
On Detecting Termination in Cognitive Radio Networks∗†

Shantanu Sharma‡ Awadhesh Kumar Singh§

Abstract
The cognitive radio networks are an emerging wireless communication and computing paradigm. The cognitive

radio nodes execute computations on multiple heterogeneous channels in the absence of licensed users (a.k.a.
primary users) of those bands. Termination detection is a fundamental and non-trivial problem in distributed systems.
In this paper, we propose a termination detection protocol for multi-hop cognitive radio networks where the cognitive
radio nodes are allowed to tune to channels that are not currently occupied by primary users and to move to different
locations during the protocol execution. The proposed protocol applies credit distribution and aggregation approach
and maintains a new kind of logical structure, called the virtual tree-like structure. The virtual tree-like structure
helps in decreasing the latency involved in announcing termination. Unlike conventional tree structures, the virtual
tree-like structure does not require a specific node to act as the root node that has to stay involved in the computation
until termination announcement; hence, the root node may become idle soon after finishing its computation. Also,
the protocol is able to detect the presence of licensed users and announce strong or weak termination, whichever is
possible.

Keywords: Cognitive radio network, credit distribution and aggregation, heterogeneous channels, termination
detection, virtual partitioning and merging, virtual tree-like structure.

1 Introduction
A vast growth of small and portable devices has culminated into the problem of bandwidth scarcity. Hence, it is
becoming difficult to provide seamless connectivity while executing various applications, e.g., email, web surfing,
gaming, and video conferencing (see Exhibit 10 in [14]). It is also noted that currently allocated spectrums have their
significant portions underutilized [1]. The Cognitive Radio Networks (CRNs) [16] are a smart solution with a complex
network structure to enhance the spectrum utilization.

The termination detection [11, 17] is a fundamental and non-trivial problem in distributed systems because the
processors do not have the complete knowledge of all the other processors in the network, and there is no global clock
in the distributed computing environment. A solution to the termination detection problem informs termination of the
task being executed in the network.

1.1 Cognitive radio networks
A cognitive radio network (see [4, 20, 8, 42, 5, 3, 41]) is a collection of heterogeneous cognitive radio nodes (or
processors), called secondary users. The cognitive radio nodes (CRs) have sufficient computing power and power
backup to operate on multiple heterogeneous channels (or frequency bands) in the absence of the licensed user(s),
termed as primary user(s), of the respective bands. The cognitive radio nodes have the LEIRA (learning, efficiency,
intelligence, reliability, and adaptively) capability to scan and operate on different channels.

A channel that is not currently occupied by a primary user is called an available channel. Any two nodes that are
in the transmission range of each other and tuned to a common available channel during an identical time interval, are
∗Accepted in International Journal of Network Management (Wiley-IJNM).
†A preliminary version of this paper has appeared in proceeding of the 17th Pacific Rim International Symposium on Dependable Computing

2011 (PRDC) [35].
‡Department of Computer Science, Ben-Gurion University of the Negev, Israel. Email: sharmas@cs.bgu.ac.il.
§Department of Computer Engineering, National Institure of Technology, Kurukshetra, Haryana, India. Email: aksinreck@ieee.org.

1

ar
X

iv
:1

50
7.

04
46

2v
1

 [
cs

.N
I]

 1
6

Ju
l 2

01
5

called neighboring nodes. The appearance of a primary user (hereafter, the primary users will be known as PUs) on an
available channel is a reason for CRs to switch the channel and to tune to another available channel, because the CRs
are not allowed to interrupt the primary users in any case.

The modern networking benchmark, CRN, presents many unique challenges in the field of communication as well
as computing, such as cognitive capability, reliability, and efficiency. Several challenges of CRNs are presented in [8].
Interested readers may refer to [44, 29, 21, 28] for more details on cognitive radio networks.

In this paper, unless otherwise indicated, the words “cognitive radio node,” “cognitive radio,” “node,” and
“processor” have the same meaning, and similarly, the words “cognitive radio network,” “network,” and “system”
have been treated as synonyms.

1.2 Termination detection (in cognitive radio networks)
Nowadays, a large number of distributed applications – e.g., mutual exclusion, leader election, checkpointing, global
state detection [26] – are executed on portable devices. In general, an application that executes on processors is known
as a normal computation or an underlying computation. A termination detection (TD) protocol [11, 17] is used to
announce termination of the normal computation. The termination declaration of a normal computation, when it has
indeed terminated — in a group of mobile devices that are geographically distributed and tuned on different channels
— is an interesting challenge in cognitive radio networks. Hereafter, we use the word “computation” that refers to the
“normal computation.”

A node may be in active or passive state during a computation. The nodes in the active state are called active
nodes, and the nodes in the passive state are called passive nodes. The active nodes execute an assigned computation,
and usually, after completion of the computation, they become passive. A passive node can become active on reception
of a message from an active node. Hence, it is clear that only active nodes can send messages; however, both the active
and passive nodes can receive messages at any time.

Initially, all the nodes are passive in the network. Since only active nodes can send messages, we assume that there
exist a passive node that becomes active on reception of a message from outside world, and subsequently it initiates
the computation. A computation is said to be terminated if and only if all the nodes are passive and there is no message
in-transit. A brief summary about TD protocols can be found in Chapter 7 of [26] and Chapter 9 of [18].

Any termination detection protocol can be initiated in two ways, as follows:

• Delayed initiation. The TD protocol is triggered by any node, i, that has been assigned a computation, and
the same node i is responsible for the announcement of termination; such an initiation is known as delayed
initiation [33]. Here, it is not mandatory that the node i was also the initiator of the computation; refer to
Figure 1a, where node 1 initiates the computation and node 3 initiates the termination detection protocol.

• Concurrent initiation. In the concurrent initiation, the TD protocol is overlaid on a computation and executes
concurrently. Here, the initiator of the computation is also responsible for the announcement of termination;
refer to Figure 1b, where the lower part represents the execution of the computation and the upper part represents
the execution of termination detection protocol that is being executed concurrently with the computation; and
node 1 is the initiator of both, the computation and the termination detection protocol.

Any termination detection protocol should satisfy the following properties:

• No false termination detection (safety). The termination of a computation is declared only when the computation
has indeed terminated (and only a single designated node can announce termination).

• Eventual termination detection (liveness). A single (designated) node announces termination within a finite
amount of time.

The termination detection in CRN is more challenging as compared to the conventional wireless networks because
of the following reasons:

• Network structure and communication links. The CRN is a network of time and space varying channels. Any
two neighboring nodes, which must be tuned to an identical available channel, can communicate directly
(using a communication link). The appearance of a PU on a channel forces the neighboring CRs to vacate

2

Underlying computation

Termination detection protocol

Active nodes Overlaid nodes

Termination detection protocol initiator

1

2 5

3 4

1

(a) Delayed initiation.

1

2 5

3 4

1

2 5

3 4

1

(b) Concurrent initiation.

Figure 1: Two ways of termination detection protocol’s initiations.

that channel and to tune to another identical available channel. However, finding another identical alternative
available channel, for neighboring CRs, is not an easy task due to reasons like topological dynamics and varying
capabilities of the nodes [6]. Hence, the communication link endurance during execution of any protocol is hard
to guarantee.

• Reaction to a communication link break. In classical wireless networks, the nodes operate on a pre-decided
channel that provides them communication links. The communication links may break due to node mobility
or node failure; hence, a new communication link detection takes place in a highly reactive manner without
considering parameters like endurance of the link. On the other hand, in CRN, the communication links may
also break due to the appearance of a PU leading to spectrum mobility that emphasizes on several factors before
creating the new communication links [5].

• Sufficient resources. The computing nodes in wireless domain suffer from limited resources like bandwidth,
memory, and battery power. Thus, several protocols focus on the reduction of the number of messages
exchanged to minimize the need of bandwidth, memory, and battery power. However, CRNs have sufficient
resources, especially temporarily unused spectrums (known as spectrum holes [5]) and computing power.
Consequently, the focus of research has been shifted to other challenges related to the execution of various
applications.

• No definitive logical structure. Most of the computing protocol use quasi-stable logical structures, e.g., tree,
ring, to leverage the design difficulties. The CRNs restrict a direct engagement of such logical structures due to
time and space varying channels.

In addition, unlike other ad hoc networks, the CRs show very loose synchronization, poor tolerance to the heterogeneity
of mobile devices as well as channels, and an extra cost for searching a new channel (on the appearance of primary
users). The presence of these challenges in cognitive radio networks make the design of computing and communication
protocols harder.

1.3 Our contribution and outline of the paper
The paper presents a concurrent initiation (see Figure 1b) based Termination detection protocol for Cognitive RAdio
Networks, called T-CRAN, henceforth. Moreover, our protocol can also be implemented in other dynamic networks,
e.g., cellular networks, mobile ad hoc networks (MANETs), vehicular ad hoc networks (VANETs). In this paper, we
provide:

1. A credit distribution and aggregation based termination detection protocol for CRN, in Section 4, that declares
termination of computations despite the presence of PUs. Our protocol recognizes the cognitive radio nodes that
lose their single available channel due to the appearance of PUs and are unable to find other available channel.

3

2. A new logical structure, called virtual tree-like structure (Figure 2), where the root node can be passive when it
completes its computation, unlike conventional (logical) tree structures, where it is mandatory for the root node
to stay in active state till the end of computation; in Section 4.

3. The T-CRAN protocol as guarded-actions, in Section 5. Section 6 explains the complete working of the proposed
protocol.

4. The analysis of message and time complexities of the proposed protocol, in Appendix A. The correctness proofs
of the proposed protocol are given in Appendix B.

1.4 Related work
The termination detection (TD) protocol has been studied extensively in static distributed systems [11, 17, 9, 23, 31,
32, 37, 19]. A detailed classification of TD protocols is given in [26, 30]. However, none of the existing TD protocols
for static networks can be implemented straight forwardly in dynamic networks due to frequent topology changes
in dynamic networks. Although, some TD protocols [39, 10, 27, 24, 25] exist for sensor networks and mobile ad
hoc networks, they can also not be implemented in CRNs due to unique challenges of cognitive radio networks, as
mentioned in Section 1.2.

A novel algorithm for TD using credit distribution and aggregation was proposed by Mattern [31] and Huang [22,
23]. A similar TD protocol for faulty distributed systems was proposed by Tseng [38]. However, these protocols
failed to work in dynamic networks. A TD protocol for mobile cellular networks [39] based on credit distribution and
aggregation is proposed that assumes the existence of the mobile switching center (MSS), which provides a centralize
support to the mobile nodes.

Johnson and Mittal [24] have tried to reduce the waiting time for termination declaration in dynamic networks.
However, they consider the existence of an initiator node until termination declaration. The protocols proposed for
dynamic networks [39, 27, 24, 25] have three major limitations: (i) they assume the existence of an initiator node
until termination declaration; however, the mandatory existence of the initiator node increases the waiting time for the
node that has completed its computation earlier than other nodes in the network. Also, the existence of an initiator
node until termination declaration is not easy to guarantee in CRNs, (ii) they work on a single pre-decided channel,
whereas, in CRN, computations and nodes work on multi-channels, and (iii) they consider only node mobility; they do
not consider the presence of some special users (like primary users) that also prevent the nodes to work.

In CRN, Mittal et al. [46] presents a neighbor discovery protocol with TD; however, they consider only termination
of the particular neighbor discovery scheme. The lightweight termination detection of Mittal et al. [46] is not related
to our termination detection scheme. Note that in [46], the term “lightweight” has been used to highlight the fact that
the number of control messages used in their protocol is minimal.

2 The System Settings
This section outlines the preliminary assumptions about the environment, various types of messages (Table 2), and
data structures (Table 3). All the notations used in our protocol are given in Table 1.

Cognitive radio nodes. We consider a cognitive radio network of N cognitive radio nodes (CR1,CR2, . . . ,CRN),
where each node has a unique identity. However, a group of n CRs executes a single computation, where n ≤ N ,
in finite time. The nodes are heterogeneous in terms of their computing capabilities, and they are allowed to
move during protocol execution.

