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TAMENESS OF DEFINABLY COMPLETE LOCALLY

O-MINIMAL STRUCTURES AND DEFINABLE BOUNDED

MULTIPLICATION

MASATO FUJITA, TOMOHIRO KAWAKAMI, AND WATARU KOMINE

Abstract. We first show that the projection image of a discrete definable set
is again discrete for an arbitrary definably complete locally o-minimal struc-
ture. This fact together with the results in a previous paper implies tame
dimension theory and decomposition theorem into good-shaped definable sub-
sets called quasi-special submanifolds.

Using this fact, in the latter part of this paper, we investigate definably
complete locally o-minimal expansions of ordered groups when the restric-
tion of multiplication to an arbitrary bounded open box is definable. Sim-
ilarly to o-minimal expansions of ordered fields,  Lojasiewicz’s inequality, Ti-
etze extension theorem and affiness of psudo-definable spaces hold true for such
structures under the extra assumption that the domains of definition and the
psudo-definable spaces are definably compact. Here, a pseudo-definable space
is a topological spaces having finite definable atlases. We also demonstrate
Michael’s selection theorem for definable set-valued functions with definably
compact domains of definition.

1. Introduction

Locally o-minimal structures are studied in a series of papers [18, 12, 5, 6, 7, 8].
We first recall the definitions of local o-minimality and definably completeness.

Definition 1.1 ([18]). A densely linearly ordered structure without endpoints M =
(M,<, . . .) is locally o-minimal if, for every definable subset X of M and for every
point a ∈M , there exists an open interval I containing the point a such that X ∩ I
is a finite union of points and open intervals.

Definition 1.2 ([14]). An expansion of a densely linearly ordered set without
endpoints M = (M,<, . . .) is definably complete if any definable subset X of M
has the supremum and infimum in M ∪ {±∞}.

In [8], the first author demonstrated that definably complete locally o-minimal
structures satisfying the following property (a) have tame dimension theory and
decomposition theorem into good-shaped definable subsets called quasi-special sub-
manifolds.

(a) The image of a definable discrete set under a coordinate projection is again
discrete.

The first contribution of this paper is that an arbitrary definably complete locally
o-minimal structure always enjoys the property (a). Note that it is not necessarily
true for a locally o-minimal structure which is not definably complete. A counter
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example is found in [12, Example 12]. In Section 2, we demonstrate the property
(a) and recall its consequences given in [8].

Using this fact, in the latter part of this paper, we investigate definably complete
locally o-minimal expansions of ordered groups when the restriction of multiplica-
tion to an arbitrary bounded open box is definable. We first explain the reason
why we investigate them.

An o-minimal structure has tame topology [3] and it enables us to deduce many
geometric assertions for definable sets. When, in addition, it is an expansion of
an ordered field, we can get more beautiful assertions such as definable triangula-
tion theorem and definable trivialization theorem. Our next targets are definably
complete locally o-minimal expansions of ordered fields if we employ the same strat-
egy as the study of o-minimal structures. However, we do not treat them for the
following two reasons:

Firstly, studies in this direction have been already done. Fornasiero got fruitful
results on definably complete local o-minimal expansions of ordered fields in [5].
Structures called models of DCTC, which are more general than definably complete
local o-minimal expansions of ordered fields, are already known to possess the
property (a) by [16, Theorem 4.1].

The second reason is more crucial. Many natural definably complete locally
o-minimal expansions of ordered fields are inevitably o-minimal. The most impor-
tant example is a locally o-minimal expansion of the ordered set of reals R. It is
trivially o-minimal when it is an expansion of the ordered field of reals. The first
author investigated definably complete locally o-minimal structures admitting local
definable cell decomposition in [6]. They are also o-minimal by [6, Proposition 2.1]
if they are expansions of ordered fields. The assumption that the structure is an
expansion of an ordered field seems to be too restrictive in the study of definably
complete locally o-minimal structures.

Therefore, we abandon full definability of multiplication. Instead, we assume
that the multiplication is partially definable. This is the reason why we employ the
following definition:

Definition 1.3. An expansion M = (M,<, 0,+, . . .) of a densely linearly ordered
group has definable bounded multiplication compatible to + if there exist an element
1 ∈M and a map · : M ×M →M such that

(1) the tuple (M,<, 0, 1,+, ·) is an ordered field;
(2) for any bounded open interval I, the restriction ·|I×I of the product · to

I × I is definable in M.

We simply say that M has definable bounded multiplication when the addition in
consideration is clear from the context.

The above definition may seem to be artificial. However, we naturally en-
counter a definably complete locally o-minimal expansion of an ordered group hav-
ing bounded multiplication. We construct an example in Section 3. The basic
properties of structures having definable bounded multiplication are also discussed
in the same section.

We are now ready to introduce the contexts of Section 4 and Section 5. We con-
jecture that many assertions which hold true for o-minimal expansions of ordered
fields also hold true for definably complete locally o-minimal expansions of ordered
groups having definable bounded multiplication under the extra assumption that
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the relevant spaces are definably compact. Note that a subset of Mn which is defin-
able in a definably complete expansion of a dense linear order without endpoints is
definably compact if and only it it is closed and bounded, where M is the universe
of the given structure. Section 4 and Section 5 collect affirmative answers to the
above conjecture.

 Lojasiewicz’s inequality and Tietze extension theorem for o-minimal expansions
ordered field are familiar to real algebraic geometers and researchers of o-minimal
structures [3, 4]. In Section 4, we demonstrate that they hold true for definably com-
plete expansions of ordered groups having definable bounded multiplication when
the domains of definitions are definably compact. We also demonstrate Michael’s
selection theorem in the same situation in the same section. The strategy for its
proof is similar to that for the proof of of [17].

We prove that a definably compact pseudo-definable space is definably imbedded
into a Euclidean space in Section 5. We first define psudo-definable spaces similarly
to van den Dries’s definable space [3, Chapter 10] prior to the proof.

In the last of this section, we summarize the notations and terms used in this pa-
per. The term ‘definable’ means ‘definable in the given structure with parameters’
in this paper. For a linearly ordered structure M = (M,<, . . .), an open interval is
a definable set of the form {x ∈ R | a < x < b} for some a, b ∈ M . It is denoted
by (a, b) in this paper. We define a closed interval similarly. It is denoted by [a, b].
An open box in Mn is the direct product of n open intervals. The notation M>r

denotes the set {x ∈ M | x > r} for any r ∈ M . We set |x| := max1≤i≤n |xi| for
any vector x = (x1, . . . , xn) ∈ Mn. The function |x − y| defines a distance in Mn

when M is an expansion of an ordered group. Let A be a subset of a topological
space. The notations int(A), A and ∂A denote the interior, the closure and the
frontier of the set A, respectively.

2. Property (a) and its consequences

The purpose of this section is to demonstrate that the property (a) holds true for
definably complete locally o-minimal structure and to introduce its consequences.
We first begin with the proof of the property (a).

2.1. Proof of property (a). Let M = (M,<, . . .) be a definably complete locally
o-minimal structure throughout this subsection. We get the following lemma.

Lemma 2.1. Let f : I → M be a strictly monotone definable function on an
interval I. There exists a subinterval J ⊂ I such that the restriction of f to J is
continuous.

Proof. We only show the assertion when f is strictly increasing on I. The proof
is similar when f is strictly decreasing. We may assume that the image f(I) is
bounded. In fact, take x < y in I. The restriction of f to the interval (x, y)
has a bounded image contained in (f(x), f(y)) because f is strictly increasing.
Suppose that f(I) is discrete. Since f(I) is a bounded discrete closed set by [8,
Lemma 2.3], f(I) has the maximal element h = f(x) where x ∈ I by the definable
completeness of M. Take y ∈ I with x < y. Since f is strictly increasing on
I, we have h = f(x) < f(y) ∈ f(I). It is a contradiction. So f(I) contains an
interval (u, v) by [8, Lemma 2.3]. Take c ∈ f−1(u) and d ∈ f−1(v). Since the
restriction f |(c,d) : (c, d) → (u, v) of f to the open interval (c, d) is bijective, it is
continuous. �
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We recall the definition of local monotonicity.

Definition 2.2 (Local monotonicity). A function f defined on an open interval
I is locally constant if, for any x ∈ I, there exists an open interval J such that
x ∈ J ⊂ I and the restriction f |J of f to J is constant.

A function f defined on an open interval I is locally strictly increasing if, for any
x ∈ I, there exists an open interval J such that x ∈ J ⊂ I and f is strictly increasing
on the interval J . We define a locally strictly decreasing function similarly. A locally
strictly monotone function is a locally strictly increasing function or a locally strictly
decreasing function. A locally monotone function is locally strictly monotone or
locally constant.

Theorem 2.3 (Strong monotonicity). Consider a definably complete locally o-
minimal structure M = (M,<, . . .). Let I be an interval and f : I → M be a
definable function. Then, there exists a mutually disjoint definable partition I =
Xd ∪Xc ∪X+ ∪X− satisfying the following conditions:

(1) the definable set Xd is discrete and closed;
(2) the definable set Xc is open and f is locally constant on Xc;
(3) the definable set X+ is open and f is locally strictly increasing and contin-

uous on X+;
(4) the definable set X− is open and f is locally strictly decreasing and contin-

uous on X−.

