
Generalizing link prediction: 
Collaboration at the University of Antwerp as a case study 

 
 
Raf Guns 
University of Antwerp, IBW, Venusstraat 35, B-2000 Antwerpen, Belgium, raf.guns@ua.ac.be 
 
 
The link prediction (LP) approach tries to predict links in an unknown network on the basis of a 
known network. It is argued that LP evaluation can be treated analogous to Information 
Retrieval evaluation. This characterization entails three generalizations of LP: both appearing 
and disappearing links can be predicted, LP is not necessarily time-based, and LP is 
complementary to anomalous link and gap discovery. 
Multi-input LP tries to increase precision and recall by having more than one known network as 
input. These concepts are applied to an informetric case study of collaboration at the 
University of Antwerp. Performance of different prediction methods is discussed. Furthermore, 
we establish a small but positive influence for multi-input LP. 

Introduction 

Social network analysis (SNA) is concerned with describing and explaining social structure by means 
of network theory. During the last decades, many measures and techniques originally devised for SNA 
have been successfully applied in other research fields. More recently, they have also been introduced 
in information science (e.g., Björneborn, 2006; Kretschmer, 2004; Otte & Rousseau, 2002). Indeed, in 
the field of informetrics the interactions between documentary and/or social entities form an important 
study object (Wilson, 1999). They can be represented abstractly as networks of citations, 
collaborations, downloads etc. 
 
The links in social and informetric networks do not appear randomly (see Newman (2003) for an 
overview of the differences between random and ‘real world’ networks). In the present paper, we 
explore factors that can be influential on link formation and evolution using an approach known as link 
prediction (LP). The problem that LP tries to tackle is this: given a snapshot of an evolving social 
network, how can one predict which new links will appear in some future snapshot of the same 
network? This and related questions have been studied by, among others, (Huang, 2006; Huang et 
al., 2005; Popescul & Ungar, 2003; Liben-Nowell & Kleinberg, 2003; Liben-Nowell & Kleinberg, 2007). 
As in previous studies, we will only study the prediction of links between existing vertices, – links to 
new vertices are outside the scope of this paper. 
 
The potential of LP can be seen both on a theoretical and a practical level. On a theoretical level, LP 
may help to test and validate the myriad of network (evolution) models, – given enough data, such 
models can be tested with LP. Practically, one can imagine many possible applications: LP can be 
used to recommend related items in digital libraries, to suggest candidates for collaboration or relevant 
references in research. Further on in the paper, we outline an approach (referred to as ‘multi-input LP’) 
that could help university policy makers determine some of the factors that contribute to policy goals 
such as collaboration or internationalization. 
 
Most research around LP consists of two broad steps. 
(i) Some predicting method is applied to a training network which results in a prediction of possible 
new links. This method can be simple (e.g., implementing a proximity measure) or elaborate. 
Intuitively, it makes sense to assume that those vertices that are already close in some sense (e.g. 
they share many friends) will likely form a link at some later point. 
(ii) The predictive power of the method is evaluated by comparing the prediction to an actual later 
snapshot (the test network). This is represented graphically in Figure 1. 
 



 
Figure 1. An LP method (i) predicts (the links in) a network GPred on the basis of the training network G 

and (ii) can be evaluated by comparing with GTest 
 
The training network G = (V, E) consists of a set of nodes or vertices V and a set of links or edges E. 
Link prediction can then be formally characterized as a function LP: V × V → R, that maps a pair of 

vertices to a real-valued likelihood score w ∈ [0,1]. The score w expresses the likelihood that a link 

between these two vertices exists in the predicted network. Note that the link prediction function only 
indirectly specifies a new, ‘predicted’ network, e.g. if combined with a threshold value for the likelihood 
score. The predicted network then consists of all links whose associated likelihood score exceeds the 
threshold value. Moreover, since the function only assigns a score to vertex pairs from the training 
network, (links to) new vertices cannot be predicted. 
 
LP as originally described is just one possible case in a larger ‘family’ of approaches. The next section 
discusses three ways in which LP can be generalized. These open the gate for so-called ‘multi-input 
LP’, which is based on more than one network. We explore the potential of both single-input and multi-
input LP on a collaboration case study. The last section contains the conclusions. 

