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Choice principles in local mantles
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Abstract

Assume ZFC. Let κ be a cardinal. A < κ-ground is a transitive proper class
W modelling ZFC such that V is a generic extension of W via a forcing P ∈ W

of cardinality < κ. The κ-mantle Mκ is the intersection of all < κ-grounds.
We prove that certain partial choice principles in Mκ are the consequence

of κ being inaccessible/weakly compact, and some other related facts.

1 Introduction

Let us recall some standard notions from set-theoretic geology. We generally assume
ZFC, though at times (in particular in §2) we will also consider a weaker theory T1
(which includes AC).

Given a transitive model W 1 of ZFC and a forcing P ∈ W , a (W,P)-generic is a
filter G ⊆ P which is generic with respect to W . For a cardinal κ, a < κ-ground of V
is a transitive proper class W |= ZFC such that there is P ∈W with P of cardinality
< κ (with cardinality as computed in W , or equivalently, in V ) and a (W,P)-generic
filter G such that V = W [G]. A ground is a < κ-ground for some cardinal κ.2 The
mantle M is the intersection of all grounds. The κ-mantle Mκ is the intersection of
all < κ-grounds.

By [4], as refined in [1], there is a formula ϕ(x, y) in two free variables such that
(i) for all r, Wr = {x

∣∣ ϕ(r, x)} is a ground (possibly Wr = V ), and (ii) for every
groundW there is r such thatW =Wr. Therefore we can discuss grounds uniformly,
and M and Mκ are transitive classes which are definable (Mκ from parameter κ).

In §2 we will give the proof of ground definability, but from somewhat less than
ZFC: we show that it holds under a certain theory T1 (see 2.2), which is true in Hκ

whenever κ is a strong limit cardinal (assuming ZFC). The proof is essentially the
usual ZFC proof, however.

From now on, we take Wr to be defined as in §2, by which r = (Hγ+)W for some
γ ≥ ω for which there is P ∈ r and a (W,P)-generic G with W [G] = V .

Let θ be a strong limit cardinal. By Usuba [10], the grounds are set-directed. By
[10] and [8], this is moreover reasonably local, and in particular if X ∈ Hθ, then there

∗Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-
Structure.

†farmer.schlutzenberg@gmail.com, https://sites.google.com/site/schlutzenberg/home-1
1Here we are not specific about exactly what formalization of classes we use. We could work

in some class set theory, which allows quantification over such classes W , or we could with more
care restrict to classes definable from parameters; for us a class must have the property that the
structure (V,∈,W ) satisfies ZFC in the language with symbols ∈̇, Ẇ which interpret ∈ and W .

2Throughout, we consider only set-forcing, no class-forcing.
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is s ∈ Hθ with Ws ⊆
⋂

r∈X Wr. (For following Usuba’s proof of [10, Proposition 5.1],
note that we can take the regular cardinal κ of that proof with κ < θ, and then
the model W constructed there satisfies the κ++-uniform covering property for V .
Usuba then uses Bukovsky’s theorem, [10, Fact 3.9], to deduce that W is a ground

of V . But by [8, Theorem 3.11], the forcing for this can be taken of size 2κ
++

in
W [g] = V .)

Also by [10], M |= ZFC, and by [11, §2], Mθ |= ZF (so note Mθ |=“θ is a strong
limit cardinal”, in the ZF sense that Mθ has no surjection π : Vα → θ with α < θ).
If Vθ 4n V with n large enough, then V Mθ

θ = V M
θ , and hence V Mθ

θ |= AC.3 Usuba
showed in [11] that if κ is an extendible cardinal then Mκ = M , so in this case,
Mκ |= ZFC. Hence Usuba asked in [11] about whether Mκ |= ZFC in general. We
consider related questions in this paper. Let us first sketch some further history.

Suppose now κ is inaccessible. Then V Mκ
κ |= ZFC. For note that by inaccessibility

and the remarks above, for each α < κ there is some r ∈ Vκ such that VWr
α = V Mκ

α .
Since eachWr |= ZFC, it follows that VMκ

κ |= ZFC. Clearly Mκ |=“κ is inaccessible”,
and if κ is Mahlo then Mκ |=“κ is Mahlo”.

However, A. Lietz ([5]) answered Usuba’s question above negatively (assuming
large cardinals), showing that in fact it is consistent relative to a Mahlo cardinal that
κ is Mahlo but Mκ |=“κ-AC fails”. In fact, Lietz constructs a forcing extension L[G]

of L in which κ is Mahlo and M
L[G]
κ satisfies “there is a function f : κ → Hκ+ for

which there is no choice function”. He also proved other related things.
In the last few years, the theory of Varsovian models has also been developed by

Fuchs, Schindler, Sargsyan and more recently the author. Here, among other things,
full mantles M of certain fully iterable mice have been analyzed, and shown to be
strategy mice, hence satisfying ZFC. Analysis of natural κ-mantles of those mice was,
however, missing. But using Varsovian model techniques, the author then analyzed
the κ0-mantle of the mouse Mswsw (Definition 3.1), showing that it is a strategy
mouse, modelling ZFC + GCH. A very brief outline is given in §3 (but the other
results in the note do not rely on this, and no inner model theory appears elsewhere
in the paper). The argument has elements in common with Usuba’s extendibility
proof.

Schindler then showed that if κ is measurable then Mκ |= AC, hence ZFC; see
[8]. In this note we adapt this argument, deducing that fragments of choice hold in
Mκ from the weak compactness and inaccessibility of κ respectively.

1.1 Definition. Given an ordinal α and set X , let (α,X)-Choice be the assertion
that for every function f : α → X , there is a choice function for f . And (< α,X)-
Choice is the assertion that (β,X)-Choice holds for all β < α. ⊣

Part 4 of the following theorem applies to the kind of functions involved in the
failure of κ-AC in Lietz’ example, but now with domain < κ. Note that we assume
ZFC except where otherwise stated; κ-amenable-closure is defined in 2.18.

Theorem (3.15). If κ be inaccessible then:

1. Mκ |=“κ is inaccessible” and HMκ
κ = V Mκ

κ |= ZFC.

2. Mκ is κ-amenably-closed.

3. Mκ |=“(κ,Hκ)-Choice” ⇐⇒ Mκ |=“Hκ is wellordered”.

4. M |=“(< κ,Hκ+)-Choice holds, so (Hκ+)<κ ⊆ Hκ+”.

3An earlier draft asserted here that ([10] shows) H
Mθ
θ

= HM
θ

for every strong limit cardinal θ.
This was however not used anywhere, and it is false, at least if M1 exists; see [9].
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1.2 Remark. In part 3, the “κ+” and “Hκ+” are both in the sense of Mκ. However,
it can be that κ is Mahlo and Mκ |=“(κ,Hκ+)-Choice fails, and (Hκ+)κ 6⊆ Hκ+”;
indeed, note that this occurs in Lietz’ example L[G] mentioned above.

In the following theorem, the initial observation that Mκ |=“Hκ is wellordered”
was due to Lietz:

Theorem (3.14). 4 Let κ be weakly compact. Then:

1. Mκ |= κ-DC + “κ is weakly compact”.5

2. for each A ∈ Mκ ∩Hκ+ , Mκ |=“A is wellordered”. 6

3. if P(κ)Mκ has cardinality κ then (i) κ is measurable in Mκ, and (ii) x# exists
for every x ∈ P(κ)Mκ , and x# ∈ Mκ.

4. If Mκ |=“µ is a countably complete ultrafilter over γ ≤ κ”, then the ultrapower
Ult(Mκ, µ) is wellfounded and the ultrapower embedding

iMκ
µ : Mκ → Ult(Mκ, µ)

is fully elementary.

As a corollary to Schindler’s proof, one easily gets:

Fact (3.3). Let κ be measurable and µ be a normal measure on κ. Then for µ-
measure one many γ < κ, Mγ |=“Vγ+1 is wellorderable”.

As mentioned above, Usuba showed that M = Mκ assuming κ is extendible.
The next result indicates that there are signs of this in the leadup to an extendible
cardinal (for the definition of a Σ2-strong cardinal, see 3.5):

Theorem (3.9). Suppose κ is Σ2-strong. Then V
Mκ

κ+1 = V M
κ+1.