Proof. We first define the definable sets Xc, X+, X− by

Xc = {x ∈M | f is constant on some subinterval of I containing x},
X+ = {x ∈M | f is strictly increasing and continuous

on some subinterval of I containing x} and

X− = {x ∈M | f is strictly decreasing and continuous

on some subinterval of I containing x}.
Set Xd = I \ (Xc ∪ X+ ∪ X−). It is obvious that Xc, X+ and X− are open and
definable. The remaining task is to show that Xd is discrete and closed. Suppose
not, then Xd contains an interval J by [8, Lemma 2.3]. We may assume that J is
bounded without loss of generality.

Fix a ∈ J . By the local o-miniamlity of M, there exists an open interval (a, r)
such that one of followings holds: f > f(a) on (a, r), f = f(a) on (a, r) or f < f(a)
on (a, r). By the definition of Xd, we have f > f(a) on (a, r) or f < f(a) on
(a, r). Similar situation holds on the left side of the point a. We define the formula
Φ−,+(v) by

∃v1∃v2[v1 < v < v2 ∧ ∀w1(v1 < w1 < v → f(w1) < f(v))

∧ ∀w2(v < w2 < v2 → f(w2) > f(v))].

The formulas Φ+,−(v),Φ+,+(v),Φ−,−(v) are defined similarly. We have shown that
each a ∈ J satisfies exactly one of Φ−,+(v),Φ+,−(v),Φ+,+(v) and Φ−,−(v). By local
o-minimality of M, on some subinterval J ′ = (α, β), one of them holds constantly.

We consider the cases in which Φ−,+(x),Φ+,−(x),Φ+,+(x) and Φ−,−(x) hold
true for all x ∈ J ′, separately. We first consider the following case.

Case 1. When we have M |= Φ−,+(x) for all x ∈ J ′.
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For each x ∈ J ′, we define s(x) by

s(x) = sup{s ∈ (x, β) | f(x) < f on (x, s]}.
If s(x) < β, there exists y ∈ (s(x), β) such that f(x) < f(s(x)) < f on (s(x), y)
because M |= Φ−,+(s(x)). It is a contradiction to the definition of s(x). So the
equality s(x) = β holds. It means that f is strictly increasing on J ′. By Lemma
2.1, the definable function f is continuous on some subinterval of J ′. It contradicts
the definition of Xd.

When M |= Φ+,−(x) for all x ∈ J ′, we can similarly show that f is continuous
and strictly decreasing on some subinterval of J ′. It is also a contradiction.

The next target is the following case:

Case 2. When we have M |= Φ+,+(x) for all x ∈ J ′.

We define the definable set B ⊂ J ′ by

B = {x ∈ J ′ | ∀y ∈ J ′(x < y → f(x) < f(y))}.
Now the set B must be discrete, closed and bounded. Otherwise, it contains an
interval by [8, Lemma 2.3] and f is strictly increasing and continuous on some
subinterval by Lemma 2.1. It is a contradiction to the definition of Xd. Since B is
discrete, closed and bounded, there exists γ = maxB. We set J0 = (γ, β) ⊂ J ′ \B.

Fix c ∈ J0. Now we show that there exists c0 ∈ J0 such that f < f(c) on
(c0, β). Suppose not and we set B′ = {y ∈ J0 | f(c) < f(y)}. By the assumption
and local o-minimality of M, there exists z0 ∈ J0 such that (z0, β) ⊂ B′. Set
d = inf{z ∈ [c, β) | f(c) ≤ f on (z, β)}.

• If f(d) ≥ f(c), we have f(c) < f on (e, β) for some e ∈ (c, d) because
M |= Φ+,+(d). It is a contradiction to the definition of d.

• We consider the case in which f(d) < f(c). By the definition of γ, we
have d /∈ B. It implies that f(d) ≥ f(e′) for some e′ ∈ (d, β). We get
f(e′) < f(c). On the other hand, we obtain f(c) ≤ f(e′) by the definition
of d. It is a contradiction.

We have demonstrated the existence of c0. So we can define

y(c) = inf{z ∈ [c, β) | f < f(c) on (z, β)}.
Suppose that c = y(c), then there exists c1 ∈ (c, β) such that f(c) < f on (c, c1)
because M |= Φ+,+(c). Take z ∈ (c, c1), then we have f(c) < f(z). But, by
definition of y(c), we have f(z) < f(c). A contradiction. The inequality c < y(c)
holds.

We consider the formula Ψ+,−(v) given by

∃v1∃v2[γ < v1 < v < v2 < β ∧ ∀z1∀z2(v1 < z1 < v < z2 < v2 → f(z1) > f(z2))].

Now we check that the sentence Ψ+,−(y(c)) holds in M. Since we have M |=
Φ+,+(y(c)) by the assumption, we get f(y1) > f(y(c)) for some y1 ∈ (y(c), β).
Then, there exists z ∈ (y(c), y1) such that f < f(c) on (z, β) by the definition of
y(c). Since we have z < y1, we obtain f(y1) < f(c). They imply the inequality

(1) f(y(c)) < f(c).

Since M is locally o-minimal, there exists v1 ∈ (c, y(c)) such that either f < f(c)
or f ≥ f(c) on (v1, y(c)). Suppose that f < f(c) on (v1, y(c)). The inequality (1)
and the definition of y(c) yield that f < f(c) on (v1, β). It is a contradiction to the
definition of y(c). So, the inequality f ≥ f(c) holds on the interval (v1, y(c)). On
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the other hand, for all z2 ∈ (y(c), β), we get f(z2) < f(c) by the definition of y(c).
Summarizing the above results, the inequalities f(z1) ≥ f(c) > f(z2) hold for all
z1 ∈ (v1, y(c)) and all z2 ∈ (y(c), β). It means that M |= Ψ+,−(y(c)).

So, for all c ∈ (γ, β), there exists y(c) ∈ (c, β) such that Ψ+,−(y(c)) holds.
Consider the definable set T = {x ∈ (γ, β) | M |= Ψ+,−(x)}. Since M is locally
o-minimal, there exists δ ∈ (γ, β) such that the open interval (δ, β) is contained in
T or has an empty intersection with T . However, the existence of y(c) implies that
(δ, β) is contained in T . We define the formula Ψ−,+ similarly to Ψ+,−. We can
construct an open interval each of whose elements satisfies both the formulas Ψ+,−

and Ψ−,+. It is a contradiction.
We can lead to a contradiction similarly when M |= Φ−,−(x) for all x ∈ J ′. We

omit the proof. We have finally demonstrated that Xd is discrete and closed. �

In [19], A. Tsuboi gave a proof of Theorem 2.2 slightly different from ours.
We get the following proposition called properties (b) and (c) in [8].

Proposition 2.4. The following assertions hold true.

(1) Let X1 and X2 be definable subsets of Mm. Set X = X1∪X2. Assume that
X has a nonempty interior. At least one of X1 and X2 has a nonempty
interior.

(2) Let A be a definable subset of Mm with a nonempty interior and f : A →
Mn be a definable map. There exists a definable open subset U of Mm

contained in A such that the restriction of f to U is continuous.

Proof. They follow from Theorem 2.3 by [8, Theorem 2.11.(iii)]. �

The following is the main theorem of this section, which claims that the property
(a) holds true.

Theorem 2.5. The image of a discrete set definable in a definably complete locally
o-minimal structure under a coordinate projection is again discrete.

Proof. Let D be a definable discrete subset of Mn and π : Mn →Md be a coordi-
nate projection. We demonstrate that the image π(D) is discrete.

We first reduce to the case in which d = 1. Let ρk : Mn →M be the projection on
the k-th coordinate for 1 ≤ k ≤ d. The image ρk(D) is discrete by the assumption.

We have π(D) ⊂ ∏d
k=1 ρk(D). Therefore, π(D) is discrete because

∏d
k=1 ρk(D) is

discrete.
We may assume that d = 1 and π is the coordinate projection onto the last

coordinate. We prove the theorem by induction on n when d = 1. There is nothing
to prove when n = 1. Before we consider the case in which n > 1, we demonstrate
the following claim using the induction hypothesis.

Claim. Let l and m be nonnegative integers with l < n. Let X ⊂M l ×Mm be
a definable subset and Π : M l ×Mm →Mm be the coordinate projection onto the
last m coordinates. Assume that the fiber Xx = {y ∈ M l | (y, x) ∈ X} is discrete
for any x ∈ Π(X). There exists a definable map f : Π(X) → X such that the
composition Π ◦ f is the identity map on Π(X).

We demonstrate the claim by induction on l. The claim is trivial when l = 0.
We next consider the case l = 1. Fix c ∈ M . We define the definable function
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g : Π(X) →M by

g(x) =

{
inf Xx ∩ (c,+∞) if Xx ∩ (c,+∞) 6= ∅ and
supXx ∩ (−∞, c) otherwise.

We consider the definable map f : Π(X) →M1+m given by f(x) = (g(x), x). Since
Xx is discrete and closed by [8, Lemma 2.3], we have f(x) ∈ X for all x ∈ Π(X).
We have demonstrated when l = 1.

We consider the case l > 1. Let Π1 : M l×Mm → Mm+1 and Π2 : Mm+1 →Mm

be the projections onto the lastm+1 coordinate and onto the lastm coordinates, re-
spectively. We have Π = Π2◦Π1. It is obvious that the fibers {x ∈M l−1 | (x, y, z) ∈
X} with respect to the projection Π1 are discrete for all y ∈M and z ∈Mm with
(y, z) ∈ Π1(X). There is a definable map h1 : Π1(X) → X such that the com-
position Π1 ◦ h1 is the identity map by the induction hypothesis on l. On the
other hand, by the induction hypothesis on n, the image of a definable discrete
subset of M l under a coordinate projection is discrete. It implies that the fibers
{x ∈ M | (x, y) ∈ Π1(X)} with respect to the projection Π2 are discrete for all
y ∈ Π(X). The claim for l = 1 provides a definable map h2 : Π(X) → Π1(X) such
that the composition Π2 ◦ h2 is the identity map. The composition f = h1 ◦ h2 is
the desired map. We have demonstrated the claim.

