
A Dynamic Pricing Algorithm for a Network of
Virtual Resources.

Bram Naudts∗, Mario Flores†, Rashid Mijumbi‡, Sofie Verbrugge∗, Joan Serrat† and Didier Colle∗
∗Department of Information Technology

Ghent University, Ghent, Belgium
Email: {bram.naudts,sofie.verbrugge,didier.colle}@intec.ugent.be

†Network Engineering Department
Universitat Politècnica de Catalunya, Barcelona, Spain

Email: {mario.flores@entel,serrat@tsc}.upc.edu
‡Telecommunications Software and Systems Group

Waterford Institute of Technology, Waterford, Ireland
Email: rmijumbi@tssg.org

Abstract—A service function chain (SFC) is an ordered combi-
nation of abstract network functions (e.g. network address trans-
lation, a firewall, etc.) that together define a network service (e.g.
video-on-demand). In an SDN/NFV based architecture, SFCs are
composed of virtual network functions that need to be mapped
to physical network components. Since the mapping of a SFC
may be possible by multiple competing infrastructure providers
(InPs), price will be a key differentiating factor. The pricing
algorithm is therefore essential towards revenue management,
yet current static pricing approaches suffer from several limi-
tations. Among others, they do not consider the characteristics
of the requests or the current state of the physical network.
Using historical data, market data and the current state of the
physical network we investigate whether it is possible to increase
total revenue of an InP compared to traditional static pricing
approaches. This paper, proposes a dynamic pricing algorithm
to determine (1) at which utilization level it is rewarding to charge
a higher price for a particular resource and (2) the alternative
price that should be charged.

Our simulation results for 8 different setups show that the
proposed heuristic outperforms a static pricing approach sig-
nificantly (by 8-85 percent points for the considered scenarios).
As a consequence, the proposed approach can be considered as
an alternative for static pricing approaches. Still, it is unclear
how the total revenue of an InP is affected when multiple or all
competitors use a dynamic pricing algorithm, this will therefore
remain the focus of future work.

I. INTRODUCTION

Telecommunication networks are composed of a variety
of network elements. Two categories of network elements
can be broadly distinguished: (1) those that are part of the
infrastructure or transport network with as primary goal packet
forwarding and (2) those that are primarily deployed for pur-
poses other than packet forwarding. Switches and routers are
well-known examples of the first category. Middleboxes, also
called network appliances or network functions (NFs), form
the second category. These network elements are connected
or chained in a certain way in order to achieve the desired
overall functionality or service that the network is designed
to provide. In this context, a service function chain (SFC)
defines an abstract set of NFs and their ordering constraints

that must be applied to packets and/or frames [1]. SFCs have
traditionally been realized via the deployment of physical
proprietary devices and equipment for each NF. These physical
NFs need to be deployed in a strict chain and/or order that must
be reflected in the network topology and in the localization
of service elements [2]. This approach has certain drawbacks
such as a high degree of complexity and inflexibility and heavy
dependence on specialized, expensive hardware.

Network function virtualization (NFV) has been proposed
as a way to address these challenges by enabling dynamic
construction and management of SFCs. The main idea of NFV
is the decoupling of physical network equipment from the
functions that run on them. This way, a given service can be
decomposed into a set of NFs, which could be implemented in
software running on virtualized physical network equipment.
This type of implementation of a NF is referred to as a
virtual(ized) network function (VNF). In addition, software-
defined networking (SDN) proposeds to move management
functions out of forwarding hardware into controller software
to simplify provisioning and reconfiguration of SFCs.

The decomposition of the SFC into NFs is referred to as ser-
vice decomposition. By decomposing a SFC into elementary
NFs, a number of benefits can be realized. First, re-usable
elementary blocks are developed. Second, new and more
complex services can be realized from these elementary blocks
and third, the detailed implementations of these NFs can be
abstracted. Figure 1 depicts an example service decomposition.
The SFC is decomposed into three NFs (NF1, NF2 and NF3),
NF2 is decomposed to NF4 and NF5, etc. Once a SFC has
been decomposed into (V)NFs, they can be embedded by an
infrastructure provider (InP).

InPs own, control and manage those physical resources.
They offer these (virtualized) resources to third parties who
embed SFCs on the substrate resources. In return for the
provided resources, the InP charges a fee. Typically, a static
pricing approach is used to calculate that fee. We argue that
this approach leads to lower revenues than possible. Given
that the possibility exists to change the price on the spot, the

NF 1 outin

NF 2 outin

NF 3 outin

Service Function Chain

(SFC)

NF 4 outin NF 5 outin

NF 2

NF 6 outin

NF 4

NF 7 outin

NF 5

NF 8 outin NF 9 outin

NF 4

Fig. 1. Example of service decomposition process

InP is able to dynamically change its pricing policy. With a
higher price, an operator can get a higher profit margin but
the operator may also lose (future) business to a competitor.
An important observation in that respect is that the resources
are perishable. Non utilized resources generate no revenue. As
such a careful trade-off has to be made between supply and
demand.