Analogously, down lower:

Theorem (3.4). Let A be a set such that A# exists. Let κ be an A-indiscernible.

Then V
M

L(A)
κ

κ+1 = V M
L(A)

κ+1 and this set is wellordered in M
L(A)
κ .

For further related results, which involve some inner model theory, see [9].
Before beginning our discussion of these results, we go through some background

set-theoretic geology, including a proof of the the definability of grounds from a
theory modelled by Hκ whenever κ is a strong limit cardinal.

2 Grounds and mantles

We discuss here some background, starting with the key fact of the definability of
set-forcing grounds under ZFC, proved by some combination of Laver, Woodin and
Hamkins:

2.1 Fact. Let M,N be proper class transitive inner models of ZFC and γ ∈ OR
with P(γ) ∩M = P(γ) ∩ N . Let P ∈ M and Q ∈ N , with P,Q ⊆ γ, and let G
be (M,P)-generic and H be (N,Q)-generic and suppose M [G] = N [H ] = V . Then
M = N .

4Regarding part 2, the author initially observed that a variant of Schindler’s argument gives
that Mκ |= κ-DC, and then Lietz and the author independently noticed that the argument can be
adjusted to show that every set in Hκ+ ∩ Mκ is wellordered in Mκ.

5So also Mκ |=“κ+ is regular and Hκ+ |= ZFC−”.
6Note that the “κ+” and “Hκ+” here are computed in V , not Mκ.
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We will discuss the proof of the result above, for two purposes. The fact is central
to our concerns, and the proof contains elements which will come up in various places
later, so it is natural to collect all these things together. Second, we wish to prove
a version which assumes less background theory (than ZFC). The authors of [3]
make use of an analysis of the complexity of the definability of grounds. As shown
there, each ground W is, in particular, Σ2 in a parameter r. However, the Σ2

definition given there is not particularly local: to compute VW
α , they work in Vβ , for

a significantly larger ordinal β. So for [3, Theorem 4], they adopt the background
theory ZFCδ. We show here that the ground definability can be done much more
locally (though still requiring Σ2 complexity), hence requiring significantly less than
ZFCδ.

2.2 Definition. Let T−
1 be the following theory in the language of set theory. The

axioms are Extensionality, Foundation, Pairing, Union, Infinity, “Every set is bi-
jectable with an ordinal”, Σ1-Separation and Σ1-Collection. Now let

T1 = T−
1 + Powerset. ⊣

Note that T−
1 |= AC. We will show that models of T1 can uniformly define their

grounds from parameters. First we give some lemmas.

2.3 Lemma. Assume ZFC. Then for every cardinal κ ≥ ω, (i) Hκ |= T−
1 , and (ii)

Hκ |= T1 iff κ is a strong limit cardinal.

The usual proofs from ZFC easily adapt to give:

2.4 Lemma. Assume T1. Then (i) for each ordinal ξ, Hξ exists, (ii) V =
⋃

ξ∈OR Hξ,

(iii) Hξ 41 V , (iv) Hξ |= T−
1 , (iv) the Lowenheim-Skolem theorem holds.

In the following lemma, the forcing relations Σi
for i ∈ {0, 1}, and Π1

, are
the relations defined in a first-order manner over M in the usual manner, and the

strong-Σi+1-forcing relation
∗

Σi+1
is the relation for which, given a Πi formula

ψ(~x, ~y) with free variables ~x, ~y, and given ~τ ∈ (MP)<ω, we say p
∗

Σi+1
∃~y ψ(~τ , ~y)

iff there is ~σ ∈ (MP)<ω such that p Πi
ψ(~τ , ~σ).

2.5 Lemma (Forcing over T−
1 and T1). Let M |= T−

1 . Let P ∈ M be a poset with
P ⊆ γ ∈ ORM and G be (M,P)-generic. Then:

1. We have:

(a) The Σ0-forcing relation Σ0
for (M,P) is ∆M

1 ({P}), uniformly.

(b) The Σ1-forcing relation Σ1
for (M,P) is ΣM

1 ({P}), uniformly.7

(c) The Π1-forcing relation Π1
for (M,P) is ΠM

1 ({P}), uniformly.

Hence, Σ0
, Σ1

and Π1
are absolute to HM

κ , for M -cardinals κ > γ.

2. The strong-Σ2-forcing relation
∗

Σ2
for (M,P) is ΣM

2 ({P}), uniformly.

3. The forcing theorem for Σ0, Σ1, Π1 formulas holds for M [G], with respect to

Σ0
, Σ1

, Π1
; likewise for Σ2 and

∗

Σ2
. That is, if ϕ is Σi, where i ∈ {0, 1},

and ~τ ∈ (MP)<ω, then

M [G] |= ϕ(~τG) ⇐⇒ ∃p ∈ G
[
M |= “p Σi

ϕ(~τ )”
]
.

7In a previous draft of this document, it mistakenly said that the Σ1-forcing relation is ∆M
1 -

definable, which is clearly false, since in the case of trivial forcing, it would imply that ΣM
1 = ∆M

1 .
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Likewise for Π1 with Π1
, and for Σ2 with

∗

Σ2
.

4. M [G] |= T−
1 , and if M |= T1 then M [G] |= T1.

5. M and M [G] have the same cardinals κ > γ,

6. for each M -cardinal κ > γ, we have H
M [G]
κ = HM

κ [G].

Such local forcing calculations are very common in the literature, in particular
in fine structure theory, where much more local calculations are often used. But we
include a proof in case the reader has not seen these before.

Proof. Parts 1, 3 for Σ0: The usual internal definition of the Σ0-forcing relation 0

works locally; in fact, for each ξ ∈ ORM with ξ ≥ γ, the Σ0-forcing relation for

names in Hξ, is ∆
Hξ

1 ({P}), uniformly in ξ. This gives the Forcing Theorem for Σ0

formulas in the usual manner.
Parts 1, 3 for Σ1: We defined the strong-Σ1-forcing relation

∗

1 over M above.
Using the Σ0-Forcing Theorem, note thatM [G] |= ∃y ϕ(y, τG) iff there is p ∈ G such

that M |=“p
∗

1 ∃y ϕ(y, τ)”. Moreover,
∗

1 is uniformly ΣM
1 ({P})-definable.

Note that we take
1
defined over M as follows: Working in M , for ϕ being Σ1

and τ ∈MP, set

p 1 ϕ(τ) ⇐⇒ ∀q ≤ p ∃r ≤ q
[
r

∗

1 ϕ(τ)
]
.

We claim that p 1 ϕ(τ) iff p
∗

1 ϕ(τ). For the non-trivial direction, suppose

p 1 ϕ(τ). Then working in M , using Σ1-Collection and AC, we can put together a

name σ ∈MP showing that p
∗

1 ϕ(τ). This completes the calculation for Σ1.

Parts 1, 3 for Π1: Π1
is defined as usual: Working in M , for ϕ being Π1 and

τ ∈ MP, say p Π1
ϕ(τ) iff there is no q ≤ p such that q Σ1

¬ϕ(τ). So Π1

is ΠM
1 ({P}). If p ∈ G and p Π1

ϕ(τ), then clearly M [G] |= ϕ(τG). So suppose

M [G] |= ϕ(τG) where ϕ is Π1. Let

D = {p ∈ P
∣∣ p Σ1

¬ϕ(τ)}.

By Σ1-Separation, D ∈ M . Let D′ = D ∪ {p ∈ P
∣∣ ¬∃q ∈ D [q ≤ p]}, then D′ ∈ M ,

and since D′ is dense, this easily suffices.

Parts 1, 3 for Σ2: Here we only consider the strong-Σ2 forcing relation
∗

Σ2
, and

the claims regarding this follow immediately just like for
∗

Σ1
.