We return to the proof of the theorem. There exists a definable map f : π(D) →
D by the claim. If π(D) is not discrete, π(D) contains an open interval I by [8,
Lemma 2.3]. By Proposition 2.4, f is continuous on some subinterval of I. It is
a contradiction to the assumption that D is discrete. We have demonstrated that
π(D) is discrete. �

We finally get the following proposition called the property (d) in [8].

Proposition 2.6. Let X be a definable subset of Mn and π : Mn → Md be
a coordinate projection such that the the fibers X ∩ π−1(x) are discrete for all
x ∈ π(X). Then, there exists a definable map τ : π(X) → X such that π(τ(x)) = x
for all x ∈ π(X).

Proof. It follows from Theorem 2.5 by [8, Theorem 2.11.(ii)]. �

2.2. Consequences of property (a). In [8], the first author demonstrated several
tame topological properties of definable sets and tame dimension theory assuming
that the property (a) in Section 1 holds true. They hold true without assuming
the property (a) thanks to Theorem 2.5. This subsection summarizes them for the
readers’ convenience.

We first define the dimension of a definable set as follows:

Definition 2.7 (Dimension). Consider an expansion of a densely linearly order
without endpoints M = (M,<, . . .). Let X be a nonempty definable subset of
Mn. The dimension of X is the maximal nonnegative integer d such that π(X)
has a nonempty interior for some coordinate projection π : Mn → Md. We set
dim(X) = −∞ when X is an empty set.

The following proposition summarizes the results on dimension in [8].

Proposition 2.8. Consider a definably complete locally o-minimal structure M =
(M,<, . . .). The following assertions hold true.
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(1) A definable set is of dimension zero if and only if it is discrete. When it is
of dimension zero, it is also closed.

(2) Let X ⊂ Y be definable sets. Then, the inequality dim(X) ≤ dim(Y ) holds
true.

(3) Let σ be a permutation of the set {1, . . . , n}. The definable map σ : Mn →
Mn is defined by σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)). Then, we have dim(X) =
dim(σ(X)) for any definable subset X of Mn.

(4) Let X and Y be definable sets. We have dim(X × Y ) = dim(X) + dim(Y ).
(5) Let X and Y be definable subsets of Mn. We have

dim(X ∪ Y ) = max{dim(X), dim(Y )}.
(6) Let f : X →Mn be a definable map. We have dim(f(X)) ≤ dimX.
(7) Let f : X →Mn be a definable map. The notation D(f) denotes the set of

points at which the map f is discontinuous. The inequality dim(D(f)) <
dimX holds true.

(8) Let X be a definable set. The notation ∂X denotes the frontier of X defined
by ∂X = X \X. We have dim(∂X) < dimX.

(9) A definable set X is of dimension d if and only if the nonnegative integer d is
the maximum of nonnegative integers e such that there exist an open box B
in M e and a definable injective continuous map ϕ : B → X homeomorphic
onto its image.

(10) Let X be a definable subset of Mn. There exists a point x ∈ X such that
we have dim(X ∩B) = dim(X) for any open box B containing the point x.

(11) Let ϕ : X → Y be a definable surjective map whose fibers are equi-dimensional;
that is, the dimensions of the fibers ϕ−1(y) are constant. We have dimX =
dim Y + dimϕ−1(y) for all y ∈ Y .

Proof. See [8, Proposition 3.2, Theorem 3.8, Theorem 3.11, Corollary 3.12, Theo-
rem 3.14] �

Corollary 2.9. Let M = (M,<, . . .) be a definably complete locally o-minimal
structure. Let B and C be definable open subsets of Mm and Mn, respectively. If
there exists a definable injective map from B to C, we have m ≤ n.

Proof. Immediate from Proposition 2.8(1), (2) and (11). �

We finally recall the notion of quasi-special submanifolds and the decomposition
theorem into quasi-special submanifolds.

Definition 2.10. Consider an expansion of a densely linearly order without end-
points M = (M,<, . . .). Let X be a definable subset of Mn and π : Mn →Md be
a coordinate projection. A point x ∈ X is (X, π)-normal if there exists an open
box B in Mn containing the point x such that B ∩X is the graph of a continuous
map defined on π(B) after permuting the coordinates so that π is the projection
onto the first d coordinates.

A definable subset is a π-quasi-special submanifold or simply a quasi-special
submanifold if, π(X) is a definable open set and, for every point x ∈ π(X), there
exists an open box U inMd containing the point x satisfying the following condition:
For any y ∈ X∩π−1(x), there exist an open box V in Mn and a definable continuous
map τ : U →Mn such that π(V ) = U , τ(U) = X ∩ V and the composition π ◦ τ is
the identity map on U .
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Let {Xi}mi=1 be a finite family of definable subsets of Mn. A decomposition of
Mn into quasi-special submanifolds partitioning {Xi}mi=1 is a finite family of quasi-

special submanifolds {Ci}Ni=1 such that
⋃N

i=1 Ci = Mn, Ci ∩ Cj = ∅ when i 6= j
and Ci has an empty intersection with Xj or is contained in Xj for any 1 ≤ i ≤ m
and 1 ≤ j ≤ N . A decomposition {Ci}Ni=1 of Mn into quasi-special submanifolds
satisfies the frontier condition if the closure of any quasi-special submanifold Ci is
the union of a subfamily of the decomposition.

Proposition 2.11. Consider a definably complete locally o-minimal structure M =
(M,<, . . .). Let {Xi}mi=1 be a finite family of definable subsets ofMn. There exists a
decomposition {Ci}Ni=1 of Mn into quasi-special submanifolds partitioning {Xi}mi=1

and satisfying the frontier condition. Furthermore, the number N of quasi-special
submanifolds is not greater than the number uniquely determined only by m and n.

Proof. See [8, Theorem 4.5]. �

3. Basic property of structures having definable bounded
multiplication

We defined an expansion of an ordered group having definable multiplication in
Section 1. We can easily construct a definably complete locally o-minimal expansion
of an ordered group having definable multiplication using the notion of simple
product in [12, Section 4]. The following examples is also given in [10, Example
4.12].

Example 3.1. Let R̃ be an arbitrary o-minimal expansion of the ordered group of

reals. We define a locally o-minimal expansion M := M(R̃) = (R, <, 0,+,Z, . . .)
of the ordered group of reals. We define that a subset X of Rn is definable in M
if and only if, there exist finitely many subsets X1, . . . , Xk of [0, 1)n definable in R̃

and a map τ : Zn → {1, . . . , k} such that, for any (m1, . . . ,mn) ∈ Zn, we have

X ∩
(

n∏

i=1

[mi,mi + 1)

)
= (m1, . . . ,mn) +Xτ(m1,...,mn),

where the right hand of equality is

{(x1, . . . , xn) ∈ R
n | (x1 −m1, . . . , xn −mn) ∈ Xτ(m1,...,mn)}.

A standard argument shows that M is a locally o-minimal structure. The structure
M is not an o-minimal structure. It is also easy to demonstrate that a bounded

subset X of Rn is definable in M if it is definable in R̃. We omit the details.
Consider the graph of the addition Γ = {(x, y, z) ∈ R

3 | z = x + y}. Set
X1 = Γ ∩ [0, 1)3 and X2 := {(x, y, z) ∈ [0, 1)3 | x + y ≥ 1, z = x + y − 1}. We
obviously have

Γ ∩
3∏

i=1

[mi,mi + 1) =






(m1,m2,m3) +X1 if m3 = m1 +m2,
(m1,m2,m3) +X2 if m3 = m1 +m2 + 1 and
∅ otherwise.

It implies that the graph Γ is definable in M. The structure M is an expansion of
an ordered group.

When R̃ is an expansion of an ordered field, the structure M has definable

bounded multiplication compatible to + because any bounded set definable in R̃ is
also definable in M.



10 M. FUJITA, T. KAWAKAMI, AND W. KOMINE

We give several basic properties of a structure having definable bounded multi-
plication. We defined a uniformly locally o-minimal structure of the second kind
in [6]. It becomes almost o-minimal defined in [10] when it has definable bounded
multiplication.

Proposition 3.2. A uniformly locally o-minimal expansion of the second kind of an
ordered abelian group having definable bounded multiplication is almost o-minimal.
In particular, it is definably complete.

Proof. Let M = (M,<, 0,+, . . .) be the structure in consideration. We have only
to demonstrate that a bounded definable set X of M is a finite union of points and
open intervals. Let R be a positive element such that X is contained in the open
interval (−R,R). Consider the set

Y = {(r, rx) ∈M2 | 0 < r < 1 and x ∈ X}.

It is definable because we only use multiplication in a bounded area for its definition.
Since M is uniformly locally o-minimal of the second kind, we can take δ > 0 and
ε > 0 such that, for any 0 < r < ε, the intersection Yr ∩ (−δ, δ) is a finite union of
points and open intervals, where Yr is the fiber at r given by Yr := {x ∈M | (r, x) ∈
Y }. Take a sufficiently small r > 0 such that rR < δ and r < ε. For such an r, we
have Yr ∩ (−δ, δ) = rX := {rx ∈M | x ∈ X}. It implies that X is a finite union of
points and open intervals.

