNS proves $\Sigma_{k}^{\mathrm{n}}-\mathbf{L E M}$?

The following figure (Figure 2) summarizes the situation for implications around the constant domain axioms for negated formulas. In [9, Example 10], it is shown that $\mathrm{HA}+\Sigma_{k}-\mathbf{D M L}+\Sigma_{k}$ - DNE does not prove Σ_{k}^{n}-LEM for $k \geq 1$. Therefore, in Figure 2, Σ_{k} - DML does not imply Σ_{k}^{n}-LEM even in the theory $\mathrm{HA}+\Sigma_{k}$-DNE for $k \geq 1$.

$$
\begin{aligned}
& \Theta: \text { A sufficiently large set of formulas } \\
& ---\rightarrow \text { : Implication in HA }+\Sigma_{k-2} \text {-DNS } \\
& \ldots \quad \cdots: \text { Implication in HA }+\Sigma_{k-1} \text {-DNS }
\end{aligned}
$$

Figure 2: Implications around the constant domain axioms for negated formulas

8 Summary

As a summary, we illustrate the relationships between the principles we have dealt with so far. However, the structure of such relationships is somewhat complicated. As we have shown, some minor differences in some of the principles are smoothed out in the theory HA $+\Sigma_{k-1}$-DNS. Therefore, by illustrating the relationships between the principles in the theory $\mathrm{HA}+\Sigma_{k-1}$-DNS, one can grasp the structure in perspective. In fact, in the presence of Σ_{1}-DNS (in second-order arithmetic), a lot of equivalences in classical reverse mathematics can be established even intuitionistically (cf. [11, Proposition 1.1] and [7, Theorem 2.10]).

Figure 3 summarizes the derivability relation between several principles over HA $+\Sigma_{k-1}$-DNS with supplementary information about the situation over Σ_{k-1}-DNE. In fact, except Σ_{k}^{n}-LEM $\rightarrow \Pi_{k}$-DML, Σ_{k} - DML $\rightarrow \Delta_{k}^{\mathrm{n}}$-LEM, Π_{k}-DML $\rightarrow \Delta_{k}^{\mathrm{n}}$-LEM, Δ_{k} - DML $\rightarrow \Sigma_{k-1}^{\mathrm{n}}$-LEM and Δ_{k}^{n}-DML $\rightarrow \Sigma_{k-1}^{\mathrm{n}}$-LEM, all the (non-dashed) implications presented in Figure 3 are provable even in HA. However, one should note that the principle located at each vertex is one adequately selected from the equivalence class of principles modulo $\mathrm{HA}+$ $\Sigma_{k-1}-$ DNS, and hence, the HA-provability depends on the choice of the representatives for the vertices. For instance, we can replace Σ_{k}^{n} - $\mathbf{L E M}$ with Π_{k}^{n}-LEM by Proposition 4.8. Then Π_{k}^{n}-LEM $\rightarrow \Pi_{k}$ - DML is provable in HA while Π_{k}^{n}-LEM $\rightarrow \Sigma_{k}$-DML is so in HA $+\Sigma_{k-1}$-DNS.

As already mentioned so far, several underivability results are proved in the literature (cf. [1, 6, 8, 9, 16, 17]). In particular, Fujiwara et al. [9] recently intro-

\longrightarrow : Implication in HA $+\Sigma_{k-1}$-DNS
$----\rightarrow$: Implication in $\mathrm{HA}+\Sigma_{k-1}$-DNE

Figure 3: A refined arithmetical hierarchy of classical principles
duced a fairy useful method to separate Σ_{k} variants of the logical principles. All the underivability results in [1] obtained by using several kinds of functional interpretations can be proven uniformly in the methodology (see [9, Example 10]). Furthermore, as in [6, Section 4], one can also prove $\Sigma_{k-1}-\mathbf{L E M} \rightarrow \Delta_{k}^{\mathrm{n}}$ - DML, $\Sigma_{k-1}-\mathrm{LEM}+\Delta_{k}^{\mathrm{n}}$-DML $\nrightarrow \Delta_{k}$ - DML and Σ_{k-1}-LEM $+\Delta_{k}$ - DML $\nrightarrow \Delta_{k}$-LEM by this method. However, the separations of the principles which are equivalent only in the presence of $\Sigma_{k-1}-\mathbf{D N E}$ (or even $\Sigma_{k-1}-\mathbf{D N S}$) are extremely delicate. One needs further effort for such separations.