Three generalizations of link prediction 

How can an LP method be evaluated? We now assume that a threshold has been applied, such that 

PredE  is the set of predicted links whose w exceeds the threshold and GPred = (V, EPred ). Likewise, GTest 

denotes the test network, and ETest denotes the set of links in GTest.  If the links are unweighted, 
comparison between the predicted network and the test network is fairly straightforward. In fact, it can 
borrow a lot from standard Information Retrieval (IR) measures: ETest is similar to ‘what is relevant’ and 
EPred is similar to ‘what is found’. Just like in IR, there are four sets to consider (Van Rijsbergen, 1979), 
shown in Table 1 as a contingency table. (¬A refers to the complement of A.) 
 

Table 1. Four possible relations between the link set of the predicted network and the link set of the 
test network 

TestPred EE ∩  TestPred EE ∩¬  

TestPred EE ¬∩  TestPred EE ¬∩¬  

 
This means we can determine (the trade-off between) precision and recall for each predicting method. 
The overlap between EPred and ETest can be determined with a similarity measure like Dice’s 
coefficient, which is close to 1 if both recall and precision are close to 1; if either recall or precision are 
low, it rapidly approaches 0. Note that we assume here that GPred is an unweighted network. If GPred 
were weighted, more sophisticated comparison methods would be necessary. 
 
In view of the analogy to IR, LP can be considered as a function that tries to maximize the number of 
elements in the intersection of EPred and ETest (upper left quadrant of Table 1). We now introduce three 
generalizations that are based on this abstract characterization. 

Anomalous link and gap discovery 

LP provides us with a likelihood score per link for an (in principle) unknown network on the basis of 
a known network. The likelihood score can be employed to determine the most likely links but also 
to detect outliers in two complementary ways: anomalous link discovery and anomalous gap 
discovery. 
 
The links in the test network with the lowest likelihood scores form unexpected connections 
between vertices that are, in some way, ‘far apart’. On the one hand, such a link may be ‘unstable’ 
and likely to disappear in the future. On the other hand, this may also signify a special situation. 



Rattigan & Jensen (2005) have explored the latter possibility and named their approach anomalous 
link discovery (ALD). The basic idea is that such unexpected outliers are often the most interesting 
links in the network. It is striking that their application to co-authorship in the DBLP database 
automatically discovered an error where two authors sharing the same name were combined into 
one. ALD could, for instance, also be used in webometrics to discover ‘transversal’ hyperlinks that 
cross knowledge domain boundaries (Björneborn, 2006). 
 
Vertex pairs that have high likelihood scores but do not form links in the test network constitute 
‘anomalous gaps’. Again, this may be due to chance – a link is likely to (re-)appear in the future – 
or they may indicate some sort of boundary between (groups of) vertices. For example, if authors A 
and B have cited each other’s work many times, we may derive a strong likelihood that citation 
links between A and B will also occur in the test network. If such links do not occur, then this may 
indicate that A’s (or B’s) research subject has changed. 
We are not aware of any studies of anomalous gaps, presumably because anomalous gap 
discovery (AGD) is more problematic than ALD: in social networks, the absence of a link is the 
default – i.e., social networks are sparse! 
 
LP, ALD and AGD each focus on a different cell from Table 1, as illustrated in Table 2. The fourth 
quadrant is generally uninteresting, apart from the fact that its size can be used in a similarity 
measure. Therefore, it is not associated with a particular approach. 

 
Table 2. Relation between link prediction and anomalous link and gap discovery 

TestPred EE ∩  

link prediction 
TestPred EE ∩¬  

anomalous link discovery 

TestPred EE ¬∩  

anomalous gap discovery 
TestPred EE ¬∩¬  

 

Appearing and disappearing links 

LP is typically applied in a dynamic context: it presupposes that changes may occur in a network 
over time. Nevertheless, most research only tries to predict new links and does not pay attention to 
disappearing links. While the former part – which currently nonexistent links are likely to appear? – 
is useful in itself for applications such as recommendation systems (Huang et al., 2005), we argue 
that the latter part – which current links are likely to disappear? – is equally important when, for 
instance, studying the evolution of a social network (Burt, 2000). Put more generally, we are 
concerned with the following problem: given a snapshot of existing links, which vertex pairs are 
most likely to have links, be they existing or new, in a future snapshot? Note that this question 
envelopes both the appearance and the disappearance of links. 
 