Each CR is aware of global channel set, local channel set, to be defined soon, and also the total number of
nodes, N , in the network. Each node has a scan transceiver (a transceiver is a transmitter-receiver pair) that
is responsible for scanning multiple heterogeneous channels. Such a scanning is beneficial for fast channel
switching. However, a transceiver cannot transmit and receive simultaneously.

Communication channels. We divide communication channels into two sets: (i) global channel set (GCS): a set
of all the, g, channels in the network, where g = |GCS|; (ii) local channel set (LCS): a set of, l, available

4

channels1 at a node, CRi, where li = |LCSi| and li ≤ g. However, the appearance of PU(s) on all g channels
results in the value of the local channel set to be zero, at each node. On the appearance of a PU, a CR is assumed
to tune to another available channel, from its LCS , without interrupting the ongoing computation [5], similar to
the handoff in mobile cellular networks.

A node, CRi, that does not possess any available channel in its LCSi (i.e., li = 0) due to the appearance of
PU(s), is called an affected node. An affected node is unable to send and receive messages. On the other hand,
a node, CRj , that has at least one available channel in its LCSj (i.e., lj ≥ 1) is called a non-affected node. The
communication channels are non-FIFO (first-in-first-out) and unreliable. However, the sent messages must be
received at the receiver nodes without omissions, duplications, and in the same order as they were sent [12], if
the receiver is not an affected or a failed node (see failure model for details).

Network structure. We consider an asynchronous multi-hop cognitive radio network of N independent nodes. We
represent the network by a communication graph, CG = [V, E , LCS]. In the communication graph, CG, V
represents a set of vertices (or processors in the network), E represents a set of edges where an edge between a
pair of neighboring nodes shows a bidirectional, direct, and non-FIFO wireless communication link, and LCS
represents the local channel set of each CR.

Further, we define an interaction graph of size n ≤ N as: IG = [v, e]. In the interaction graph, IG, v ⊆ V
represents a set of CRs that are currently executing an identical computation and e ⊆ E represents a set of
edges where each edge connects any two neighboring nodes, CRi,CRj ∈ v, if they are executing an identical
computation. Note that we assume different interaction graphs for different computations.

Failure model. We assume that a cognitive radio node may fail in three different ways, as follows:

1. Due to the appearance of a PU and the node has only a single channel in its LCS , then the node is unable
to send and receive messages, and such a node is called an affected node.

2. Due to the swift movement of the node that may result in frequent topology change and transient
non-interaction of the highly mobile node with other nodes in the network. We call such nodes the failed
nodes.

3. Crash, i.e., when a node does not possess enough resources, like battery and computing power, it results
in permanent failure of the node, and such a node is called a crashed node. When a crashed node recovers
by users’ intervention, it does not possess the knowledge of updated data structures.

In this protocol, we focus on the impact of PUs on the nodes, and after that the recovery of such nodes when
PUs disappear. We do not consider any specific approach for recovery of failed nodes. The approach that works
in MANET to handle failed nodes is also applicable in CRN. In other words, we consider the failure-recovery
model [2]. Whenever a node recovers, its state may be active or passive. It is possible that the failures occur
frequently and, thereafter, the nodes recover soon. Such frequent failures and recoveries are not useful for any
practical application; hence, we do not focus on these issues in our protocol. In addition, we assume that the
affected and crashed nodes are detected by at least one of the nodes, whose state is active. We also assume that
the nodes do not exhibit Byzantine behavior.

Storage media. The termination cannot be detected as the decision variable itself can be corrupted by transient
failures leading to a false detection; hence, we store all the data structures in the non-volatile storage (i.e., stable
storage). However, a consistent copy of the data is always available in the volatile memory. In the beginning, all
the data structures are initialized.

Furthermore, we assume that the cognitive radio nodes have sufficient battery and computing power, and an
appropriate routing protocol is in place for message delivery. For ease of presentation and understanding, we consider
a single instance of a single computation (i.e., a single interaction graph, IG) in the network; however, the proposed
protocol is able to handle multiple instances of multiple computations. We do not specify any neighbor discovery
protocol; however, we assume that each CR knows its neighboring nodes using some existing neighbor discovery
protocols, e.g., [34].

1Recall that a channel that is not currently occupied by a primary user is known as an available channel.

5

CRN Cognitive radio network N The total number of cognitive radio nodes

CG Communication graph IG Interaction graph

V A set of cognitive radio nodes E A set of edges between neighboring nodes

v A set of cognitive radio nodes in an interaction graph e A set of edges in an interaction graph

CE Chief executive node (or initiator of the protocol) n Number of nodes involved in an identical computation

LCS Local channel set GCS Global channel set

l Number of available channels at a node g Number of the channels in GCS

Table 1: Notations.

Control messages

COMputation message COM (C) send by CRi to its active/passive neighboring nodes to distribute the computation.

I am Passive with Credit
message

ImPC (C, b) send by CRi to all the active nodes that had sent credits to CRi previously including the parent node
of CRi. An ImPC (C, b) message contains credit information, C, and the total number of active
child nodes, b, of the sender CRi. The value of b is set to 0 if the ImPC is sent to nodes other than
the parent nodes.

I am Passive message ImP(p) send by CRi to all its child nodes piggybacked with a new parent’s, CRp, information.

AcKnowledgement message AcK send by CRj to CRi in order to acknowledge credit receipt, if CRi has surrendered its credit to
CRj .

Acknowledgement of AcK

message
AAcK send by CRi to CRj if CRi has received an AcK message from CRj . The highest priority

messages, i.e., AcK and AAcK, provide a three way handshake when CRi surrenders its credit to
CRj . The reception of AcK and AAcK messages are assumed to be atomic (and the delivery time
of AcK and AAcK messages is very small, unlike other control messages).

Termination Message TM send by the chief executive node, CE , to all the nodes of the interaction graph to declare termination
of the computation.

Non-control messages

Primary user affected Nodes
message

PaN send by CRi that is neighboring node of CRj to CE . This message holds the identity of the affected
node, CRj , and the credit that had sent to CRj by CRi or from CRi to CRj .

Nodes released by Primary
user message

NaP send by CRi to CE and all its neighbors whose states are active. A NaP message holds the identity
of CRi, that was an affected node earlier; however, now CRi is a non-affected node.

Remarks: (i) We use a notation SENDi(m, j) to show the message transmission of m from CRi to CRj .
(ii) The message transmission is shown in Figures 3 and 4.

Table 2: Message types used in the T-CRAN protocol.

Types of messages. In our protocol, we use various messages (message details are given in Table 2, and a simplified
illustration of messages transmission is shown in Figures 3 and 4) that are classified into control messages and
non-control messages. The control messages have the highest transmission priority, and they are forwarded by
(intermediate) passive nodes too. It is worth noting that only control messages require communication cost, and
non-control messages can be piggybacked on the control or heartbeat messages.

All the control and non-control messages include a tuple 〈session, initiator id〉, that (i) avoids the need of a
logical clock, which is hard to implement in CRN, (ii) distinguishes any two messages, (iii) distinguishes a message
from stale messages (a message that is received after the termination declaration, and so belongs to the terminated
computation, is known as a stale message, throughout the paper).

Types of data structures. In our protocol, the data structures are divided into two categories: (i) at all the cognitive
radio nodes, and (ii) at the chief executive node, CE , (a node that is responsible for the announcement of termination).
Details of these data structures are given in Table 3.

3 Background
A large number of termination detection (TD) protocols have been introduced for fault-free and faulty distributed
systems. They are based on different scheme, e.g., snapshot, credit distribution and aggregation, logical tree, and ring
structures [30]. The snapshot based TD protocols require complex data structures to be maintained at each participating
node because the amount of information exchanged is usually very high. Consequently, they have a large waiting time
for the announcement of termination that is unsuitable for ad hoc networks. On the other hand, the maintenance of

6

Data structure Description Initial value

At all the cognitive radio nodes

parenti The parent node of CRi. It is the first node that sent credit to CRi since CRi became active. 0

holdi The credit received from the parent node of CRi. 0

ini[] ini[j] represents the received credit at CRi from CRj such that j 6= parenti. ∀j, ini[j] = ∅
outi[] outi[j] represents the credit sent from CRi to CRj . ∀j, outi[j] = ∅
sessioni The current session of the computation at CRi. 0

initiator id The initiator of the current session of the computation at CRi. 0

At the chief executive node, CE

PUaffected [] PUaffected [j] represents the identity of an affected node, CRj . ∀j, PUaffected [j] = ∅
C PUaffected [] C PUaffected [j] represents the credit at an affected node, CRj . ∀j, C PUaffected [j] = ∅

Table 3: Data structures used in the T-CRAN protocol.

logical structures (rings and trees) is a computation intensive task, and it requires frequent exchange of coordination
messages to handle dynamic topology in ad hoc environment. Such a high overhead is deterrent in the use of logical
structures. Therefore, we consider the credit distribution and aggregation approach to design a TD protocol for CRN.

For the sake of completeness and understanding of credit distribution and aggregation based TD protocols, we
present the first credit distribution and aggregation based TD protocol, given by Mattern [31]. This protocol assumes
the existence of an oracle that is responsible for initiation of the computation and termination detection.

Initially, the network has all the nodes in passive state, and the credit at each node is zero. In the beginning of a
computation, the oracle, which is supposed to have credit value 1, distributes the credit value among the nodes using
activation messages. Thus, each activation message holds a credit value, 0 < C < 1. Now, the oracle waits to receive
credits back. Once, the cumulated credit has value one, the oracle announces termination. This protocol uses four
rules, as follows:

R1 When a passive node receives an activation message with credit 0 < C < 1, the node becomes active, holds the
credit C, and executes the assigned computation.

R2 When an active node receives an activation message with credit 0 < C < 1, the credit value, C, is transferred to
the oracle.

R3 When an active node, having creditC, sends an activation message, the node sends only C
2 credit with the message.

R4 When a node becomes passive, it surrenders its credit to the oracle.

1

2 4

7

3

5 6 8

9

CE

Parent-child relationship in the virtual tree-like structure

Computation message flow but not parent-child relationship

Active nodes

1

Figure 2: The virtual tree-like structure.

In addition, this protocol always satisfies the three
requirements: (i) at any time, the sum of credits held
by nodes, activation messages, and the oracle is 1, (ii)
when a node is active, it holds a credit C > 0, and (iii)
an activation message, which is in-transit, holds a credit
C > 0.

The limitations of Mattern’s protocol [31] is the
existence of a fixed oracle to announce termination that
increases the waiting time for termination announcement.
Also, this protocol is assumed to work in static networks,
where the nodes communicate using fixed communication
links. However, unlike Mattern’s protocol [31], our
protocol is designed for dynamic CRNs that have multiple
heterogeneous channels. Also, we do not assume the
existence of a fixed oracle. Further details of the proposed
protocol are presented in the next section.

7

4 The T-CRAN Protocol
We present our credit distribution and aggregation based termination detection protocol, called T-CRAN (see Figures 3
and 4). The initiation of T-CRAN protocol is marked by the distribution of a fixed credit value, C, and when a node
receives back the same credit value, C, it announces termination.

4.1 High level description of the T-CRAN protocol
A node initiates a computation and the T-CRAN protocol2 with a fixed credit value, C, and such a node is called the
chief executive node, CE . CE may distribute the computation among its neighboring nodes, called the child nodes
(of CE), with non-zero credit values, and CE becomes a parent node of its child nodes. The child nodes can further
distribute the computation like their parent node. In this manner, the credit distribution phase creates an illusion of
a logical tree among the CRs that are executing an identical computation. We call it the virtual tree-like structure,
henceforth (see Figure 2). Note that the sum of credits in the network (including the nodes and in-transit messages)
must be equal to C.