Part 4: Most of the axioms are routine consequences of the previous parts. Let
us verify that M [G] |= Σ1-Collection. Fix a Σ0 formula ϕ and σ, τ ∈MP. Let t ∈M
be the transitive closure of {σ, τ}. Then there is w ∈M such that for all p ∈ P and
̺ ∈ t, if

p Σ1
“̺ ∈ σ and ∃yϕ(̺, τ, y)”,

then there is y ∈ MP ∩ w such that p
Σ0

“̺ ∈ σ and ϕ(̺, τ, y)”. But then using

w, we easily get a bound on witnesses in M [G], as desired. This and the Σ0-Forcing
Theorem easily yields Σ1-Separation.

The remaining parts follow from routine calculations with nice names.

2.6 Definition. Let (M,E) |= T−
1 . A ground of M is a W ⊆M such that:

5



1. (W,E ↾W ) is M -transitive; that is, for all x ∈ W and all y ∈ M , if yEx then
y ∈ W ,

2. W |= T−
1 ,

3. there is P ∈ W and a (W,P)-generic G ∈M such that M =W [G].

4. If (M,E) |= T1 then (W,E ↾W ) |= T1. ⊣

We now prove that T1 suffices for the definability of grounds (in the sense of the
definition above). The proof is essentially that due to some combination of Laver,
Woodin and Hamkins. In the proof we make implicit use of Lemma 2.5, to allow the
forcing calculations:

2.7 Theorem (Ground definability under T1). Assume T1. Let γ ∈ OR, H ⊆ Hγ+

and κ ≥ γ+ a cardinal. Then there is at most one transitive M ⊆ Hκ such that
M |= T−

1 , (Hγ+)M = H , and M is a ground for Hκ via some P ∈ H .

Proof. We proceed by induction on κ. For κ = γ+ it is trivial.
Suppose κ is a limit cardinal, and that for each cardinal θ ∈ [γ+, κ), there is

a (unique) model Mθ of ordinal height θ with the stated properties. Then clearly
M =

⋃
θ<κMθ is the unique candidate at κ. To see that M works, we just need to

verify that M is indeed a set-ground of Hκ via some P ∈ H ; i.e. there is P ∈ H
and an (M,P)-generic G ⊆ P such that M [G] = Hκ. But we can use any (P, G)
which worked at some earlier θ. For let θ0 ≤ θ1 < κ, and let (P0, G0), (P1, G1)
work for M0 = Mθ0 and M1 = Mθ1. So G0 is also (M1,P0)-generic, and vice
versa. And since HM0

γ+ = H = HM1

γ+ , and H [G0] = Hγ+ = H [G1], it follows that

Hκ =M0[G0] =M0[G1] and M1[G0] =M1[G1] = Hκ, so the specific choice of (P, G)
is irrelevant.

So consider κ = θ+ > γ+. LetM,N be grounds of Hκ with the stated properties.
By induction, M ∩Hθ = N ∩Hθ. It just remains to verify that P(θ)∩M = P(θ)∩N .
The proof is, however, not by contradiction; we will not assume that M 6= N . Fix
(P, G) such that P ∈ H and G is (M,P)-generic and M [G] = Hκ.

Suppose first that cof(θ) > γ, as this case is easier; however, it is in the end
subsumed into the general case. Let A ⊆ θ. Then:

Claim 1. A ∈M iff A ∩ α ∈M for all α < θ.

Proof. For the non-trivial direction, suppose A ∩ α ∈ M for every α < θ. Let
f : θ → M be f(α) = A ∩ α. Then f ∈ Hκ. So there is a P-name ḟ ∈ M with
ḟG = f . Working in M , for p ∈ P, compute

Dp = {α < θ
∣∣ ∃x [p ḟ(α̌) = x̌]},

and let fp : Dp → θ be the function

fp(α) = unique x such that p ḟ(α̌) = x̌.

So 〈Dp, fp〉p∈P
∈ M , and because cof(θ) > γ, there is p ∈ G such that Dp is cofinal

in θ. Then f =
(⋃

α∈Dp
fp(α)

)
∈M .

We now argue in general.

Claim 2. Let A ⊆ θ. Then A ∈M iff for every X ∈ P(θ) ∩M such that card(X) <
(γ+) = (γ+)M , we have A ∩X ∈M .
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Proof. The forward direction is trivial. So let A ⊆ θ with A /∈ M . Let Ȧ ∈ M be a
P-name and p0 ∈ G such that p0 Ȧ ⊆ θ̌. For each q ≤ p0, if there is α < θ such
that

q 6 α̌ ∈ Ȧ and q 6 α̌ /∈ Ȧ,

then let αq be the least such α; otherwise αq is undefined. Let D be the set of all
q ≤ p0 such that αq exists. Then G ⊆ D, because otherwise q decides all elements

of Ȧ, so A ∈M .
In M , let X = {αq

∣∣ q ∈ D}. Then X ∈ M , cardM (X) ≤ γ and X ∩ A /∈ M ,
as desired. For given Y ∈ P(X) ∩M , an easy density argument shows that Y 6=
X ∩ A.

Claim 3. Let X ⊆ θ with card(X) < γ+. Then X ∈M iff X ∈ N .

Proof. Suppose X0 = X ∈ N . Let Ẋ ∈ M be a P-name for X . Using the forcing
relation and Ẋ , there is a set X1 ∈ P(θ)∩M with X0 ⊆ X1 and card(X1) < (γ+)V .
Proceeding back-and-forth, construct (in V ) a continuous sequence of sets 〈Xα〉α<γ+

such that (i) X0 = X , (ii) Xωα+2n+1 ∈M and Xωα+2n+2 ∈ N , and (iii) card(Xα) <
(γ+)V .

Now γ+ < κ, so 〈Xα〉α<γ+ ∈ Hκ, so M,N have names for this sequence. So

as in the cof(θ) > γ case, we get a cofinal set DM ⊆ γ+ such that DM ∈ M and
〈Xα〉α∈DM

∈ M . Likewise with a cofinal set DN ∈ N . Let D′
M be the set of limit

points of DM , and D′
N likewise. So these are club in γ+. Let α ∈ D′

M ∩D′
N . Then

note that

Xα =




⋃

β∈DM∩α

Xβ


 =




⋃

β∈DN∩α

Xβ


 ∈M ∩N.

Let π : ξ → Xα be the increasing enumeration of Xα. Then ξ < γ+ and π ∈M ∩N .
We have X ⊆ rg(π). Let X̄ = π−1(X). Then X̄ ∈ N . But HM

γ+ = H = HN
γ+ , so

X̄ ∈M . So π“X̄ = X ∈M , as desired.

This completes the proof of ground definability under T1.

2.8 Remark. If M |= T−
1 +“there is a largest cardinal κ, and κ is regular”, then

grounds ofM via forcings P ofM -cardinality < κ are also definable from parameters
over M , by arguing much as above.

2.9 Definition. Assume T1. Let ϕgrd(r, x) be the formula “ there are γ, P, G, M ,
κ such that γ < κ are cardinals, M ⊆ Hκ is transitive, M |= T−

1 , P ∈ r = (Hγ+)M ,
G is (M,P)-generic, Hκ =M [G] and x ∈M”.

We write W ′
r = {x

∣∣ ϕgrd(r, x)}. We say r is a true index iff W ′
r is proper class.

We write Wr =W ′
r for true indices r, and Wr = V otherwise. ⊣

2.10 Corollary. Assume ZFC+GCH and let λ be a limit cardinal. Then the grounds
of Hλ are definable from parameters over Hλ.

2.11 Remark. Assume ZFC+GCH. Then for each limit ordinal ξ, Vω+ξ is equivalent
in the codes to Hℵξ

. So one can correctly formulate “grounds” of Vω+ξ, and they are
definable over Vω+ξ from parameters.

So we have the standard uniform definability of grounds, just assuming T1:

2.12 Lemma. Let M |= T1. Then {WM
r

∣∣ r ∈ M} enumerates exactly the grounds
of M (with repetitions, including M itself).
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2.13 Remark. Assume T1. Note that ϕgrd is Σ2, and the assertion “r is a true
index” is Π2. (In fact, there are fixed Σ2 and Π2 formulas, such that T1 proves that
these fixed formulas always work.) Moreover, letting ξ = card(trcl({r, x})), note that
ϕgrd(r, x) is absolute between V and H(2ξ)+ . (It is witnessed by some (Hξ+ ,M), a

structure of size 2ξ.) Therefore:

2.14 Fact (Local definability of grounds). Assume T1+“There is a proper class of
strong limit cardinals”. Let λ be a strong limit cardinal. Let r ∈ Hλ be a true index.
Then Hλ |=“r is a true index” and WHλ

r =Wr ∩Hλ = HWr

λ .