The almost o-minimal structure is definably complete by [10, Lemma 4.6]. �

A definably complete expansion of an ordered abelian group having definable
bounded multiplication is always a real closed field.

Proposition 3.3. Consider a definably complete expansion of an ordered abelian
group having definable bounded multiplication M = (M,<, 0,+, . . .). Then, (M,<
, 0, 1,+, ·) is a real closed field.

Proof. The restriction of a polynomial function to a bounded interval is definable
because M has definable bounded multiplication. Use this fact together with the
intermediate value property of definably complete structures [14] and [2, Lemma
1.2.11] which is valid for an ordered field. We can easily check that the condition
[2, Theorem 1.2.2(ii)] is satisfied. �

The following proposition and its corollary are trivial.

Proposition 3.4. Let M = (M,<, 0,+, . . .) be a definably complete expansion
of an ordered abelian group having definable bounded multiplication. Any bounded
semialgebraic set is definable.

Proof. Obvious. �

Corollary 3.5. Let M = (M,<, 0,+, . . .) be a definably complete expansion of an
ordered abelian group having definable bounded multiplication. The n-dimensional
projective space Pn(M) and the Grassmannian Gn,k(M) are definable in M.

Proof. Because they are closed and bounded algebraic sets by [2, Theorem 3.4.4,
Proposition 3.4.11]. �

The following lemma is used in the subsequent sections.
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Lemma 3.6. Consider an expansion M = (M,<, 0,+, . . .) of a densely linearly
ordered group having definable bounded multiplication · compatible to +. Consider
a definable set S and bounded definable functions f, g : S → M such that f(x) 6= 0
for all x ∈ S. Then, the function h : S →M given by h(x) = g(x)/f(x) is definable
when h is also bounded.

Proof. Immediate from the definition of definable bounded multiplication. �

A natural question is whether a derivative of a definable function is again defin-
able. It is true in some restricted case, but false in general.

Lemma 3.7. Consider an expansion M = (R, <, 0,+, . . .) of the ordered group of
reals having definable bounded multiplication · compatible to +. Let I be a bounded
closed interval and f : I → M be a definable C1 function. Then, its derivative
f ′ : I →M is also definable.

Proof. Consider the function h : {(x, h) ∈ I ×M | h 6= 0, x+ h ∈ I} →M given by

h(x) =
f(x+ h) − f(x)

h
.

Since f ′ is continuous and I is compact, f ′ is bounded. Lemma 3.6 implies that
the function h is definable. Therefore, the derivative f ′ is also definable because
the closure of a definable set is again definable. �

Example 3.8. In Lemma 3.7, the assumption that I is closed is inevitable. Let

R̃ = (R, <, 0, 1,+, ·, ex) denote the expansion of the ordered fields of reals by the

exponentiation. It is o-minimal by [20]. Let M(R̃) be the locally o-minimal struc-
ture defined in Example 3.1. The function f : (0, 1) → R given by f(x) = x log x is

definable in M(R̃) because it is a bounded function definable in R̃. Its derivative

f ′(x) = log x+ 1 is not definable in M(R̃) by [9, Lemma 5.3].

4. Functional results for locally o-minimal structures having
definable bounded multiplication

4.1.  Lojasiewicz’s inequality.  Lojasiewicz’s inequality and its variants are proved
in many model-theoretic expansions of an ordered group. We prove that it holds
true for definably complete expansion of an ordered group having definable bounded
multiplication.

Definition 4.1. We consider an expansion M = (M,<, 0,+, . . .) of a densely
linearly ordered group having definable bounded multiplication · compatible to +.
The notation Φ0(M) denotes the set of all odd strictly increasing definable bijection
from M onto M fixing the origin. It is a group with respect to composition. We
fix a subgroup Φ ⊆ Φ0(M) satisfying the following condition: For any positive
a ∈ M and any definable continuous strictly increasing function f : [0, a] → M
with f(0) = 0, there are ϕ, ψ ∈ Φ such that f(t) ≤ ϕ(t) and ψ(t) ≤ f(t) for all
sufficiently small t > 0.

We call that M is polynomially bounded if, for any positive a ∈ M and any
definable continuous strictly increasing function f : [0, a] → M with f(0) = 0,
there exists a positive integer m ∈ Z such that f(t) ≥ tm for all sufficiently small
t > 0.
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Example 4.2. The group Φ = Φ0(M) satisfies the condition in Definition 4.1. Let
a ∈ M be a positive element and f : [0, a] → M be a definable continuous strictly
increasing function with f(0) = 0. The definable functions ϕ, ψ ∈ Φ defined below
satisfy the inequalities in the definition.

ϕ(t) = ψ(t) =






t− a+ f(a) if t > a,
f(t) if 0 ≤ t ≤ a,
−f(−t) if − a ≤ t < 0 and
t+ a− f(a) if t < −a.

Example 4.3. We constructed a locally o-minimal expansion M(R̃) of the ordered

group of reals from an o-minimal expansion R̃ of the ordered group of reals in

Example 3.1. When R̃ is a polynomially bounded expansion of the ordered field

of reals, the locally o-minimal structure M(R̃) is also polynomially bounded in
the sense of Definition 4.1. See [13] for the definition of a polynomially bounded
expansion of the ordered field of reals.

Lemma 4.4. Consider a definably complete expansion M = (M,<, 0,+, . . .) of a
densely linearly ordered group having definable bounded multiplication · compatible
to +. Assume further that M is polynomially bounded. For any ϕ ∈ Φ and any
positive a ∈M , there exist a positive c ∈M and a positive odd integer m such that
ϕ(t) ≥ ctm for all 0 ≤ t ≤ a.

Proof. By the assumption, there exist 0 < b ≤ a and a positive integer such that
ϕ(t) ≥ tm for all 0 ≤ t < b. We may assume that b < 1. We may also assume that
m is odd by increasing m if necessary. Since ϕ is positive, we have s = inf{ϕ(t) | b ≤
t ≤ a} > 0 by [14, Corollary, p.1786]. Set c = min{s/am, 1}. We obviously get the
inequality ϕ(t) ≥ ctm for all 0 ≤ t ≤ a. �

Consider a definably complete expansion M = (M,<, 0,+, . . .) of a densely
linearly ordered group. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈Mn, we set

d(x, y) = max
1≤i≤n

|xi − yi|.

The function d is a distance function on Mn. Let A be a closed definable subset of
Mn. The distance function dA : Mn →M is given by

dA(x) = inf{d(x, a) | a ∈ A}.

Proposition 4.5 ( Lojasiewicz’s inequality). Consider a definably complete locally
o-minimal expansion M = (M,<, 0,+, . . .) of an ordered group having definable
bounded multiplication. Let S be a definable, closed and bounded subset of Mn. Let
f, g : S → M be definable continuous functions with f−1(0) ⊆ g−1(0). Then, we
can choose a φ ∈ Φ and a positive N ∈M such that

|φ(g(x))| ≤ N |f(x)|
for all x ∈ S.

In addition, when M is polynomially bounded, there exists a positive integer m
such that

|g(x)|m ≤ N |f(x)|
for all x ∈ S.
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Proof. Set Z = f−1(0). The notation dZ denotes the distance function to Z in Mn.
When s = inf{dZ(x) | x ∈ S \Z} > 0, the definable set S \Z is closed. By the max-
min principle [14], the image of a bounded closed definable set under a definable
continuous function is closed and bounded. We use this fact without mention.
There exists c > 0 with c ≤ |f(x)| for all x ∈ S \ Z. The definable functions f(x)
and g(x) are bounded. The restriction of g(x)/f(x) to S \ Z is bounded. It is also
definable by Lemma 3.6. We can take N > 0 such that |g(x)/f(x)| ≤ N . We get
|g(x)| ≤ N |f(x)| for all x ∈ S \ Z. The inequality |g(x)| ≤ N |f(x)| is clear when
x ∈ Z. We have proved the proposition when s > 0. We can prove the inequality
in the same manner when Z is an empty set.

We consider the case in which Z 6= ∅ and s = 0. We can take u > 0 such
that [0, u) ⊆ dZ(S) by local o-minimality. A definable continuous function on a
definable, bounded and closed set is uniformly continuous by [9, Corollary 4.3,
Remark 4.13]. We also use this fact. Consider the function η : [0, u) → M defined
by

η(t) = inf{|f(x)| | x ∈ S, dZ(x) = t}.

When 0 < t < u, we have η(t) > 0 by the max-min principle. By uniform continuity
of |f(x)|, for any ε > 0, we can choose δ > 0 such that |f(x)| < ε for all dZ(x) < δ.
It means that η is continuous at 0. We may assume that, by taking a smaller u if
necessary, η is continuous by the strong local monotonicity property. Consider the
function ρ : [0, u) →M defined by

ρ(t) = sup{|g(x)| | x ∈ S, dZ(x) = t}.