When a node finishes its computation, the node’s state becomes passive, and the node surrenders its credit. In the
virtual tree-like structure, a node surrenders its credit to either (i) its parent node if the parent node is active, (ii) any
node whose state is active and that had sent credit to the node previously, or (iii) any node that is executing the same
computation, whose state is active.3 As PUs appear, the neighboring nodes4 of the affected nodes inform CE about the
affected nodes. Once the affected nodes become non-affected nodes, they inform about their recovery to CE and their
neighboring nodes, whose states are still active. However, CE waits for a reasonable amount of time5 for the transition
of affected nodes to non-affected nodes before the announcement of termination. Once CE receives back the credit C
(the same amount of credit that was distributed at the initiation of the computation) or a timeout occurs, it announces
termination.
Comparison with conventional credit distribution and aggregation protocols. The difference between the
conventional credit distribution and aggregation protocols [31, 23, 39, 24] and our protocol lies in the credit surrender
process when a node completes its computation.

The conventional credit distribution and aggregation protocols use a logical tree structure, where a fixed root node
announces termination; thus, it is mandatory that the root node stays in active state till the end of the computation.

Our credit distribution and aggregation based protocol, T-CRAN, uses a logical structure, called the virtual tree-like
structure, where a non-fixed CE may become passive on completion of its computation, and may send its credit,
arbitrarily, to one of its child node that becomes a new CE . The new CE is responsible for termination declaration,
and thus, the existence of an identical CE till the end of the computation is not desired in the virtual tree-like structure.

4.2 Details of the T-CRAN Protocol
Now, we first provide details of credit distribution and aggregation phases in the absence of PUs. Later in Section 4.3,
we will consider the presence of PUs too.

Credit distribution. In our protocol, initially, all the nodes are in passive state, and a computation starts by a single
message from outside world. The credit distribution phase creates a virtual tree-like structure (see Figure 2) and
consists of three steps (see Figures 3a and 3b), as follows:
STEP 1: Initiation and distribution of a computation and the T-CRAN protocol. The computation and the

T-CRAN protocol is initiated by a CR node, with a fixed credit value C (that is stored in variable holdCE
),

called the chief executive node, CE . The node CE may distribute the computation among its q (q ≤ N)
neighboring CRs with non-zero credit values, say C1, C2, . . . , Cq , using q different COMputation messages
(COM (C1), COM(C2), . . . , COM(Cq)). Note that once the credit distribution is over, the total credit in the

2Recall that the T-CRAN protocol is modeled as another layer on top of the computation; hence, it executes concurrently with the computation.
3Such a credit surrender process decreases the waiting time for any node, especially for parent nodes and CE , if they have finished their

computation earlier than their child nodes. Following that it is clear that the parent nodes are also allowed to surrender their credit to any of their
child nodes if they are active or to any active neighboring node that is executing the identical computation.

4A preference is given to neighboring nodes whose states are active.
5The time may be based on the size of the network, message transmission time, and criticality of the computation.

8

parenti = i

holdi = 50

ini[] = ∅
outi[j] = 50

COM (50)

CRi

parentj = i

holdj = 26

inj [] = ∅
outj [k] = 24

CRj

COM (24)
parentk = j

holdk = 24

ink[] = ∅
outk[] = ∅

CRk

1

(a)

parenti = i

holdi = 50

ini[k] = 12

outi[j] = 50

CRi

parentj = i

holdj = 26

inj [] = ∅
outj [k] = 24

CRj

parentk = j

holdk = 12

ink[] = ∅
outk[i] = 12

CRk

COM (12)

1

(b)

parenti = i

holdi = 62

ini[] = ∅
outi[j] = 50

CRi

parentj = i

holdj = 38

inj [] = ∅
outj [] = 0

CRj

parentk = 0

holdk = 0

ink[] = ∅
outk[] = ∅

CRk

ImP(j)

ImPC(12, 1)

AcK

AAcK

1

(c)

parenti = 0

holdi = 0

ini[] = ∅
outi[] = ∅

CRi

parentj = j

holdj = 100

inj [] = ∅
outj [] = ∅

CRj

parentk = 0

holdk = 0

ink[] = ∅
outk[] = ∅

CRkImPC(62, 0)

AcK

AAcK

1

(d)

parenti = 0

holdi = 0

ini[] = ∅
outi[] = ∅

CRi

parentj = 0

holdj = 0

inj [] = ∅
outj [] = ∅

CRj

parentk = 0

holdk = 0

ink[] = ∅
outk[] = ∅

CRk

TM TM

1

(e)

The chief executive node

Passive nodes

Active nodes

1

(f)

Figures 3a and 3b show the credit distribution phase (STEPs 1-3, STEPs 1-6 are given in Section 4.2). In Figure 3a
(STEPs 1-2), CRi initiates a computation and the T-CRAN protocol; hence, CRi becomes the chief executive
node. CRj receives a COMputation message from CRi with credit 50, holds a credit value (holdj = 26), and
further distributes the computation to CRk. In Figure 3b (STEP 3), CRk distributes the computation to CRi,
where CRi does not initialize CRk as its parent node.
Figures 3c and 3d show the credit aggregation phase (STEPs 4-5). In Figure 3c (STEPs 4-5), CRk becomes
passive and surrenders its credit to its parent CRj (using an I am Passive with Credit message, ImPC (C, z)).
CRk also sends an I am Passive message, ImP(p), to CRi, where the child node of CRk (i.e., CRi) has not
terminated its computation. Also, CRj and CRk do a three way handshake to ensure a lossless delivery of the
credit at CRj (using an AcKnowledgement message,AcK, and an Acknowledgement of AcK message,AAcK). In
Figure 3d, the chief executive node, CRi, surrenders its credit to CRj , and CRi, CRj do a three way handshake.
Now, CRj becomes the new chief executive node.
Figure 3e shows termination announcement (STEP 6), where the chief executive node, CRj , announces
termination using Termination Messages, TM , when CRj becomes passive.

Figure 3: The termination detection protocol, T-CRAN, in the absence of primary users.

9

parenti = i

holdi = 50

ini[] = ∅
outi[j] = 50

PUaffectedi
[] = ∅

C_PUaffectedi
[] = ∅

COM(50)

CRi

parentj = i

holdj = 25

inj [] = ∅
outj [] = 25

CRj

COM(25)
parentk = j

holdk = 25

ink = ∅
outk[] = ∅

CRk

1

(a)

PaN(k, 25) parentj = i

holdj = 25

inj [] = ∅
outj [] = ∅

CRj

parentk = j

holdk = 25

ink = ∅
outk[] = ∅

CRk
parenti = i

holdi = 50

ini[] = ∅
outi[j] = 50

PUaffectedi
[] = k

C_PUaffectedi
[] = 25

CRi

1

(b)

NaP (k)
parentj = i

holdj = 25

inj [] = ∅
outj [] = 25

CRj

parentk = j

holdk = 25

ink = ∅
outk[] = ∅

CRk

NaP (k)

parenti = i

holdi = 50

ini[] = ∅
outi[j] = 50

PUaffectedi
[] = ∅

C_PUaffectedi
[] = ∅

CRi

1

(c)

The chief executive node

Affected nodes
Active nodes

1

(d)

Figure 4a shows the credit distribution phase (STEPs 1-2), like in Figure 3a, and CRi becomes the chief executive
node, CE .
Figure 4b shows the presence of a PU (STEP 7, STEPs 7-8 are given in Section 4.3). CRk becomes an affected
node that does not possess any available channel. However, CRi and CRj continues the computation because
of some available channels. CRj sends a Primary user affected Nodes message (PaN(k, 25)) to CE to inform
CRk’s unavailability in the computation.
Figure 4c shows actions when a PU disappears (STEP 8), and hence, CRk again becomes a non-affected node.
CRk informs its neighbor, CRj , and CE about recovery using Nodes released by Primary user messages, NaP .

Figure 4: The termination detection protocol, T-CRAN, in the presence of primary users.

network must be C, i.e., holdCE
+ C1 + C2 + . . . + Cq = C. Also, we assume that the division of any credit

value do not result in a floating point problem, which may result in fractional loss of credits.
STEP 2: Reception of a COMputation message at a passive node. The reception of a COM (Cj) at a passive node,

say CRj , causes CRj to become active and initiate the computation. In addition, CRj holds credit Cj (in holdj
variable). CRj may also distribute the computation among neighboring node(s) with non-zero credit values
(following the procedure similar to CE). Secondly, on reception of the first COMputation message from any
node, say CRx, at a node, say CRy , the node CRy designates the node CRx as its parent node and becomes a
child of CRx.

STEP 3: Reception of COMputation messages at an active node. An active node, CRj , may receive further
COMputation messages from the nodes other than its parent, say from CRk. In such a situation, CRk does
not become the parent node of CRj . Also, the newly received credit value does not increase credit that CRj

holds (i.e., holdj). However, CRj performs the corresponding computation and keeps the received credit in an
array inj [i].

Credit aggregation. At the end of the credit distribution phase, the recipients of non-zero credits, become part of
an interaction graph, IG. When the nodes complete their computation, the credit aggregation phase is initiated. The
credit aggregation phase (see Figures 3c and 3d) consists of two steps, as follows:
STEP 4: Credit surrendering by active nodes. Once CRj finishes its computation, it surrenders its credits to the

corresponding nodes, whose states are active and had sent some credits to CRj previously. Unlike [31, 23, 39,
24], the T-CRAN protocol elevates the credit surrender process at any node by allowing the node to surrender
its credits, after the completion of its computation, to the corresponding sender nodes that are active (or vice
versa). Moreover, CRj may surrender its credit to any node whose state is active and that is executing the
identical computation, in case, its parent node and all the child nodes have become passive.
The credit surrender process reduces the waiting time for any parent node (or child nodes) that wants to terminate

10

A primary user

CRs

The chief executive node, CE

Primary user affected CRN (CRNP)Non-primary user affected CRN (CRNN)

Broken link due to a primary user

1

Figure 5: The abstract view of a primary user’s appearance in cognitive radio networks.

its computation. In fact, CE can also surrender its credit to any of its child nodes, say CRx, and CRx becomes
the new CE . In addition, CE also transfers its data structures, namely PUaffected [] and C PUaffected [] (see
Table 3), to CRx at the time of credit surrender.

STEP 5: Three-way handshake. In the absence of failures, CRi acknowledges CRj (to inform CRj that CRi has
received the credit back from CRj) using an AcKnowledgement message (AcK). CRj also acknowledges the
reception of theAcK to CRi using an Acknowledgement of AcK message (AAcK). Such a mechanism provides
a three-way handshake and ensures safe delivery of credits. However, the non-reception of anAcK at CRj , after
a timeout, causes CRj to surrender its credit to another node whose state is active. The three-way handshake
can be avoided, if there is a guarantee of message delivery at the receiving node, which is neither an affected
node nor a crashed node (using an algorithm suggested in [12]).

Termination declaration. In the beginning, any node may initiate the termination detection protocol and becomes
CE . However, once initiated, any node may take charge as CE (according to STEP 4), and the new CE declares
the final termination (see Figure 3e). In fact, between initiation and termination of any computation, there could be
multiple chief executive charge handovers in the network.
STEP 6: Termination announcement. When CE holds credit C and it has completed its computation, CE informs

all the other nodes in the interaction graph, IG, about the termination of the computation using Termination
Messages (TM). However, in any case, only a single node (i.e., CE) can announce termination (when it holds
credit C). We also relax the termination detection criteria in Section 4.4.

4.3 Detection of primary user(s)
The appearance of a PU perturbs the working of the CRs (as well as the termination detection protocol) and forces
them to tune to another available channel in their LCS . Specifically, the appearance of a PU can be visualized similar
to the network partitioning, as it partitions the network into two parts, as explained below:

• Primary user(s) affected CRN (CRNP): It is a part of the network that consists of affected nodes, which cannot
send or receive any message.

• Non-primary user(s) affected CRN (CRNN): It consists of all the CRs that have completed their computation
and surrendered their credit to the respective senders (of the credit).

