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INTERPRETING THE WEAK MONADIC SECOND ORDER

THEORY OF THE ORDERED RATIONALS

J K TRUSS

Abstract. We show that the weak monadic second order theory of the struc-
ture (Q, <) is first order interpretable in its automorphism group.

1. Introduction

The monadic second order theory of a structure is the set of second order sen-
tences true in the structure, for which second order quantification is only performed
over subsets of the domain (i.e. unary predicates). Its weak monadic second order
theory instead allows quantification just over the finite subsets of the structure.
Marcus Tressl enquired whether the weak monadic second order theory of (Q, <)
can be interpreted inside its endomorphism monoid. Here we show that this is
indeed possible, and in fact it can be interpreted inside its automorphism group.

We shall use similar methods as described in [2]. There the monoids of monomor-
phisms, endomorphisms of (Q, <) were denoted by M and E respectively, and its
group of automorphisms by G. It was shown that the action of E on Q is in-
terpretable in the monoid (E, ◦). This is done by means of a series of first order
formulae of the language of group theory. We require some of these here, and so
shall recap the main ideas without full details, for which we refer the reader to [2].
In fact for our present purposes, it suffices to work just with the group G. The
corresponding results follow easily for M and E, since G is a definable subset of
each of these.

2. Background

Much of the material needed is given, either explicitly or implicitly, in [1]. We
refer mainly to the presentation as given in [2].

The key to unlocking the properties of G is the notion of ‘orbital’ of a member
of G. This is defined to be the convex closure of an orbit, and which carries a
‘parity’, +1, −1, or 0, depending on whether the map is increasing, decreasing, or
fixed, on that orbital. More precisely, an orbital of f ∈ G is an equivalence class
under the relation given by a ∼ b if for some integers m,n, fma ≤ b ≤ fna. It is
easily seen that for any orbital X of f , for every element a of X , a < fa, or for
every a, a > fa, or there is just one element of X , which is fixed by f . We say
that X has parity +1, −1 or 0 in these three cases. Orbitals of parity ±1 are called
non-trivial. Since all orbitals are convex, the family of orbitals receives the natural
induced ordering, and can therefore be viewed as a 3-coloured linear order, referred
to as its ‘orbital pattern’. Furthermore, two group elements are conjugate if and
only if their orbital patterns are isomorphic (as coloured orders) (see for instance
[1]). We write the conjugate gfg−1 of f by g as fg.
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We omit the precise details by which the following formulae of the language
of group theory are constructed, as these are given fully in [2], just sketching the
intuition:

comp(x) is a formula expressing ‘comparability’ with the identity, so that for
f ∈ G, comp(f) holds in G if and only if either for all a, a ≤ fa, or for all a,
a ≥ fa.

apart(x, y) expresses that the support of x is either entirely to the left of that
of y, or entirely to its right (including the vacuous case that one of both of these
supports is empty), where the support of a group element is the set of points moved
by it.

bump(x) expresses that x is a ‘bump’, which is defined to be a non-identity
element having exactly one non-trivial orbital.

orbital(x, y) expresses that x is an orbital of y, meaning that x is a bump whose
support is contained in that of y, and such that x is equal to the restriction of y to
its support.

disj(x, y) is a formula of the language of group theory such that for f, g ∈ G,
disj(f, g) holds in G if and only if f and g have disjoint supports. From this we can
derive a formula restr(x, y) which says that the support of x is contained in that
of y, and the restrictions of x and y to the support of x are equal. This formula
restr(x, y) is just ∃z(disj(x, z) ∧ y = xz). The formula cont(x, y) says that the
support of x is contained in that of y, and this is taken to be ∀z(disj(y, z) →
disj(x, z)).

There are two particular types of bump which will be needed, which can each
be characterized by a formula. A bump f is said to be coterminal if its support
is the whole of Q, which may be expressed by saying that it is a bump which is
not disjoint from any non-identity member of G, written coterm(f). It is said to
be cofinal if its support is bounded above or below but not both. Saying that f is
cofinal can be expressed by a formula cof expressing that it is not coterminal, and
it is not disjoint from any conjugate. Cofinal elements are particularly important,
since they will have support (−∞, a) or (a,∞) for some a ∈ R, so can be used to
encode the endpoint a (which may be rational or irrational, though we really want
just the rational case, and have to show in addition how this can be expressed).