Therefore, our contribution is to propose a dynamic pric-
ing algorithm which varies the price of individual substrate
resources over time in such a way that the total revenue of the
InP is higher than that of an equivalent competitor applying a
static pricing approach.

The remainder of this paper is organized as follows. Section
II provides a brief overview of related work on the Virtual
Nework Embedding Problem (VNEP) and dynamic pricing
algorithms. Section III introduces the stakeholders and pro-
vides a detailed description of the problem. In section IV, the
proposed algorithm is introduced. The performance evaluation
results are reported and discussed in section V. Finally, section
VI concludes the paper.

II. RELATED WORK

By now, the VNEP is a well studied problem and has
multiple application domains. Closely related to the VNEP
is the assignment of virtual private networks (VPNs) in a
shared provider topology (e.g. [3] and [4]) and the network
test-bed mapping problem (e.g. [5]). We refer the interested
reader to [6] for a survey of VNE algorithms. Initial studies on
placement of VNFs and VNF chains in both InP and optical
networks are presented in [7], [8], [9], [10], [11], [12] and our
own work [13].

In the field of revenue management, our work is related
to the online pricing literature that deals with instantaneous
demand dynamics and the adjustment of prices on the spot.
Dynamic pricing has become an active field of the revenue
management literature, with successful realworld applications

in industries such as travel, fashion, and so on [14], [15], [16].
Closely related to our work, revenue management has also
been applied to the field of cloud computing, [17], [18], [19],
[20], [21]. For cloud providers, unlike other fields, revenue not
only depends on the (unknown) number of customers, but also
on the (unknown) duration of usage. As such, not only arrival
rates but also service times are stochastic. In those works,
resources are however considered as interchangeable. When
embedding VNFs, the customer will however typically have a
set of requirements (e.g. delay, location, etc.) which make them
hardly interchangeable. The authors of [22] summarize several
situations where the physical resource is not interchangeable
for the placement of certain functions:

1) Efficiency: VNFs that exchange a lot of data may want
to be positioned close to one another (e.g., within the
same datacenter, or even on the same physical host).

2) Resilience: In order to improve resilience in case a
failure occurs in one of the datacenters, the same VNF
may be embedded across multiple datacenters.

3) Legislation: Hosting VNFs in certain countries due to
legislative restrictions may be avoided.

4) Privacy: the user might not want the traffic to pass
through certain domains due to privacy concerns.

5) Economic: for economic reasons (e.g., peering agree-
ments) the placement of functions in certain domains
may be promoted or avoided.

The most related work to ours are [23] in which the nego-
tiation process in a multi-domain environment is considered
and [24] in which an auction based pricing strategy is used.
These approaches are however dependent on a specific VNE
algorithm, do not take into account the pricing strategy of
competitors or they wait for a certain time to be able to batch
a set of requests.

This paper advances the state-of-the-art by proposing a
revenue management mechanism for non-interchangeable, per-
ishable resources. The proposed dynamic pricing algorithm
can be applied to price requests instantaneously and indepen-
dent of the chosen VNE algorithm. It assumes a competitive
market with price-sensitive customers and knowledge of the
competitor’s pricing. We detail the dynamic pricing algorithm
and validate it via simulation.

III. PROBLEM DESCRIPTION

A number of stakeholders are involved in the realization
of an SDN/NFV-driven architecture for realization of service
function chaining.

Ecosystem roles. On the left side of Figure 2, the most
relevant ecosystem roles are represented. These roles are
accomplished by the actors that actively participate in the
exchange of value. Most actors will perform more than one
role at the same time. For example, traditional ISPs fulfill the
role of InP, virtual service infrastructure provider (VSIP) and
service provider (SP).

Users. Users, i.e. end/enterprise users, retail or over-the-top
providers, request and consume a diverse range of services. In
general, users have no strong opinion about how the service

Storage

hardware
Computing

hardware

Network

hardware

virtualization layer

Network Services

SDN

Control

Software
Cloud Services

Cloud

Management

Software

C
o

n
tr

o
l

L
ay

er
A

p
p

li
ca

ti
o

n

L
ay

er

Network

Applications

NFV Applications

Orchestration

Services

Orchestration

Platform

O
rc

h
es

tr
at

io
n

L
ay

er

Cloud

Applications

Management

Layer

M
an

ag
em

e
n
t C

o
m

p
o

n
en

ts

In
fr

as
tr

u
ct

u
re

L
ay

er

S
D

N
-c

o
n
tr

o
ll

ed
 N

et
w

o
rk

 A
rc

h
it

ec
tu

re C
lo

u
d

 S
erv

ice C
o

n
tro

l A
rch

itectu
re

In
fr

as
tr

u
ct

u
re

P
ro

v
id

er
s

(I
n
P

)
V

ir
tu

al
 S

er
v
ic

e
In

fr
as

tr
u
ct

u
re

 P
ro

v
id

er
s

(V
S

IP
)

S
er

v
ic

e

P
ro

v
id

er
s

VPN

service
IP TV

requirement

translation and

mapping to

virtual network

functions

embedding on

physical/virtual

infrastructure

S
er

v
ic

es

U
se

rs

service

consumption

User demand for services (with implicit or explicit service guarantees)

Main ecosystem roles Architectural overview

Internet of ThingsVideo conferencing

Fig. 2. Network and Cloud control architectures

is delivered as long as their quality of experience expectations
are satisfied.