In Figure 5, we show these two CRNs, namely CRNP and CRNN , where, the total credit C is the sum of credits
at CRNP and credit at CRNN . Further, CE waits for credits of affected nodes. Intuitively, the appearance of a PU
can be interpreted as follows:

• When a PU never ever leaves the channel and the nodes are unable to tune to another available channel, the state
of the affected nodes can be interpreted as a crash (that is a permanent failure).

• When a PU persists in the network for a very long time, the computation at the affected nodes can be interpreted
as excessively slowed down due to PUs.

However, both the above situations are indistinguishable for other nodes in the network. Thus, we develop an approach
that is useful to declare termination even in the presence of primary users. Note that the available hardware approaches
– match filter, energy filter, feature filter, inference temperature management [7] and spectrum sensing techniques [40,
45, 43] – are capable enough to detect the presence of PUs (by any CR). Specifically, the appearance of a PU may turn

11

a non-affected node to an affected node (see STEP 7 and Figure 4b), and when the PU leaves the channel, an affected
node becomes a non-affected node (see STEP 8 and Figure 4c), as follows:

STEP 7: Node failure due to the appearance of PUs. An affected node, say CRj , is detected by all the neighboring
nodes, whose states are active (and these neighboring nodes may be the parent node or child nodes of CRj).
All the neighboring nodes of CRj , whose states are active, inform CE about such a situation using a Primary
user affected Nodes message (PaN). Each PaN holds the identity of CRj , and the credit sent (received) to
(from) CRj . On reception of each PaN , CE enlists CRj and CRj’s credit in the corresponding data structures
(namely, PUaffected [] and C PUaffected []).
Further, all the senders of PaN messages remove credit information about CRj from their in[] or out[],
whichever the case may be. Note that, like any CR, CE can also detect its affected neighboring nodes, and
it does the same as on receiving a PaN and removes them from inCE

[] or outCE
[]. However, other PaN

messages, about the same affected nodes require the identical processing at CE .
Moreover, the reception of PaN messages is sufficient to declare termination of the computation, after a
reasonable amount of time, in case the following equation 1 holds true:

outCE
[] = ∅ ∧ inCE

[] = ∅ ∧ (holdCE
+ C PUaffectedCE

[] = C) (1)

Such a termination detection is called weak termination (see Section 4.4 for details, and the equation 1 will be
proved in Section B.2).

STEP 8: Recovery of the affected nodes. Once an affected node, say CRj , becomes a non-affected node, CRj

informs CE and all its neighboring nodes, whose states are active, using Nodes released by Primary user
messages (NaP). On reception of a NaP message at CE , CE first checks whether the computation has
terminated. If not, then CE informs CRj about the ongoing computation (with CRj’s credit value). On the
other hand, if the neighboring nodes of CRj have not completed the computation, they hold the credit back in
their respective data structures, in[] or out[], whichever the case may be. In this manner, the total credit remains
identical as it was at the time of computation initiation.

4.4 Termination declaration
Any kind of node failure (e.g., non-availability of a channel in LCS , mobility of the nodes, and crash, given in Failure
Model, Section 2) may lead to either temporary or permanent disconnection of the CRs from the network as well as
discontinuity of the computation. However, the failures are quite common in CRN. It is not surprising that such a
disconnection may leave CE to starve to collect the necessary credits for termination declaration. Hence, in order to
avoid the endless waiting at CE , CE may declare either kind of termination, as defined below:

• Strong termination infers passive state of all the CRs that were executing an identical computation and the
absence of in-transit messages. It is also called correct and safe termination announcement.

• Weak termination refers to CRNP and CRNN , where the state of all the non-affected CRs is passive, and
there is no in-transit message. Also, the disappearance of PUs (or recovery from mobility) results in the strong
termination. The main advantage of weak termination is the detection of affected nodes and to avoid endless
waiting to announce strong termination. However, our approach announces weak termination if equation 1 holds
true.
The significance of weak termination can be figured out by the following example: suppose, we start a leader
election (LE) protocol [36] in CRN that consists of 100 nodes, initially. During the execution of the LE protocol,
say 20 nodes became affected nodes. Thus, it is impractical to wait for strong termination, because a leader may
also be elected out of 80 nodes. After recovery from PUs, the remaining 20 nodes may join the network. Such
a scenario reduces the waiting time for the announcement of a leader, maintains computation continuity, and
enhances resource utilization. However, the weak termination losses its significance, when it is unable to satisfy
the safety requirements in the computation, e.g., mutual exclusion and consensus.

Two more criteria for termination in the network are also defined, as follows:

• Local termination represents termination of the computation at a node. Further, the node has surrendered its
credit to its parent, any neighbor, or any node that is executing the identical computation.

12

• Global termination represents termination of the computation at all the nodes. In other words, the local
termination at all the nodes may lead to the global termination, in case, no message is in-transit.

More specifically, two possible outcomes of termination are considerable as: global weak termination or global strong
termination.

5 The T-CRAN Protocol as Guarded Actions
We specify our T-CRAN protocol as guarded actions. A guarded action is written as: 〈Guard〉 → 〈Action(s)〉.
A guard (or predicate) of actions (or rules) is a Boolean expression, and if a guard is true, then all the actions,
corresponding to that guard, are executed in an atomic manner. At some point of time more than one guard may be
true. The T-CRAN protocol as guarded actions is given in Tables 4, 5, and 6. For the sake of simplicity, we assume
that all the guards are related to an identical session of a computation.

5.1 The credit distribution and aggregation phases
The following actions A1 through A6 define the credit distribution and aggregation phases, refer to Table 4.

A1 Computation and protocol initiation. A1 is executed on reception of a message M from outside world, and
then, a node initiates a computation and the T-CRAN protocol.

A2 Distribution of credits. In A2, CRi distributes the computation among its q (q ≤ N) neighboring nodes using q
different COMputation messages. Note that the T-CRAN protocol executes concurrently over the computation.

A3 Reception of COMputation messages. The first guard shows that CRj , whose state is passive, receives a
COMputation message for the first time from CRi. Hence, CRi becomes the parent node of CRj , and
CRj keeps credit, Cj , in variable holdj . The second guard shows that CRj , whose state is active, receives
a COMputation message from CRi. Hence, CRj does not assign CRi as its parent, and CRj keeps credit, Cj ,
in inj [i].

A4 Credit surrender. A4 is executed when a node finishes its computation and consequently becomes passive. The
first statement shows that CRj sends I am Passive with Credit messages to all the k nodes whose states are
active and they had sent some credits to CRj .
The first guard becomes true when CE becomes passive. CE sends I am Passive messages (ImP(p)) to all
its child nodes with the information of the new CE . In addition, the old CE sends an I am Passive with
Credit message to the new CE and executes the function Three-wayHandshake() to ensure delivery of its credit
(holdCE

) to the new CE .
The second guard becomes true when CRj becomes passive and CRj is not the chief executive node. CRj

informs all its child nodes about the new parent node using Imp(p) messages. Also, CRj sends an I am Passive
with Credit message to its parent node with its credit (holdj) and executes the function Three-wayHandshake()
to ensure delivery of its credit.
The third guard becomes true when CRj becomes passive and its parent node is also passive. However, there is
at least a node CRk′ in outj [] or inj [] whose state is active. CRj sends its credit to CRk′ using an I am Passive
with Credit message and executes the function Three-wayHandshake(). Also, CRj sends ImP(p) messages to
all the nodes whose states are active and in outj [].
The forth guard becomes true when CRj becomes passive, its parent node is also passive, and there is no node
in outj [] or inj [] whose state is active. CRj sends its credit to CRz′ using an I am Passive with Credit message
and executes the function Three-wayHandshake(). When CRz′ is selected, a priority is given to a node that is
executing the same computation as CRj .

A5 Reception of ImPC (C, b) messages. The reception of I am Passive with Credit messages at CRj is shown in
A5. The first guard becomes true when CRj receives ImPC (C, b) messages from its child nodes that do not
have any child node. The second guard becomes true when CRj receives ImPC (C, b) messages from its child
nodes that have some child nodes. The third guard becomes true when CRj receives an ImPC (C, b) from its
parent node. The forth guard becomes true when CRj receives ImPC (C, b) messages from any node that is
executing the same computation as CRj is executing. In all the cases, CRj also sends an AcK to CRi, and if

13

Notations: SEND i(m, j): CRi sends a message m to CRj , STATE(i): current state of CRi, i.e., either active or passive, te: value
of timeout. All the data structures have usual meanings (see Table 3 for details of the data structures).

A1. Computation and protocol initiation. CRi receives a message M from outside world→
parenti := i, holdi := C, ini[] := ∅, outi[] := ∅, sessioni := x

A2. Distribution of credits. CRi sends COMputation messages to its q (q ≤ N) neighboring nodes→
parenti := i, holdi := Ci, ini[] := ∅, outi[1, 2, . . . , q] := {C1, C2, . . . , Cq}, sessioni := x,
for all q neighboring nodes SEND i(COM(Cp), p)

A3. Reception of COMputation messages. CRj receives a COMputation message (COM (Cj)) from CRi →
[]parentj = ∅ ∧ STATE(j) = PASSIVE → parentj := i, holdj := Cj , inj [] := ∅, outj [] := ∅, sessionj := x
[]parentj = CRa ∧ STATE(j) = ACTIVE ∧ holdj := Ca → parentj := CRa, holdj := Ca, inj [i] := Cj ,
outj [] := ∅, sessionj := x

A4. Credit surrender. CRj becomes idle→
∀k : k ∈ inj [] ∧ STATE(k) = ACTIVE → SEND i(ImPC(ini[k], 0), k), Three-wayHandshake(),
[]parentj = j → (//A case to show when CRj is the chief executive node)

SENDj(ImP (z), y), (//where y are the total nodes in outj [] \ z, whose states are active, and z is the new CE that also belongs to outj [])

SENDj(ImPC(holdj , b), z), (//b represents the total child nodes of CRj , whose states are active, except z)

Three-wayHandshake(),

[]parentj 6= j ∧ STATE(parentj) = ACTIVE → (//A case to show when CRj is not the chief executive node)

SENDj(ImPC(holdj , k
′), parentj)), Three-wayHandshake(),

∀k′ : k′ ∈ outj [] ∧ STATE(k′) = ACTIVE → (k′ represents child nodes of CRj whose states are active)

SENDj(ImP (parentj), k
′),

[]parentj 6= j ∧ STATE(parentj) = PASSIVE ∧ (∃!k′ : k′ ∈ outj [] ∨ inj []) ∧ STATE(k′) = ACTIVE →
(//A case to show when CRj is not CE , parentj is passive, and there is at least one child node of CRj)

SENDj(ImPC(holdj , k
′′), k′), Three-wayHandshake(), SENDj(ImP (k′), k′′), (// k′′ ∈ outj [] \ k′)

[]parentj 6= j ∧ STATE(parentj) = PASSIVE ∧ (@!k′ : k′ ∈ outj [] ∨ inj []) ∧ STATE(k′) = ACTIVE →
(//A case to show when CRj is not CE , parentj is passive, and there is no child node of CRj)

SENDj(ImPC(holdj , 0), z
′), Three-wayHandshake(), (//where z′ is a node that is executing the same computation as CRj did)

parentj = 0, holdj := 0, inj[i] := ∅, outj[] := ∅, sessionj := x

A5. Reception of ImPC (C, b) messages. CRj receives ImPC (C, b) from CRi →
[]parenti = j ∧ b = 0→ holdj := holdj + C + inj [i], outj [i] := ∅, inj [i] := ∅
[]parenti = j ∧ b 6= 0→ holdj := holdj + C + inj [i], outj [i] := ∅, outj [] = outj [] ∪ outi[], inj [i] := ∅
[]parentj = i→ parentj := j, holdj := holdj + C + inj [i], outj [] = outj [] ∪ outi[], inj [i] := ∅
[]parentj 6= i ∧ parenti 6= j ∧ b = 0→ holdj := holdj + C
SENDj(AcK, i),
Wait for a te or an AAcK from CRi,
if te ∧ ¬AcK then

send a special message to CE (This special message avoids multiple credit surrender by CRi to different nodes.)

