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SUMMARY

Malicious activities have become a primary security threat after hosts are infected. Attackers typically use

HTTP to carry out malicious activities, such as botnets, click fraud and phishing, as they can easily hide

among the large amount of benign HTTP traffic. The User-Agent (UA) field in the HTTP header carries

information on the application, OS, device, etc., and adversaries fake UA strings as a way to evade detection.

Motivated by this, we propose a novel grammar-guided UA string classification method in HTTP flows. We

leverage the fact that a number of “standard” applications, such as web browsers and iOS mobile apps, have

well-defined syntaxes that can be specified using context-free grammars, and we extract OS, device and other

relevant information from them. We develop association heuristics to classify UA strings that are generated

by “non-standard” applications that do not contain OS or device information. We provide case studies that

demonstrate how our approach can be used to identify malicious applications that generate fake UA strings

to engage in fraudulent activities.
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1. INTRODUCTION

HTTP has become the de facto application-layer “transport” protocol, over which many applications

such as JSON, SOAP, gaming, VoIP, video streaming, and software updates operate. From the

perspectives of network measurement and traffic analysis, it is important to be able to classify and

separate various applications transported over HTTP. Such capability is particularly useful in aiding

network security tasks such as malware detection, mainly because HTTP has become the main

medium for illicit activities on the Internet such as drive-by downloads [18], phishing [19], botnet

command-and-control (C&C) [20], click frauds [24], and so forth.

Given a collection of HTTP flow traces (i.e., network traffic over TCP port 80) passively captured

within a network where HTTP and TCP/IP header information is collected, we are interested in

developing an effective and robust method to classify and separate various applications transported

over HTTP. To aid network security monitoring, our emphasis is on identifying anomalous

applications such as “handcrafted” web clients that mimic “standard” browsers or malicious

applications that conduct fraudulent activities such as click frauds. To this end, we want to robustly

separate HTTP flows generated by normal, benign applications such as legitimate web browsers

(e.g., Internet Explorer, Firefox, Chrome) and other commonly used applications (e.g., iOS or

Android mobile apps) from “anomalous” applications.

One key feature we focus on is the User-Agent (UA) HTTP header field, which is sent by

a web browser to a web server to convey the client’s operating system, browser type and version,

the rendering engine, and the application name in the case of traffic from mobile devices [25]. Web

servers utilize such information to customize their response to the web browser for proper rendering.

However, the UA string is also used by malware for illicit activities, for instance, as a way to spoof a

legitimate browser being used by a client on click fraud events, as a way to leak personal information

from the infected host, or to communicate with the Command-and-Control (C&C) server [12]. More

recently, the UA string has been used as a way to exploit servers vulnerable to the Shellshock [11]

attack.
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The big challenge for network administrators and security analysts is that it is difficult to

differentiate between legitimate and malicious UA strings. The reasons are two-fold. First, although

there is a standard UA format defined in RFC 7231 [8], not all benign applications follow it (e.g.

Table V), which limits the possibility of filtering HTTP connections with non-standard UA strings.

Second, if a malicious UA string is following the standard format, there is no obvious way to detect

it, except for point solutions as we describe in related work.

Due to the diversity of UA strings, the state-of-the-art mechanisms for processing UA strings

utilize a set of (ad hoc) pattern matching heuristics based on regular expression (regex) rules (see,

e.g., [7]). These tools are designed for web servers to recognize browsers for content rendering, not

for separating normal browsers from anomalous ones. They are generally ineffective in recognizing

non browser applications that often include partial information (e.g., only the name of an application

but no OS or device type) in an application-specific format or even a random-looking character string

(see Section 5 for examples).

In this paper, we present a novel approach to robustly separate and classify applications

transported over HTTP using the UA strings, with the goal of detecting malicious applications or

activities. This approach consists of two components. 1) We develop a novel context-free grammar

(CFG)-based method for efficiently and robustly parsing the UA strings generated by “standard”

applications such as common web browsers, iOS and Android apps. 2) To cope with “non-standard”

applications with (possibly arbitrarily formatted) UA strings that contain only partial or little

information about the application (e.g., OS-type), we leverage the associations between the UA

strings and hostnames contained in the HTTP flows to classify “non-standard” applications which

generate these UA strings. For example, although many anti-virus (AV) engines often generate

HTTP flows with “random-looking” UA strings, we observed that these flows are always directed to

well known AV company websites (e.g., kaspersky.com)). We combine these two components

to build profiles of various known applications based on information extracted from UA strings.

Then, deviations of these profiles can be used as indicators of potentially anomalous activities,

generated by “malicious” applications running at an infected device.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)
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We use a 24-hour dataset from a large, nation-wide ISP, collected in April 2012, to evaluate our

methodology. The monitored network is mostly residential, with high-speed ADSL connections to

the Internet. The collected data includes all inbound/outbound TCP connections to the network. The

dataset contains only the TCP and HTTP header information (the HTTP payload was not analyzed

and the IP addresses were anonymized to preserve privacy). Our dataset includes over 40 million

HTTP connections from over 15, 000 unique client IP addresses. After the data collection, malicious

flows were labeled by a commercial IDS.