Service providers (SPs). SPs accommodate the service de-
mand from users by offering one or multiple services including
over-the-top services and X-play services (e.g. triple play). The
SP realizes the offered services on a (virtualized) infrastructure
via the deployment of a SFC of VNFs. These SFCs are next
handed to a VSIP who will try to map the SFC on the resources
provided by the InP.

Virtual service infrastructure providers (VSIPs). VSIPs de-
liver virtual service infrastructure to SPs, thereby meeting
particular service level requirements by combining physical
network and cloud resources owned by the InP into a service
infrastructure that meets particular SLA requirements [25].

A VNE algorithm should determine if the NFs and their con-
nections in the SFCs can be mapped to the infrastructure. To
realize this, two control architectures are used to bring together

the areas: (1) the software-driven1 control of communication
networks, and (2) the control of cloud (service) platforms.
Both control architectures are depicted in the architectural
overview of Figure 2 which is based on [26].

The orchestration platform has a complete view on available
networking as well as on computing and storage resources
and is used for services that require a combination of these
resources. The orchestration components are able to make an
informed decision on which infrastructure should be used.
The provisioning process itself can then be further delegated
to the already existing network and cloud control platforms
which manage the virtualized physical resources (of the InP).
The request of a VSIP to embed a SFC on the infrastructure
provided by a InP is referred to as a virtual network request
(VNR).

Infrastructure providers (InPs). InPs own and maintain the

1In the context of this article we focus on SDN-controlled networks,
although traditional distributed routing protocols could also be considered
as the control layer of communication networks.

physical infrastructure and run the virtualization environments.
By virtualizing the infrastructure, they open up their resources
to remote parties for deploying VNRs. The reusable physical
resources comprise all possible resource options (computing,
storage and networking) and they span the entire service
delivery chain from the end-user gateway and set-top-box over
the access, aggregation and core network up to the cloud.

Negotiation process. The negotiation process considers the
interaction between the SPs, VSIPs and the InPs. Their main
objective is to maximize their own profit. Over time SPs send
service request (Serv. Req.) to the VSIPs who try to embed
the request on the virtualized substrate resources of an InP.

Since provisioning of the SFCs may be possible by multiple
InPs, the VSIPs can use the competition between different
InPs to negotiate the best price for a SFC. VSIPs will as such
use cost information (the prices charged by competing InPs)
to cost-optimally solve the VNE problem. A service request
(Serv. Req.) is sent by the VSIP to request for a mapping of a
given SFC to the InPs. The request contains information about
the amount of requested virtual resources and the duration.
After receiving a SR, each InP attempts to perform a mapping.
If the mapping is successful, the InP replies with a mapping
proposal (MP) to the VSIP giving details of the mapping such
as the price. If the mapping fails, the InP sends a mapping
failed (MF) message. After receiving a MP, the VSIP replies
with an accept proposal (AP) to the InP with the best offer and
with a reject proposal (RP) to all other InPs. The negotiation
process is summarized in Figure 3.

SP

V

S

I

P

InP1 InP2 … InPN

Serv.

Req.

MP

MP
MP

MF

RP
AP

RP

Serv.

Req. Serv.

Req. Serv.

Req. Serv.

Req.

Fig. 3. Overview of the negotiation process

Objective. Our objective is to increase the total revenue
of the InP from a population of price sensitive customers
(VSIPs). We therefore propose a revenue management mech-
anism based on a dynamic pricing algorithm. This dynamic
pricing algorithm requires a set of inputs. Our assumption
is that the InP records information about its own substrate
resources (e.g. available and total resources, historic data about
provided services per substrate resource) and about the pricing
of its competitors (which we assume can be obtained). We do
not assume that the InP has information about the used VNE

algorithm by the VSIP, nor about the state of the competitor’s
substrate resources or its cost structure.

IV. PROPOSED DYNAMIC PRICING ALGORITHM

As discussed in the previous section, the customer (VSIP)
favors the InP who is able to map the VNR at the lowest price.
When we assume that n (n ∈ [1, N]) InPs provide an offer
for VNR v (v ∈ [1, V]) at a price Pn,v , the user’s preferred
offering for VNR v (POv) is as such the minimum of the
offers of the different InPs (Equation 1) with Pn,v the price
of InP n for VNR v.