A6. Reception of ImP(p) messages. CRj receives ImP(p) from CRi →
[]parentj = i→ parentj := p
[]parentj 6= i→ holdj := holdj + inj [i], inj [i] := ∅

Function Three-wayHandshake(){
Wait for a te or AcK,
if te ∧ ¬AcK then SENDj(ImPC(holdj , b), z

′), (//where z′ is the new CE)

else SENDj(AAcK, z)}

Table 4: The credit distribution and aggregation phases.

14

Notations: SEND i(m, j): CRi sends a message m to CRj , STATE(i): current state of CRi, i.e., either active or passive,
Neighbor i[]: neighboring nodes of CRi that are executing the same computation as CRi. All the data structures have usual meanings
(see Table 3 for details of the data structures).

B1. Appearance of a PU. A primary user appears on channels→
[]LCSi 6= ∅ → CRi leaves the channel and tune to another available channel
[]LCSi = ∅ → CRi becomes an affected nodes and is not allowed to send and receive messages,
∀k ∈ Neighbor i[] ∧ STATE(k) = ACTIVE → SENDk(PaN,CE), where a PaN holds 〈CRi, ink[i], outk[i]〉,
ink[i] = ∅, outk[i] = ∅

B2. Reception of PaN messages. CE receives a PaN that holds 〈CRi, ink[i], outk[i]〉 →
PUaffectedCE

[i] := CRi, C PUaffectedCE
[i] := 〈ink[i], outk[i]〉

B3. Disappearance of a PU. A primary users disappear from channels→
LCSi 6= ∅, SEND i(NaP,CE), ∀k ∈ Neighbor i[] ∧ STATE(k) = ACTIVE → SEND i(NaP, k)

B4. Reception of NaP messages from CRj .
[]i = CE ∧ sessionCE = x ∧ STATE(CE) = ACTIVE →
PUaffectedCE

[j] := ∅, C PUaffectedCE
[j] := ∅,SENDCE (m,CRj)

[]i 6= CE ∧ j ∈ Neighbor i[] ∧ sessioni = x ∧ STATE(i) = ACTIVE → SEND i(m
′, CE)

Table 5: The appearance and disappearance of primary users.

CRj does not receive an AAcK from CRi, it sends a special message to CE that is used to balance the credit
in the system. (The working of this special message is shown in Figure 10).

A6 Reception of ImP(p) messages. The reception of I am Passive messages at CRj is given in A6. The first guard
is related to the arrival of an ImP(p) at a child node CRj from its parent node, and the second guard is related
to the arrival of an ImP(p) from any node other than its parent node.

5.2 The appearance and disappearance of primary users
The following actions B1 through B4 are related to the appearance and disappearance of primary users on channels,
refer to Table 5.

B1 Appearance of a PU. B1 becomes true when a PU appears on a channel. The first guard becomes true when CRi

has some channels in its LCS and tunes to one of them. The second guard becomes true when CRi’s LCS is
empty; hence, CRi becomes an affected node. In addition, all the k neighbors, whose states are active, of the
affected node CRi send PaN messages to CE .

B2 Reception of PaN messages. When CE receives PaN messages, it places the affected nodes and their credits,
which are received with PaN messages, in the respective data structures.

B3 Disappearance of a PU. When a PU leaves the channel, all the affected nodes become non-affected nodes, and
they send NaP messages to CE and all its neighboring nodes, whose states are active.

B4 Reception of NaP messages from CRj . The reception of a NaP at CE , from any node, notifies the absence of
PU(s). The first guard becomes true when CE receives NaP messages for the current computation. CE removes
the sender of the NaP (that is CRj) from its PUaffected [] and informs CRj about the ongoing computation. The
second guard becomes true when the neighboring nodes of CRi receive NaP messages. All the receiver nodes
send a special message m′ to CE that is a request to receive back the credit that they had sent earlier when CRi

was an affected node.

5.3 The termination announcement
The actions C1 and C2 represent termination detection in the networks, refer to Table 6.

15

C1. Global weak termination.
outCE [] = ∅ ∧ inCE [] = ∅ ∧ (holdCE + C PUaffectedCE

[] = C) ∧ STATE(CE) = PASSIVE →
Announce global weak termination

C2. Global strong termination.
outCE [] = ∅ ∧ inCE [] = ∅ ∧ C PUaffectedCE

[] = ∅ ∧ holdCE = C ∧ STATE(CE) = PASSIVE →
Announce global strong termination

Table 6: The termination announcement.

C1 Global weak termination. C1 announces the global weak termination when only a single node (that is CE) has
the credit C, which was distributed at the time of computation initiation, in its holdCE

and C PUaffected [].
C2 Global strong termination. C2 announces the global strong termination when CE contains the total credit C,

which was distributed at the time of computation initiation, in its holdCE
, no credit in C PUaffected [], and CE

has become passive.

6 The Working of the T-CRAN protocol

Nodes Local Channel Sets (LCS)

1 2, 3, 5

2 3, 5, 6, 9

3 5

4 5

5 5, 7, 9

6 5, 9

Table 7: Local channel sets of all the
nodes.

In Figures 6 and 7, a sample execution of the T-CRAN protocol is
represented in the absence and presence of a primary user, respectively.
The local channel set for every node is given in Table 7, where boldface
characters show the currently tuned channel at the respective nodes.
Actions A1 to A6, actions B1 to B4, and actions C1, C2 are given in
Tables 4, 5, and 6. Also, all the nodes are in the transmission range of
each other.

In Figure 6a, cognitive radio node 1 initiates an assigned computation
and the T-CRAN protocol, hence, behaves as the chief executive node,
CE . Node 1 sends a COMputation message (COM (0.9)) to node 2,
and node 1 holds a credit value 0.1. Further, nodes 2, 3, 4, and 5 also
distribute the computation with some credit values and initialize their
respective data structures (A1, A2, and first guard of A3). Note that, ini[] array of all the nodes is empty initially, and
the sum of credits at nodes 1-6 equals 1.

In Figure 6b, node 5 sends a COMputation message (COM (0.1)) to node 3. The reception of COM (0.1) initializes
in3[5] array variable at node 3 and corresponding entry in out5[3] (second guard of A3). Also, node 6 sends two
COMputation messages to nodes 4 and 3.

In Figure 6c, node 5 becomes passive and surrenders its credit (contained in variable hold5) to its parent node 4 via
an I am Passive with Credit message, ImPC (0.1, 1) (second guard of A4). In addition, node 5 sends two I am Passive
messages (ImP(4)) to its child nodes 3 and 6. These I am Passive messages hold information of the new parent node
4. The reception of ImPC (0.1, 1) at node 4 triggers second guard of A5. The reception of ImP(4) triggers first guard
of A6 at node 6 so that node 6 assigns node 4 as its parent node, and second guard of A6 at node 3 so that node 3 holds
0.2 credits. Note that we are not showing the three way handshake for clarity of figures, interested readers can look
ahead to Figure 10 to see the working of the three-way handshake.

In Figure 6d, node 3 becomes passive and sends: (i) an ImPC (0.2, 0) to node 6 (the first line of A4), and node 6
holds back 0.3 credits (first guard of A5), (ii) an ImPC (0.1, 1) to its parent node 2 (second guard of A4), and node 2
holds 0.3 credits now (second guard of A5), (iii) an ImP(2) to node 4 (second guard of A4), and node 4 assigns node
2 as its parent node (first guard of A5).

In Figure 6e, node 6 becomes passive and surrenders its credit to node 4 (second guard of A4). Node 4 holds
0.6 credits now (first guard of A5). In Figure 6f, node 4 becomes passive and surrenders its credit to node 2 via an
ImPC (0.6, 0) (second guard of A4).

In Figure 6g, the chief executive node 1 becomes passive and surrenders its credit to node 2 (first guard of A4),
and node 2 now becomes the new chief executive node, holds credit 1 (third guard of A5). Once the node 2 finishes its
computation, node 2 announces the global strong termination (according to C2).

16

2
COM (0.9)

1 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

parent2 = 1

hold2 = 0.1

in2[] = ∅
out2[3] = 0.8

parent3 = 2

hold3 = 0.1

in3[] = ∅
out3[4] = 0.7

parent4 = 3

hold4 = 0.1

in4[] = ∅
out4[5] = .6 parent5 = 4

hold5 = 0.2

in5[] = ∅
out5[6] = 0.4

parent6 = 5

hold6 = 0.4

in6[] = ∅
out6[] = ∅

COM (0.8)

COM (0.7)

COM (0.4)

COM (0.6)

1

(a)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

parent2 = 1

hold2 = 0.1

in2[] = ∅
out2[3] = 0.8

parent3 = 2

hold3 = 0.1

in3[5, 6] = {.1, .2}
out3[4] = 0.7

parent4 = 3

hold4 = 0.1

in4[6] = 0.1

out4[5] = .6 parent5 = 4

hold5 = 0.1

in5[] = ∅
out5[6] = 0.4

parent6 = 5

hold6 = 0.1

in6[] = 0

out6[3, 4] = {0.2, 0.1}

COM(.1)

COM(.2)

COM(.1)

1

(b)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

parent2 = 1

hold2 = 0.1

in2[] = ∅
out2[3] = 0.8

parent3 = 2

hold3 = .1 + .1 = .2

in3[5] = 0.2

out3[7] = 0.7

parent4 = 3

hold4 = 0.1 + 0.1 = 0.2

in4[6] = 0.1

out4[6] = .3 parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 4

hold6 = 0.1

in6[] = 0

out6[3, 4] = {0.2, 0.1}

ImP(4)

ImP(4)

ImPC(0.1, 1)

1

(c)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1 = ∅
out1[2] = 0.9

parent2 = 1

hold2 = .1 + .2 = .3

in2[] = ∅
out2[4] = 0.6

parent3 = 0

hold3 = 0

in3[] = ∅
out3[] = 0

parent4 = 2

hold4 = 0.2

in4[6] = 0.1

out4[] = .3 parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 4

hold6 = 0.3

in6[] = ∅
out6[4] = 0.1

ImP(2)

ImPC(0.2, 0)

ImPC(.2, 1)

1

(d)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

parent2 = 1

hold2 = 0.3

in2 = 0

out2[4] = 0.6

parent3 = 0

hold3 = 0

in3[] = ∅
out3[] = ∅

parent4 = 2

hold4 = .2 + .3 + .1 = .6

in4[] = ∅
out4[] = ∅ parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 0

hold6 = 0

in6[] = ∅
out6[] = ∅

ImPC (0.3, 0)

1

(e)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

parent2 = 1

hold2 = .3 + .6 = .9

in2[] = ∅
out2[] = ∅

parent3 = 0

hold3 = 0

in3[] = ∅
out3[] = ∅

parent4 = 0

hold4 = 0

in4[] = ∅
out4[] = ∅ parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 0

hold6 = 0

in6[] = ∅
out6[] = ∅

ImPC (0.6, 0)

1

(f)

21 3

4

6

5
parent1 = 0

hold1 = 0

in1[] = ∅
out1[] = ∅

parent2 = 2

hold2 = .9 + .1 = 1

in2[] = ∅
out2[] = ∅

parent3 = 0

hold3 = 0

in3[] = ∅
out3[] = ∅

parent4 = 0

hold4 = 0

in4[] = ∅
out4[] = ∅ parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 0

hold6 = 0

in6[] = ∅
out6[] = ∅

ImP(∅)

1

(g)

The chief executive node

Active nodes
Passive nodes

1

(h) Notations

Figure 6: The Working of the T-CRAN protocol in the absence of PUs.

