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Abstract

It is consistent with ZF set theory that the Euclidean topology on R is

not sequential, yet every infinite set of reals contains a countably infinite

subset. This answers a question of Gutierres.

1 Introduction

This note deals with sequentiality of the Euclidean topology of the reals in
choiceless context. To remind the reader of the standard definitions:

Definition 1.1. Let X be a topological space.

1. A set C ⊂ X is sequentially closed if every countable converging sequence
of elements of C converges to an element of C.

2. The spaceX is sequential if every sequentially closed subset of X is closed.

Under small fragments of the axiom of choice, such as the axiom of dependent
choices (DC), it is easy to check the status of sequentiality of basic topological
spaces. For example, all metric spaces are sequential, while ω1+1 with the order
topology is not. Without the axiom of dependent choices, sequentiality becomes
an issue even in the most basic contexts. Gutierres [1] showed that in ZF,
sequentiality of the Euclidean topology of R has many equivalent restatements,
and it implies that every infinite subset of R contains a countably infinite subset.
He asked whether the opposite implication is provable in ZF. In this note, I show
that this is not the case.

Theorem 1.2. It is consistent relative to an inaccessible cardinal that ZF holds,

every infinite subset of R contains a countably infinite subset, and the Euclidean

topology of R is not sequential.

∗2010 AMS subject classification 03E15, 03E25, 03E35.

1

http://arxiv.org/abs/2103.10001v1


In the interests of brevity, the theorem understates the understanding of its
associated model somewhat. In particular, in it every infinite set contains a
countably infinite subset, and no uncountable Polish space is sequential. The
inaccessible cardinal assumption is used only to make the construction fit under
the umbrella of geometric set theory [3]; I do not know if it is necessary. It
is also unclear if it is possible to distinguish between sequentiality of various
uncountable Polish spaces; one rather egregious example is R and R

2.
The paper uses standard set theoretic notation as in [2]; in matters of geo-

metric set theory it follows [3].

2 Proof of the main theorem

The model for Theorem 1.2 is a forcing extension of the classical choiceless
Solovay model by a certain Suslin poset which is designed in a straightforward
way to add a witness for the failure of sequentiality of R.

Definition 2.1. The poset P consists of all pairs p = 〈ap, bp〉 where ap ⊂ [0, 1]
is a nowhere dense closed set and bp ⊂ [0, 1] is a countable set disjoint from ap.

The ordering is defined by q ≤ p if ap ⊂ aq and bp ⊂ bq. The P -name Ȧ is
defined as the union of all first coordinates of conditions in the generic filter.

I make a couple of simple initial observations. First, conditions p, q ∈ P are
compatible if and only if ap ∩ bq = 0 and aq ∩ bp = 0. In such a case, there is a
largest common lower bound of p, q, namely the condition 〈ap ∪ aq, bp ∪ bq〉. It
follows immediately that the poset P is Suslin. Since any point not in bp can be
added to ap and any point not in ap can be added to bp obtaining a condition

stronger than p, it also follows that P forces the set Ȧ ⊂ [0, 1] to be dense with
dense complement; in particular, Ȧ is forced not to be closed.

The partial order P is fairly useless in ZFC context. However, I will show
that if W is a choiceless Solovay model, then the P -extension of W is a model
for the theory required by Theorem 1.2. In order to do that, an analysis of its
balanced virtual conditions as in [3] is necessary. This analysis takes place in
ZFC. For every nowhere dense closed set a ⊂ [0, 1], let τa be the Coll(ω, [0, 1])-
name for the condition 〈a, [0, 1] ∩ V \ a〉 ∈ P .

Theorem 2.2. In the poset P :

1. for every nowhere dense closed set a ⊂ [0, 1], the pair 〈Coll(ω, [0, 1]), τa〉
is balanced;

2. for every balanced pair 〈Q, σ〉 there is a nowhere dense closed set a ⊂ [0, 1]
such that the balanced pairs 〈Q, σ〉 and 〈Coll(ω, [0, 1]), τa〉 are equivalent;

3. distinct closed sets yield inequivalent balanced pairs.

In particular, the poset P is balanced.
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Proof. For (1), suppose that R0, R1 are posets and σ0, σ1 are their respective
names for conditions in P which are stronger than 〈a, [0, 1]∩V \a〉; I must show
that R0 ×R1  σ0, σ1 are compatible in P . Let σ0 = 〈ȧ0, ḃ0〉 and σ1 = 〈ȧ1, ḃ1〉.