In summary, our contributions are three-fold: (i) We develop a novel CFG-based parser for

classifying UA strings generated by “standard” applications over HTTP that is modular and

more effective than the state-of-art regex-based tools (see Section 4). (ii) We develop a novel

UA string-hostname association method for classifying UA strings generated by many “non-

standard” applications (see Section 5). (iii) We incorporate these mechanisms into a proof-of-

concept system (see Section 3 for an overview of the overall methodology and system) which

builds application profiles based on information extracted from the UA strings and employs several

inference mechanisms to identify anomalous UA strings/applications. We tested our system in a

24-hour network trace from a nation-wide Internet Service Provider (ISP), and present a number

of case studies to illustrate how various attacks with different artifacts such as non-standard UA

strings, and “fake” UA strings that mimic standard cases can be detected (see Section 6).

2. RELATED WORK

There has been a variety of heuristics and tools proposed for classifying UA strings, most of which

are developed to help web servers identify the client browsers so as to provide appropriate web

content. Many of these methods simply rely on building and maintaining a database of various UA

strings seen in the wild (e.g., browscap.ini and borwscap.dll used by Windows web servers [6]).

Others combine such methods with regular expression based classification rules [7, 13], where a

laundry list of rules is supplied by individuals and accumulated over time. Our experience in using
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Prepared using nemauth.cls DOI: 10.1002/nem



5

these tools reveals that these tools often produce incorrect classification results. This is due to the

complexity of the rules and the large variation of the UA string formats. In addition, these rules

become difficult to debug and manage as they grow in size.

This motivated us to try MAUL [21], which is a machine learning (ML) based UA classification

scheme. The problem with ML based schemes is its high false classification rates, as it cannot

distinguish slight differences between valid and invalid UA strings. For instance, invalid UA strings

such as “Mozilla Mozilla Mozilla” or “Chrome Mozilla Windows” will be classified as browsers. In

contrast, context-free grammar based classification scheme not only classifies standard UA strings

more accurately, but also detects syntactic errors and other anomalies in browser-like UA strings.

Finally, UA strings have also been utilized to detect malicious activities, e.g., for detecting SQL

injection attack [14]. In particular, Kheir [23] finds that anomalous UA strings are often associated

with malware activities. We apply our grammar-based UA parsing method to show how they can be

systematically utilized to detect not only malicious applications with unique “strange-looking” UA

strings, but also those that attempt to mimic normal applications.

3. WALKTHROUGH

In this section, we walkthrough the paper, which includes the motivation for our work and an

overview of our methodology and proof-of-concept system design.

3.1. Motivation for our work

Initially, we noticed that existing methods to classify UA strings were used mainly by web servers to

improve page rendering, and they were solely based on regular expressions (regexes). The regexes

are organized in a hierarchy and there is a parsing library that will iterate over them. For a given

UA string, the parsing library will try to match a regex in the first level of the hierarchy, which

tries to match a browser name (e.g. Firefox or Chrome). Then, the library will iterate over all

regexes in all subsequent levels until one rule matches completely. In our experiments, we found

that these methods are hard to extend, and are extremely slow for network monitoring environments.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)
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For example, a web server may want to inspect 100 UA strings per second, but an ISP middlebox

monitoring the network may see millions of UA strings per second. Therefore, the iterative matching

over regexes is not scalable or suitable for ISPs. Fortunately, regexes plus the library composed of

if/else statements can be easily expressed using a Context Free Grammar (CFG). In addition, CFGs

are easy to extend, they walk the grammar tree quickly, and are more efficient than iterating over

regexes. Consequently, we chose to build our prototype using a CFG engine that identifies standard

UA strings.

3.2. Methodology

An accurate CFG engine is critical to identify standard UA strings. Hence, we propose a semi-

manual process to write the CFG engine. This process is composed of three phases: (1) extract UA

strings from sandbox environments, (2) extract UA strings from network traces, and (3) write the

CFG using standard UA strings from phases one and two. In phase one, a sandbox environment

can be used to run different versions of popular web browsers, and their popular plugins. Then,

the generated UA strings are added to a repository with a metadata string, which describes the

UA strings in the extracted group (e.g. UA strings for Firefox running on Windows with Firebug

plugin are added to the repository with metadata “Firefox, Windows, Firebug”). In phase two, we

use UA strings extracted from HTTP requests in real ISP network traces and we manually extract

the standard UA strings. We speed up the manual process by using regexes. For instance, we extract

all UA strings containing “Firefox”, then we manually reject all the non-standard ones, and add the

standard UA strings to the repository with their corresponding metadata. In phase three, we use the

standard UA strings in the repository to incrementally write the CFG (e.g. we write CFG for Firefox

UA strings, then we add another group of UA strings until we get the complete CFG). We use this

CFG engine in our prototype to identify standard UA strings.

Unfortunately, non-standard UA strings lack structure and cannot be identified using CFGs.

However, after manually analyzing our ISP network traces, we found that some non-standard UA

strings possess characteristics that can be used to develop heuristics to group them together. For

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)
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instance, the majority of benign non-standard UA strings in our network traces belong to AV and

software updates. These UA strings are highly random and a UA string shows up only once since it

includes a cryptographic hash of information that AV is sending to the remote server. However AV

related UA strings are always associated to a AV company domain name, such as symantec.com.

We use such characteristics to develop a detection engine for non-standard UA strings.

3.3. System Overview

Figure 1 illustrates a proof of concept for our system. The input to the CFG engine is the HTTP

flows per client IP, and the output is the standard UA strings and the non-standard UA strings.