17

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

PUaffected [] = ∅
C_PUaffected [] = ∅

parent2 = 1

hold2 = 0.1

in2[] = ∅
out2[3] = 0.8

parent3 = 2

hold3 = 0.2

in3[6] = 0.2

out3[4] = 0.7

parent4 = 3

hold4 = 0.2

in4[6] = 0.1

out4[6] = .3 parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 4

hold6 = 0.1

in6[] = ∅
out6[3, 4] = {0.2, 0.1}

PU

1

(a)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[2] = 0.9

PUaffected [] = 3, 4

C_PUaffected [3, 4] = {0.4, .0.3}

parent2 = 1

hold2 = 0.2

in2[] = ∅
out2[3] = 0.8

parent3 = 2

hold3 = 0.2

in3[6] = 0.2

out3[4] = 0.7

parent4 = 3

hold4 = 0.2

in4[6] = 0.1

out4[5] = ∅ parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 0

hold6 = 0

in6[] = ∅
out6[] = ∅

PU

ImPC (0.1, 0), PaN

PaN

1

(b)

21 3

4

6

5
parent1 = 1

hold1 = 0.1

in1[] = ∅
out1[] = ∅
PUaffected [] = {3, 4}
C_PUaffected [3, 4] = {0.4, 0.3}

parent2 = 0

hold2 = 0

in2[] = ∅
out2[] = ∅

parent3 = 2

hold3 = 0.2

in3[6] = .2

out3[4] = 0.7

parent4 = 3

hold4 = 0.2

in4[6] = 0.1

out4[6] = .3 parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 0

hold6 = 0

in6[] = ∅
in6[] = ∅

PUImPC(0.2, 0)

1

(c)

21 3

4

6

5
parent1 = 1

hold1 = 0.3

in1[] = ∅
out1[] = ∅
PUaffected [] = ∅
C_PUaffected [] = ∅

parent2 = 0

hold2 = 0

in2[] = ∅
out2[] = ∅

parent3 = 0

hold3 = .2 + .2 = .4

in3[] = ∅
out3[4] = 0.7

parent4 = 3

hold4 = 0.2 + 0.1 = 0.3

in4[] = ∅
out4[] = ∅ parent5 = 0

hold5 = 0

in5[] = ∅
out5[] = ∅

parent6 = 0

hold6 = 0

in6[] = ∅
out6[] = ∅

NaP

NaP

NaP

1

(d)

Passive nodesActive nodes An affected node The chief executive node

1

(e) Notations

Figure 7: The Working of the T-CRAN protocol in the presence of PUs.

Figure 7 shows the presence of a PU. Figure 6c, where there is no PU, turns to Figure 7a in the presence of a PU,
where nodes 3 and 4 are affected nodes (second guard of B1). In Figure 7b, nodes 6 and 2 detect affected nodes 4 and
3, and inform node 1 using PaN messages (second guard of B1), and node 1 places information of the affected nodes
3, 4 in the respective data structures (according to B2). In addition, node 6 surrenders its credit to node 2 (forth guard
of A4).

In Figure 7c, node 2 becomes passive and surrenders its credit to node 1 (second guard of A2). Now, node 1 holds
the credit value 1, which was distributed at the time of computation’s initiation, in hold1 and C PUaffected [], and this
condition is sufficient to announce the global weak termination after a timeout (according to C1). In Figure 7d, the
primary user disappears, and nodes 3, 4 inform node 1 (CE) and ask about the ongoing computation (according to
B3). Node 1 informs them and deletes their entry from PUaffected and C PUaffected [], and then, the sum of credits at
node 1, 3, and 4 equal to 1.

7 Conclusion
A termination detection protocol, T-CRAN, for an asynchronous multi-hop cognitive radio networks is presented. The
T-CRAN protocol is capable enough to work on heterogeneous channels, and it can also handle multiple computations
simultaneously. The T-CRAN protocol is based on credit distribution and aggregation approach. The proposed protocol
uses a new kind of logical structure, called the virtual tree-like structure. In the virtual tree-like structure, a node may
surrender its credit to any node (not necessarily to its parent node) that is executing the identical computation. This
credit surrender approach significantly reduces the waiting time to announce termination. Further, it is not mandatory
for the initiator of the protocol (i.e., the first root node of the virtual tree-like structure) to stay involved until the
termination of the computation. Hence, the protocol may witness different root nodes at different time instants, during
the course of termination announcement.

The proposed protocol can also be implemented in dynamic networks, e.g., cellular, mobile ad hoc networks,
and vehicular ad hoc networks. The proposed virtual tree-like structure is also able to decrease the waiting time

18

to announce termination in dynamic networks, which is a desirable requirement in dynamic networks, due to its
flexible credit surrender approach. Moreover, the virtual tree-like structure can substitute the conventional tree
structures in various distributed computations, e.g., snapshot, global-state, leader election, message ordering, and
group communication.

References
[1] Available at: http://research.microsoft.com/en-us/projects/spectrum/fcc_dynamic_

spectrum_access_noi_comments.pdf.
[2] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery model. Distributed

Computing, 13(2):99–125, 2000.
[3] I. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. A survey on spectrum management in cognitive radio

networks. Communications Magazine, IEEE, 46(4):40–48, April 2008.
[4] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury. CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks,

7(5):810–836, 2009.
[5] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next generation/dynamic spectrum access/cognitive radio

wireless networks: A survey. Computer Networks, 50(13):2127–2159, 2006.
[6] T. Bansal, N. Mittal, and S. Venkatesan. Leader election algorithms for multi-channel wireless networks. In

WASA, pages 310–321, 2008.
[7] D. Cabric, S. Mishra, and R. Brodersen. Implementation issues in spectrum sensing for cognitive radios. In

Signals, systems and computers, 2004. Conference record of the thirty-eighth Asilomar conference on, volume 1,
pages 772–776, 2004.

[8] M. Cesana, F. Cuomo, and E. Ekici. Routing in cognitive radio networks: Challenges and solutions. Ad Hoc
Networks, 9(3):228–248, 2011.

[9] S. Chandrasekaran and S. Venkatesan. A message-optimal algorithm for distributed termination detection. J.
Parallel Distrib. Comput., 8(3):245–252, 1990.

[10] R. F. DeMara, Y. Tseng, and A. Ejnioui. Tiered algorithm for distributed process quiescence and termination
detection. IEEE Trans. Parallel Distrib. Syst., 18(11):1529–1538, 2007.

[11] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computations. Information Processing
Letters, 11(1):1–4, 1980.

[12] S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil. Stabilizing data-link over non-FIFO channels with
optimal fault-resilience. volume 111, pages 912–920, 2011.

[13] K. Erciyes and G. Marshall. A cluster based hierarchical routing protocol for mobile networks. In Computational
Science and Its Applications–ICCSA 2004, pages 528–537. Springer, 2004.

[14] Federal Communications Commission, 445 12th Street, SW Washington, DC 20554. MOBILE BROADBAND:
THE BENEFITS OF ADDITIONAL SPECTRUM, OCTOBER 2010.

[15] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process. J.
ACM, 32(2):374–382, 1985.

[16] C. Fortuna and M. Mohorcic. Trends in the development of communication networks: Cognitive networks.
Computer Networks, 53(9):1354–1376, 2009.

[17] N. Francez. Distributed termination. ACM Trans. Program. Lang. Syst., 2(1):42–55, Jan. 1980.
[18] S. Ghosh. Distributed Systems: An Algorithmic Approach. Chapman & Hall/CRC Computer & Information

Science Series. Taylor & Francis, 2010.
[19] E. Godard, Y. Métivier, M. Mosbah, and A. Sellami. Termination detection of distributed algorithms by graph

relabelling systems. In ICGT, pages 106–119, 2002.
[20] S. Haykin. Cognitive radio: brain-empowered wireless communications. Selected Areas in Communications,

IEEE Journal on, 23(2):201–220, 2005.
[21] E. Hossain, D. Niyato, and Z. Han. Dynamic spectrum access and management in cognitive radio networks.

Cambridge University Press, 2009.
[22] S.-T. Huang. Detecting termination of distributed computations by external agents. In ICDCS, pages 79–84,

1989.

19

 http://research.microsoft.com/en-us/projects/spectrum/fcc_dynamic_spectrum_access_noi_comments.pdf.
 http://research.microsoft.com/en-us/projects/spectrum/fcc_dynamic_spectrum_access_noi_comments.pdf.

[23] S.-T. Huang and P.-W. Kao. Detecting termination of distributed computations by external agents. J. Inf. Sci.
Eng., 7(2):187–201, 1991.

[24] P. Johnson and N. Mittal. A distributed termination detection algorithm for dynamic asynchronous systems. In
ICDCS, pages 343–351, 2009.

[25] S. Katiyar and S. Karmakar. A simple scheme for termination detection in delay tolerant networks. In ICCSN,
pages 478–482, 2011.

[26] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Algorithms, and Systems. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[27] H. Kurian, A. Rakshit, and G. Singh. Detecting termination in pervasive sensor networks. In ISADS, pages
323–332, 2009.

[28] A. Liotta. The cognitive NET is coming. Spectrum, IEEE, 50(8):26–31, August 2013.
[29] Q. Mahmoud. Cognitive Networks: Towards Self-Aware Networks. Wiley-Interscience, 2007.
[30] J. Matocha and T. Camp. A taxonomy of distributed termination detection algorithms. Journal of Systems and

Software, 43(3):207–221, 1998.
[31] F. Mattern. Global quiescence detection based on credit distribution and recovery. Inf. Process. Lett.,

30(4):195–200, 1989.
[32] J. Misra and K. M. Chandy. Termination detection of diffusing computations in communicating sequential

processes. ACM Trans. Program. Lang. Syst., 4(1):37–43, 1982.
[33] N. Mittal, F. C. Freiling, S. Venkatesan, and L. D. Penso. On termination detection in crash-prone distributed

systems with failure detectors. J. Parallel Distrib. Comput., 68(6):855–875, 2008.
[34] N. Mittal, S. Krishnamurthy, R. Chandrasekaran, S. Venkatesan, and Y. Zeng. On neighbor discovery in cognitive

radio networks. J. Parallel Distrib. Comput., 69(7):623–637, 2009.
[35] S. Sharma and A. K. Singh. On detecting termination in cognitive radio networks. In PRDC, pages 71–78, 2011.
[36] A. K. Singh and S. Sharma. Elite leader finding algorithm for MANETs. In ISPDC, pages 125–132, 2011.
[37] R. W. Topor. Termination detection for distributed computations. Inf. Process. Lett., 18(1):33–36, 1984.
[38] Y.-C. Tseng. Detecting termination by weight-throwing in a faulty distributed system. J. Parallel Distrib.

Comput., 25(1):7–15, 1995.
[39] Y.-C. Tseng and C.-C. Tan. Termination detection protocols for mobile distributed systems. IEEE Trans. Parallel

Distrib. Syst., 12(6):558–566, 2001.
[40] R. Urgaonkar and M. J. Neely. Opportunistic scheduling with reliability guarantees in cognitive radio networks.

IEEE Trans. Mob. Comput., 8(6):766–777, 2009.
[41] B. Wang and K. Liu. Advances in cognitive radio networks: A survey. Selected Topics in Signal Processing,

IEEE Journal of, 5(1):5–23, 2011.
[42] J. Wang, M. Ghosh, and K. S. Challapali. Emerging cognitive radio applications: A survey. IEEE

Communications Magazine, 49(3):74–81, 2011.
[43] W. Wang, H. Li, Y. L. Sun, and Z. Han. Securing collaborative spectrum sensing against untrustworthy secondary

users in cognitive radio networks. EURASIP J. Adv. Sig. Proc., 2010, 2010.
[44] A. M. Wyglinski, M. Nekovee, and Y. T. Hou. Cognitive Radio Communications and Networks: Principles and

Practice. Academic Press, 2009.
[45] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang. A review on spectrum sensing for cognitive radio: Challenges

and solutions. EURASIP J. Adv. Sig. Proc., 2010, 2010.
[46] Y. Zeng, N. Mittal, S. Venkatesan, and R. Chandrasekaran. Fast neighbor discovery with lightweight termination

detection in heterogeneous cognitive radio networks. In ISPDC, pages 149–156, 2010.