POv = min(P1,v, P2,v, P3,v, . . . , PN,v) (1)

Determining Pn,v . Pn,v is typically composed of the units
of substrate resource i (i ∈ [1, I]) demanded by VNR v (Ri,v),
and the price charged per unit of the substrate resources i (Pi).

Pn,v =

I∑
i=1

Ri,v × Pi (2)

In static pricing, the parameter Pi of Equation 2 is a constant
over time (Pi,s). In dynamic pricing, Pi evolves over time and
as such the price per substrate resource i will be different per
VNR (Pi,d). The goal of this research is to find an algorithm
that is able to determine a Pi,d with which an InP that applies
the proposed dynamic pricing approach can obtain a higher
total revenue in comparison to an identical, competing InP
which applies a static pricing approach.

The general idea of our proposal is to vary the price charged
for individual resources over time based on the utilization level
of the resource and the demand for a resource. To do so, the
algorithm takes into account the characteristics of substrate
resources:

• capacity. not all substrate resources have the same ca-
pacity, a large data center may have tens of thousands of
servers while a node at the edge of the network may only
have a few.

• demand. some resources may be popular such as a node
which is well connected while demand for other resources
may be low

• service time. the average service time may vary across
resources

• revenue. the average revenue accrued per time unit for
an embedded VNR may vary across resources

Similarly, the characteristics of VNRs are taken into ac-
count:

• requested resources. the set of substrate resources varies
between VNRs. For example, a VNR may require re-
sources at the core of the network while another VNR
may require resources close to the network edge.

• requested capacity of a resource. two VNRs may
request the same set of resources but each a different
capacity

• size. a VNR can be small compared to other VNRs that
span large parts of the physical network

Based on this information, two mechanism are used to
increase total revenue: (1) if the utilization level is low
(i.e. ample storage space, computing power or bandwidth
available), there will be adequate capacity to embed several
VNRs as they arrive one after the other. As such, the price
of substrate resource i (Pi,d) is set at a price that is very
competitive to attract demand. (2) if the utilization level of a
resource is high, inadequate capacity may be available to serve
future requests and the InP will no longer be able to embed
each VNR (e.g. only 9 out of every 10 VNRs, or less). As
such, we wish to attract VNRs that provide high revenue per
unit of the substrate resource with a high utilization level (or
increase Pi,d for VNRs that otherwise provide a low revenue
per unit of the substrate resource).

This second mechanism is illustrated in Figure 4. Let us
consider two VNRs, VNR1 and 2, which arrive one after the
other to be embedded on a substrate network. For simplicity,
we only take into account node resources and assume that
the price per unit of a substrate resource is the same for all
resources and equal to 1. VNR1 needs two different node
resources with a capacity of 1 and 2. VNR2 need 3 with a
capacity of 1, 3 and 3. The mapping of each VNR to the
substrate network is illustrated in Figure 4. The substrate
network has one substrate resource with just 2 units left
available (black circle) while all other substrate resources
have ample capacity (9 units, white circles). When VNR1
is embedded, all of the remaining units of the resource with
the lowest remaining capacity (black circle) are used by that
request. This leaves no room for additional requests (such
as VNR2). In addition, the revenue for embedding VNR1 is
relatively low because only 1 additional resource is used by
the VNR per time unit. As such, a total revenue of 3 per time
unit is generated by VNR1. VNR2 on the other hand, requires
just 1 of the remaining units of the resource with the lowest
remaining capacity, leaving 1 unit of that resource available
for future VNRs. Also, the total revenue of VNR2 is higher
as 6 additional units are required (3 from each node). A total
revenue of 7 per time unit is generated by VNR2. As such
the ratio of the total revenue divided by the units requested of
the resource with low remaining capacity is 1.5 for VNR 1
compared to 7 for VNR 2. Clearly, revenue can be increased by
rejecting VNR1 (or request a higher price for it) and accepting
VNR2.

To take these two mechanisms into account we propose a
heuristic which is the dynamic pricing approach described in
algorithm 1. It tackles two challenges: (1) at which threshold
should we start to charge more for a substrate resource (a
resource which is above this threshold is referred to as a
constrained resource) and (2) which price should we charge
per unit of the constrained resource. The used parameters
are summarized in Table I and the proposed dynamic pricing
approach in algorithm 1. The algorithm itself is detailed step-
by-step below.

Determining Pi,d. Instead of using Equation 2 for deter-
mining Pv , the price of the VNR is determined by multiplica-
tion of the dynamic price of the constrained substrate resource

2 9

9

9

9

2

1

1 3

3

substrate network

VNR 1

VNR 2

Fig. 4. Embedding of two VNRs on a substrate network with one node with
low remaining capacity. The requested or available capacity of each node is
indicated inside its circle.