Lemma 2.1. If f ∈ G has infinitely many non-trivial orbitals, then it has a non-
trivial restriction g which may be written as g1g2 where g1 is an orbital of g, and g

is conjugate to g2.

Proof. Since f has infinitely many non-trivial orbitals, it has either an increasing
or decreasing ω-sequence of such non-trivial orbitals. Without loss of generality
assume this is increasing, X0 < X1 < X2 < . . . say. By passing to a suitable
subsequence, we may assume that all these orbitals have the same parity (+1 or
−1), X0 is bounded below (i.e. does not have −∞ as its left endpoint), and that
for each n, supXn < inf Xn+1. Furthermore, if we write Xn = (an, bn), we may
suppose that either all an are rational, or all are irrational, and similarly for the
bn (since there are only 4 possibilities, this can be achieved by ‘thinning out’). Let
g1 be the restriction of g to X0, and g2 be the restriction of g to

⋃
n>0

Xn. Then g

and g2 have isomorphic orbital patterns, and hence are conjugate, so g1 and g2 are
as desired. �

The lemma leads us to consider the formula inf(x) which says that x has a
restriction y and there is a non-trivial orbital y1 of y such that if y = y1y2, then y

is conjugate to y2.

Lemma 2.2. For any f ∈ G, G |= inf(f) if and only if f has infinitely many
non-trivial orbitals.
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Proof. Let G |= inf(f), and write g = g1g2 for a restriction of f with a non-trivial
orbital g1 as provided by the formula. Thus g is conjugate to g2, and as g2 has one
fewer non-trivial orbital than g, there must be infinitely many (for each). Hence f

also has infinitely many non-trivial orbitals.
Conversely, by Lemma 2.1, if f has infinitely many non-trivial orbitals, the

formula inf must be true for f in G. �

Corollary 2.3. For any f ∈ G, G |= ¬inf (f) if and only if f has only finitely
many non-trivial orbitals.

Having characterized finiteness in one setting, that is, for the number of non-
trivial orbitals of a member of G, we have to transfer it to the interpretation of
Q found in [2]. We recall in outline how this is carried out. The method is to
use cofinal members of G having a single non-trivial orbital of the form (−∞, q) or
(q,∞) for some rational number q, and then to show that there is a formula which
identifies two such if and only if they correspond to the same value of q. To perform
the first task, we start by identifying cofinal members of G having a single orbital
of the form (−∞, a) or (a,∞) for the same real number a by means of a formula
codesame. For this we note that such elements f and g will either have the same
support, which is expressed by the formula cont(f, g) ∧ cont(g, f), or ‘opposite’
supports (i.e. one (−∞, a) and the other (a,∞)), which is expressed by a formula
oppsupport(f, g), which says that they are cofinal bumps which are disjoint, and
such that no non-identity member of G is disjoint from both of them.

The harder task is to characterize which such elements correspond to a ∈ Q.
(One observes that there are 8 conjugacy classes of cofinal elements f , corresponding
to f having parity ±1, support bounded above or below, and to a rational or
irrational.)

The first task is performed using a formula ‘rational’. Details are given in [2],
but we recall the ideas in outline here. This is where coterminal elements are re-
quired. A typical coterminal element is translation by 1 to the right. And, actually,
any coterminal element is conjugate to the element of this form (or its inverse), so
in a sense, all such elements are (possibly ‘distorted’) translations. Related to this
is a formula gauge(x, y) which says that x and y are commuting coterminal el-
ements whose joint centralizer is commutative. To see that such elements exist,
consider Q replaced by Q[

√
2], which being countable dense without endpoints is

order-isomorphic to Q, and let f and g be translations by 1 and
√
2 respectively.

One establishes, by extending to R and using a density and continuity argument
that gauge(f, g) holds (the key point being that the set of reals of the form a+b

√
2

for a, b ∈ Z is dense in R). It can be shown that this situation is essentially typical,
that is if gauge(f, g) holds then for some irrational α, Q can be replaced by Q[α]
in such a way that for all a, f(a) = a+ 1 and g(a) = a+ α.