First, the standard UA strings are used to create a profile for each application instance running

on a single machine, where this profile includes browsers (types and versions), OS (types and

versions), devices (e.g, Mac, iPad, PC, etc.), and applications (e.g., mobile apps). These profiles

are used later by the inference engines to find anomalies and suspicious activities. Second, the non-

standard UA strings are fed into the Flow Grouper, where UA strings are grouped based on top

two level domain names, e.g., all UA strings with domain names symantec.com are grouped

together. Then, Hostname Association uses a set of heuristics to label UA strings that poses similar

characteristics (see Section 5). Some UA strings might still be unknown, and therefore we fall back

to other source of information like googling them to process these UA strings. Then, the inference

engines are used to search for conflicting or anomalous UA strings (see Section 6). Finally, the

system produces a report of benign and malicious activities.

4. DESIGNING APPLICATION PROFILES FOR STANDARD UA STRINGS

We describe our approach to parse standard UA strings and extract key information from them, such

as browser type and operating system. We begin by describing regex-based UA string parsers, a

technique typically used in the industry today, and its limitations. Next, we present our UA string

parser, which consists of a series of per-application context free grammars.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)
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Figure 1. System Architecture

4.1. Parsing UA Strings with Regular Expressions

A straightforward solution to this problem is to build a huge list of regexes that represents all

possible UA strings in the Internet today. In such a system, an incoming UA string is matched

against the list of regexes and the first one that matches is used to extract any key information from

the string. BrowserScope [7] is an example of this approach. However, this method has several

problems:

An inappropriate regex matching order can cause false positives. Short regexes are typically

less strict than long regexes and tend to match more often. This can cause false positives. For

instance, consider the following UA string: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.3)

Gecko/20060426 Firefox/1.5.0.3 (.NET CLR 3.5.30729) GoogleToolbarFF 3.0.20070525. This is the UA string

of Firefox using the GoogleToolbar extension. However, if shorter regexes that match Firefox flows

are tested first, the application is mislabeled as Firefox, instead of GoogleToolbar.

A linear scan over many regexes is required and degrades performance. In most cases, a single

standard UA string will be matched against multiple regexes before a match is found, since there

is no optimization in the regexes to match. Furthermore, in the case of non-standard UA strings,

all the regexes in the long list might have to be matched. These cases might cause performance

degradation. A possible solution is to build different lists of regexes that serve different purposes

e.g., one regex list to match possible devices, and another regex list to match possible operating

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)
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systems, and so on. This method could reduce the total number of regexes to scan, but we still need

to linearly scan each individual list to find different components. In addition, a potential problem is

that because there are dependencies between device, OS and application, which are ignored in this

approach, some fraudulent matches might be considered as valid standard UA strings. In Section 6,

we describe an approach to solve this issue.

Some UA strings cannot be expressed by regular expressions. In our dataset, we found the

case where web browsers are embedded in third party applications, which generate nested UA

strings that look like the one below: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0;

GTB7.3; Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) ; (R1 1.6); .NET CLR 1.1.4322; .NET CLR

2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; msn OptimizedIE8;ITIT). These nested UA strings

cannot be expressed using standard regexes, because they are not regular [22].

Updating heuristic rules is not flexible. Updating heuristic rules in regular expression based

system is an important operation if the system were to be widely deployed in practice. Clearly, such

a system need to be updated as new versions of the application are released. However, the core of

such a system is a laundry list of regular expressions. It is not flexible to make it updated because the

newly added rules can confuse existing regex-based method. For instance, new versions of Opera

(Opera 15+) have adopted a different format, where the old formats always contain the keyword

“Opera” (either at the beginning or the end), but the new ones end with “OPR/[version]” [15].

To alleviate all these limitations above, we build per-application context-free grammar parsers for

UA strings, which we describe in next subsection.

4.2. Parsing UA Strings with BNF-based Context Free Grammars

To parse UA strings, we first identify the UA strings generated by popular applications such as

commonly used web browsers and iOS-based apps which have a well-defined syntax. We noticed

that the syntaxes for the UA strings of these applications can be best specified using context-

free grammars (CFG) in terms of Backus-Naur Form (BNF). Using existing compiler tools, we

developed a baseline BNF-based UA string parser to recognize those that are generated by these

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)
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Table I. Example User-Agent strings generated by popular browser types.

MSIE

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 6.1; en-US; .NET CLR 1.1.22315)

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; SV1; .NET CLR

2.0.50727)

Mozilla/4.0 (compatible; MSIE 9.0.8112.16443; Windows NT 6.1)

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Trident/6.0)

Firefox

Mozilla/5.0 (Windows NT 6.1; WOW64; rv:29.0) Gecko/20120101 Firefox/29.0

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.0.7)

Gecko/2009021906 Firefox/3.0.7

Mozilla/5.0 (X11; U; SunOS i86pc; en-US; rv:1.9.0.6) Gecko/1986081808

Firefox/3.0.6

Mozilla/5.0 (X11; U; Linux i686; de-DE; rv:1.7.6) Gecko/20050306 Firefox/1.0.1

Chrome

Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/37.0.2049.0 Safari/537.36

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10 5 6; en-US) AppleWebKit/530.5

(KHTML, like Gecko) Chrome/ Safari/530.5

Mozilla/5.0 (Linux; U; en-US) AppleWebKit/525.13 (KHTML, like Gecko)

Chrome/0.2.149.27 Safari/525.13

Mozilla/5.0 (Linux; Android 4.0.3; GT-I9100 Build/IML74K) AppleWebKit/535.19

(KHTML, like Gecko) Chrome/18.0.1025.133 Mobile Safari/535.19

Safari

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10 6 7; en-us) AppleWebKit/534.16+