It seems it might be possible, however, that Hλ |=“r is a true index” while r fails
to be a true index in V .

The remaining facts in this section, and the rest of the paper, have a background
theory of ZFC. We have not investigated to what extent things go through under
T1. By [10, Proposition 5.1] and an examination of its proof, we have:

2.15 Fact (Local set-directedness of grounds (Usuba)). (Assume ZFC.) Let θ be
a strong limit cardinal and R ∈ Hθ. Then there is t ∈ Hθ with t ∈

⋂
r∈RWr and

Wt ⊆Wr and Wt =WWr

t for each r ∈ R. In particular, Wt ⊆
⋂

r∈RWr.

Proof. We refer here to the λ-uniform covering property for V ; see [10, Definition
4.2] or [8, Definition 2.1]. Let us set up some of the notation from the proof of [10,
Proposition 5.1]. Let X = R (following the notation from [10]).8We may assume
that X is a set of true indices r. For r ∈ X let Pr ∈ Wr be a forcing witnessing that
r is a true index. Let κ be a regular cardinal with κ > card(X) and κ > card(Pr) for
each r (so it suffices if κ > card(trcl(X))). Then the proof of [10, Proposition 5.1]
constructs a ground W ⊆

⋂
r∈X Wr with the λ = κ++-uniform covering property for

V . Therefore by [7, Theorem 3.3], there is P ∈ W such that W |=“card(P) = 22
<λ

”
and W is a ground of V via P. Let γ0 = cardW (P) and t0 = (Hγ

+
0
)W . So γ0 < θ,

t0 is a true index and W = Wt0 . Let B ∈ W be such that W |=“B is the complete
Boolean algebra determined by P” (so P is a dense sub-order of B). So cardW (B) ≤
(2γ0)W < θ. Then by [2, Lemma 15.43] (or [10, Fact 3.1]) for each r ∈ X there is
some Br ∈W with Br ⊆ B and there is a (W,Br)-generic Gr such that W [Gr] =Wr .
So letting γ = (2γ0)W , then t = (Hγ+)W is as desired.

An easy corollary of local set-directedness is:

2.16 Fact (Invariance of Mκ). Let κ be a strong limit cardinal and r ∈ Hκ. Then
MWr

κ = Mκ.

2.17 Lemma (Absoluteness of Mκ). Let κ < λ be strong limit cardinals and suppose
Hλ = Vλ 42 V . Then for each r ∈ Hκ, we have:

(i) < κ-grounds and Mκ are absolute to Vλ:

WVλ
r =Wr ∩ Vλ = VWr

λ and M
Vλ
κ = Mκ ∩ Vλ = VMκ

λ ,

(ii) VWr

λ 42 Wr ,

(iii) M
V

Wr
λ

κ = MWr
κ ∩ VWr

λ = Mκ ∩ Vλ = M Vλ
κ .

8We wrote R in the statement of the fact for consistency with later notation.
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Proof. Part (i): The absoluteness ofWr is because the class true indices r is Π2, and
each Wr is Σ2({r}). But then clearly

M
Vλ
κ =

⋂

r∈Vκ

WVλ
r =

⋂

r∈Vκ

VWr

λ = V Mκ

λ .

Part (ii): If Wr = V then this is trivial. Suppose Wr ( V and let ϕ be Σ2 and
x ∈ Wr ∩ Vλ and suppose that Wr |= ϕ(x). Then by Fact 2.14, V |= ψ(x) where

ψ asserts “There is a strong limit cardinal ξ such that W
Hξ
r |= ϕ(x)”, but this is

also Σ2, so Vλ |= ψ(x), so letting ξ < λ witness this, again by Fact 2.14, we get
Wr ∩Hξ |= ϕ(x), so Wr ∩ Vλ |= ϕ(x).

Part (iii): This follows from the previous parts and Fact 2.16.

2.18 Definition. Let N be an inner model. Let f : κ→ N . Say that f is amenable

to N iff f ↾ α ∈ N for every α < κ. Say that N is κ-amenably-closed iff for every
f : κ → N , if f is amenable to N then f ∈ N . Say that N is κ-stationarily-
computing (κ-unboundedly-computing) iff for every f : κ → N , there is a stationary
(unbounded) A ⊆ κ such that f ↾A ∈ N . ⊣

2.19 Lemma. Let N be an inner model of ZF and κ > ω be regular. If N is κ-
stationarily-computing then N is κ-unboundedly-computing. If N is κ-unboundedly-
computing then N is κ-amenably-closed.

2.20 Lemma. Let W be a < κ-ground of V , where κ > ω is regular. Then W is
κ-stationarily-computing.

2.21 Lemma. The intersection of any family of κ-amenably-closed structures is κ-
amenably-closed.

2.22 Lemma. If κ is inaccessible then Mκ is κ-amenably-closed.

3 Choice principles in the κ-mantle

As mentioned above, from now on we have ZFC as background theory.
The first positive results along the lines of what we will prove here (regarding

about κ-mantles when κ <∞), consists in Usuba’s work, including his extendibility
result. This was followed by Lietz’ negative results [5]. Some time after this, using
the general theory of [6], the author showed that the κ0-mantle MM

κ0
of M =Mswsw

(see below) is a strategy mouse. We give an outline of this argument, but it is
primarily intended for the reader familiar with inner model theory, and can be safely
skipped over, as the remainder of the paper does not depend on it. We omit all
specifics to do with Varsovian models, just mentioning enough to indicate what is
relevant here. The full proof will appear in [6].

3.1 Definition. Mswsw denotes the least iterable proper class mouse with ordinals
δ0 < κ0 < δ1 < κ1 satisfying “each δi is Woodin and each κi is strong”. ⊣

The Varsovian model analysis produces a mouse M∞, which is the direct limit
of (pseudo-)iterates P of M via correct iteration trees T on M , with T ∈ M |κ0,
and which are based on M |δ0. It also defines a certain fragment Σ of the iteration
strategy for M∞, yielding a strategy mouse M∞[Σ]. It turns out that M∞[Σ] has
universe MM

κ0
.
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What is relevant here is the proof that MM
κ0

⊆M∞[Σ]. Let X ∈ MM
κ0

be a set of
ordinals. We must see that X ∈M∞[Σ]. 9 Now κ0 is measurable in M . Let E be a
normal measure on κ0, in the extender sequence of M , and let

j :M → U = Ult(M,E)

be the ultrapower map. By elementarity, j(X) ∈ MU
j(κ0)

. With methods from the

Varsovian model analysis, one can then construct a specific < j(κ0)-groundW of U ,
with W ⊆M∞[Σ]. So

j(X) ∈ M
U
j(κ0)

⊆W ⊆M∞[Σ].

Other facts from Varsovian model analysis give j ↾α ∈M∞[Σ] for each α ∈ OR. But
then X ∈M∞[Σ], as desired, since

β ∈ X ⇐⇒ j(β) ∈ j(X).

The preceding argument has structural similarities to Usuba’s extendibility proof
(see [11]). Schindler then found the following result (see [8]). We will use an adapta-
tion of the proof for Theorem 3.14 later, so we present this one first as a warmup, and
in order to note a simple corollary. We give essentially Schindler’s proof, although
the precise implementation might differ slightly.

3.2 Fact (Schindler). Let κ be measurable. Then Mκ |= AC, so Mκ |= ZFC.

Proof. Let A ∈ Mκ. We will find a wellorder <A of A with <A ∈ Mκ.
Let µ be a normal measure on κ, M = Ult(V, µ) and j = iVµ : V → M the

ultrapower map. So κ = cr(j) and j(A) ∈ MM
j(κ).