TABLE I
LIST OF PARAMETERS AND THEIR SYMBOLS

parameter symbol
infrastructure provider (InP) n, n ∈ [1, N]
virtual network request (VNR) v, v ∈ [1, V]
substrate resource (SR) i, i ∈ [1, I]
constrained SR c, c ∈ [1, C]
acceptance level of substrate resource i ai
price of InP n for VNR v Pn,v

preferred offering for VNR v POv

price of SR i, static, dynamic Pi, Pi,s, Pi,d

price of VNR v, static,dynamic Pv ,Pv,s,Pv,d

units requested of substrate resource i by VNR v Ri,v

duration of VNR v Dv

expected revenue, at acceptance level a E(Rev),E(Reva)
the revenue per unit of SR i for VNR v RUi,v

the average revenue per unit of substrate resource i
at the current level of acceptance R̄U i,a

blocking probability of SR i
at the current level of acceptance Pb,i,a

the system ingress load E
the mean arrival rate λ of SR i
at acceptance level a λ̄i,a
the mean service time of SR i s̄i
the number of servers available for
SR i at acceptance level a ci,a
overall acceptance level A
discount rate δ

i (Pi,d) with the number of units requested of the constrained
resource by VNR v (Ri,v). However, when Pv is lower than
the Pv obtained by applying equation 1, the latter Pv is used
(Equation 3).

Pv = max(Pi,d ×Ri,v, Eq.1× (1− δ)),∀i ∈ {1, I} (3)

In this pricing scheme, Pi,d is dynamic and equal to
RUi,v=(1−a)×V+1. RUi,v=(1−a)×V+1 is the revenue per unit
of substrate resource i for VNR v for the acceptance level
a with the highest expected revenue (E(rev)). The level of
acceptance refers to the number of VNRs that will be priced

Algorithm 1 Dynamic pricing algorithm
while VNR arrive do

map offer
if offer can be mapped then

gather historic data: POv and Ri,v
for all i = 1 to I do

for all v = 1 to V do
calculate RUi,v via Eq. 5

end for
end for
order historic data in ascending order based on RUi,v
for all i = 1 to I do

for all a = v
V with v ∈ [1, V] do

calculate R̄U i,a via Eq. 7
calculate ci,a via Eq. 9
calculate Pb,i,a via Eq. 8
calculate E(Reva) via Eq. 6

end for
end for
obtain POv via Eq. 1
for all i = 1 to I do

select a corresponding with max E(Reva)
calculate Pi,d via Eq. 4
calculate Pv,d via Eq. 3
if Pv,d > POv then

add ai to list of constrained resources
end if

end for
if multiple constrained resources then

apply algorithm 2 or 3
end if
for all i = 1 to I do

calculate Pi,d via Eq. 4
calculate Pv,d via Eq. 3
save highest Pv,d to Pv

end for
send offer to broker with price Pv
if offer accepted then

embed VNR
end if

else if VNR cannot be mapped then
reject VNR

end if
end while

at an attractive price. For example, an acceptance level of 80%
means that 8 out of every 10 VNRs will be priced attractively
in respect to the competitors price while the other 2 will be
priced at a premium (for which, the client will likely choose
for a competitor unless there is no better option). It is also the
threshold at which a resource is considered as constrained.
Equation 4 is used to calculate RUi,v=(1−a)×V+1.

Pi,d = RUi,v=(1−a)×V+1 =
POv
Ri,v

(4)

Determining a. To determine the acceptance level a with
the highest E(rev), a database composed of historic data of
all VNRs that have been mapped on substrate resource i is
maintained. It contains two data fields: (1) the total price
charged for VNR v (POv) and (2) the units requested of
substrate resource i in VNR v (Ri,v). The ratio RUi,v , the
revenue per unit of substrate resource i for VNR v, is first
calculated for each of the entries according to Equation 5.

RUi,v =
POv
Ri,v

(5)

The database is next ordered in ascending order based on
this ratio. Once ordered, the acceptance level a with the highest
E(rev) can be found based on two factors: (1) the average
revenue per unit of substrate resource i used at the current
level of acceptance (R̄U i,a) and (2) the blocking probability of
substrate resource i at the current level of acceptance (Pb,i,a).

E(Reva) = R̄U i,a × (1− Pb,i,a)× a (6)

Once E(Reva) is determined for all a, the acceptance level
a that corresponds with the the highest E(Rev) is chosen from
the ordered list and used in Equation 4.

Determining R̄U i,a. The ordered database is used to cal-
culate R̄U i,a. R̄U i,a is then determined according to Equation
7.