(KHTML, like Gecko) Version/5.0.3 Safari/533.19.4

Mozilla/5.0 (iPad; CPU OS 6 0 like Mac OS X) AppleWebKit/536.26 (KHTML, like

Gecko) Version/6.0 Mobile/10A5355d Safari/8536.25

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-us) AppleWebKit/418.9 (KHTML, like

Gecko) Safari/419.3

Mozilla/5.0 (Windows; U; Windows NT 5.1; it) AppleWebKit/522.13.1 (KHTML, like

Gecko) Version/3.0.2 Safari/522.13.1

Opera

Opera/9.80 (X11; Linux x86 64; U; en) Presto/2.9.168 Version/11.50

Opera/12.80 (Windows NT 5.1; U; zh-cn) Presto/2.10.289 Version/12.02

Opera/9.80 (X11; SunOS sun4u; U; en) Presto/2.2 Version/10.11

Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.9.168

Version/11.52

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0) Opera 12.14

standard applications and extract the type of application, OS version and device information. In the

following, we present our approach using popular web browsers as primary examples and discuss

the advantages of our BNF-based compiler approach.

Web browsers are perhaps the most popular application used on desktop and laptop machines. It is

no surprise that they comprise the majority of UA strings we see in our dataset. Table I shows some

examples of UA strings for common browsers found in our dataset. We see that the UA strings

generated by these browsers contain similar keywords and share certain structural components.

For example, the UA strings generated by IE browsers starts with the keywords “Mozilla/4.0” or
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“Mozilla/5.0”, followed only by a set of keywords enclosed by parentheses, including the “MSIE”

term and versions, Windows OS related information and the rendering engine “Trident/[version]”

(if present). However, the UA strings generated by Firefox, Chrome and Safari also begin with the

same keywords (most commonly with “Mozilla/5.0”), followed by a set of OS-related keywords

enclosed by “(...)”, and ended with a set of specific keywords starting with the rendering and layout

engines “Gecko” or “Applekit” and containing the browser type (e.g., Firefox, Chrome or Safari).

On the other hand, the UA strings for Opera browsers begin with “Opera/[version]” (except for

newer versions that also begin with “Mozilla/5.0”).

In the examples above, all standard browser UA strings manifest (nested) matching structures that

are characteristic of context-free languages, e.g., the prefix element “Mozilla/[4.0—5.0]” matches

a rendering engine-browser type suffix element (or an empty string in the case of IE browsers),

and the left parenthesis “(“ matches with the right parenthesis “)”. Furthermore, the rendering

engine-browser type suffix element also contains a matching structure, e.g., “Gecko/[version]”

matches only “Firefox/[version]” or “Opera/[version] and “Applekit/[version]” matches only with

“Safari/[version]”. These (nested) matching structures can be best recognized by push-down

automata, i.e., CFGs.

We define a set of CFG production rules using the BNF forms with non-terminal terms and

terminal terms (tokens). Some examples are shown in Table II, where the terms in angular brackets

<. . .> indicate non-terminal terms, and all other terms that never appear in the left of the production

rules (e.g., various symbols and strings inside quotation marks) are terminal terms (i.e., “tokens”).

In the above examples, note that “” denotes an empty string, while “ ” denotes a white space, and

“|. . . ” indicates that user-specific rules can be added there.

Leveraging existing compiler tools Flex [2] and Bison [1], we developed a parser for UA strings,

in order to classify and extract the browser type, OS, device and other relevant information if it

exists. The parser consists of two main components – a lexical analyzer and a syntax analyzer –

and operates in two phases: (i) the lexical analyzer first tokenizes a UA string and extracts each

meaningful element (i.e., the terminal terms); and (ii) the syntax analyzer applies the context-free
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Table II. Example production rules for browser UA strings.

<standard-browser>::=<browser-prefix>"("<OS-system>")"<browser-suffix>;
<browser-prefix>::="Mozilla/4.0"|"Mozilla/5.0"|"Opera/"<ver-1-dot>;
<browser-suffix>::=""|<host-info> <render-engine> <opera-version>|

<render-engine> <browser-type>|<browser-type>|...;
<host-info>::="(<OS-version> <security-level> <language>)"|

"(<OS-version> <security-level>)"|
"(<OS-version> <language>)"|
"(<OS-version>)"|...;

<render-engine>::="Presto/"<ver-two-dot>|
"Gecko/"<ver-no-dot>|
"AppleWebKit/"<ver-1-dot>|...;

<security-level>::="U"|"I"|...;
<language>::="en"|"es-ES"|"zh-cn"|"zh-tw"|"pl"|"cs"|...;
<OS-system>::="compatible;"<IE><window><IE-suffix>|<window>|<OSX>|...;
<window>::="Window NT "<version>|<additional-window-info>;
<additional-window-info>::="<.net>"|"<plugin>"|...
<.net>::=<.net>|".NET"<ver-1-dot>"C"|".NET"<ver-1-dot>"E"|".NET CLR "<ver-2-dot>;
<plugin>::="Media Center PC "<ver-1-dot>|...;
<IE>::="MSIE "<ver-1-more-dot>|...;
<browser-type>::="Firefox/"<ver-1-more-dot>|"Opera/"<ver-1-dot>|<chrome>|...;
<chrome-safari>::=<chrome-browser>" "<safari-type>|<safari-suffix>|...;
<chrome-browser>::="Chrome/"<ver-1-more-dot>" "<safari>|...;
<safari>::="Safari/"<ver-1-more-dot>|<mobile>"Safari/"<ver-1-more-dot>|...;
<mobile>::="Mobile"|"Mobile/"<alphanumeric-version-no-dot>"|...;
<opera-version>::="Version/"<ver-1-dot>;
<version>::=<ver-no-dot>|<ver-1-more-dot>;
<ver-1-more-dot>::=<ver-1-dot>|<ver-2-dot>|...;
<ver-no-dot>::=<digits>;
<ver-1-dot>::=<digits>"."<digits>;
<ver-2-dot>::=<digits>"."<ver-1-dot>;
<digits>::=<digit><digits>:
<digit>::="0"|"1"|...|"9";