In Section 5, we investigated the principles which are closely related to the induction principle such as the contrapositive collection principle and the least number principle over HA, which contains the full induction scheme, in order to examine the logical strength of them. Then we found that Π_{k} - COLL ${ }^{\mathbf{c p}}$, $\Pi_{k}-\mathbf{L N}$ and $\Sigma_{k}-\mathbf{L N}$ are equivalent to $\Sigma_{k}-\mathbf{D M L}+\Sigma_{k-1}-\mathbf{D N E}, \Pi_{k}$-LEM and Σ_{k}-LEM over HA, respectively (see Theorem 5.20 and Corollary 5.23). On the other hand, it is interesting to analyze the relationship between these principles and the induction principle over intuitionistic arithmetic only with restricted induction scheme.

Implications	Verifying theories	cf.
Σ_{k}-LEM $\rightarrow \Pi_{k}$-LEM	HA	Fact 2.3.(1)
Σ_{k}-LEM $\rightarrow \Sigma_{k}$-DNE	HA	Fact 2.3.(1)
Π_{k}-LEM $\rightarrow\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE	HA	Fact 2.3.(2)
Π_{k}-LEM $\rightarrow \Sigma_{k}^{\mathrm{n}}$-LEM	HA + Σ_{k-1}-DNS	Propositions 4.7.(1) and 4.8
Σ_{k}^{n}-LEM $\rightarrow \Pi_{k}$-LEM	HA $+\Sigma_{k-1}$-DNE	Corollary 4.9
Σ_{k}-DNE $\rightarrow \Delta_{k}$-LEM	HA	Fact 2.3.(4)
Σ_{k}-DNE $\rightarrow \Pi_{k}$-DML	HA	Proposition 5.12
$\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\rightarrow \Delta_{k}$-LEM	HA	Fact 2.3.(3)
$\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\rightarrow \Pi_{k}$-DML	HA	Corollary 7.6 and Proposition 5.21
$\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\rightarrow \Sigma_{k}$-DML	HA	Corollary 7.6
Σ_{k}-DML $\rightarrow\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE	HA + Σ_{k-1}-DNE	Corollary 7.6
Σ_{k}^{n}-LEM $\rightarrow \Pi_{k}$-DML	HA $+\Sigma_{k-1}$-DNS	Proposition 4.8 and Corollary 5.4.(1)
Σ_{k}^{n}-LEM $\rightarrow \Sigma_{k}$-DML	HA	Corollary 5.4.(1)
Δ_{k}-LEM $\rightarrow\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE	HA	Corollary 6.4
Δ_{k}-LEM $\rightarrow \Delta_{k}^{\mathrm{n}}$-LEM	HA	Proposition 4.7.(2)
Δ_{k}^{n}-LEM $\rightarrow \Delta_{k}$-LEM	HA $+\Sigma_{k-1}$-DNE	Proposition 4.7.(2)
Π_{k}-DML $\rightarrow \Delta_{k}^{\mathrm{n}}$-LEM	HA $+\Sigma_{k-1}$-DNS	Corollary 5.11.(1)
Σ_{k}-DML $\rightarrow \Delta_{k}^{\mathrm{n}}$-LEM	HA + Σ_{k-1}-DNS	Corollary 5.11.(1)
$\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE $\rightarrow \Sigma_{k-1}$-LEM	HA	Proposition 6.5
$\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE $\rightarrow \Delta_{k}^{\mathrm{n}}$-DML	HA	Corollary 6.3.(6)
Δ_{k}^{n}-DML $\rightarrow\left(\Delta_{k} \vee \Delta_{k}\right)$-DNE	HA $+\Sigma_{k-1}$-DNE	Corollary 6.3.(6)
Δ_{k}^{n}-LEM $\rightarrow \Delta_{k}^{\mathrm{n}}$-DML	HA	Corollary 5.4.(2)
Δ_{k}^{n}-LEM $\rightarrow \Delta_{k}$-DML	HA	Corollary 5.4.(2)
Δ_{k}^{n}-DML $\rightarrow \Sigma_{k-1}^{\mathrm{n}}$-LEM	HA $+\Sigma_{k-2}$-DNS	Proposition 5.24.(2)
Δ_{k}-DML $\rightarrow \Delta_{k}^{\mathrm{n}}$-DML	HA $+\Sigma_{k-1}$-DNE	Proposition 5.26
Δ_{k}-DML $\rightarrow \Sigma_{k-1}^{n}$-LEM	HA $+\Sigma_{k-2}$-DNS	Proposition 5.24.(1)
$\Sigma_{k-1}^{\mathrm{n}}$-LEM $\rightarrow \Sigma_{k-1}$-LEM	HA $+\Sigma_{k-1}$-DNE	Corollary 4.10

Table 2: Implications in Figure 3

We close this paper with a list of principles which we have investigated.