R̄U i,a =

∑V
v=(1−a)×V+1

POv

Ri,v

(V − v + 1)
, v ∈ [1, V], a =

v

V
(7)

Determining Pb,i,a. To calculate Pb,i,a, the VNRs arriving
at a substrate resource are modeled as a M/M/c/K queuing
system (Kendall’s notation). This is a queuing system that
needs to satisfy the conditions that arrivals form a single queue
and arrive according to a Poisson process (M , memoryless),
that service times are exponentially distributed (second M),
that there are c servers which serve from the front of the queue
and a buffer capacity of K (including those in service). In
an M/M/c/K queue only K customers can queue at any
one time (including those in service). Any further arrivals
to the queue are considered lost for service. In this case, a
substrate resource is either able to map a VNR or not. As
such, the buffer size K is zero (c = K, M/M/c/c). The
Erlang B formula (also known as the Erlang loss formula), can
be used to calculate the blocking probability that describes the
probability of losses for a group of identical parallel resources
(Equation 8). In Equation 8, ci,a is the number of servers
available for substrate resource i at acceptance level a and E
is the systems ingress load in erlang which is calculated as
the mean arrival rate λ of substrate resource i at acceptance
level a (λ̄i,a) multiplied by the mean service time of substrate
resource i (s̄i).

Pb,i,a =

Eci,a

ci,a!∑ci,a
j=0

Ej

j!

(8)

λ̄i,a is calculated by multiplying the historic arrival rate (the
number of VNRs that arrive per time unit) with the acceptance
level a. s̄i is calculated as the mean service time of all VNRs
that are mapped and use substrate resource i. To estimate
ci,a, the ordered database of historic data which is maintained
per substrate resource is used in combination with the units
available of the substrate resource i considered (Ai). ci,a can
be calculated via Equation 9.

ci,a = b
∑V
v=(1−a)×V+1

Ai

Dv

(V − v + 1)
c, v ∈ [1, V], a =

v

V
(9)

Once ci,a is known, Pb,i,a can be determined via Equation 8.
Once R̄U i,a and Pb,i,a are known, E(Reva) can be calculated
via Equation 6, etc.

Multiple constrained resources. When using the algorithm
described above to price a VNR, multiple resources may be
constrained instead of just one. In that situation, the algorithm
calculates the (dynamic) price of the VNR as the highest of the
prices of all constrained resources (Equation 3). As such, for
all but one of the constrained resources, a higher price will be
charged than the price that corresponds with the acceptance
level of the constrained resources (Equation 4). This would
not be a problem if the same set of resources would always
be involved in a VNR and if the same resource would always
determine the highest price. This is however not the case as
each VNR may request a different set of resources and over
time different resources will be constrained or not (e.g. after a
VNR has terminated, an otherwise constrained resource may
become non-constrained). As a consequence of the higher
price, the actual acceptance level of individual constrained
substrate resource i (ai) will be lower than the acceptance
level we would like to obtain. Similarly, the acceptance level
of the combined resources for VNR v Av will be lower than
the acceptance level of each individual constrained substrate
resource i (ai). As a result, fewer VNRs will be attracted
than initially hoped. We propose two alternative approaches
to obtain a better balance between the Av and ai.

In the first approach, the acceptance level of individual
resources ai is scaled up to bring the combined acceptance
level Av closer to the original acceptance level of individual
resources ai. Algorithm 2 summarizes this approach.

The drawback of the scaling approach is that it assumes no
correlation between the constrained resources. This is clearly
untrue when VNRs exist that have similar requirements. We
therefore also propose an alternative approach. In this second
approach, we do not scale the the acceptance level of individ-
ual resources ai, instead the dynamic price is set to the average
of the prices obtained by using Equation 4 for each of the
constrained resources. Algorithm 3 summarizes this approach.

V. PERFORMANCE EVALUATION

The focus of our evaluations is on quantifying the benefit of
the proposed revenue management algorithm in terms of total
revenue. To ensure a fair comparison we model two identical
InPs (i.e. same network topology and substrate capacity) who

Algorithm 2 Scale availability

Āv ←
∑C

i=1 ai
C

Av
∗ ←

∏C
i=1 ai

while Āv 6= Av
∗ do

S = C

√
Āv

Av
∗

for all i such that 1 ≤ i ≤ C do
ai = min(1, S × ai)
if ai > 1 then

remove ai from the list of constrained resources
end if

end for
Av

∗ ←
∏C
i=1 ai

end while

Algorithm 3 Average of constrained resources
c = 0, Pv = 0
for all i = 1 to I do

if ai = 1 then
calculate Pi,d via Equation 4
Pv = Pv + Pi,d, c = c+ 1

end if
end for
Pv = Pv

c

compete against each other. The first InP uses the dynamic
pricing algorithm while the second uses a static pricing algo-
rithm.

A. Simulation setup.

We compare different simulation setups: (1) different inter-
arrival rates (1

λ) and (2) different capacity requested per virtual
node and link. The scenarios are summarized in Table II. Each
setup is simulated for 20, 000 VNR arrivals. In the dynamic
pricing algorithm, a discount δ of 5% is given (Equation 3).