Claim 1. We have:

1. MM
j(κ) ⊆ MM

κ ⊆ Mκ, and

2. j ↾Mκ is amenable to Mκ.

Proof. Part 1: The first ⊆ is immediate. For the second, we have

Mκ =
⋂

r∈Vκ

Wr and M
M
κ =

⋂

r∈Vκ

WM
r .

Let µr = µ ∩Wr. Then by standard forcing calculations and elementarity, we get
µr ∈Wr and

WM
r = j(Wr) = Ult(Wr , µ)

V = Ult(Wr, µr)
Wr ,

so WM
r ⊆Wr, so MM

κ ⊆ Mκ as desired.
Part 2: Let r ∈ Vκ. Then calculations as above give iWr

µr
↾Wr ⊆ j. But Mκ ⊆Wr ,

and so j ↾Mκ is amenable toWr. Therefore j ↾Mκ is amenable to Mκ, as desired.

Since κ is a strong limit, Fact 2.15 gives s ∈ VM
j(κ) such that

M
M
j(κ) ⊆W =WM

s ⊆ M
M
κ .

So j(A) ∈ W |= ZFC, so there is a wellorder <∗ of j(A) with <∗ ∈ W . But
W ⊆ MM

κ , so <∗ ∈ MM
κ ⊆ Mκ.

Now working in Mκ, where we have k = j ↾A and j(A) and <∗, we can define a
wellorder <A of A by setting, for x, y ∈ A:

x <A y ⇐⇒ k(x) <∗ k(y).

This completes the proof.

9What blocks the more obvious attempt to prove this is that it is not clear that the iteration
maps iPQ between the iterates P,Q of the direct limit system eventually fix X.
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As a corollary to the proof above, we observe:

3.3 Corollary. Let κ be measurable and µ be a normal measure on κ. Then for
µ-measure one many γ < κ, Mγ |=“Vγ+1 is wellorderable”.

Proof. Continue with the notation from the proof of Fact 3.2. We show MM
κ |=“Vκ+1

is wellorderable”.

Claim. Vκ+1 ∩ MM
j(κ) = Vκ+1 ∩ MM

κ = Vκ+1 ∩ Mκ.

Proof. We have Vκ+1∩Mκ ⊆ Vκ+1∩MM
j(κ) since j ↾Mκ : Mκ → MM

j(κ) is elementary

and κ = cr(j). By Claim 1 of the proof of Fact 3.2, this suffices.

By Fact 3.2, Mκ |= AC, so MM
j(κ) |= AC also. Let <∗ ∈ MM

j(κ) be a wellorder of

Vκ+1 ∩ MM
j(κ). Then <

∗ ∈ MM
κ and <∗ is a wellorder of Vκ+1 ∩ MM

κ .

We next use the simple idea above to prove that certain cardinals are “stable”
with respect to the mantle. The first observation is:

3.4 Theorem. Let A be a set such that A# exists. Let κ be an A-indiscernible.

Then V
M

L(A)
κ

κ+1 = V M
L(A)

κ+1 and this set is wellordered in M
L(A)
κ .

Proof. Let j : L(A) → L(A) be elementary with cr(j) = κ. We write Mκ for M
L(A)
κ ;

likewise Mj(κ). Now j ↾ Mκ : Mκ → Mj(κ) is elementary. Clearly Mj(κ) ⊆ Mκ.

But also, B = V Mκ

κ+1 ⊆ V
Mj(κ)

κ+1 as in the previous proof. So V
Mj(κ)

κ+1 = B. But

V
Mj(κ)

j(κ) |= ZFC, so there is a wellorder of B in Mj(κ) ⊆ Mκ.

It now follows that V Mκ

κ+1 = V M
κ+1, because we can take j(κ) as large as we like,

hence past any true index.

3.5 Definition. A cardinal κ is Σ2-strong iff for every α ∈ OR there is an elementary
embedding j : V →M with α < j(κ) and Vα ⊆M and ThMΣ2

(Vα) = ThVΣ2
(Vα).

10

An embedding j : V → M is superstrong iff Vj(κ) ⊆ M . A cardinal κ is ∞-

superstrong iff for every α ∈ OR there is a superstrong embedding j with cr(j) = κ
and j(κ) > α.

A superstrong extender is the Vβ -extender derived from a superstrong embedding
j : V →M where β = j(κ) and κ = cr(j). ⊣

Note that:

3.6 Lemma. If E is a superstrong extender and W |= ZFC is a transitive proper
class with E ∈W , then W |=“E is a superstrong extender”.

3.7 Remark. Say that a cardinal κ is ∞-1-extendible iff for every α ∈ OR there is
β ∈ OR with β ≥ α and and an elementary j : Vκ+1 → Vβ+1 (hence j(κ) = β) with
cr(j) = κ.

3.8 Theorem. We have:

1. Every extendible cardinal is ∞-1-extendible and carries a normal measure con-
centrating on ∞-1-extendible cardinals.

2. Every ∞-1-extendible cardinal is ∞-superstrong and carries a normal measure
concentrating on ∞-superstrong cardinals.

10That is, for each Σ2 formula ϕ and all ~x ∈ (Vα)<ω , we have M |= ϕ(~x) iff V |= ϕ(~x).
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3. Every ∞-superstrong cardinal is Σ2-strong and carries a normal measure con-
centrating on Σ2-strong cardinals.

Proof. Part 1: This is routine and left to the reader.
Part 2: Let κ be ∞-1-extendible. Let j : Vκ+1 → Vβ+1 be elementary with

cr(j) = κ. Let E be the extender derived from j with support Vβ . LetM = Ult(V,E)
and k : V → M be the ultrapower map. Then one can show that k is a superstrong
embedding with k(κ) = β and that M |=“κ is ∞-superstrong”. (For the last clause,
consider ultrapowers Ult(M,E ↾α) where α < β, and show that unboundedly many
of these produce superstrong embeddings inM , and also use that β is 1-∞-extendible
in M .)

Part 3: Let κ be ∞-superstrong. We show first that κ is Σ2-strong. So let
α ∈ OR. We may assume that Vα 42 V . Let j : V → M be any superstrong
embedding with cr(j) = κ and α < j(κ). It suffices to verify:

Claim 1. ThMΣ2
(Vα) = ThVΣ2

(Vα).

Proof. Let ϕ be Σ2 and ~x ∈ (Vα)
<ω . If V |= ϕ(~x) then Vα |= ϕ(~x), which implies

M |= ϕ(~x). Conversely, supposeM |= ϕ(~x). Because κ is ∞-superstrong, it is clearly
strong, which implies that Vκ 42 V . Therefore VM

j(κ) 42 M . Therefore VM
j(κ) |= ϕ(~x).

But VM
j(κ) = Vj(κ), so Vj(κ) |= ϕ(~x), so V |= ϕ(~x), as desired.

Now let j : V → M be a superstrong embedding with cr(j) = κ. We will show
that M |=“κ is Σ2-strong”, which completes the proof.

Claim 2. M |=“κ is < β-Σ2-strong”, where β = j(κ). That is, for each α < β,M has
an elementary k :M → N with cr(k) = κ and Vα ⊆ N and ThNΣ2

(Vα) = ThMΣ2
(Vα).

Proof. Since M |=“β is strong”, VM
β 42 M and there are club many α < β such

that VM
α = Vα 42 M . Fix some such α. Let Eα be the extender derived from j with

support Vα. Then Eα ∈ Vβ ⊆ M , and M |=“Eα is an extender”. Moreover, letting
Nα = Ult(M,Eα), we have Vα ⊆ Nα and

ThNα

Σ2
(Vα) = ThMΣ2

(Vα).

For let t = ThVΣ2
(Vκ) = ThMΣ2

(Vκ). Then letting kα : M → Nα be the ultrapower
map,

j(t) = ThMΣ2
(Vβ) and kα(t) = ThNΣ2

(V N
kα(κ)).

So ThMΣ2
(Vα) = j(t) ∩ Vα = kα(t) ∩ Vα = ThNΣ2

(Vα).