A Complexity Analysis
We analyze our protocol in terms of message complexity and time complexity. Message complexity is defined in terms
of the total number of control messages that are used in our protocol. Time complexity is defined in terms of the time
elapsed between the initiation of the protocol and the announcement of termination. Notations used to analyze our
protocol are given in Table 8.

20

Notations Description

N The total number of the cognitive radio nodes in the network.

4 Maximum degree of a nodes in the network.

Height Maximum height of the virtual tree-like structure.

Nleave The total number of nodes that can leave the network during the protocol execution.

Naffected Maximum number of nodes that are affected during the protocol execution.

Nneighbor Maximum number of neighboring nodes that are executing the same computation.

Table 8: Notations used in the complexity analysis of the T-CRAN protocol.

Messages Complexity

COMputation message O(N ×4)

I am Passive with Credit message O(Nneighbor ×Nleave)

I am Passive message O((Nneighbor − 1)×Nleave)

Primary user affected Nodes message O(Nneighbor ×Naffected)

Nodes released by Primary user message O((Nneighbor + 1)×Naffected)

AcKnowledgement message O(Nneighbor ×Nleave)

Acknowledgement of AcK message O(Nneighbor ×Nleave)

Table 9: Message complexity of the T-CRAN protocol.

A.1 Message complexity
We are using eight types of messages in our protocol (see Table 2). We analyze each message separately, except the
Termination Message (TM). The TM is sent by CE (when CE receives back credit C that was used at the time of
credit distribution) to all the nodes of the interaction graph to declare termination of the computation. Since TM can
be broadcasted to all the nodes in a unit time, we ignore to analyze this message. The message complexity of each
message is also given in Table 9.
• COMputation message (COM (C)): A node may send COM (C) messages to all its neighboring nodes to

distribute the computation. Since there are N nodes in CRN and the maximum allowable degree of a node is4,
O(N ×4) COMputation messages can be exchanged in the protocol.

• I am Passive with Credit message (ImPC (C, b)): A node sends an ImPC (C, b) to its parent node, if the
parent node is active, and to all the neighboring nodes, whose states are active and had sent credits to the
node previously. Since at most Nneighbor nodes of a node may execute the same protocol and at most Nleave

nodes may leave the network, the message complexity of ImPC (C, b) is O(Nneighbor ×Nleave).
• I am Passive message (ImP(p)): A node sends ImP(p) messages to all its child nodes, whose states are active.

Since a single node sends at most (Nneighbor − 1) ImP(p) messages and at most Nleave nodes may leave the
network, the message complexity of ImP(p) is O((Nneighbor − 1)×Nleave).

• AcKnowledgement message (AcK) and Acknowledgement of AcK message (AAcK): An AcK and an AAcK
is generated in response to an ImPC (C, b); hence, O(Nneighbor × Nleave) AcK and AAcK messages can be
generated in the protocol.

We also present the total number of non-control messages, as follows:
• Primary user affected Nodes message (PaN): All the neighboring nodes of an affected node, whose states are

active, send PaN messages to CE . Since at most Nneighbor nodes of at most Naffected nodes may send PaN
messages, the message complexity of PaN is O(Nneighbor ×Naffected).

• Nodes released by Primary user message (NaP): After recovery, the affected node sends PaN messages to its
neighboring node and CE . Since at most Nneighbor and CE receive PaN messages from Naffected nodes, the
message complexity of NaP is O((Nneighbor + 1)×Naffected).

A.2 Time complexity
There are three types of nodes in the network: (i) nodes whose out[] = ∅, (ii) CE , and (iii) node whose out[] 6= ∅
or in[] 6= ∅ and they are not the chief executive node. The nodes with out[] = ∅ may leave the network when they
finish their computation by sending ImPC (C, b) messages to at most Nneighbor nodes. Similarly, CE may also leave

21

by sending ImPC (C, b) or ImP(p) messages to at most Nneighbor nodes. Also, the node other than CE that has
out[] 6= ∅ or in[] 6= ∅ exchanges at most Nneighbor messages before leaving the network. We assume that all the
messages are delivered in a unit time. Hence, in the failure-free network, all the nodes of the network takeO(Height)
time to leave the network that results in global strong termination declaration. However, the presence of PUs increases
termination latency. In such scenarios, the declaration of global weak termination would be delayed according to the
value of timeout.

B Correctness Proof
We first provide the system invariants; afterward, we prove the safety and liveness properties of the T-CRAN protocol.
We also prove an impossibility result that the appearance of a primary user on a single channel may defy termination
forever.

B.1 System invariants
Invariant 1 Let, STATE (i) represents the state of CRi, which may be active or passive. For CRi, holdi = 0
indicates passive state of CRi and vice versa. Also, holdi 6= 0 indicates active state of CRi and vice versa.

∀i : holdi = 0⇔ STATE (i) = PASSIVE , ∀i : holdi 6= 0⇔ STATE (i) = ACTIVE

Invariant 2 In CRN, the sum of credits at the nodes and credits associated with in-transit messages must be C.

∀i, j ∈ v : holdi + holdj + ini[] + inj [] + SEND i(m, j) + SENDj(m), i) = C

where, m can be a COMputation message or an I am Passive with Credit message.

Invariant 3 The global strong termination can be declared, in case, there is no PUs in CRN. Thus, only a single CRi

contains credit value C if the node is the chief executive node and there is no in-transit message, m, in the global
channel set, GCS .

∃i,∀j : j ∈ n, i ∈ j :: holdi = C ⇔ i = CE ∧ STATE (j) = PASSIVE ∧m /∈ GCS

Invariant 4 For the global weak termination, the total credit value C is known to CE . However, C is distributed
among CE and the affected nodes.

outCE
[] = ∅ ∧ inCE

[] = ∅ ∧ (holdCE
+ C PUaffectedCE

[] = C)

B.2 Safety property
The safety property ensures that in no case a node other than CE announces termination if the computation has indeed
terminated. In order to prove the safety property, we consider all the possible cases that may negate the system
invariants and violate the safety requirements, as follows:

1. The incorrect recovery from any failure (e.g., the appearance of PUs, mobility, and crash) may temporarily
falsify Invariants 2, 3, and 4. Lemma 5 and Lemma 6 assert that the incorrect recovery from any failure does
not violate the safety requirements.

2. Before reaching the actual termination, the value of holdCE
= C or holdCE

> C, then Invariant 3 or Invariant 4
are violated. Lemma 7 and Lemma 8 ensure that CE holds credit C in case of global strong termination and the
credit less than C in case of global weak termination.

The proofs of Lemmas 5- 8 guarantee the safety requirements of the T-CRAN protocol. The following Lemma 5 and
Lemma 6 prove that the nodes do not violate the safety requirements on their recovery.

22

Lemma 5 The reception of stale messages, m〈session,∗〉, at the nodes do not increase credit value C forever, which
violates the safety requirements of the T-CRAN protocol.

Proof. Assume that on recovery,6 CRi receives stale messages, m〈session,∗〉 = m〈x,∗〉, from unreliable channels
or other recovered nodes. The reception of m〈x,∗〉 at CRi is able to execute the computation and transmission of
m〈x,∗〉, in case sessioni ≤ x. For the contrary, we assume that a node receives a stale message, m〈x,∗〉, executes the
computation and propagates m〈x,∗〉. We now prove that the reception of stale messages does not violate the safety
requirements, as follows:

CRi can further distribute the computation or surrender credit after completion of its computation among its
neighboring nodes, in response to m〈x,∗〉. The neighboring node CRj of CRi may be a recovered node or unaware
of the just terminated computation whose session = x. Hence, the recipient CRj can also behave similar to CRi.
However, one of the nodes in the network or CE terminates the flow of m〈x,∗〉 due to sessionCE

6= x (Action A4 in
Table 4).

Hence, the system maintains Invariant 2, and once the credit is greater than C, it is detected by some nodes; thus
stale messages cannot violate the safety requirements of the T-CRAN protocol. �

The following assumptions help us to prove Lemma 6: we use four different time instants α, β, γ, and δ such that
α < β < γ (all the other lemmas will also use these time instances) and three nodes CRi, CRj and CRk that are
neighbors of each other. CRi initiates the T-CRAN protocol at time α among CRj and CRk with session = x. Under
a fault-free scenario, at time γ, CRi announces global strong termination. Suppose, CRk becomes an-affected node
at time β.

Lemma 6 On recovery, the initiation of a node in active or passive state does not result in false termination.

Proof. We first mention all the possible situations that may exist at the time of transition of a node from an affected
node to a non-affected node or vice versa, which may announce false termination. Afterward, we prove that none of
these situations can lead to the violation of the safety requirements in our protocol.

CASE 1 CRk is not able to recover, i.e., CRk is an affected node for a very long time.
CASE 2 CRk recovers, due to availability of another available channel in LCSk or disappearance of the PU, at time

δ, where δ ¡ γ.
CASE 3 CRk recovers, due to availability of another available channel in LCSk or disappearance of the PU, at time

δ, where δ ¿ γ.

The CASE 1 results in permanent failure of CRk, i.e., CRk is a crashed node. Hence, the global strong termination
is defied forever, and the protocol announces global weak termination of the computation at CRi and CRj .

The CASE 2 results in the global strong termination, when sessionk = sessionCE
(= sessioni) at the time of

recovery of CRk in active state. However, passive state of the node is irrelevant here, because passive state of CRk

indicates that CRk has already surrendered its credit before the transition from a non-affected node to an affection
node.

In CASE 3, CE has already declared global weak termination before recovery of CRk. Specifically, CASE 1 and
CASE 3 are almost similar and do not affect CE , because sessionCE

6= sessionk. In addition, the recovery of CRk

in active state may cause to propagate messages, m〈session,∗〉 = m〈x,∗〉, to CRi or CRj . However, according to
Lemma 5, CRi, which is CE , discard m〈x,∗〉 eventually because seesionCE

6= x. (For a better understanding, readers
may refer to Figure 8)

Thus, on recovery, the nodes’ state do not affect the correct termination, and Invariants 3 and 4 holds. �
The credit aggregated at CE never ever becomes equal to C before the global strong termination is reached. This

fact can be justified with the help of Lemma 7 and Lemma 8, as follows:

Lemma 7 Under no condition the credit aggregated atCE equals toC except in the case of global strong termination.

6We assume that the recovery process takes non-zero time.

23

CE

COM

i

kj

COM

COM

1

(a) At time α

CE

i

kj

1

(b) At time β

CE

i

kj

1

(c) At time γ

Passive nodes

Active nodes

An affected node

1

(d) Notations

Figure 8: Illustration for the proof of Lemma 6.

i

1

(a) At time α

COM(Cj)

i

j

1

(b) At time β

COM(Ci)

i

j

1

(c)

i

j

holdi = C

1

(d) At time γ

Figure 9: Illustration for the proof of Lemma 7.

Proof. Suppose, only two processors CRi and CRj are executing a computation, and CRi is the chief executive node.
CRi sends credit Cj to CRj , and again, CRj sends credit Ci to CRi. Thus, according to Invariant 2, the following
equation 2 holds true:

holdi + SEND i(COM(Cj), j) + holdj + SENDj(COM(Ci), i) = C (2)

Suppose at time α, CRi becomes active. Thus, SEND i(COM(Cj), j) = 0. However, at time β, the following
equation 3 holds true:

holdi + SEND i(COM(Cj), j) + holdj = C (3)

The above equation 3 indicates credit distribution using a COMputation message from CRi to CRj . However, once
CRj receives the COMputation message, then SEND i(COM(Cj), j) = 0. Thus, the following equation 4 holds ture:

holdi + holdj = C (4)

Assume the contrary, at a later time γ, holdi = C, and CRi, which is the chief executive node, declares global
strong termination, while STATE (CRi) = STATE (CRj) = ACTIVE . It is possible only when CRi and CRj

are two processes at an identical node, i.e., CRi = CRj . However, the chief executive node, CRi, never declares
global strong termination despite holdi = C, unless STATE (CRi) = PASSIVE (Action C2, Table 6). Therefore,
the protocol never declares termination unless all the nodes are passive, and holdCE

= C. (For a better understanding,
readers may refer to Figure 9.)