We only consider those vertices that are present in both training and test network, and that are 
connected to a predetermined minimum number of other vertices. Following Liben-Nowell & 
Kleinberg (2003, 2007), we introduce two parameters, κtraining and κtest, and only look at those 
vertices with a minimum degree of κtraining in the training network and a minimum degree of κtest in 
the test network. For the case study in this article we take κtraining = κtest = 1, thereby only ignoring all 
isolates. 

LP on another basis than time 

The canonical case of LP is time-based: G and GTest represent the same network at different points 
in time. One can, however, also imagine cases where one wants to predict unknown relations 
between entities on the basis of another, known relation. For instance, one could hypothesize that 
friendship bonds in a social network are mainly determined through homophily. On the basis of 
training networks involving race, gender, social class etc. one could then try to predict the existing 
friendship network without access to an older snapshot of the same network. An example in 
collaboration is studied further on. 
 
There are no mathematical constraints on the relation between the training network on the one 
hand and the predicted and test network on the other hand, other than that they all have the same 
vertex set V. It should, however, be stressed that it only makes sense to search for a prediction 
function between networks where a correlational or causative relation can reasonably be assumed.  



Multi-input LP 

Once we acknowledge that the training network in LP is not necessarily an older snapshot of the test 
network, a new question arises: can we combine two or more networks for training? This approach is 
one of several future directions mentioned by Liben-Nowell & Kleinberg (2007); they propose fine-
tuning the predictions by taking institutional affiliation and geographic location into account. We will 
refer to this variant as multi-input LP, while the classical variant will be referred to as single-input LP. 
 
Multi-input LP takes as its input a set S = {G1, G2,…, Gt } where Gi = (V, Ei )  (1 ≤ i ≤ t). Assume now 
that we want to determine the likelihood score w of a link between vertices u and v. This can be as 
simple as applying LP to u and v for each network in S and taking the average score: 
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A slightly more refined variant assigns a weight γ  to each network in S, such that more important 
networks have greater impact: 
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Of course, other ways of determining a value for w in multi-input LP are possible, but more research is 
necessary to establish their merit. 

Case study: collaboration at the University of Antwerp 

As a practical case study of both single-input and multi-input LP, we have studied the collaboration 
network of researchers at the University of Antwerp. The University of Antwerp (UA) is the third largest 
university in Flanders, the northern part of Belgium.  It was founded in 2003 as a merger of the three 
smaller universities that were situated in Antwerp (UIA, RUCA and UFSIA). 
 
Prior to 2003 the three universities did already cooperate on a number of domains, including library 
automation. One example is the Academic Bibliography (AB), in which all academic publications by 
UA staff are recorded from 1991 until the present. In informetric studies, a citation database like Web 
of Science or Scopus is a more common data source, but the use of a local database has some 
benefits: 

• The AB has a much larger coverage of publications authored at the UA than citation databases 
do. This is especially beneficial for areas of research that are traditionally less well-represented in 
such databases, like the Humanities. Indeed, all publications in ISI-covered journals are 
automatically inserted, in addition to all academic publications a researcher himself chooses to 
submit. Since these data can be used in e.g. promotions, it is in the researchers’ own interest to 
submit all relevant publications. Experience has taught that most keep their AB record well up-to-
date. 

• Each author is uniquely identified by a URI. Thus, we avoid problems of homonymy (different 
authors with the same name) and synonymy (one author with several names; a female author may 
for example have published under her maiden name and her husband’s name). 

• The most important factor, however, is the availability of ‘local’ information, i.e. information 
regarding each researcher’s department(s) and location. This information will be exploited for 
multi-input LP. 