Now since κ is Σ2-strong, M |=“β = j(κ) is Σ2-strong”. So let α ∈ OR be a
strong limit cardinal. Then M has an embedding ℓ : M → N with cr(ℓ) = β and
VM
α = V N

α and ThMΣ2
(VM

α ) = ThNΣ2
(VM

α ). By the claim and elementarity, N |=“κ
is < ℓ(β)-Σ2-strong”. But then extenders in N which witness < α-Σ2-strength in N
also witness this in M . Since α was arbitrary, we are done.

We now prove an analogue of Usuba’s extendibility result down lower:

3.9 Theorem. Suppose κ is Σ2-strong. Then V
Mκ

κ+1 = V M
κ+1.

Proof. Suppose not and let r be such that VWr

κ+1 ( V Mκ

κ+1 . Let λ ∈ OR be such that
iλ = λ and r ∈ Vλ. Let j : V →M witness Σ2-strength with respect to λ.
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Since the class of true indices is Π2, M |=“r is a true index”. Also, by the local
definability of grounds,

WM
r ∩ Vλ =W

V M
λ

r =WVλ
r =Wr ∩ Vλ.

In particular, V
WM

r

κ+1 = VWr

κ+1 ( V Mκ

κ+1 .
Since r ∈ Vλ ⊆ VM

j(κ), therefore MM
j(κ) ∩ Vκ+1 ( Mκ ∩ Vκ+1. But since cr(j) = κ,

as in the proof of Theorem 3.2, we have

Mκ ∩ Vκ+1 ⊆ M
M
j(κ) ∩ Vκ+1,

a contradiction.

3.10 Question. Suppose κ is strong. Is V M
κ+1 = V Mκ

κ+1?

We now move toward the positive results in the cases that κ is inaccessible and/or
weakly compact. Toward these we first prove a couple of lemmas.

3.11 Lemma (κ-uniform hulls). Let κ be inaccessible. For true indices r ∈ Vκ, let
(Pr, Gr) witness this, and otherwise let Pr = Gr = ∅. Let λ = iλ with cof(λ) > κ

and Vλ 42 V . Let S ∈ Vλ. Then there is X̃ such that, letting X̃r = X̃ ∩ VWr

λ for
r ∈ Vκ, we have:

1. Vκ ∪ {S, κ} ⊆ X̃ 4 Vλ and X̃<κ ⊆ X̃ and |X̃ | = κ,

2. X̃r ∈ Wr and X̃r 4 VWr

λ 42 Wr,

and letting X be the transitive collapse of X̃ and σ : X → X̃ the uncollapse and
Xr, σr likewise, then:

3. Xr ⊆ X and in fact, Xr =WX
r ,

4. σ : X → Vλ is fully elementary with cr(σ) > κ,

5. σr : Xr → VWr

λ is fully elementary and σr ⊆ σ,

6. Gr is (Xr,Pr)-generic and X = Xr[Gr ],

7. MX
κ = MXr

κ =
⋂

s∈Vκ
Xs; hence MX

κ ∈ Mκ,

8. X<κ ⊆ X and X<κ
r ∩Wr ⊆ Xr and (MX

κ )<κ ∩ Mκ ⊆ MX
κ ,

9. σ ↾MX
κ = σr ↾M

¯̃
Xr
κ ; hence σ ↾MX

κ ∈ Mκ,

10. σ ↾MX
κ : MX

κ → M Vλ
κ is fully elementary.

11. Vλ, X̃,X, X̃r, Xr each satisfy T1 and the following statements:

(a) “There are unboundedly many η such that η = iη”,

(b) “Fact 2.15”,

(c) “There is ξ = iξ such that for each r ∈ Vκ and s ∈ VWr
κ , we haveWr |=“s

is a index” iff VWr

ξ |=“s is a true index”.
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Proof. The fact that VWr

λ 42 Wr is by Lemma 2.17.

Construct an increasing sequence
〈
X̃α

〉

α<κ
such that X̃α 4 Vλ and Vκ∪{x} ⊆ X̃α

and X̃<κ
α ⊆ X̃α and |X̃α| = κ, and such that for each r ∈ Vκ there are cofinally many

α < κ such that X̃α ∩Wr ∈ Wr.
To construct this sequence, suppose we have constructed X̃α, and let r ∈ Vκ. Let

X = X̃α ∩Wr . By elementarity, X 4 VWr

λ and

X̃α = X [Gr] = {τGr

∣∣ τ ∈
¯̃
X}.

Since |X | = κ, there is some X̃ ′ ∈ Wr with |X̃ ′| = κ (hence Wr |=“|X̃ ′| = κ”), and

X ⊆ X̃ ′, so there is also X̃ ′′ ∈ Wr with X̃ ′′ 4 VWr

λ and X̃ ′ ⊆ X̃ ′′ and |X̃ ′′| = κ (in

V and Wr) and such that Wr |=“(X̃ ′′)<κ ⊆ (X̃ ′′)”. It easily follows that

X̃α ⊆ X̃ ′′[Gr] = {τGr

∣∣ τ ∈ X̃ ′′} 4 Vλ

and X̃ ′′[Gr]∩Wr = X̃ ′′. We set X̃α+1 = X̃ ′′[Gr]. Then everything is clear except for

the requirement that X̃<κ
α+1 ⊆ X̃α+1. So let f : γ → X̃α+1 where γ < κ (with f ∈ V );

we claim that f ∈ X̃α+1. Let g : γ → X̃ ′′ be such that g(α)Gr
= f(α) for each α < γ.

So g ∈ V , but we don’t know that g ∈ Wr. But there is a Pr-name ġ ∈ VWr

λ such

that ġGr
= g. And X̃ ′′ ∈ Wr, so there is p0 ∈ Gr forcing that rg(ġ) ⊆ X̃ ′′. Working

in Wr then, we may fix for each α < γ an antichain Aα ⊆ Pr maximal below p0
and for each p ∈ Aα some ταp ∈ X̃ ′′ such that p forces that ġ(α) = ταp. Then the
sequence 〈ταp〉(α,p)∈I

, where

I = {(α, p)
∣∣ α < γ and p ∈ Aα},

is ⊆ X̃ ′′, and hence in X̃ ′′. SinceWr |=“(X̃ ′′)<κ ⊆ (X̃ ′′)”, this gives a name ġ′′ ∈ X̃ ′′

such that p0 forces ġ′′ = ġ, and therefore

g = ġGr
= ġ′′Gr

∈ X̃ ′′[Gr] = X̃α+1.

But since Gr ∈ X̃α+1, therefore f ∈ X̃α+1, so X̃
<κ
α+1 ⊆ X̃α+1 as desired. With some

simple bookkeeping then, we get an appropriate sequence.
Let now X̃ =

⋃
α<κ X̃α. We claim that X̃ is as desired. The only thing we need

to verify is that for each r ∈ Vκ, we have

X̃r = X̃ ∩Wr ∈Wr .

Fix r. There is a Pr-name τ ∈ Wr such that τGr
=

〈
X̃α

〉

α<κ
, and for cofinally

many α < κ there is pα ∈ Gr and X̃r
α ∈ Wr such that

pα τα ∩Wr =
ˇ̃
Xr

α

(hence X̃r
α = X̃α ∩Wr). Since Pr ∈ Vκ, there is therefore a fixed p ∈ Pr such that

pα = p for cofinally many α. So X̃r =
⋃

α∈I X̃
r
α where

I = {α < κ
∣∣ ∃x [p τα = x̌]},

so X̃r ∈Wr.
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This completes the construction. The verification of the remaining properties is
now straightforward. We omit discussing them, other than two remarks. In part 8,
the third statement follows directly from the first two together with part 7; the first
two follow readily from the construction. And in part 11, note that ξ exists because
cof(λ) > κ = |Vκ|.

3.12 Fact. Let κ be weakly compact. Then X be transitive with κ ∈ X and
X<κ ⊆ X and |X | = κ.11 Then there is a non-principal X-κ-complete X-normal12

ultrafilter µ over κ such that letting Y = Ult(X,µ) and iXµ the ultrapower embedding,

then Y is wellfounded. Moreover, iXµ is Σ1-elementary and cofinal and cr(iXµ ) = κ.