TABLE II
OVERVIEW OF THE SIMULATION INPUT PARAMETERS

scenario substrate virtual substrate virtual 1
λ

node node link link
capacity capacity capacity capacity

1 100-200 10-20 200-400 16-40 1
2 100-200 10-20 200-400 16-40 2
3 100-200 10-20 200-400 16-40 3
4 100-200 10-20 200-400 16-40 5
5 100-200 25-50 200-400 40-100 1
6 100-200 25-50 200-400 40-100 2
7 100-200 25-50 200-400 40-100 3
8 100-200 25-50 200-400 40-100 5

Substrate network. The substrate network is modeled as
an undirected graph. The infrastructure consists of nodes
connected via links. Each node has certain capacity in terms of
computation, memory and/or storage, each link has a certain
capacity in terms of bandwidth and has a certain delay. The
substrate network used in the simulations has 25 nodes and
75 links. The minimum and maximum capacity (e.g. available

storage capacity) of each substrate node and link is given in
Table II.

Virtual network request. Each VNR is represented as a
directed graph to support the dependency between elementary
NFs. The NFs are represented as nodes connected via directed
links in the graph. Each NF has certain requirements in terms
of computation, memory and/or storage and links connecting
different NFs should meet certain requirement in terms of
maximum allowed delay and bandwidth. The virtual networks
used in the simulation have a maximum of 7 nodes and 12
links. The minimum and maximum capacity of each virtual
node and link is given in Table II. The average service time
is 100.

Virtual network embedding algorithm. The VNE algo-
rithm is an implementation of a link-based multi-commodity
flow formulation of the one-shot virtual network embedding
[27] in CPLEX 12.6.

Negotiation process. The VNRs are awarded to the InP
according to the negotiation process depicted in Figure 3
(we assume 2 InPs). The result of the negotiation process is
classified in 5 categories: (1) F, the VNR cannot be mapped
to either InP (e.g. the set of requirements cannot be met,
inadequate substrate resources, etc.), (2) M1, only the first InP
is able to map the request (e.g. the second InP has inadequate
substrate resources), (3) M2, only the second InP is able to
map the request, (4) P1, both InPs are able to map and InP 1
has the best offer (i.e. InP 1 offers a lower price) and (5) P2,
both InPs are able to map and InP 2 has the best offer.

B. Results of the dynamic pricing algorithm with scaling of
availability when multiple resources are constrained

We report the embedding results for each of the scenarios
in Table III. As can be expected, when demand for substrate
resources is high, e.g. due to a low interarrival time (requests
follow each other fast) or/and when VNRs demand a large
share of the substrate resources (request use a large portion of
the available substrate resources), the number of failed map-
pings is large and vice versa. Also, the number of VNRs that
are won by the first provider by undercutting the competitor’s
price (P1) decreases when demand is high until both are more
or less equal for very high levels of demand (e.g. simulation
5). This can be understood as (1) only very few requests can
be mapped on the substrate network of both InPs and (2) the
VNRs that receive a discount from InP 1 will be limited to
those VNRs that have a high payoff per unit of the constrained
resource. In general we can observe that for very low levels
of demand (e.g. simulation 4), the dynamic pricing algorithm
will attract as much requests as possible by offering a discount
(quantity over quality). For very high levels of demand (e.g.
simulation 1), only a small share of all VNRs will retrieve a
discount (typically those with a high revenue per constrained
resource) while many VNR offers include a premium to protect
the constrained resource from otherwise low value requests. As
a result, the InP which applies static pricing (InP2) may embed
more VNRs than the InP using the dynamic pricing algorithm.
As we illustrate below, this will not negatively impact the

total revenue because the revenue per VNR is significantly
higher when applying the dynamic pricing algorithm (quality
over quantity). For normal levels of demand (e.g. simulation
2 and 3) the dynamic pricing algorithm will carefully balance
quality and quantity by changing dynamically over time the
price charged for a VNR based on the current utilization levels
of the substrate resources involved.

TABLE III
EMBEDDING RESULTS FOR EACH SIMULATION SETUP FOR THE DYNAMIC

PRICING ALGORITHM WITH SCALING.

simulation M1 M2 P1 P2 F total total
InP1 InP2

1 15% 22% 13% 10% 40% 28% 32%
2 2% 26% 44% 18% 10% 46% 44%
3 0% 17% 68% 13% 2% 68% 30%
4 0% 7% 83% 9% 0% 83% 17%
5 9% 9% 1% 1% 80% 10% 10%
6 13% 17% 8% 4% 59% 21% 20%
7 15% 23% 13% 4% 44% 29% 27%
8 5% 28% 45% 13% 9% 50% 41%