Γ-LEM	$\varphi \vee \neg \varphi$	$(\varphi \in \Gamma)$
Γ-LEM ${ }^{\perp}$	$\varphi \vee \varphi^{\perp}$	$(\varphi \in \Gamma)$
Δ_{k}-LEM	$(\varphi \leftrightarrow \psi) \rightarrow \varphi \vee \neg \varphi$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Δ_{k} LEM $^{\perp, \Sigma}$	$(\varphi \leftrightarrow \psi) \rightarrow \varphi \vee \varphi^{\perp}$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Δ_{k} - $^{\text {E }} \mathbf{E M}^{\perp, \Pi}$	$(\varphi \leftrightarrow \psi) \rightarrow \psi \vee \psi^{\perp}$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Δ_{k}^{n}-LEM	$(\varphi \leftrightarrow \psi) \rightarrow \neg \varphi \vee \neg \neg \varphi$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Γ-DNE	$\neg \neg \varphi \rightarrow \varphi$	$(\varphi \in \Gamma)$
Γ-PEIRCE	$((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi$	($\varphi \in \Gamma$ and ψ is any formula)
Γ-DNS	$\forall x \neg \neg \varphi(x) \rightarrow \neg \neg \forall x \varphi(x)$	$(\varphi(x) \in \Gamma)$
Γ-DML	$\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi$	$(\varphi, \psi \in \Gamma)$
(Γ, Θ) - DML	$\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi$	$(\varphi \in \Gamma$ and $\psi \in \Theta)$
Δ_{k}-DML	$\begin{aligned} \left(\varphi \leftrightarrow \varphi^{\prime}\right) & \wedge\left(\psi \leftrightarrow \psi^{\prime}\right) \\ & \rightarrow(\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi) \end{aligned}$	$\left(\varphi, \psi \in \Sigma_{k}\right.$ and $\left.\varphi^{\prime}, \psi^{\prime} \in \Pi_{k}\right)$
Δ_{k}^{n}-DML	$\begin{aligned} \left(\varphi \leftrightarrow \varphi^{\prime}\right) & \wedge\left(\psi \leftrightarrow \psi^{\prime}\right) \\ & \rightarrow(\neg(\neg \varphi \wedge \neg \psi) \rightarrow \neg \neg \varphi \vee \neg \neg \psi) \end{aligned}$	$\left(\varphi, \psi \in \Sigma_{k}\right.$ and $\left.\varphi^{\prime}, \psi^{\prime} \in \Pi_{k}\right)$
$\left(\Delta_{k}, \Theta\right)$ - DML	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \rightarrow(\neg(\varphi \wedge \psi) \rightarrow \neg \varphi \vee \neg \psi)$	$\left(\varphi \in \Sigma_{k}, \varphi^{\prime} \in \Pi_{k}\right.$ and $\left.\psi \in \Theta\right)$
Γ-DML ${ }^{\perp}$	$\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}$	$(\varphi, \psi \in \Gamma)$
$(\Gamma, \Theta)-\mathbf{D M L}^{\perp}$	$\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}$	$(\varphi \in \Gamma$ and $\psi \in \Theta)$
Δ_{k} - $^{\text {DML }}{ }^{\perp}$	$\begin{aligned}\left(\varphi \leftrightarrow \varphi^{\prime}\right) & \wedge\left(\psi \leftrightarrow \psi^{\prime}\right) \\ & \rightarrow\left(\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}\right)\end{aligned}$	$\left(\varphi, \psi \in \Sigma_{k}\right.$ and $\left.\varphi^{\prime}, \psi^{\prime} \in \Pi_{k}\right)$
$\left(\Delta_{k}, \Gamma\right) \mathbf{- D M L}^{\perp, \Sigma}$	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \rightarrow\left(\neg(\varphi \wedge \psi) \rightarrow \varphi^{\perp} \vee \psi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}, \varphi^{\prime} \in \Pi_{k}\right.$ and $\left.\psi \in \Gamma\right)$
$\left(\Delta_{k}, \Gamma\right)-\mathbf{D M L}^{\perp, \Pi}$	$\left(\varphi \leftrightarrow \varphi^{\prime}\right) \rightarrow\left(\neg(\varphi \wedge \psi) \rightarrow\left(\varphi^{\prime}\right)^{\perp} \vee \psi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}, \varphi^{\prime} \in \Pi_{k}\right.$ and $\left.\psi \in \Gamma\right)$
(Γ, Θ) - CD	$\forall x(\varphi \vee \psi(x)) \rightarrow \varphi \vee \forall x \psi(x)$	$(\varphi \in \Gamma, \psi(x) \in \Theta$ and $x \notin \mathrm{FV}(\varphi))$
Γ-DUAL	$\neg \varphi \rightarrow \varphi^{\perp}$	$(\varphi \in \Gamma)$
Δ_{k}-DUAL ${ }^{\Sigma}$	$(\varphi \leftrightarrow \psi) \rightarrow\left(\neg \varphi \rightarrow \varphi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Δ_{k}-DUAL $^{\Pi}$	$(\varphi \leftrightarrow \psi) \rightarrow\left(\neg \psi \rightarrow \psi^{\perp}\right)$	$\left(\varphi \in \Sigma_{k}\right.$ and $\left.\psi \in \Pi_{k}\right)$
Γ-WDUAL	$\neg \varphi^{\perp} \rightarrow \neg \neg \varphi$	$(\varphi \in \Gamma)$
Γ-COLL ${ }^{\text {cp }}$	$\forall w \exists y<x \forall z<w \varphi(y, z) \rightarrow \exists y<x \forall z \varphi(y, z)$	$(\varphi(y, z) \in \Gamma)$
Γ-LN	$\exists x \varphi(x) \rightarrow \exists x(\varphi(x) \wedge \forall y<x \neg \varphi(y))$	$(\varphi \in \Gamma)$