Proof. Let π : X → Z be any elementary embedding with Z transitive and cr(π) = κ.
Let µ be the normal measure derived from π. Note that µ works.

We now extend the situation above, adding the assumption that κ is weakly
compact.

3.13 Lemma (κ-uniform weak compactness embedding). Adopt the assumptions
and notation from the statement and proof of Lemma 3.11. Assume further that κ
is weakly compact. Let π : X → Y witness the weak compactness of κ in V , with
Y = Ult(X,µ) for an X-κ-complete X-normal ultrafilter µ over κ, and π = iXµ . For
r ∈ Vκ, let µr = µ ∩Xr. Then:

1. µr ∈ Wr and µr is an Xr-κ-complete ultrafilter over κ; let

Yr = Ult(Xr, µr) and πr : Xr → Yr

the ultrapower map; so Yr, πr ∈Wr ,

2. µ is the X-ultrafilter generated by µr (µr is dense in µ).

3. For each f : κ → Xr with f ∈ X , there is fr ∈ Xr with fr : κ → Xr and
fr(α) = f(α) for µ-measure one many α < κ.13

4. The ultrapowers satisfy Los’ theorem for Σ1 formulas, and πr, π are Σ2-elementary.

5. Y, Yr |= T1 and Yr is transitive, Yr =WY
r , and Y = Yr[Gr ].

6. πr ⊆ π.

7. M Y
π(κ) = M

Yr

πr(κ)
∈Wr; hence this belongs to Mκ.

8. π ↾MX
κ : MX

κ → M Y
π(κ) is cofinal Σ1-elementary; this map belongs to Mκ.

9. M Y
κ =

⋂
s∈Vκ

WY
s = M Yr

κ ∈ Wr; hence this belongs to Mκ.

10. Y, Yr each satisfy T1 and the following statements:

(a) “There are unboundedly many η such that η = iη”,

(b) “Fact 2.15 holds at θ = π(κ) = iπ(κ)”,

11In an earlier draft, the hypothesis “|X| = κ” was accidentally omitted, which obviously makes
the statement equivalent to measurability.

12That is, κ-completeness and normality with respect to sequences in X.
13A draft assumed only f : κ → X, not f : κ → Xr , which obviously makes the statement false

when X 6= Xr.
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(c) “There is ξ = iξ such that for each r ∈ Vπ(κ) and s ∈ VWr

π(κ), we have

Wr |=“s is true” iff VWr

ξ |=“s is true”.

Therefore there is t ∈ V Y
π(κ) with W

Y
t ⊆ M Y

κ .

Proof. Parts 1–3: These are simple variants of the version for measurable cardinals
κ of V [G] via small forcing P ∈ Vκ; one uses especially, however, the fact that Xr is
< κ-closed in Wr. We leave the details to the reader.

Part 4: Note that Vλ satisfies Σ1-Collection and “For all α ∈ OR, Vα exists and
iα ∈ OR exists, and OR = iOR”, so Xr, X do also. Therefore if ϕ is Σ0 and x ∈ X
and

X |= ∀α < κ ∃y ϕ(x, y, α)

then some V X
ξ ∈ X satisfies the same statement, and hence there is f ∈ X picking

witnesses y. This gives Los’ theorem for Σ1 formulas. The Σ2-elementarity of π :
X → Y follows. Likewise for Xr, πr.

Parts 5, 6: The fact that Y, Yr |= T1 follows from Σ2-elementarity and cofinality
of π, πr , and (for Σ1-Collection) that for each ξ ∈ ORX , we have HX

ξ 41 X and

HXr

ξ 41 Xr. The rest follows as usual from the fact that functions in X with
codomain Xr are represented in Xr (part 3), and again the Σ2-elementarity of π, πr .

Parts 7, 8: Basically by invariance of Mκ (Fact 2.16), we have MX
κ = MXr

κ , and
by part 11 of 3.11, there is ξ < ORX such that for each r ∈ Vκ and s ∈ VWr

κ , we
have Xr |=“s is true” iff V Xr

ξ |=“s is true”. Let

Tr = {s ∈ VWr
κ

∣∣Wr |= “s is true”}.

So Tr ∈ Xr and has the same definition there; likewise for Tr ∈ Yr, since πr is
Σ2-elementary. And because of the existence of ξ,

π(Tr) = {s ∈ V Yr

πr(κ)

∣∣ Yr |= “s is true”},

and it follows (in the case of r = ∅, but similarly in general),

M
Y
π(κ) =




⋂

s∈V Y
π(κ)

WY
s


 =



⋃

ζ∈I

π(M
Vζ
κ )




where I is the set of all ζ ∈ [ξ,ORX) such that iX
ζ = ζ. But MX

κ = MXr
κ and

πr ⊆ π, so M Y
π(κ) = M

Yr

πr(κ)
. The calculations above also show that

π ↾MX
κ : M

X
κ → M

Y
π(κ)

is cofinal Σ1-elementary, and likewise for πr ⊆ π.
Part 9: By part 5, WY

s = Ys, so M Y
κ =

⋂
s∈Vκ

WY
s . And note that the density

of the grounds of Xr in the grounds of X is lifted to that for those of Yr in those
of Y . (That is, for example, if r, s are such that Xr ⊆ Xs, then Yr ⊆ Ys, as this is
preserved by π.) So M Yr

κ = M Y
κ , as desired.

Part 10a: For each ζ ∈ X with ζ = iX
ζ , we have π(ζ) = iY

π(ζ).

Part 10c: If ξ witnesses the corresponding statement in X , note that π(ξ) works
in Y .

Part 10b: We consider literally Y , but the same proof works for Yr. Note that
there is a function f : Vκ → Vκ with f ∈ X , such that for each R ∈ Vκ, X |=“t = f(R)
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is a true index and t witnesses Fact 2.15 for R” (f exists by the elementarity of σ).
We claim that π(f) has the same property for Y . For by Π2-elementarity, Y |=“Every
t ∈ rg(π(f)) is a true index”. Moreover, let ξ be as before. Then for each ζ such that
ξ < ζ < ORX and ζ = iX

ζ , V X
ζ satisfies “Wf(R) ⊆ Wr for each R ∈ Vκ and r ∈ R”.

This lifts to Y under π, and since π is cofinal, this suffices.

We are now ready to prove the main theorem for weakly compact κ. The first
proof that, under this assumption, Mκ |=“Vκ is wellordered” is due to Lietz:

3.14 Theorem. Let κ be weakly compact. Then:

1. Mκ |= κ-DC + “κ is weakly compact”.14

2. for each A ∈ Mκ ∩Hκ+ , Mκ |=“A is wellordered”. 15

3. if P(κ)Mκ has cardinality κ then (i) κ is measurable in Mκ, and (ii) x# exists
for every x ∈ P(κ)Mκ .

4. If Mκ |=“µ is a countably complete ultrafilter over γ ≤ κ”, then the ultrapower
Ult(Mκ, µ) is wellfounded and the ultrapower embedding

iMκ
µ : Mκ → Ult(Mκ, µ)

is fully elementary.

Proof. Part 4 follows directly from part 1, as the wellfoundedness of Ult(Mκ, µ)
requires only ω-DC, and the proof of Los’ theorem here only uses κ-choice. The con-
clusion that x# exists in part 3 follows easily from the rest, using the elementarity of
iµ and that Ult(Mκ, µ) is wellfounded. To see that Mκ |=“κ is weakly compact”, let
T ⊆ <κ2 be a tree in Mκ. Then T has a cofinal branch b in V , by weak compactness
in V . But b ∩ Vα ∈ Mκ for each α < κ. Therefore by 2.20, b ∈ Mκ.

Here is Lietz’ argument that Mκ |=“Vκ is wellordered”:16 Working in Mκ, let T
be the tree of all attempts to build a wellorder of Vκ. (For example, let T ⊆ <κVκ
be the set of all functions f : α → Vκ where α < κ, such that for each β < α, f(β)
is a wellorder of Vβ , and for all β1 < β2 < α, f(β2) is an end extension of f(β1).)
Since V Mκ

κ |= ZFC, T is unbounded in Vκ, and clearly T ↾α ∈ Vκ for each α < κ.
Therefore by weakly compactness in Mκ, Mκ has a T -cofinal branch, and clearly
this gives a wellorder of Vκ ∩ Mκ.