In our case, the test network is the collaboration network formed between January 2004 and 
December 2006, where vertices are authors affiliated with the UA and weighted links represent the 
number of co-authored papers during this period. Since we wanted to use the preceding time period 
(2001–2003) as one of the training networks, we only consider the 1102 authors that have at least one 
co-author in 2001–2003 and at least one co-author in 2004–2006 (κtraining = κtest = 1). Details are 
provided in Table 3. 
 

Table 3. Vertices and links in time periods 2001–2003 and 2004–2006 

 Number of non-isolate 
vertices 

Number of links 

2001–2003 1366 3930 
2004–2006 1548 4825 
Under study 1102 6921 



 
For the current investigation, we use the methods that are listed in Table 4. Most of these have been 
tested previously in LP. Since most methods are neighbor-based, we introduce the following notation: 
Γ(x) denotes the set of neighbors of vertex x. The ‘Equal’ method just makes a copy of the training 
network. If the training network is weighted, links with a higher weight get a higher likelihood score. 
This method has not been used before, since most studies only try to predict new links in the test 
networks and, by definition, the Equal method does not include any new links. The following methods 
should be normalized in order to get scores between 0 and 1: Equal, Adamic/Adar, Common 
Neighbors, and Preferential Attachment. Although the proximity measure defined by Katz (1953) 
seems promising, we have not included it because of its computational complexity. 
 

Table 4. LP methods, where Γ(x) is the set of neighbors of vertex x 

Name Value of w for vertices u and v 

Equal weight of link between u and v 
Adamic/Adar (Adamic & Adar, 2003) 
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Single-input LP in the case study 

We use time-based LP as an example of single-input LP: the training network is based on data from 
2001–2003 and the test network is based on data from 2004–2006. All vertex pairs are ranked in 
decreasing order of their corresponding likelihood score w. EPred [i] denotes the i first vertex pairs. Then, 
recall and precision of the first i (i = 1, 2, …, n) predictions are calculated as follows. For recall, 
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and for precision, 
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Figure 2. Recall–precision curves of different methods applied to the 2001–2003 snapshot 

 
We thus construct the recall–precision curves shown in Figure 2. Recall–precision curves of LP have 
previously been employed by (Kashima & Abe, 2006; Popescul & Ungar, 2003). We note that two or 
more predictions may have the same likelihood score. Thus, ties are possible and ranking in those 
cases is arbitrary, but experimentation has shown that this has hardly any effect on the resulting curve. 
 
We find that no single method achieves 100% recall: if two vertices belong to different components in 
the training network, none of these methods can predict an edge between them. Note that the study 
by Liben-Nowell & Kleinberg (2003, 2007) deliberately restricted predictions to the largest component, 
which automatically increases the potential recall. 
 
The Equal method is included since we try to predict both recurring and new links. Its maximum recall 
is limited since it does not predict any new links, but in terms of precision, it outperforms any of the 
other methods. 
 
The Adamic/Adar method seems to be the best neighbor-based predictor because it prefers ‘rare’ (i.e. 
having low degree) neighbors over common ones. Preferential Attachment is a very poor predictor, 
although its predictions are still significantly better than random predictions. The other neighbor-based 
methods (Common Neighbors, Cosine, Jaccard and Overlap) are all clearly less precise although, 
surprisingly, the very simple Common Neighbors method still fares better than the other, more 
sophisticated ones. 
 
Contrary to Huang et al. (2005), we find relatively good performance of the Graph Distance method. 
This is, however, largely due to the fact that it also ‘predicts’ those links already present in the training 
network (geodesic length = 1). Geodesics of length 2 or greater are a much worse predictor, as can be 
seen by the rapid decline in precision around 55% recall. Note that this method’s precision is worse for 
connected vertices than the Equal method. Most likely, this is because this method does not take link 
weight into account. 
 
It is possible that some combination of these methods (for instance, Equal combined with 
Adamic/Adar) would be able to achieve even better recall and precision. Due to space limitations we 
do not pursue this line of inquiry here. 



Multi-input LP in the case study 

Even the best single-input prediction methods make many faulty predictions and do not include many 
correct ones. We now turn to the question if multi-input LP can be used to increase precision and/or 
recall. We explore this question using a training set S containing three networks, which we will now 
describe. 
  