The above proof can be generalized for any number of participating nodes. Thus, the protocol always aggregates
correct credit in case of the global strong termination. �

The credit aggregated at CE never becomes (i) greater than or equals to C, in case of the global weak termination
and, (ii) greater than C, in case of the global strong termination. We call the wrong credit aggregation when holdCE

≥
C in case of the global weak termination and holdCE

> C in case of the global strong termination. Both the above
facts are proved by Lemma 8, as follows:

Lemma 8 No message transmission ever results in wrong credit aggregation in weak or strong termination
declaration.

24

(1) ImPC

(2) ImPC(3)

AcK(4) AAcK

j

k

i

1

(a)

(1) ImPC

k

j

i

1

(b)

(1) AcK

k

j

i

1

(c)

An special
message to
CE

(1) AcK

k

j

i

1

(d)

Failed nodesPassive nodesActive nodes Broken links

1

(e) Notations

Figure 10: Illustration for the proof of Lemma 8.

Proof. The conditions that may lead to wrong credit collection at CE are the aggregation of an identical credit at more
than one node, and the stale messages in the network. However, we have proved that the stale messages are eventually
discarded (Lemma 5). Hence, we consider the aggregation of an identical credit at more than one node.

We first present a scenario that may lead to multiple times credit surrender of an identical credit at two different
nodes. Note that duplicate message reception at a node is handled in the protocol; hence, we not consider it. We
present two possible cases that may lead to wrong credit aggregation, and following that we prove by contradiction
that these cases never arise in the protocol.

Suppose, an ongoing computation with session = x, where CRi completes its computation and sends an
ImPC (holdi, b) to CRj . In the meantime, suppose CRj becomes an affected or a failed node (see Failure Model,
Section 2). Thus, CRj cannot send an AcK to CRi. Due to non-reception of an AcK from CRj , CRi sends an
ImPC (holdi, b) to another node, say CRk. However, the recovery of CRj and the reception of an ImPC (holdi, b)
at CRj signify that holdi is surrendered at two different nodes. However, in the protocol, there are only two possible
cases of the imperfect credit surrender, as follows:

CASE 1 CRj is an affected or a failed node after sending an AcK to CRi, and CRi is already an affected or a failed
node after the transmission of an ImPC (holdi, b).

CASE 2 CRi sends an ImPC (holdi, b) to CRj , and due to the absence of an AcK from CRj , CRi sends an
ImPC (holdi, b) to CRk. After sending ImPC (holdi, b) messages to two different nodes, CRi becomes an
affected node. Also, CRj receives the ImPC (holdi, b).

The reception of an AcK and an AAcK is assumed to be an atomic operation, i.e., CRj is not allowed to move to
a different location before the reception of an AAcK or a timeout, and also, CRj receives an AAcK in the presence
of PUs. Therefore, CASE 1 never holds true.

The CASE 2 is essentially an outcome of the CASE 1. CRj receives an ImPC (holdi, b) and sends an AcK to
CRi. As the affected node CRi cannot receive an AcK from CRj ; after a timeout value, CRj recognizes that CRi

is an affected node. Thus, CRj sends a special message, m, with credit holdi, to CE . Eventually, CE subtracts holdi
from holdCE

. On recovery, CRi again surrender its credit (Lemma 6). On the other hand, CRi receives an AcK from
CRj though it has already surrendered its credit to CRk earlier; thus, CRi behaves as an affected node. Therefore, the
credit of CRi remains a constant in the network. (For a better understanding, readers may refer to Figure 10.)

Thus, Invariants 3 and 4 are preserved, and an imperfect surrender of a credit is infeasible in the T-CRAN protocol.
�

25

B.3 Liveness property
In the T-CRAN protocol, CE eventually announces termination in finite time. In order to prove the liveness, we show:

1. The virtual tree-like structure does not grow infinitely.
2. The height of the virtual tree-like structure eventually reduces, to (i) one, in case of the global strong termination,

and (ii) two, in case of the global weak termination.

We show that the virtual tree-like structure grows and has a finite height. CE , i.e., the root of the virtual tree-like
structure, expands the computation among N nodes (using A2 and A3, Table 4). The distribution of the computation
and credit increases the height of the virtual tree-like structure, and the maximum height of the virtual tree-like
structure can be N . However, the joining of new nodes in the network during the computation execution may increase
the total number of CRs and the maximum height to N + k, k > 0. In this manner, the virtual tree-like structure
grows infinitely. However, once the nodes stop to join the network, then the virtual tree-like structure does not grow
infinitely.

We now show that the height of the virtual tree-like structure eventually reduces. The nodes are not allowed
to delay the computation for an infinite time. Hence, once all the nodes (except CE), whose heights are identical,
complete their computation, they send ImPC (C, b) and ImP(p) messages to their parent node or to any number
of neighboring nodes, if they are active (Action A4, Table 4). Thus, the transmission of ImPC (C, b) and ImP(p)
messages by all the nodes (except CE), whose heights are identical (not necessary at an identical time), results in
reduction of the height of the virtual tree-like structure by at least 1.

We now show that when the virtual tree-like structure has height 1 after credit aggregation, it is a sufficient
condition to announce the global strong termination. From the previous facts, it is clear that the height of the virtual
tree-like structure reduces by at least 1 when all the nodes (except CE), whose heights are identical, send ImPC (C, b)
and ImP(p) messages. Hence, when all the nodes of all the height levels (except CE), send ImPC (C, b) and ImP(p)
messages that result in the height of the virtual tree-like structure to be 1, eventually, and only a single node, CE ,
holds the complete credit (that is equal to the credit that was distributed at the time of initiation). This fact is enough
to show that at the time of the global strong termination the virtual tree-like structure has height 1.

We now show that when the virtual tree-like structure has height 2 after credit aggregation, it is a sufficient
condition to announce the global weak termination. From the previous facts, it is clear that the height of the virtual
tree-like structure reduces when the non-affected nodes sends ImPC (C, b) and ImP(p) messages. In addition, only
a single non-affected node, CE , holds the credit of all the non-affected nodes eventually. Since the affected nodes
cannot send ImPC (C, b) and ImP(p) messages, the network is divided into two partitions as: CRNP and CRNN

(Figure 5). Hence, the virtual tree-like structure has height 2, and it is sufficient for the global weak termination.

B.4 The impossibility of termination
We provide an abstract view to show the impossibility of the global strong termination in the presence of a single
primary user. By this abstract view, it will be clear that the appearance of a primary user is difficult to handle than
mobility and crash of nodes. (Note that in a purely asynchronous CRN, the global strong termination is impossible [15]
to detect even if a single primary user exists in the network.)

We consider a CRN as a connected communication graph that has nodes np, np1, . . . , npi, nq, nq1, . . . , nqj ,
nr, nr1, . . . , nrk, ns, ns1, . . . , nsl; and no node is assumed to be special. (The node ids are selected in a special
way to help readers to understand the abstract view, which will be clear soon.) Also, we assume four PUs, namely
PUp, PUq , PUr, and PUs that affect all the nodes. The virtual clustering is performed by considering np, nq, nr,
and ns as fixed centers [13] (or cluster heads) that partition the communication graph into four virtual clusters, say
Cp, Cq, Cr, and Cs, see Figure 11a.

Now, assume that three PUs, namely PUp, PUq , and PUr, disappear from the network. Thus, the nodes, namely
np, np1, . . . , npi, nq, nq1, . . . , nqj , nr, nr1, . . . , nrk, become non-affected nodes, Figure 11b. All the non-affected
nodes of each cluster send ImPC (C, b) messages to the respective cluster heads. Hence, each cluster head holds a
termination report (or credit) of its cluster, namely np has TRCp, nq has TRCq , and nr has TRCr, Figure 11c.

In order to announce the global strong (or weak) termination in the network, it is required to aggregate all the
termination reports (or credits) of each cluster head. Thus, np sends TRCp to its neighboring virtual cluster head

26

PUp

PUr

PUq

PUs
npi Cp

np
np1

ns1 Csns1

nsl ns

nq1 Cq
nqj

nq

nr

nr1 Cr

nrk1
2

3
4

1

(a)

PUs
npi

npnp1

ns1ns1

nsl ns

nq1
nqj

nq

nr

nr1

nrk1
2

3
4

1

(b)

PUs
npi

npnp1

ns1ns1

nsl ns

nq1
nqj

nq

nr

nr1

nrk1
2

3
4

TRCp

TRCq

TRCr

1

(c)

PUs
npi

npnp1

ns1ns1

nsl ns

nq1
nqj

nq

nr TRCr

nr1

nrk1
2

3
4

TRCp
TRCpCqTRCp

1

(d)

PUs
npi

npnp1

ns1ns1

nsl ns

nq1
nqj

nq

nr

nr1

nrk1
2

3
4 TRCpCqCr

TRCpCq

1

(e)

PUs

ns1ns1

nsl ns nr TRCpCqCr

Broken link due to a primary user

1

(f)

Passive nodesActive nodes An affected node Termination report

1

(g) Notations

Figure 11: Illustrating the impossibility of termination in cognitive radio networks.

Connected CRN
Virtual partition and merge approach

Single PU appearance
Partitioned CRN

1

Figure 12: The virtual partition and merge approach.

27

nq, and nq aggregates the received credit as: TRCpCq = TRCp ∪ TRCq , Figure 11d. This state of the network is
equivalent to the virtual merging of both the virtual clusters Cp and Cq in one virtual cluster, where Cq is a virtual
cluster head. Similarly, TRCpCq is aggregated with TRCr at nr as: TRCpCqCr = TRCpCq ∪ TRCr, Figure 11e.

Since a PU, PUs, persists in the network and ns, ns1, . . . , nsl are affected node, an aggregated termination report
(or credit) of the network cannot be generated. The network is now partitioned into two parts, where the first part holds
credit TRCpCqCr at nr and the remaining credit is distributed among the affected nodes, ns, ns1, . . . , nsl. This state
of the network is equivalent to the virtual partitioning of the network into two virtual clusters: one virtual cluster,
where Cp, Cq , and Cr are virtually merged and nr is a virtual cluster head, and the another virtual cluster Cs with ns
as a virtual cluster head, Figure 11f.

Therefore, it is shown that the existence of a single PU results in two isolated sub-networks, which is sufficient to
prevent the protocol to announce the global termination. Without loss of generality, the above virtual partition-merge
technique (Figure 12) can be applied to a network of arbitrary size and arbitrary number of PUs.

Note: When the chief executive node, CE , becomes an affected node, neither strong nor weak termination
detection is possible.

28

	1 Introduction
	1.1 Cognitive radio networks
	1.2 Termination detection (in cognitive radio networks)
	1.3 Our contribution and outline of the paper
	1.4 Related work
	2 The System Settings
	3 Background
	4 The T-CRAN Protocol
	4.1 High level description of the T-CRAN protocol
	4.2 Details of the T-CRAN Protocol
	4.3 Detection of primary user(s)
	4.4 Termination declaration

	5 The T-CRAN Protocol as Guarded Actions
	5.1 The credit distribution and aggregation phases
	5.2 The appearance and disappearance of primary users
	5.3 The termination announcement

	6 The Working of the T-CRAN protocol

	7 Conclusion

	A Complexity Analysis
	A.1 Message complexity
	A.2 Time complexity
	B Correctness Proof
	B.1 System invariants
	B.2 Safety property
	B.3 Liveness property
	B.4 The impossibility of termination