BNF production rules to recognize the structure of a UA string that follows the rules and outputs

the browser type and other relevant information thus extracted, or otherwise rejects it together with

error messages indicating where the syntactic errors occur.

The advantages of context-free BNF-based parser approach for classifying (well-defined) UA

strings are the following: (i) it makes the parser scalable and extensible; when new types or versions

of browsers are created, we can simply add new production rules or version numbers in the existing

rules; (ii) in contrast to a UA parser relying purely on complex regular expression-based heuristics

(e.g., [7]), the resulting production rules are more modular and flexible for a human operator to

understand and manage; (iii) the error messages generated by the parser provide hints as to how a

UA string deviates from the expected standard UA strings, and can be utilized to detect anomalies;

and (iv) importantly, similar to “type checking” and other runtime techniques used for program

verification, we can plug in browser verification modules that incorporate “semantic” information

to check the validity of the UA strings that have passed the syntax parser. Such semantic constraints
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can be verified at the last step by invoking appropriate browser verification modules based on the

browser type, OS and other relevant information extracted from the UA string that has passed the

syntax analyzer. In Section 6 we discuss how we exploit these last two features (iii) and (iv) to help

detect and identify “fake” browser UA strings generated by malicious applications.

The UA strings generated by standard iOS (and MacOS) applications also follow a well-defined

syntax: <app-name>/<version> CFNetwork/<version> Darwin/<version>. We have defined

production rules and developed a parser for parsing the UA strings generated by the standard

iOS/MacOS apps. For the UA strings that pass the grammar checking, the distinction between iOS

and MacOS is determined by the CFNetwork version number. Other “well-known” applications

such as Window Media Center, Media Player, Window Live, standard browser plug-ins, and

standard Android apps also follow well-defined syntaxes, and we have developed BNF-based

parsers for them.

4.3. Evaluation

To evaluate the effectiveness and efficiency of our CFG-based parser, we compare it with a regex-

based UA string parser [7], the current state-of-the-art. UA strings are randomly chosen from our

dataset and parsed by both approaches. Then, the running time of each approach is recorded, as

shown in Table III. For parsing the same amount of UA strings, CFG-based parser are much more

efficient than regex-based parser. This is because [7] requires a linear scan over many regexes, which

degrades performance (see Section 4.1 for a detailed explanation).

Table III. UA String Parsing time (in seconds) for our CFGs and Regexes

# Strings 1 2 5 10 50 100 1,000 10,000 100,000
CFG-based parser 0.001 0.001 0.001 0.001 0.001 0.002 0.005 0.042 0.393

Regex-based parser 0.323 0.324 0.328 0.332 0.343 0.359 0.709 4.097 38.211

4.4. Dataset Analysis.

In our dataset we found more than 40 million HTTP flows and 94, 876 unique UA strings. Applying

our BNF-based UA string parsers for standard applications, we separated these unique UA strings
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Table IV. Standard browser and non-browser UA string classifications.

Category Browser-type
IE Chrome Firefox Opera Safari Mobile Browser Other Total

UAs 18,527 673 1,255 144 947 827 385 23,298
Flows 9,500,779 8,805,982 7,716,747 163,829 172,979 4,512,137 414,961 31,287,414

Category Non-Browser
iOS app Android app Other Total

UAs 7,425 871 667 8,963
Flows 1,075,071 56,910 67,244 1,199,225

into two categories: standard UA strings (32, 261 unique UA strings, about 34%), which matched

one of the BNF parsers (i.e., follow well-defined syntaxes), and non-standard UA strings (62, 615

unique strings, about 66%) that did not match any of the BNF parsers. As shown in Table IV, of

the standard UA strings, 23, 298 (24.6%) of them matched parsers for browsers and 8, 963 (9.4%)

matched non-browser parsers for iOS/MacOS, Android and other applications with well-defined

syntaxes.

5. HANDLING NON-STANDARD UA STRINGS

In Section 4, BNF grammar rules assign labels to user-agents based on their lexical structure.

However, not all UA strings follow the BNF grammar rules. Table V shows examples of this

type of UA strings. For instance, AV signature updates and OS updates lack structure and contain

random strings. To assign labels to user-agents in this category, we developed a heuristic that we

call hostname-based association.

We analyzed our dataset and noticed that many of the non-standard UA strings belong to specific

applications, such as AV software. AV software embeds local information (e.g. software version,

signatures database version, etc) in the UA string when checking for signature updates. Those UA

strings differ from browser UA strings in two aspects: (i) each UA string is unique as it includes a

SHA or MD5 hash of the information sent to the server; and (ii) the associated hostname to the UA

string belongs to one or two unique top-two level domain names e.g., all flows in this category

communicate with a specific AV such as kaspersky.com or kaspersky.net. Operating

system updates (e.g. for Windows and Mac), exhibit similar properties, but they are less random
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as they do not include any hash of the data. Our heuristic, which we describe below, tries to cover

both the AV and the OS update cases.