We may assume that ρ is continuous for the same reason as above.
By Definition 4.1, there exist φ1, φ2 ∈ Φ such that

φ1(t) ≤ η(t) and(2)

ρ(t) ≤ φ2(t)(3)

for all sufficiently small t ≥ 0. We may assume that the inequalities (2) and (3) hold
true for all 0 ≤ t < u by taking a smaller u > 0 again. Set T = {x ∈ S | dZ(x) < u}
and φ = φ1 ◦ φ−1

2 . Fix an arbitrary x ∈ T . Set t = dZ(x). We have t < u. Using
the fact φ is strictly increasing odd continuous function, we get

|φ(g(x))| ≤ sup{|φ(g(y))| | y ∈ S, dZ(y) = t}(4)

= φ(sup{|g(y)| | y ∈ S, dZ(y) = t})

= φ(ρ(t)) ≤ φ(φ2(t)) = φ1(t) ≤ η(t)

≤ |f(x)|

We consider the case in which x ∈ S \T . The function |φ(g(x))/f(x)| is bounded
on S \ T for the same reason as the case in which s = 0. We can take N > 1 such
that |φ(g(x))| ≤ N |f(x)| for all x ∈ S \ T . This inequality and the inequality (4)
deduces the inequality |φ(g(x))| ≤ N |f(x)|.

We finally consider the case in which M is polynomially bounded. By the max-
min principle, there exists a > 0 such that |g(x)| < a for all x ∈ S. We can take a
positive odd integer m and a positive constant c ∈ M such that φ(t) ≥ ctm for all
0 ≤ t ≤ a by Lemma 4.4. We therefore have |φ(g(x))| ≥ c|g(x)|m. We finally get
|g(x)|m ≤ (N/c)|f(x)|. �
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Proposition 4.6. Let M, S, f and g be the same as in Proposition 4.5. There exist
φ ∈ Φ and a definable continuous function h : S →M such that φ(g(x)) = h(x)f(x)
for all x ∈ S.

In addition, when M is polynomially bounded, there exists a positive integer m
such that (g(x))m = h(x)f(x).

Proof. There exist a ψ ∈ Φ and a positive N ∈M such that

(5) |ψ(g(x))| ≤ N |f(x)|
for all x ∈ S by Proposition 4.5. Since g is bounded, we may assume that |g(S)| < a
for some positive a. The restriction of t2ψ(t) to [0, a] is definable in M. Apply
Definition 4.1 to it. We can choose a φ ∈ Φ such that φ(t) ≤ t2ψ(t) for all sufficiently
small t ≥ 0. We may assume that φ(t) = tm for some positive odd integer m by
the definition when M is polynomially bounded.

Set Z = f−1(0). Define a function h : S →M by

h(x) =

{
φ(g(x))/f(x) when x 6∈ Z
0 otherwise.

We have only to demonstrate that h is definable and continuous. By the inequality
(5), we have

(6) |φ(g(x))/f(x)| ≤ Ng(x)2

for all x 6∈ Z. In particular, the function φ(g(x))/f(x) on S \ Z is bounded.
Therefore, it is definable by Lemma 3.6. We have demonstrated that h is definable.
The continuity of h is also obvious from the inequality (6) because g is continuous
and identically zero on Z. �

4.2. Weak Tietze extension theorem. Mimicing the proof of [2, Proposition
2.6.9], we get a weak Tietze extension theorem.

Theorem 4.7 (Weak Tietze extension theorem). Consider a definably complete
locally o-minimal expansion M = (M,<, 0,+, . . .) of an ordered group having de-
finable bounded multiplication. Let S be a definable, closed and bounded subset of
Mn. A definable continuous function f : S → M has its definable continuous
extension f : Mn →M .

Proof. Set f+ = 1
2 (f + |f |) and f− = 1

2 (|f | − f). We have f = f+ − f−, f− ≥ 0
and f+ ≥ 0 on S. Hence, we may assume that f ≥ 0 without loss of generality.

Apply Proposition 4.5 to f(x)− f(y) and the restriction of the distance function
d to S × S. There exists a φ ∈ Φ and a positive N ∈M such that

|φ(f(x) − f(y))| ≤ Nd(x, y)

for all x, y ∈ S. Consider the definable functions ∆ : Mn × Mn → M and f :
Mn → M defined by

∆(x, y) = φ−1(Nd(x, y)) + d(x, y) and

f(x) = inf{∆(x, y) + f(y) | y ∈ S}.

The function f is well-defined because M is definably complete and ∆ is continuous.
We show that f is a definable continuous extension of f .
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We first demonstrate that f(x) = f(x) for all x ∈ S. Let y be an arbitrary
element in S. We get

|f(x) − f(y)| = φ−1 ◦ φ(|f(x) − f(y)|) = φ−1(|φ(f(x) − f(y))|)
≤ φ−1(Nd(x, y)) ≤ ∆(x, y).

It implies that f(x) ≤ f(y) + ∆(x, y). We get f(x) = f(x) by the definition of f .

The next task is to prove that f is continuous. Take an arbitrary element a ∈Mn

and set b = f(a). Fix an arbitrary positive element ε ∈ M . We demonstrate that

there exists δ > 0 such that b− ε < f(x) < b+ ε whenever d(x, a) < δ.
We obtain b = inf{∆(a, y) + f(y) | y ∈ S}. By the max-min principle, we get

b = ∆(a, y′)+f(y′) for some y′ ∈ S. Since the function ∆ is continuous, we can take
η > 0 so that |∆(x, y′) + f(y′)− b| = |∆(x, y′)−∆(a, y′)| < ε whenever d(x, a) < η.
It implies that f(x) < b+ ε.

We next demonstrate that we can take µ > 0 so that f(x) > b − ε whenever
d(x, a) < µ. Once this claim is proved, the positive element δ = min{η, µ} satisfies
the required condition and the assertion that f is continuous is demonstrated.
Assume for the contradiction that, for any sufficiently small µ > 0, there exist
x ∈ Mn, y ∈ S such that d(x, a) < µ and ∆(x, y) + f(y) ≤ b − ε. Consider the
definable closed set

K = {(x, y) ∈Mn × S | ∆(x, y) + f(y) ≤ b− ε}.

It is contained in the bounded set {(x, y) ∈ Mn × C | d(x, y) ≤ b − ε} because
of the inequalities f ≥ 0 and d(x, y) ≤ ∆(x, y). In particular, it is bounded. Let
π : Mn×Mn →Mn be the coordinate projection onto the first n coordinates. The
projection image π(K) is closed, bounded and definable by [14, Lemma 1.7]. On
the other hand, the assumption implies that the point a is contained in the closure
of π(K). Therefore, we get a ∈ π(K). It means that ∆(a, y) + f(y) ≤ b − ε for
some y ∈ C, which contradicts to the assumption that f(a) = b. We have finished
the proof. �

Remark 4.8. An expansion M = (M,<, . . .) of a dense linear order without end-
points enjoys definable Tietze extension property if, for any positive integer n, any
definable closed subset A of Mn and any continuous definable function f : A→M ,
there exists a definable continuous extension F : Mn →M of f .

An archimedean definably complete uniformly locally o-minimal expansion M
of the second kind of an ordered group is o-minimal when M enjoys definable
Tietze extension property [9, Theorem 5.5]. We constructed a definably complete
expansion of the ordered group of reals having definable bounded multiplication
compatible to the addition in Example 3.1. Theorem 4.7 is valid for it, but it does
not enjoy definable Tietze extension property.

4.3. Michael’s selection theorem. Michael’s selection theorem is popular in
variational analysis [1, 15]. A similar argument to [17] yields a weak Michael’s
selection theorem for definable set-valued maps. We first recall several definitions.

Definition 4.9. For sets X and Y , we denote a map T from X to the power set
of Y by T : X ⇒ Y and call it a set-valued map. When X and Y are topological
spaces, a continuous selection of a set-valued map T : X ⇒ Y is a continuous
function f : X → Y such that f(x) ∈ T (x) for all x ∈ X .
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Consider an expansion M = (M,<, . . .) of a dense linear order without end-
points. Let E be a definable subset of Mn. We consider a definable set-valued map
T : E ⇒Mm; that is, the graph Γ(T ) :=

⋃
x∈E{x} × T (x) ⊆ E ×Mm is definable.

We define a definable continuous selection of T , similarly.
A set valued map T : E ⇒ Mm is lower semi-continuous if, for any x0 ∈ E,

y0 ∈ T (x0) and a neighborhood V of y0, there exists a neighborhood U of x0
such that T (x) ∩ V 6= ∅ for all x ∈ U . A lower semi-continuous set-valued map
T : E ⇒Mm is continuous if its graph Γ(T ) is closed in E ×Mm.

We prove the weak Michael’s selection theorem.

Theorem 4.10 (Weak Michael’s selection theorem). Consider a definably com-
plete locally o-minimal expansion M = (M,<, 0,+, . . .) of an ordered group having
definable bounded multiplication. Let E be a closed, bounded and definable subset
of Mn and T : E ⇒Mm be a definable lower semi-continuous set-valued map such
that T (x) are closed and convex for all x ∈ E. The set-valued map T has a definable
continuous selection.

We fix a structure M = (M,<, 0,+, . . .) satisfying the conditions in Theorem
4.10 until its proof is completed.

We prepare several definitions and lemmas for proving Theorem 4.10.

Definition 4.11. The notation ||x|| denotes the Euclidean norm in Mm. Let E
be a subset of Mn and T : E ⇒ Mm be a set-valued map. Let f : E → Mm

be a map. The notation T − f : E ⇒ Mm denotes the set-valued map given by
(T − f)(x) = {y − f(x) | y ∈ T (x)}.

We define the least norm selection of T when T (x) are closed and convex for all
x ∈ E. The unique point y ∈ T (x) whose Euclidean norm ||y|| is the smallest in
T (x) is denoted by lnsT (x). The existence and uniqueness easily follow from the
assumption that T (x) are closed and convex. It induces a map lnsT : E →Mm.