Claim 2.3. R0 ×R1  ȧ0 ∩ ḃ1 = 0 and ȧ1 ∩ ḃ0 = 0.

Proof. I will prove the latter conjunct; the proof of the former is symmetric.
Suppose towards a contradiction that θ is an R0-name for an element of ḃ0 and
r0 ∈ R0, r1 ∈ R1 are conditions which force in the product that θ ∈ ȧ1 holds.
Let M be a countable elementary submodel of a large structure containing r0, θ
in particular. Let g ⊂ R0 be a filter generic over the model M containing the
condition r0 and let x = θ/g. Note that R0  ḃ0 ∩ a = 0; so, it must be the
case that x /∈ a. Now, R1  x̌ /∈ ȧ1; so, there has to be a condition r′

1
≤ r1

and a basic open neighborhood O ⊂ [0, 1] of x such that r′
1
 ȧ1 ∩ O = 0. By

the genericity of the filter g, there has to be a condition r′
0
≤ r0 in g such that

r′
0
 θ ∈ O. Then, the condition 〈r′

0
, r′

1
〉 forces in the product that θ /∈ ȧ1 holds,

contradicting the initial assumptions.

It follows immediately from the claim that the product forces 〈ȧ0 ∪ ȧ1, ḃ0 ∪ ḃ1
to be a common lower bound of σ0, σ1. Item (1) follows.

For (2), let θ be the Q-name for the first coordinate of σ, and let a = {x ∈
[0, 1] : Q  x̌ ∈ θ. I will show that a ⊂ [0, 1] is closed and the balanced pairs
〈Q, σ〉 and 〈Coll(ω, [0, 1]), τa〉 are equivalent. It is immediate that a ⊂ [0, 1] is
closed and nowhere dense, since Q  θ is closed and nowhere dense. To conclude
the proof, by [3, Proposition 5.2.6] it is enough to show that Q  a ⊂ θ and
([0, 1] ∩ V \ a) ∩ θ = 0 because then σ and 〈a, [0, 1] ∩ V \ a〉 are forced to be
compatible conditions in P .

To show that Q  a ⊂ θ holds, suppose that some condition q forces the
contrary. Then there has to be a basic open set O ⊂ [0, 1] such that a ∩O 6= 0
and q  θ ∩ O = 0. Pick a point x ∈ a ∩ O ∩ V and use the definition of the
set a to conclude that Q  x̌ ∈ θ. This immediately contradicts the assumption
that q  θ ∩O = 0.

To show thatQ  ([0, 1]∩V \a)∩θ = 0 holds, suppose towards a contradiction
that there is a point x ∈ V \ a and a condition q0 ∈ Q forcing x̌ ∈ θ. By the
definition of the set a, there has to be a condition q1 ∈ Q forcing x̌ /∈ θ.
Let H0, H1 ⊂ Q be mutually generic filters containing the conditions q0, q1
respectively, and let p0 = σ/H0 and let p1 be the condition obtained from
σ/H1 by adding the point x to its second coordinate. It is clear that p0, p1 are
conditions incompatible in P as witnessed by the point x. This contradicts the
initial balance assumption on the pair 〈Q, σ〉.

(3) is immediate. To get the last sentence, note that for every condition
p = 〈ap, bp〉, the pair 〈Coll(ω, [0, 1]), τa〉 represents a balanced virtual condition
stronger than p.

Corollary 2.4. Let W be the choiceless Solovay model. Then W |= P  Ȧ ⊂ R

is sequentially closed.
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Proof. Suppose towards a contradiction that this fails. Recall that by [3, Theo-
rem 9.1.1] and the fact that the poset P is balanced in ZFC, the P -extension of
the model W contains no new reals and no new ω-sequences of reals. Thus, it
must be the case that there is a condition p ∈ P and an ω-sequence x for elements
of [0, 1] converging to some y such that p  rng(x̌) ⊂ Ȧ and y̌ /∈ Ȧ. The contra-
diction is achieved in two complementary cases. First, assume that rng(x) ⊂ ap.