The key intuitions/ideas behind hostname association method is based on our analysis of the

UA strings in our dataset. We find that although there are a significant portion of “non-standard”

UA strings, they roughly fall into two categories: 1) UA strings containing mostly fairly random

alphanumeric characters; and 2) UA strings containing certain fixed keywords and some loose

defined structures. However, a key observation we have made is that the HOSTNAME field in the

HTTP flows containing these UA strings provide important hints regarding what type of applications

may have generated these UA strings. For instance, for the UA strings in category 1) above, there

is often a many-to-one mapping between the UA strings and the (top-2 level) domain name, and

the domain name is, say, mcafee.com or kaspersky.com, suggesting that these UA strings – despite

they are almost completely random-looking are generated by antivrus sotfware. Similarly, for many

UA strings in Category 2 are also a many-to-one mapping or a m-to-n mapping (where m is much

larger than n, and n is a smaller number, say, n=2, 3). Even when in some cases where n in the m-to-

n mapping is relatively larger, there are a few dominant hostnames (e.g., megaupload.com) which

reveal what the applications are, or there are certain patterns (e.g., keywords such as “tracker” or

“upload”) in the hostnames that echo the keywords in the UA strings (e.g., torrent, BTclient). Our

UA string-hostname association method basically applies these observations to heuristically label

and classify the non-standard applications (which fall into categories such as antivirus, software

update, p2p, media player, etc.). Hopefully this helps explain how the hostname association method

works.

To determine whether a UA string is “random” or not, we compute the entropy of the string. In

our testing, we have varied the entropy value from 2 bits/byte to 6 bits/byte and find that 4 bits/byte

yields the best result.

The flow grouper is used in our system to group all flows with the same top-level hostname

together so that we can generate the UA strings to hostname mappings. In terms of how much time

you retain the string in the “flow grouper”, for simplicity, we actually used the entire 24 hours — we
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Table V. Example UA strings generated by “non-standard” applications.

AV *BIXBAAQAtbqDsWVZQ_L1CZHU621q0Js5LIqjj3zt9zUndLnKo5fwAodAAAAAAwAA

*BMXBAAQA1HYQpF6zZvbANVzMItmXgBUXcRSOrZ0oqVUT1keT2HD0AodAAAAAAwAA

SystemUpdate
Microsoft-CryptoAPI/5.131.2600.2180

Microsoft-CryptoAPI/5.131.2600.5512

P2P
BTWebClient/2000(17920)

uTorrent/1830(15638)

Unknown
C470IP021910000000

#2YX!!!!#=A@io!#3RM!!!#U=Q7fV!#3

have tested by varying the value from 1 hour, 4, 8, 12 and 24 hours. The results do not fundamentally

change very much — this is because the hostnames associated with the flows tend to be fairly stable.

The only difference is that when using smaller values, the size of flow groups is smaller. Our system

currently runs as an offline UA string classification system. Clearly, when running the system in an

“online” manner, a smaller value is likely preferred for fast classification. However, in such a case,

one can retain and utilize historical observations of the UA string-hostname associations to make

prediction. Investigating this subject is outside the scope of the current paper.

5.1. Algorithm Description

The hostname association is a two step process. In the first step, we compute the entropy of the

non-standard UA string by using a pseudorandom number sequence test program [16] to identify

those that are likely to be a SHA or MD5 hash. If the entropy is more than four bits/byte, we retain

this string in the “flow grouper” (see Figure 1) for a period of time. In the second step, for those UA

strings stored in the flow grouper, we count the number of top-two level domain names (extracted

from the HTTP hostname field) associated with each UA string. If the number of top-two level

domain names is equal to a certain threshold (e.g. we chose 1 for software update), we consider this

UA string as associated with a specific application and assign the label based on the corresponding

top-two level domain name.
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5.2. Evaluation

To evaluate this algorithm, we first build our ground truth. For this, we analyzed our dataset with the

CFG-based parsers in order to identify those non-standard UA strings. After this, we manually

identified the cases that are AV and then compared them with the results from our algorithm.

We achieved promising results, with precision of 0.9039 and recall of 0.9463. Figure 2 shows the

Complementary Cumulative Distribution Function (CCDF) and the number of unknown UA strings

after (i) applying the BNF parsing only, and (ii) after using the hostname association as well. The

results show that we effectively reduce the number of unknown UA strings using our proposed

heuristics. The percentage of clients having more than five unknown UA strings reduced from 80%

to 50% after using the hostname association.

5.3. Data Analysis

In our dataset, non-standard UA strings (62, 615) pass through the hostname association to filter

application-aware cases (58, 522, 61.7%), where the majority are AV (53, 448). More detailed

statistics are shown in Table VI.

Table VI. Hostname association for non-standard UA strings.

Category Hostname-based Association
AV SystemUpdate P2P Other TotalNorton AVG Other Window Google Other BT uTorrent Other

UAs 42,552 3,937 6,959 1,143 769 113 120 84 78 2,860 58,522
Flows 55,910 68,233 1,391,339 1,373,779 937,834 182,381 63,921 93,425 132,834 1,373,779 5,673,435
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Figure 2. Unknown UA strings after different classification schemes.
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6. MALICIOUS UA DETECTION

In this section, we demonstrate the utility of the UA analysis in identifying anomalies in host

activity and in detecting malicious activities. As a proof of concept, we provide three basic inference

engines: fake UA string detection, fake OS detection, anomaly detection, for detecting suspicious

standard UA strings, and signature based inference engine for detecting suspicious non-standard UA

strings.