The following proof is straightforward.

Lemma 4.12. Let T : E ⇒ Mm be a lower semi-continuous set-valued map and
f : E → M be a continuous map. Then, the set-valued map T − f is also lower
semi-continuous. Furthermore, T − f is continuous when T is continuous.

We also need the following lemma:

Lemma 4.13. Let T : E ⇒ Mm be a continuous set-valued map such that T (x)
are closed and convex for all x ∈ E. Then, the least norm selection lnsT : E →Mm

is a continuous selection of T .

Proof. We have lnsT (x) ∈ T (x) because T (x) is closed and convex. The remaining
task is to demonstrate that lnsT is continuous.

Assume for contradiction that lnsT is discontinuous at a ∈ E. Let G be the
graph of lnsT and G′ be its closure in E×Mm. Since G ⊆ Γ(T ) and Γ(T ) is closed
in E ×Mm, the set G′ is also contained in the graph Γ(T ). We can take b ∈ Mn

such that (a, b) ∈ G′ \ G because lnsT is discontinuous at the point a ∈ E. The
point b is contained in T (a).

Set ε = (||b|| − || lnsT (a)||)/2. The definition of lnsT yields that ε > 0. Due to
the lower semi-continuity of T , there exists a definable open neighborhood U of
a such that, for any x ∈ U , we have ||yx − lnsT (a)|| < ε for some yx ∈ T (x). In
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particular, we get || lnsT (x)|| ≤ ||yx|| < || lnsT (a)|| + ε = (||b|| + || lnsT (a)||)/2 for all
x ∈ U . On the other hand, the point (a, b) is in the closure of the graph G of
lnsT . We can take x0 ∈ U so that || lnsT (x0) − b|| < ε. It implies that || lnsT (x0)|| ≥
||b|| − || lnsT (x0) − b|| > ||b|| − ε = (||b|| + || lnsT (a)||)/2. It is a contradiction. �

The following lemma is a key lemma for the proof of Theorem 4.10.

Lemma 4.14. Let E be a definable, closed and bounded subset of Mn and T : E ⇒

Mm be a definable lower semi-continuous set-valued map. The least norm selection
lnsT : E →Mm is definable.

Proof. We have only to prove that there exists a positive element R ∈ M such
that, for any x ∈ E, the intersection T (x) ∩ [−R,R]m is not empty set. If it is
the case, consider the set-valued map T ′ : E → Mm given by T ′(x) = T (x) ∩
[−√

mR,
√
mR]m. The set T ′(x) is still closed and convex. We have lnsT = lnsT ′

because there exists y ∈ T (x) with ||y|| ≤ √
mR for any x ∈ E by the assumption.

The restriction || · ||R of the Euclidean norm || · || to [−√
mR,

√
mR]m is definable

because M has bounded definable multiplication compatible to the addition. The
map lnsT ′ is defined by using the definable function || · ||R. Therefore, it is definable.
Consequently, the map lnsT is also definable.

We demonstrate such an R exists. Assume the contrary. For any positive r ∈M ,
set

Fr = {x ∈ E | T (x) ∩ (−r, r)m 6= ∅} and

Gr = {x ∈ E | T (x) ∩ (−r, r)m = ∅}.

We have Gr 6= ∅ for all r > 0 by the assumption. We show that Gr is closed;
equivalently, Fr is open. Take an arbitrary point x0 ∈ Fr. We can take y0 ∈
T (x0) ∩ (−r, r)m. Take a sufficiently small open box V containing the point y0 so
that V ⊆ (−r, r)m. By lower semi-continuity, there exists an open neighborhood
U of x0 such that T (x) ∩ V 6= ∅ for all x ∈ U . We get T (x) ∩ (−r, r)m 6= ∅ for all
x ∈ U . It implies that U is contained in Fr.

We obviously have Gr ⊆ Gs when r > s. The family {Gr}r>0 is a definable
filtered collection of nonempty definable closed sets. Since E is definably compact
by Remark 5.6, the intersection

⋂
r>0Gr is not empty. Take x ∈ ⋂r>0Gr, then

T (x) is an empty set by the definition of Gr. It is a contradiction. �

We finally prove Theorem 4.10.

Proof of Theorem 4.10. Let C be a quasi-special submanifold contained in E. The
notation Γ(T |C) denotes the graph of the restriction of T to C. The notation
∂Γ(T |C) denotes its frontier. Let π : Mn+m →Mn be the projection onto the first
n coordinates. Set S = π(∂Γ(T |C)). We first demonstrate the following claim:

Claim 1. dimS < dimC.

Assume the contrary. Set d0 = dimC. Since S is contained in the closure ofC, we
have dimS = d0. We also have dim(S∩C) = d0 because dim ∂C < dimC by Propo-
sition 2.8(8). Take a definable map f : S → Mm such that (x, f(x)) ∈ ∂Γ(T |C) for
all x ∈ S by the definable choice lemma [9, Lemma 3.1]. We have dT (x)(f(x)) > 0
because T (x) is closed. The definable subset D of S ∩ C of points at which both
f and the map given by x 7→ dT (x)(f(x)) are continuous is of dimension d0 by
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Proposition 2.8(7). There exists a point z ∈ D such that, for any open box U con-
taining the point z, the intersection U∩D is of dimension d0 by Proposition 2.8(10).
Since C is a quasi-special submanifold, we can take an open box U1 containing the
point z, a coordinate projection π1 : Mn → Md0 and a definable continuous map
g : π1(U1) → Mn−d0 such that C ∩ U1 is the graph of g. The projection image
π1(U1 ∩D) has an interior by Proposition 2.8(11). Therefore, shrinking U1 if nec-
essary, we may assume that π1(D) contains π1(U1). Move z so that x ∈ U1 ∩ D.
Let B be the intersection of D with a closed box containing z and contained in U1.
We finally constructed the definable subset B of S ∩C such that

• B is closed in S,
• the interior of B in C is not empty, and
• the restrictions of f and the map given by x 7→ dT (x)(f(x)) to B are

continuous.

We can take N > 0 so that dT (x)(f(x)) > N for all x ∈ B by the max-min principle.
Take a point x0 in the interior of B in C and set ε = N/3. There exists an open
neighborhood U of x0 in S contained in B such that d(f(x), f(x0)) < ε for all x ∈ U
because f is continuous. Since C is a quasi-special submanifold, the set U is also an
open neighborhood of x0 in C, shrinking U if necessary. We can take (x, y) ∈ Γ(T |C)
such that x ∈ U and d(y, f(x0)) < ε because (x0, f(x0)) is in the closure of Γ(T |C).
We get dT (x)(f(x)) ≤ d(y, f(x)) ≤ d(y, f(x0)) + d(f(x), f(x0)) < 2ε = 2N/3. It is
a contradiction.

Claim 2. For a given finitely many definable subsets X1, . . .Xk of E, there exists
a partition E = C1 ∪ . . . ∪ Cd of E into quasi-submanifolds partitioning X1, . . . Xk

and satisfying the frontier condition such that the restriction T |Ck
: Ck ⇒ Mm to

Ck is continuous for any 1 ≤ k ≤ d.

We prove it by induction on dimE. When E is of dimension zero, E is discrete
and closed by Proposition 2.8(1). The set-valued map T is continuous in this
case. The set E is a quasi-special submanifold. This case is easy. We consider
the case in which dimE > 0. Apply Proposition 2.11. We can get a partition
E = D1 ∪ . . . ∪Dd into quasi-special submanifolds satisfying the frontier condition
and partitioning X1, . . .Xk. Permuting if necessary, we may assume that D1, . . . , Dl

are of dimension dimE. By Claim 1, for any 1 ≤ i ≤ l, we can take definable subset
Si of Di of dimension smaller than dimE such that the restriction of T to Di \Si is

continuous. Apply the induction hypothesis to
⋃l

i=1 Si ∪
⋃d

i=l+1Di and the family
{Si}1≤i≤l∪{Di}l<i≤d. We get the desired partition into quasi-special submanifolds.

We finally prove the theorem by induction on the number of quasi-special sub-
manifolds d given in Claim 2. The theorem immediately follows from Lemma 4.13
and Lemma 4.14 when d = 1. We consider the case in which d > 1. We may

assume that dimCd = dimE without loss of generality. Set D =
⋃d−1

i=1 Ci. The
frontier condition implies that D is closed. We can take a definable continuous se-
lection f1 : D →Mm of the restriction T |D of T to D by the induction hypothesis.
Let f2 : Mn → Mm be a definable continuous extension of f1 given by Theorem
4.7. The map f3 is its restriction to E. We may assume that f3 is constantly zero
considering T − f3 in place of T by Lemma 4.12.

The least norm selection lnsT is definable by Lemma 4.14. The least norm
selection lnsT |Cd

for the restriction T |Cd
coincides with the restriction of lnsT to Cd
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by the definition of least norm selections. It is continuous by Claim 2 and Lemma
4.13. Consider the definable map f : E →Mm given by

f(x) =

{
lnsT (x) when x ∈ Cd,
0 elsewhere.

We have only to show that f is continuous. The map f is obviously continuous out
of the frontier ∂Cd ∩E of Cd in E. Fix an arbitrary point x0 ∈ ∂Cd ∩E. We have
f(x0) = 0. Since T is lower semi-continuous, for any ε > 0, there exists δ > 0 such
that we can take yx ∈ T (x) with ||yx|| < ε for all x ∈ E with ||x− x0|| < δ. We have
|| lnsT (x)|| ≤ ||yx|| < ε by the definition of least norm selections. It implies that f is
continuous. �

5. Psudo-definable spaces

5.1. Definition.

Definition 5.1 (Psudo-definable space). Let M = (M ;<, . . .) be an expansion
of a dense linear order without endpoints. The set M has the topology induced
from the order <. The Cartesian product Mn equips the product topology. The
topology of a subset of Mn is the relative topology.