Acknowledgement

The authors thank to the anonymous referee for the valuable and insightful comments. The first author was supported by JSPS KAKENHI Grant Numbers JP19J01239 and JP20K14354, and the second author by JP19K14586.

References

[1] Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach. An arithmetical hierarchy of the law of excluded middle and related principles. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, pages 192-201, 2004.
[2] Stefano Berardi. A generalization of a conservativity theorem for classical versus intuitionistic arithmetic. Mathematical Logic Quarterly ($M L Q$), 50(1):41-46, 2004.
[3] Stefano Berardi and Silvia Steila. Ramsey theorem for pairs as a classical principle in intuitionistic arithmetic. In Ralph Matthes and Aleksy Schubert, editors, 19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26 of Leibniz International Proceedings in Informatics (LIPIcs), pages 64-83, Dagstuhl, Germany, 2014. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[4] Stefano Berardi and Silvia Steila. Ramsey's theorem for pairs and k colors as a sub-classical principle of arithmetic. The Journal of Symbolic Logic, 82(2):737-753, 2017.
[5] Wolfgang Burr. Fragments of Heyting arithmetic. The Journal of Symbolic Logic, 65(3):1223-1240, 2000.
[6] Makoto Fujiwara. Δ_{1}^{0} variants of the law of excluded middle and related principles. Archive for Mathematical Logic, to appear.
[7] Makoto Fujiwara. Weihrauch and constructive reducibility between existence statements. Computability, 10(1):17-30, 2021.
[8] Makoto Fujiwara, Hajime Ishihara, and Takako Nemoto. Some principles weaker than Markov's principle. Archive for Mathematical Logic, 54(7-8):861-870, 2015.
[9] Makoto Fujiwara, Hajime Ishihara, Takako Nemoto, Nobu-Yuki Suzuki, and Keita Yokoyama. Extended frames and separations of logical principles. submitted. https://researchmap.jp/makotofujiwara/misc/30348506.
[10] Makoto Fujiwara and Tasuji Kawai. A logical characterization of the continuous bar induction. In Fenrong Liu, Hiroakira Ono, and Junhua Yu, editors, Knowledge, Proof and Dynamics, The Fourth Asian Workshop on Philosophical Logic, pages 25-33, 2020.
[11] Makoto Fujiwara and Ulrich Kohlenbach. Interrelation between weak fragments of double negation shift and related principles. The Journal of Symbolic Logic, 83(3):991-1012, 2018.
[12] Makoto Fujiwara and Taishi Kurahashi. Conservation results on semiclassical arithmetic. The Journal of Symbolic Logic, to appear.
[13] Makoto Fujiwara and Taishi Kurahashi. Prenex normal form theorems in semi-classical arithmetic. The Journal of Symbolic Logic, 86(3):1124-1153, 2021.
[14] Hajime Ishihara. Markov's principle, Church's thesis and Lindelöf's theorem. Indagationes Mathematicae. New Series, 4(3):321-325, 1993.
[15] Hajime Ishihara. Constructive reverse mathematics: compactness properties. In From sets and types to topology and analysis, volume 48 of Oxford Logic Guides, pages 245-267. Oxford Univ. Press, Oxford, 2005.
[16] Ulrich Kohlenbach. Applied proof theory. Proof interpretations and their use in mathematics. Berlin: Springer, 2008.
[17] Ulrich Kohlenbach. On the disjunctive Markov principle. Studia Logica, 103(6):1313-1317, 2015.
[18] Craig Smoryński. Applications of Kripke models. In Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics, pages 324-391. Springer, Berlin, Heidelberg, 1973.
[19] Michael Toftdal. A calibration of ineffective theorems of analysis in a hierarchy of semi-classical logical principles. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata, Languages and Programming, pages 1188-1200, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.
[20] Dirk van Dalen. Logic and structure. London: Springer, fifth edition, 2013.

[^0]: * Email: makotofujiwara@rs.tus.ac.jp
 ${ }^{\dagger}$ Department of Applied Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
 \ddagger Email: kurahashi@people.kobe-u.ac.jp
 §Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 6578501, Japan.