We proceed now to the proof that Mκ |= κ-DC, and that every set A ∈ Mκ∩Hκ+

is wellordered in Mκ. Let T ∈ M be a κ-DC-tree,17 and let A ∈ Mκ ∩ Hκ+ . Let
S = (T , A) ∈ Vλ and X be a κ-uniform hull, etc, with S ∈ X and everything as in
Lemma 3.11, and let π : X → Y , etc, be as in Lemma 3.13. So σ : X → Vλ is fully
elementary with κ < cr(σ). Let σ(T̄ ) = T and σ(A) = A.

By 3.13, π′ = π ↾MX
κ : MX

κ → M Y
π(κ) is cofinal Σ1-elementary, and these models

and map belong to Mκ. We have A, T̄ ∈ MX
κ .

14So also Mκ |=“κ+ is regular and Hκ+ |= ZFC−”.
15Note that the “κ+” and “Hκ+” here are computed in V , not Mκ.
16The author first mistakenly thought that a similar argument worked with κ only inaccessible,

but Lietz noted that one seems to need weak compactness for this.
17That is, a set F of functions f such that dom(f) < κ, with F closed under initial segment,

and no maximal elements; that is, for every f ∈ F there is g ∈ F with dom(f) < dom(g) and
f = g ↾ dom(f). Note that κ-DC is just the assertion that for every κ-DC tree T , there is a
T -maximal branch; that is, a function f /∈ T such that f ↾α ∈ T for all α < dom(f).
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We first find a wellorder of A in Mκ, by arguing as in Schindler’s proof of Fact
3.2, but using the weak compactness embedding. We have π′(A) ∈ M Y

π(κ). By 3.13,

there is a ground W of M Y
π(κ) such that

M
Y
π(κ) ⊆W ⊆ M

Y
κ ∈ Mκ.

So W |= AC and π′(A) ∈ W . Let <∗ ∈ W be a wellorder of π′(A). So <∗ ∈ Mκ.
Working in Mκ, we can therefore wellorder A by setting, for x, y ∈ A:

x <A y ⇐⇒ π′(x) <∗ π′(y).

We now find a branch through T̄ in Mκ, with length κ. Let B ∈ MX
κ be the field

of T̄ . As above, there is a wellorder <∗ of B in Mκ. Working in Mκ, we recursively
construct a sequence 〈xα〉α<κ constituting a branch through T̄ , using <∗ to pick
next elements, and noting that at limit stages η < κ, we get 〈xα〉α<η ∈ MX

κ , because

by 3.13 part 8 we have (MX
κ )<κ ∩ Mκ ⊆ MX

κ . By 3.11, σ′ = σ ↾MX
κ ∈ Mκ, and

note that 〈σ′(xα)〉α<κ is a cofinal branch through T , as desired.
Part 3: Now suppose P(κ) ∩ Mκ ∈ Hκ+ . Then we may assume that A = P(κ) ∩

Mκ above. Therefore π′ : MX
κ → M Y

π(κ) is Mκ-total. Therefore κ is measurable in

Mκ. Since Mκ |= κ-DC, the rest now follows, as discussed in the first paragraph of
the proof.

Recall (α,X)-Choice from Definition 1.1:

3.15 Theorem. Let κ be inaccessible (so Mκ |=“κ is inaccessible”). Then:

1. Mκ is κ-amenably-closed.

2. Mκ |=“(κ,Hκ)-Choice” iff Mκ |=“Vκ is wellordered”.

3. M |=“(< κ,Hκ+)-Choice holds, and hence, (Hκ+)<κ ⊆ Hκ+”.

3.16 Remark. Note that in part 3, the “κ+” and “Hκ+” are both in the sense of
Mκ. Note that also, as κ is inaccessible, V Mκ

κ |= ZFC, Mκ |=“κ is inaccessible”, and
Mκ is κ-amenable closed, by Lemma 2.22.

Proof. Part 1 was Lemma 2.22, and since VMκ
κ = HMκ

κ |= ZFC, part 2 is easy.
Part 3: Let γ < κ and f ∈ Mκ with f : γ → (Hκ+)Mκ . We find a choice function

for f in Mκ. Write fα = f(α). Fix a function g : γ → Mκ with

gα = g(α) : κ→ trancl(fα)

surjective for each α < γ. Let c : γ → Mκ be cα = c(α) ⊆ κ the induced code for gα
(so cα, gα ∈ Mκ, but note we don’t know that c, g ∈ Mκ). Fix λ and a κ-uniform hull

X̃ 4 Vλ with f, c, g ∈ X̃ and everything else as in 3.11. So σ(f, c, g) = (f, c, g). Fix a
club C of κ̄ < κ such that γ < κ̄ and Vκ̄ 4 Vκ and such that we get a corresponding
system of structures X κ̄

r and elementary embeddings πκ̄
r : X κ̄

r → Xr, for r ∈ Vκ̄,
with X κ̄

r , π
κ̄
r ∈ Wr , X

κ̄
r of cardinality κ̄ in Wr, cr(πκ̄

r ) = κ̄ and πκ̄
r (κ̄) = κ, and

each X κ̄
r [Gr] = X∅κ̄ and πκ̄

r ⊆ π∅κ̄, and with f, cα, gα ∈ rg(πκ̄
r ) for each α < γ.

Write πκ̄
r (f

κ̄, cκ̄α, g
κ̄
α) = (f, cα, gα). So cκ̄α = cα ∩ κ̄, so cκ̄α, g

κ̄
α ∈ (Hκ̄+)Mκ , and

f κ̄ : γ → (Hκ̄+)Mκ with f κ̄
α ⊆ rg(gκ̄α). Let cκ̄ : γ → Mκ be cκ̄(α) = cκ̄α and

likewise for gκ̄.
In V , pick a sequence 〈<κ̄〉κ̄∈C of wellorders <κ̄ of (Hκ̄+)Mκ with <κ̄ ∈ Mκ. Let

zκ̄α be the <κ̄-least element of f κ̄
α , and let ξκ̄α < κ̄ be the least ξ with gκ̄α(ξ) = zκ̄α.
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Let S be the stationary set of all strong limit cardinals κ̄ ∈ C of cofinality γ+.
Enumerate γκ as {sβ}β<κ, with

γ κ̄ = {sβ}β<κ̄ for each κ̄ ∈ S. For κ̄ ∈ S, let βκ̄ be
the β < κ̄ such that sβ = 〈ξκ̄α〉α<γ . Let S′ ⊆ S be stationary and such that βκ̄ is
constant for κ̄ ∈ S′.

Let d : γ → Mκ be the choice function for f given by d(α) = π∅κ̄(z
κ̄
α), whenever

κ̄ ∈ S′. This is independent of κ̄ ∈ S′. For if κ̄0, κ̄1 ∈ S′ with κ̄0 < κ̄1, then for each
α < γ, we have ξ = ξκ̄0

α = ξκ̄1
α , so

π∅κ̄0
(zκ̄0

α ) = π∅κ̄0
(gκ̄0

α (ξ)) = gα(ξ) = π∅κ̄1
(gκ̄1

α (ξ)) = π∅κ̄1
(zκ̄1

α ).

But d ∈ Mκ. For given r ∈ Vκ, let κ̄ ∈ S′ with r ∈ Vκ̄. Then f κ̄ ∈ X κ̄
r and

πκ̄
r (f

κ̄) = f , since πκ̄
r ⊆ π∅κ̄. And X κ̄

r ∈ Wr, so f
κ̄ ∈ Wr. But <κ̄ is in Wr, and

so dκ̄ = 〈zκ̄α〉α<γ ∈ Wr. And since πκ̄
r ⊆ π∅κ̄, π

κ̄
r (d

κ̄) = d. Since πκ̄
r ∈ Wr, therefore

d ∈ Wr. So d ∈ Mκ |=“d is a choice function for f”, so we are done.
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