The first network is the collaboration network of authors at the UA between 2001 and 2003 studied 
before. Reuse of the training network of the preceding section allows direct comparison with single-
input LP. 
 
The second network is the department network where vertices represent authors that are linked if they 
belong to the same department. At the UA, each person is affiliated to one or more departments that 
each have a unique identifier. For instance, the identifier “APSW” refers to the faculty of Social 
Sciences, “APSWP” refers to the department of Political Sciences at said faculty. We have tried to 
assign authors to the department with the highest degree of granularity, e.g., “APSWP” is preferred to 
“APSW”. Subsequently, all persons associated with the same identifier are linked in this network. 
 
The third and last network is the physical location network where vertices represent authors that are 
linked if they work in physical proximity. The UA is spread over four campuses, each with several 
buildings. People working close together are more likely to collaborate, even if they do not belong to 
the same department, and vice versa, people from the same department working at different locations 
are less likely to collaborate. Where possible, an author is assigned to a physical location (campus + 
building + floor) and subsequently, all authors associated with the same location are linked. 
 
Unfortunately, we could not access all required data about each author. Therefore, the department 
network contains only 98% of all authors and the location network only 57%. Details are provided in 
Table 5. These two networks are also atypical in that they are based on a hierarchy of vertices 
(Goussevskaia et al., 2007): all vertices with a common characteristic are linked. In other words, these 
training networks have much higher density than the test network. They would make poor training 
networks for single-input LP; especially precision would be very low. They do, however, have the 
potential of increasing both precision and recall in combination with a ‘better’ network like the one from 
2001–2003. 
 

Table 5. Data availability of department and physical location of authors 

 Available for … authors Number of groups 

Department 1085 38 
Physical location 632 132 

 
For this reason, we determine the likelihood score w of a link between u and v as a weighted average: 
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The more important collaboration network has a weight of 0.8, while the auxiliary location and 
department networks each have a weight of 0.1. Experimenting with tweaking the weights in formula 
(6) yielded the following results: 
The location and department networks complement each other. Leaving either out decreases both 
precision and recall. 
The weights as assigned in formula (6) are near optimal. If the proportion of the collaboration network 
becomes lower, precision is drastically lowered as well. 
 
The resulting recall–precision curves are shown in Figure 3. In comparison to Figure 2, maximum 
recall is increased for most methods, but the precision of these ‘extra’ predictions is very low. Observe 
for instance the sharp decline in precision of Equal after the predictions that were also present in the 
preceding section. In terms of precision, most methods seem hardly affected in comparison with 
single-input prediction. Where the effect is observable, however, it is an improvement. 
Figure 4 shows that, for most methods, multi-input LP forms a very slight improvement over single-
input LP in terms of average precision. Precision of the results with the highest likelihood score can 
however be improved significantly, especially for the Cosine, Graph Distance, Jaccard and Overlap 
methods. 



Conclusions 

In this article, we have explored the analogy between LP and IR, and between LP evaluation and IR 
evaluation. This has lead to a number of generalizations and illustrates that recall–precision curves are 
an adequate tool for LP evaluation. By trying to predict the entire network (both appearing and 
disappearing links), it can be seen that the very basic Equal method easily outperforms the other 
methods in terms of precision. 
 
As a second generalization, we have discussed the natural relations between LP, ALD and AGD. 
Finally, we have argued that the training network in LP does not have to be an older snapshot, which 
opens the door to multi-input LP. In our case study, multi-input LP offers only limited improvements 
over single-input LP, although it seems to benefit some methods more than other, especially for the 
highest ranked predictions. Our case study is limited in that the two additional networks are rather 
dense and imprecise. In further research, we will explore how more typical networks can be combined 
for multi-input LP and how ALD and AGD complement the LP approach in practice. 
 

 
Figure 3. Recall-precision curves for multi-input LP 

 
 



 
Figure 4. Average precision ratio of multi-input LP relative to single-input LP (dashed red line), where 

error bars indicate best and worst ratio 
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