A pair (S, {ϕi : Ui → U ′
i}i∈I) of a topological space and a finite family of

homeomorphism is called a pseudo-M-definable space if

• {Ui}i∈I is a finite open cover of S,
• U ′

i is a definable subset of Mmi for any i ∈ I and,
• the composition (ϕj |Ui∩Uj

) ◦ (ϕi|Ui∩Uj
)−1 : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a

definable homeomorphism for any i 6= j whenever Ui ∩ Uj is not an empty
set.

Here, the notation ϕi|Ui∩Uj
denotes the restriction of ϕi to Ui ∩ Uj. We simply call

S a pseudo-definable space when the structure M is clear from the context. The
topological space S is called the underlying topological space of the pseudo-definable
space. The family {ϕi : Ui → U ′

i}i∈I is called a definable atlas on S. We often
write S instead of (S, {ϕi : Ui → U ′

i}i∈I) for short.
We consider an expansion of an ordered divisible abelian group M = (M ;<

, 0,+, . . .). Given a topological space S, two definable atlases {ϕi : Ui → U ′
i}i∈I

and {ψj : Vj → V ′
j }j∈J on S are equivalent if, for all i ∈ I and j ∈ J ,

• ϕi(Ui ∩ Vj) and ψj(Ui ∩ Vj) are open definable subsets of U ′
i and V ′

j , re-
spectively, and

• the homeomorphisms (ψj |Ui∩Vj
) ◦ (ϕj |Ui∩Vj

)−1 : ϕi(Ui ∩ Vj) → ψj(Ui ∩ Vj)
are definable whenever Ui ∩ Uj 6= ∅.

The above relation is obviously an equivalence relation.
A subset X of the pseudo-definable space S is definable when ϕi(X ∩ Ui) are

definable for all i ∈ I. When two atlases {ϕi : Ui → U ′
i}i∈I and {ψj : Vj → V ′

j }j∈J

of a topological space S is equivalent, it is obvious that a subset of the pseudo-
definable space (S, {ϕi}i∈I) is definable if and only if it is definable as a subset of
the pseudo-definable space (S, {ψj}j∈J).

The Cartesian product of two pseudo-definable spaces is naturally defined. A
map f : S → T between pseudo-definable spaces is definable if its graph is definable
in S × T . Note that a definable set is naturally a pseudo-definable space.
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Proposition 5.2. Consider an expansion of a dense linear order without endpoints
M = (M ;<, . . .) and a pseudo-definable space (S, {ϕi : Ui → U ′

i}i∈I). Let X be a
definable subset of the pseudo-definable space. We have

cl(X) =
⋃

i∈I

ϕ−1
i (cl(ϕi(X ∩ Ui))).

Proof. Routine. Omitted. �

Definition 5.3 (Dimension). Consider a definably complete locally o-minimal
structure M. Let S be a pseudo-definable space and {ϕi : Ui → U ′

i}i∈I be its
definable atlas. The dimension of a definable set X is defined by

dimX = max
i∈I

dimϕi(X ∩ Ui).

Proposition 5.4. Consider a definably complete locally o-minimal structure M
and two pseudo-definable spaces (S, {ϕi : Ui → U ′

i}i∈I) and (S, {ψi : Vj → V ′
j }j∈J)

having the same underlying topological space S such that their definable atlases are
equivalent. The dimension of a definable set of S in Definition 5.3 is independent
of choice of a definable atlas of S.

Proof. We first demonstrate that dimϕi(X ∩ Ui ∩ Vj) = dimϕj(X ∩ Ui ∩ Vj) for
all i ∈ I and j ∈ J . The equality is obvious when X ∩ Ui ∩ Uj is an empty
set. We next consider the other case. The map (ψj |X∩Ui∩Vj

) ◦ (ϕj |X∩Ui∩Vj
)−1 is

definable homeomorphism between ϕi(X ∩ Ui ∩ Vj) and ψj(X ∩Ui ∩ Vj). We have
dimϕi(X ∩ Ui ∩ Vj) = dimϕj(X ∩ Ui ∩ Vj) by Proposition 2.8(6).

The above equality and Proposition 2.8(5) imply that

max
i∈I

dimϕi(X ∩ Ui) = max
i∈I

dimϕi(X ∩
⋃

j∈J

(Ui ∩ Vj)) = max
i∈I,j∈J

dimϕi(X ∩ Ui ∩ Vj)

= max
i∈I,j∈J

dimψj(X ∩ Ui ∩ Vj) = max
j∈J

dimψj(X ∩
⋃

i∈I

(Ui ∩ Vj))

= max
j∈J

dimψj(X ∩ Vj).

We have demonstrated the proposition. �

5.2. Definably compact sets.

Definition 5.5. For a set X , a family F of subsets of X is called a filtered collection
if, for any B1, B2 ∈ F , there exists B3 ∈ F with B3 ⊆ B1 ∩B2.

Consider an expansion of a dense linear order without endpoints M = (M ;<
, . . .). Let X and T be pseudo-definable spaces. The parameterized family {St}t∈T

of definable subsets of X is called definable if the union
⋃

t∈T {t} × St is definable
in T ×X .

A parameterized family {St}t∈T of definable subsets of X is a definable filtered
collection if it is simultaneously definable and a filtered collection.

A definable space X is definably compact if every definable filtered collection of
closed nonempty subsets of X has a nonempty intersection. This definition is found
in [11, Section 8.4].

Remark 5.6. Let M = (M ;<, . . .) be a definably complete expansion of a dense
linear order without endpoints. Consider a definable subset X of Mn equipped
with the affine topology. The definable set X is definably compact if and only if it
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is closed and bounded. The literally same proof as that for o-minimal structures in
[11, Section 8.4] works.

The image of a definably compact psudo-definable space under a definable con-
tinuous map f : X → Y between psudo-definable spaces is definably compact. It
immidiately follows from the definition.

Lemma 5.7. Consider a definably complete locally o-minimal expansion of an or-
dered group M = (M ;<, 0,+, . . .). Let (X, {ϕi : Ui → U ′

i}i∈I) be a definably
compact pseudo-definable space. Then, U ′

i are bounded for all i ∈ I or there exists
a definable homeomorphism between a bounded interval and an unbounded interval.

Proof. We construct a definable homeomorphism between a bounded interval and
an unbounded interval assuming that U ′

i is not bounded for some i ∈ I. Fix such
an i. Let Mm be the ambient space of U ′

i .
We first prove the following claim:

Claim 1. There are no unbounded definable subsets of U ′
i of dimension zero.

We prove the claim. We lead to a contradiction that there exists an unbounded
definable subset D of U ′

i of dimension zero. The notation B(0; r) denotes the open
box (−r, r)m for r > 0. Consider the definable filtered collection {cl(ϕ−1

i (D \
B(0; r)))}r>0 of closed nonempty subsets of X . Since X is definably compact,
we can take z ∈ ⋂

r>0 cl(ϕ−1
i (D \ B(0; r))). Take k ∈ I so that z ∈ Uk. Set

Zr = ϕk(ϕ−1
i (D \ B(0; r)) ∩ Uk) for all r > 0. The point ϕk(z) is not contained

in Zr for a sufficiently large r > 0, but it is contained in the closure of Zr by
Proposition 5.2. It is a contradiction to the fact that a definable set of dimension
zero is closed. We have demonstrated the claim.

We can take 1 ≤ j ≤ m so that the image πj(U
′
i) is not bounded. Here, the

notation πj : Mm →M denotes the projection onto the j-th coordinate. We assume
that πj(U

′
i) is not bounded from above. The proof for the case in which πj(U

′
i) is

not bounded from below is similar. Under this circumstance, the following claim
holds true:

Claim 2. Let C be an unbounded definable subset of πj(U
′
i) which is bounded

from below. There exists an R ∈ M such that the interval [R,∞) is contained in
C.

We prove the claim. Let D be the set of the discrete points in C. Set

E = {(a, b) ∈M2 | a < b and the open interval (a, b) is a maximal interval

contained in C}.

We finally set F = D∪{(a+b)/2 | (a, b) ∈ E}. The definable set F is an unbounded
definable subset of πj(U

′) of dimension zero. It is a contradiction to Claim 1. We
have demonstrated the claim.

We take a definable map τ : πj(U
′
i) → U ′

i by the definable choice lemma. Set

C1 = {x ∈M | x > 0, τ is continuous at x}.

Since the map τ is continuous at any discrete point in πj(U
′
i), the set C1 is an un-

bounded definable subset of πj(U
′
i) by Theorem 2.3. The definable set C1 contains

an interval of the form [R1,∞) by Claim 2.
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Set Yr = cl(ϕ−1
i (τ([r,∞)))). Since it is a definable filtered collection of closed

nonempty subsets and X is definably compact, we can take a point z ∈ ⋂r≥R Yr.
We can take k ∈ I so that z ∈ Uk. Take a bounded open definable neighborhood
V ′ of ϕk(z) in U ′

k and set V = ϕ−1
k (V ′). Set

C2 = {x ∈ C1 | ϕ−1
i (τ(x)) ∈ V }.