We note that parsing process described in above sections by itself does not tell us whether a UA

string is fake or not, as a UA string which can pass the standard format check can still be fake. This

is where the application profiles extracted from the UA strings come into play. Given HTTP flows

generated by a single client IP address that is associated with a single device to separate and group

flows based on devices, we build application profiles based on the information extracted from the

UA strings, which tell us what OS (and its version) and common applications (and their versions)

are running on the device. These application profiles are used by the inference engines to detect fake

(or generally malicious) UA strings. In particular, we look for conflicting information contained in

the application profiles. Clearly, detecting fake UA strings (especially when they pass the standard

format check) hinges on many contextual and other information contained in the HTTP flows, and

so forth. For example, in general given a Window machine, only one version/instance of the IE

browser can be running. When we see multiple versions of IE are running, or a version of IE is

running on the wrong OS version, this signifies that some of these are fake.

To evaluate these inference engines, we first build our ground truth. We primarily use the

commercial IDS to help us separate client machines that are infected with malware vs. those that are

not. We use the UA strings extracted from HTTP flows generated by standard applications running

on the “clean” machines as samples for context-free grammar specifications. We also check the

formats obtained from these samples against those generated from test machines as well as other

sources of UA lists. Apart from this, we also use the malware labels generated by the IDS to help

us confirm the fake/malicious UA strings we have detected by our system. More specific, we apply

inference engines to analyzing clients infected by Backdoor.Tidserv (aka Tidserv). Tidserv is a

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2015)

Prepared using nemauth.cls DOI: 10.1002/nem



19

Trojan horse that displays advertisements, redirects user search results, and opens back doors [4].

There are 14 clients which have already been labeled as Tidserv by a commercial IDS in our dataset.

We hope that the readers of our paper can see the utility of our methodology from the inference

engines we designed. Based on the methodology described above, security analysts can develop

their own heuristics according to the concrete problem they are targeting. We begin by presenting

suspicious standard UA strings and then continue to show suspicious non-standard UA strings.

6.1. Suspicious Standard UA Strings

Fake User-Agent Detection. In inference engine, fake UA detection, we aim to detect fake UA

strings which contains conflicting information in UA string itself. As we know, a significant number

of UA strings can pass the BNF grammar defined in Section 4 and be classified as standard UA

strings. However, not all of them are valid as mentioned above. From the left and middle parts of

Figure 3, we can see that the number of UA strings and Browser type UA strings in the 14 Tidserv

clients are more than those in 100 randomly selected clean clients. This indicates the possibility of

fraudulent UA strings generated by Tidserv clients. Given the UA string in Table VII, we suppose it

to be generated by a Firefox browser version 2.0. According to the Firefox official site, however, we

find that Firefox 2.0 is supported by Windows 98 and other recent OS versions, but not by Windows

95. Nevertheless, the UA string is correctly parsed by our CFG.

Moreover, consider the case of “browser-prefix” and “rendering-engine” rules defined in Table II.

Note that in practice, not all browsers are valid with all rendering engines. For example, browser

MSIE is only associated with engine “Trident”, and if it is associated with another engine such as

Gecko or Presto, the UA string tends to be fraudulent.

Combining the aforementioned cases, in order to improve our system, we plan to develope a basic

type checking system that checks the dependency between keywords in different terms. This idea is

borrowed from runtime type checking in compilers. The linkages can be created between terms by

crawling sites, such as [9], to obtain all possible valid combinations of terms and the type checker
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can enforce them after the BNF parsing. Administrators can also specify their own dependencies in

the type checking system.

Table VII. Example suspicious UA strings.

Examples

Suspicious
standard
UA strings

fake UA
detection Mozilla/5.0 (Windows; U ; Win95; it; rv: 1.8.1) Gecko/20061010 Firefox/2.0

fake OS
detection Mozilla/4.0 (compatible; MSIE 6.0b; Windows NT 5.0; .NET CLR 1.0.2914)

anomaly
detection

Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.19 (KHTML, like Gecko)

Chrome/18.0.1025.152 Safari/535.19

Suspicious
non-standard
UA strings

suspicious
standard
UA strings

User-Agent: NULL

Trojan Brontok A11

MSlE

Fake Operating System Detection. In inference engine, fake OS detection, we aim to detect fake

UA strings which contains conflicting information with contextual information contained in the

HTTP flows, particularly OS information contained in HTTP flows. OS information can either

be inferred from most standard UA strings or OS fingerprinting mechanisms by utilizing pieces

of information contained in lower layers (below application layer in ISO model). However, the

OS information inferred from UA strings and lower layers could be different. This gives us the

indication that UA string could be fake. From the right side of Figure 3, we can see the number of

OSes inferred from the UA strings in Tidserv clients is more than that in clean clients. This indicates

that the OSes information inferred from fraudulent UA strings might not match the actual OS of the

device that generated the corresponding HTTP flow. In order to check whether there are such OS

conflicts, we resort to OS fingerprinting mechanisms. The tool we use is “p0f v3”, which utilizes

an array of sophisticated, purely passive traffic fingerprinting mechanisms to identify the players

behind any incidental TCP/IP communications [10].