Then, by the closure of ap, it is also true that y ∈ ap and p  y̌ ∈ Ȧ, contra-
dicting the original assumptions. Second, assume that rng(x) \ ap is nonempty,
containing some point z. Consider the condition q ≤ p obtained from p by
adding z to its second coordinate. Then q  rng(x̌) 6⊂ Ȧ, again contradicting
the initial assumptions.

As pointed out above, Ȧ is forced to be dense codense in [0, 1], so not closed.
Thus, in the P -extension of the choiceless Solovay model, R is not a sequential
space. All that remains to be proved is that in that extension, every infinite set
of reals contains a countably infinite subset. This is in fact the main contribution
of this paper. Theorem 1.2 is an immediate corollary.

Theorem 2.5. Let W be the choiceless Solovay model. Then W |= P  every

infinite set of reals has a countably infinite subset.

Proof. Let κ be an inaccessible cardinal, and let W be the choiceless Solovay
model derived from κ. Work in the model W . Let τ be a P -name for an infinite
set of reals, and let p ∈ P be a condition. I have to produce an injective function
π : ω → R and a strengthening of the condition p which forces rng(π) ⊂ τ . To
this end, pick a parameter z ∈ 2ω such that τ, p are both definable from z and
some additional parameters in the ground model. Let V [K] be an intermediate
generic extension obtained by a poset of cardinality smaller than κ such that
z ∈ V [K]. Work in V [K].

Let p̄ be the balanced virtual condition in P associated with the set ap
as in Theorem 2.2. If in the model W , p̄  τ ⊂ V [K] holds, then p̄  τ is
countable, and the proof is complete. If this fails, then there must be a poset Q
of cardinality smaller than κ, a Q-name σ for a condition stronger than p̄ and θ
and a Q-name θ for a real not in V [K] such that Q  Coll(ω,< κ)  σ P θ ∈ τ .
Move back to W .

First, let Hω ⊂ Q be a filter generic over V [K]. Then, let 〈Hn : n ∈ ω〉 be
a sequence of filters on Q which are pairwise mutually generic over V [K][Hω]
and such that limn Hn = Hω in the usual topology of P(Q). This means that
for every condition q ∈ Hω, for all but finitely many n ∈ ω q ∈ Hn holds. Write
pn = σ/Hn, pn = 〈an, bn〉, and xn = θ/Hn for every index n ∈ ω. It will
be enough to show that the points xn for n ∈ ω are pairwise distinct and the
conditions pn for n ∈ ω have a common lower bound in P , because then in the
model W , that lower bound forces {xn : n ∈ ω} ⊂ τ as desired.

First of all, it is clear that the points xn for n ∈ ω are pairwise distinct,
since if n 6= m then xn ∈ V [K][Hn] \V [K] and xm ∈ V [K][Hm] \V [K], and the
models V [K][Hn], V [K][Hm] are mutually generic over V [K]. To see why the
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conditions pn for n ∈ ω have a common lower bound is more difficult. Write
pω = σ/Hω, pω = 〈aω, bω〉.

Claim 2.6. c = aω ∪
⋃

n∈ω an is a closed nowhere dense subset of [0, 1].

Proof. For the closure I use the fact that limn Hn = Hω. Suppose that y /∈ c
is a point. Since aω is a closed set, there must be a basic open neighborhood
Oω of y which is disjoint from aω. There must be a condition q ∈ Hω such
that q  Oω is disjoint from the first coordinate of the condition σ ∈ P . Find
a number n ∈ ω such that for all m > n, q ∈ Hm holds. Then for all m > n,
am ∩Oω = 0. For each index m ≤ n, the set am is closed and does not contain
the point y, so there is a basic open neighborhood Om of y disjoint from am.
Clearly,

⋂
m≤nOm ∩Oω is an open neighborhood of y disjoint from the set c.

To see that c ⊂ [0, 1] is nowhere dense, note that the set [0, 1] ∩ V [K] \ a
is dense and the set c contains none of its points. Alternately, c is a union of
countably many closed nowhere dense sets, therefore meager and (as a closed
set) nowhere dense.

Now, by the balance of the virtual condition p̄, for all distinct indices n,m ≤ ω
it is the case that pn, pm are compatible in P . This is to say that an ∩ bm = 0
and am ∩ bn = 0. It follows that

⋃
n≤ω an and

⋃
n∈ω bn are disjoint sets; they

together form the requested common lower bound of all conditions pn for n ∈ ω
or even n ≤ ω.
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