The formula gauge is now used to help us characterize cofinal elements having
support (−∞, q) or (q,∞) for some rational q. The main point is that if gauge(f, g),
then the joint centralizer of f and g is a countable group. Up to equivalence under
codesame, there are two orbits of cofinal elements, corresponding to q rational
and q irrational. We use gauge to enable us to tell these apart. More precisely, the
formula rational(x) is built up as follows. It says that x is cofinal, and there are y
and z such that gauge(y, z) and for any conjugate t of x, there is a conjugacy u of
x to a cofinal element xu such that codesame(t, xu), and such that u commutes
with both y and z. Since as just remarked, such u can take only countably many
possible values, the conjugates of x can only encode countably many points, from
which it follows that x has support (−∞, q) or (q,∞) for some rational q.
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3. The main result

We can now put together what we have succeeded in doing, and obtain our main
results.

Theorem 3.1. The weak monadic second order theory of the structure (Q, <) is
first order interpretable in its automorphism group G. More precisely, there are
formulae ‘finrational’ and ‘sameset’ of the language of group theory, such that for
any f ∈ G, G |= finrational(f) if and only if f is either positive or negative, having
only finitely many orbitals, all of whose (finite) endpoints are rational; and for any
f, g ∈ G, G |= sameset(f, g) if and only if G |= finrational(f) ∧ finrational(g)
and f and g have the same set of fixed points.

Proof. Note that here, when we say ‘finitely many orbitals’, we mean including
trivial ones. In [2] Theorem 1.13 it was shown that Q may be represented inside G

by means of elements satisfying the formula rational, two of which are identified if
they satisfy codesame. We now have all the ingredients to extend this to interpret
also finite sets of rationals. For this, we let finrational(x) be the formula

comp(x) ∧ ¬inf(x) ∧ ∀y(disj(x, y) → y = 1)∧
(∀y, z)oppsupport(y, z) ∧ cont(x, yz) → rational(y).

Deciphering the clauses here, they say

comp(x): x is either positive or negative,

¬inf(x): x has finitely many non-trivial orbitals,

∀y(disj(x, y) → y = 1): x has dense support (and so by the previous line has
only finitely many fixed points),

(∀y, z)oppsupport(y, z) ∧ cont(x, yz) → rational(y): all fixed points of x are
rational.

For sameset(x, y) we use the formula

finrational(x) ∧ finrational(y) ∧ cont(x, y) ∧ cont(y, x).

�

Let us make more explicit how these formulae effect the interpretation in G of
the weak monadic second order theory of (Q, <). The idea of the proof just given
is that we are using elements having finitely many orbitals of the form (−∞, a1),
(a1, a2), . . . , (an,∞) for some rational numbers a1 < a2 < . . . < an, all of the
same parity. (This stands for the finite set {a1, a2, . . . , an}.) It is also (and must
be) asserted that there is a formula (sameset) telling us when two such elements
correspond to the same finite sets of rationals. So they do ‘encode’ the set of finite
sets of rationals, since clearly every finite set of rationals can arise in this way (even
the empty set). In addition, relating the interpretations of rationals and finite sets
of rationals, we note that the rational q lies in the finite set {a1, . . . , an} of rationals
precisely if q can be represented by f such that G |= rational(f) and {a1, . . . , an}
can be represented by g such that G |= finrational(g), and for some f ′ such that
G |= oppsupport(f, f ′), we have G |= cont(g, ff ′).

To see that this amounts to an interpretation of weak monadic second order
logic, we observe that any quantification over the set of finite subsets of Q can be
replaced by quantification over elements satisfying finrational.

Theorem 3.2. The weak monadic second order theory of the structure (Q, <) is
first order interpretable in each of its monoids M of embeddings and E of endo-
morphisms.



INTERPRETING THE WEAK MONADIC SECOND ORDER THEORY OF THE ORDERED RATIONALS5

This follows from the facts that G is a definable subset of each of M and E,
being its set of invertible elements. So we can just use the interpretation already
given.
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