We ran p0f through Tidserv clients and identified many inconsistent HTTP flows, where the OS

inferred from the UA string by our parser is different from the OS provided by p0f. However, such

OS conflicts are not found in clean clients. For example, given the UA string in Table VII, it is

supposed to be generated by a Windows 2000 machine according to its NT version. However, from

the p0f results, the HTTP flow is generated by a Window 7 machine. To further verify this (since p0f

might be wrong), we manually went through all the HTTP flows generated from this Tidserv client
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and found that no other flows were associated with Windows 2000. In addition, by doing a HTTP

referer analysis on this flow, we found that the referred hostname associated with this UA string was

never accessed by the monitored client, which indicates a potential click-fraud event. Surprisingly,

we found that all 6 clients infected with both Tidserv and Trojan.Zeroaccess [5], generate all the UA

strings with OS conflicts. We found a total of 8 distinct fake OSes. We hypothesize that Zeroaccess

has a simple codebase that randomly picks a UA from standard UA strings pool without checking

the OS of the device that is running the malware.

Anomaly Detection. In inference engine, anomaly detection, we aim to detect fake UA strings from

statistic analysis. It is possible for fraudulent UA strings to pass the CFG-based parser, the fake UA

detection and the fake OS detection. In this case, we rely on further statistical analysis to identify

suspicious hosts. Those fraudulent UA strings can also be found in the Tidserv infected clients.

From the statistics of the 14 Tidserv clients in our dataset, the number of standard browsers in those

clients is larger than that in clean clients as shown in Figure 3. This indicates a suspicious behavior,

as in normal cases, we expect very few browsers being used in a single household.

To better understand the reason for the large number of standard browser UA strings in Tidserv

clients, we chose a Tidserv client and digged into it. In this client, there were 12 standard browser
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UA strings, including different versions of Chrome, RockMelt and Internet Explorer. We found that

one of the Chrome UA strings as shown in Table VII was the most frequently used and default for

that client, but other UA strings belonged to browsers that were used sporadically and appeared only

around flows flagged by the commercial IDS as Tidserv. Investigation showed that the flows with

RockMelt and some other standard browser UA strings were directed to advertisement networks

(e.g., ad.zanox.com and ad.doubleclick.net) to perform click fraud. This shows that a statistical

analysis on top of the presented UA analysis can indeed help identify anomalous clients.

6.2. Suspicious Non-Standard UA Strings

For non-standard UA strings, studies [14] [23] show that some of them are often associated with

the malicious activities. Thus, we design signature based inference engine to detect suspicious UA

strings in non-standard UA strings. After hostname association, if non-standard UA strings cannot

be associated with well-known applications, they are classified into “Unknown UA Strings”. For

UA strings in this category, our system depends on the signature collected from domain knowledge

and other sources of information, to judge whether they are normal or not. In our system, we set

basic signatures collected from various online sources like [17].

As shown in Table VII, these UA strings are filterd by signature based inference engine in Tidserv

clients. Since and HTTP server would not be able to perform any improvements on user experience

based that UA string, “User-Agent: NULL” is abnormal. For the HTTP flows associated with this

UA string, VirusTotal [3] reported that the associated hostname is a malicious software download

site. Another example in Tidserv clients was the UA string “Trojan Brontok A11”, which infects

Windows machines. Note that the bot name is written in the UA string, which could be used as

a signal for the C&C server to identify flows from infected clients. The third example in Tidserv

clients was a mis-spelling in the UA string. The UA contains “MSlE” (note the lower case “L”)

instead of “MSIE” (the upper case “I”). After searching for this UA string, we found it associated

with malware Troj/Agent-VUD.
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We can envisage that our system can be augmented with rich signatures in the UA strings that do

not pass our CFG-based and hostname association UA string classifiers, such as XSS, SQL injection

attacks that are embedded in the UA strings. Such a system may prevent a client machine to launch

XSS, SQL injections to a targeted server. If running on the server side, our system can simply only

allows HTTP requests with legitimate standard web browsers or mobile apps to be forwarded to the

server under protection, thereby filtering out ill-formed UA strings (which contain, e.g., malicious

SQL commands for compromising a vulnerable server).

7. CONCLUSION

Most cyber attacks today are performed over HTTP and the UA string carries a lot of critical

information that can be leveraged to detect them. We presented a system that identifies fraudulent

UA strings by categorizing the strings based on their syntactic format and running a set of inference

engines. We classified the standard UA strings with a novel grammar-guided approach, which

leverages context-free grammar to parse and extract application name, device and operating system

information. In addition, we developed a heuristic to classify non-standard UA strings by associating

them with the hostname field of the corresponding HTTP flow. We devised three inference engines

to identify fraudulent UA strings: fake UA string detection, fake OS detection and anomaly detection

using statistical features. Finally, we provided several case studies to demonstrate how our approach

can lead us to identify malicious applications.

We recognize that our proposed UA string classification methodology is only meant to be one

useful tool of a larger arsenal of tools that a security analyst can leverage for detecting malicious

activities and attacks. This is because by only considering the UA string of HTTP flows for anomaly

detection, we may miss HTTP attacks where the UA string is not the key indicator. In addition, for

the case of non-standard UA strings, we currently provide a very basic level of inference, which is

not enough to differentiate benign from malicious cases and requires human analysis. Nevertheless,

in this paper, we have described and showed the potential of a methodology capable of highlighting
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abnormalities in the HTTP behavior of clients by focusing on UA string analysis, even when the

anomalies are very subtle (e.g. valid UA strings but conflicts in the OS advertised).
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