It is an unbounded definable set. There exists R2 ∈ M such that the interval
[R2,∞) is contained in C2 by Claim 2.

Let Mn be the ambient space of U ′
k and consider the definable map η : [R2,∞) →

U ′
k given by η(x) = ϕk(ϕ−1

i (τ(x))). Let pl : Mn →M be the coordinate projection
onto the l-th coordinate. Set

C3 = {x ∈ [R2,∞)) | pl ◦ η is continuous and locally monotone at x

for all 1 ≤ l ≤ n}.

Since the difference [R2,∞) \ C3 is discrete by the strong local monotonicity, the
definable set C3 is unbounded. The definable set C3 contains an interval of the form
[R3,∞) by Claim 2. The restriction pl ◦ η|(R3,∞) of pl ◦ η to (R3,∞) is monotone
by [6, Proposition 3.1] for all 1 ≤ k ≤ n. Since η is injective, the composition pl ◦
η|(R3,∞) is strictly monotone for some 1 ≤ l ≤ n. It is a definable homeomorphism
between a bounded open interval and an unbounded open interval. �

Remark 5.8. Consider an definably complete locally o-minimal expansion of an or-
dered group M = (M ;<, 0,+, . . .). Let X be a definably compact pseudo-definable
space. By Lemma 5.7, there always exists a definable atlas {ϕi : Ui → U ′

i}i∈I of X
such that U ′

i are bounded for all i ∈ I.

5.3. Imbedding of psudo-definable spaces.

Definition 5.9. Let M = (M ;<, . . .) be a definably complete expansion of a dense
linear order without endpoints. Let X be a definable Hausdorff space and (a, b) an
interval. We call a definable map γ : (a, b) → X a definable curve in X . For x ∈ X ,
we write γ → x if limt→b γ(t) = x. A definable curve γ → x ∈ Y with definable
Y ⊆ X such that γ(a, b) ⊆ Y , we say that γ is completable in Y .

We can prove the following lemma similarly to [3, Chapter 6, Lemma 4.2].

Lemma 5.10. Consider a definably complete locally o-minimal expansion of an
ordered group M = (M ;<, 0,+, . . .). Let X be a definable Hausdorff space, f :
X → Mk be a definable map and x ∈ X. Then f is continuous at the point x if
and only if for each definable curve γ ⊆ X with γ → x, we obtain f ◦ γ → f(x).

Proof. We may assume that the definable curve γ is continuous by Proposition
2.8(7). If f is continuous, then the condition is clear.

We prove the converse. Since M is an expansion of ordered group, the space
Mk has a definable metric d. Assume f is discontinuous at p. Then, for any ǫ > 0
and any neighborhood V of f(p), we have

{x ∈ X | d(f(x), f(p)) ≥ ǫ} ∩ V 6= ∅.

Since X is a psudo-definable space, we can take an open set U ∋ p and a homeomor-
phism g : U → W ⊆ Mm such that the set {y ∈ W | d(f(g−1(y)), f(p)) ≥ ǫ} is a
definable set and it intersects every neighborhood of g(p). It implies that the defin-
able set {d(y, g(p)) | y ∈W,d(f(g−1(y)), f(p)) ≥ ǫ} contains an open interval of the
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form (0, δ). By the definable choice, there exists a definable curve γ : (0, δ) → W
such that d(γ(t), p) = t and f(γ(t)), f(p)) ≥ ǫ for all 0 < t < δ. Consider the
pullback γ′ : (0, δ) → X given by γ′(t) = g−1 ◦ γ(t). We get γ′ → p, but do not
obtain f(γ′) → f(p). �

We get the following theorem with a proof similar to [3, Chapter 10, Theorem
1.8] using Remark 5.8.

Theorem 5.11. Consider an definably complete locally o-minimal expansion of
an ordered group M = (M ;<, 0,+, . . .) having definable bounded multiplication ·
compatible to +. Every regular definably compact pseudo-definable space is definably
imbeddable into some Mn.

Proof. Let X be a regular definably compact pseudo-definable space with definable
atlas {hi : Ui → Vi ⊂ Mni}ki=1. We may assume that Vi are always bounded by
Remark 5.8. We proceed by induction k. The case where k = 1 is trivial. We may
assume that k = 2. If we can prove this case, the general case is proved similarly.

We define the definable sets as follows:

V1 = h1(U1 ∩ U2), V2 = h2(U1 ∩ U2), B1 = h1(∂U2), B2 = h2(∂U1),

B′
i = {x ∈Mni | ∃y ∈ B3−i, ∀ǫ1, ǫ2 > 0, ∃z ∈ U1 ∩ U2,

[d(x, h1(z)) < ǫ1 and d(y, h2(z)) < ǫ2]} (i = 1, 2).

Claim 1. d(x,B′
i) > 0 for each x ∈ Vi, i = 1, 2.

We show the claim the case in which i = 1 and the case in which i = 2 is
symmetry. Assume that d(x,B′

1) = 0 for some x ∈ V1. Note that h−1
1 (x) ∈ U1 and

U1 ∩ h−1
2 (B2) = ∅. Then, we get U1 ∩ cl(h−1

2 (B2)) = ∅. Since X is regular, there

exist disjoint open neighborhoods D of h−1
1 (x) ∈ U1 and E of h2(B2) in U2. For a

contradiction, we find an element in D ∩E.
Since h1(D) is open in V1, we can take an ǫ > 0 such that B(x, ǫ) ∩ V1 ⊂ h1(D).

Because d(x,B′
1) = 0, there exists x′ ∈ B′

1 with d(x, x′) < ǫ. By the definition of
B′

1, there exists y ∈ B2 for which there are points z ∈ U1 ∩ U2 with h1(z) close to
x′ and h2(z) close to y. Since h2(E) is open neighborhood of y in V2, there exists
z ∈ U1 ∩U2 with d(x, h1(z)) < ǫ, h2(z) ∈ h2(E). Thus, z ∈ D ∩E. This proves the
claim.

Set di(z) = min{d(hi(z), B′
i), 1} for z ∈ X and i = 1, 2. We define the map

h : X →Mn1+n2+2 by

h(z) =






(d1(z), d1(z) · h1(z), 0, . . . , 0) for z ∈ U1 \ U2,
(d1(z), d1(z) · h1(z), d2(z), d2(z) · h2(z)) for z ∈ U1 ∩ U2,
(0, . . . , 0, d2(z), d1(z) · h2(z)) for z ∈ U2 \ U1.

We assumed that M has definable bounded multiplication. Since both di and hi
are bounded for i = 1, 2, the map h is definable.

By Claim 1, we get the following for each z ∈ X .

• h(z) ∈ U1 \ U2 if and only if the last (1 + n2) coordinates of h(z) are equal
to 0,

• h(z) ∈ U2 \U1 if and only if the first (1 + n1) coordinates of h(z) are equal
to 0 and
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• h is injective.

Claim 2. The map h is continuous.

We check the criterion given in Lemma 5.10. Let γ be a curve in X with γ → z ∈
X . By restricting the domain of γ, we may assume that γ lies in either completely
in U1 \ U2, completely in U1 ∩ U2, or completely in U2 \ U1.

When γ lies in completely in U1 \ U2, we also have z ∈ U1 \ U2, since z ∈ U2

implies that γ lies at least partly in U2. The definition of h shows that h(γ) → h(z).
We can prove the claim similarly when γ lies completely in U2 \ U1.

Consider the case in which γ lies completely in U1∩U2. If we also have z ∈ U1∩U2,
the definition of h implies that h(γ) → h(z). Let z 6∈ U1 ∩ U2, say z 6∈ U1.
Then z ∈ ∂U1, y := h2(z) ∈ B2. Take x ∈ Mn such that h1(γ) → x. Since
h2(γ) → y ∈ B2, it follows that x ∈ B′

1. Hence, we get h(γ) → h(z).

Claim 3. The map h maps X homeomorphically onto h(X).

Let K be a definable closed subset of X . Since h is injective and Claim 2, it
suffices to prove that h(K) is closed in h(X).

Let z ∈ X with h(z) ∈ cl(h(K)) ∩ h(X). It suffices to show z ∈ K. Since
h(z) ∈ cl(h(K)), there exists a definable curve γ in K such that h(γ) → h(z). We
may assume that either γ lies completely in U1 \ U2, γ lies completely in U1 ∩ U2,
or γ lies completely in U2 \ U1. We can also assume that the domain of γ is (0, ǫ).

We first consider the case in which γ lies completely in U1 \U2. Since h(γ(t)) =
(d1(γ(t)), d1(γ(t))h1(γ(t)), 0, . . . , 0) → h(z) as t → ǫ, the last (1 + n2) coordinates
of h(z) are 0, so that z ∈ U1 \ U2 and h(z) = (d1(z), d1(z)h1(z), 0, . . . , 0). Using
Claim 1, we get h1(γ) → h1(z). Hence, we have γ → z, so z ∈ K as K is closed in
X . The proof is similar when γ lies completely in U2 \ U1.

The remaining case is the case in which γ lies completely in U1 ∩ U2. We have
h(γ(t)) → h(z) as t→ ǫ, where

h(γ(t)) = (d1(γ(t)), d1(γ(t)) · h1(γ(t)), d2(γ(t)), d2(γ(t)) · h2(γ(t))).

If z ∈ U1, then we get h(z) = (d1(z), d1(z)h1(z), . . . ). By Claim 1, we have
h1(γ(t)) → h1(z) and γ → z. Hence, we have z ∈ K. If z ∈ U2, the similar
argument proves it. �
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