When we focus on the total number of VNRs that each InP
has obtained (its market share) it is clear that when demand is
relatively slow (e.g. simulation 4), the first provider obtains the
highest market share and also the highest node utilization and
link utilization (Figure 5). This is reached by systematically
undercutting the price of its competitors for those VNRs that
are considered as valuable and results in a higher total revenue
(Figure 6). It is however less straightforward that InP1 is able
to reach a higher total revenue than InP2 when its market
share is lower (e.g. simulation 1). To clarify this we need to
take into account the node and link utilization rates. These
are higher even though the market share of the first InP is
lower. The proposed revenue management model is able to
obtain this result by pricing VNRs that have a high revenue
per unit of the constrained substrate resources lower than
its competitors while demanding a premium for those VNRs
that have a low revenue per unit of the constrained substrate
resources (Equation 3). The impact of this decision is further
clarified in Table IV which presents the average revenue
per VNR for each embedding result (100% represents the
highest obtained average revenue for a particular simulation,
the other percentages are relative to the highest obtained
average revenue). By focusing on high value requests, the
InP is able to increase its revenue per VNR. To do so, the
InP needs to use its constrained resources optimally (certain
substrate nodes and links) and at the same time reach a higher
utilization rate for those resources that have a lower demand
(e.g. substrate nodes with ample capacity).

C. Results of the dynamic pricing algorithm with averaged
out availabilities when multiple resources are constrained

The results discussed above use the scaling approach (Al-
gorithm 2) to handle the situation in which multiple resources
are constrained at the same time. It scales the acceptance level
of resource i up to reflect that for different VNRs, different
substrate resources are the most constrained. As a result of this

90
85

68
64

78

70
64

62

89

51

22

7

74 72

65

45
40 39

30 28 30 31
28 28

34

21

8

3

28 28 28

18

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

A
v
er

ag
e

re
so

u
rc

e
u
ti

li
za

ti
o
n
 (

in
 %

)

Simulation scenario

node utilization InP1 node utilization InP2 link utilization In1 link utilization In2

Fig. 5. Average node and link utilization per simulation and per provider for the dynamic pricing algorithm with scaling.

28

10

9

14

83

60

15

8

0 20 40 60 80 100

1

2

3

4

5

6

7

8

Revenue difference between infrastructure provider 1 (dynamic)

and infrastructure provider 2 (static) in percent points

S
im

u
la

ti
o
n
 S

et
u
p

Fig. 6. Percent points difference in revenue of InP1 (dynamic) compared to
InP2 (static) per simulation for the dynamic pricing algorithm with scaling.

TABLE IV
COMPARISON OF AVERAGE REVENUE PER VNR FOR THE DYNAMIC

PRICING ALGORITHM WITH SCALING.

simulation average average average average
revenue P1 revenue P2 revenue M1 revenue M2

1 93% 50% 100% 92%
2 98% 60% 100% 99%
3 100% 62% 96% 98%
4 100% 62% 98% 99%
5 100% 65% 99% 89%
6 92% 64% 100% 95%
7 97% 70% 100% 97%
8 100% 72% 99% 72%

correction, the acceptance level of each resource will be closer
to the optimal acceptance level. However, with this approach,
each substrate resource is considered as being independent
from other substrate resources. In a VNR this is not the case
(as they form a network of connected resources), similarly a

relationship between the substrate resource on which VNRs
are embedded can be expected (e.g. between the utilization
level of a node and its connected links). As a result, the
scaling approach can be further improved. Algorithm 3 is
proposed as an alternative. It uses the average price of a
VNR for all constrained resources instead of using the highest
price. This approach indirectly takes into account the level
of interdependence between resources. Table V provides an
overview of the embedding results for the simulations as
described in Table II.

TABLE V
EMBEDDING RESULTS FOR EACH SIMULATION SETUP FOR THE DYNAMIC

PRICING ALGORITHM WITH AVERAGES.

simulation M1 M2 P1 P2 F total total
InP1 InP2

1 14% 19% 17% 13% 37% 31% 32%
2 1% 21% 49% 21% 8% 50% 42%
3 0% 16% 71% 12% 1% 71% 28%
4 0% 5% 85% 10% 0% 85% 15%
5 9% 10% 2% 1% 78% 11% 11%
6 10% 13% 13% 7% 57% 23% 20%
7 15% 22% 17% 4% 42% 32% 26%
8 4% 28% 50% 9% 9% 54% 37%

Table V indicates that by applying this approach, an increase
of the percentage of VNRs that are embedded by InP1
(M1+P1) and a decrease of the percentage that are embedded
by InP2 (M2+P2) or neither InP (F) compared to the results
for Algoirthm 2 presented in Table III. The increase for InP1
is mainly explained by an increase in the number of VNRs that
are embedded after winning based on offering the best price
(P1). On the other hand the number of VNRs that could not
be embedded is reduced (F) as well as the number of VNRs
that could only be embedded by a single InP (M1 and M2).

Table VI shows that the relative difference in the average
price per VNR has increased between InP1 and InP2. In
particular for those VNRs that could only be mapped to a

90
86

68
65

78

71

65 63

89

49

21

6

74
70

64

4242 41

33
30 31 32 30 28

33

20

8
3

27 28
24

17

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

A
v
er

ag
e

re
so

u
rc

e
u
ti

li
za

ti
o
n
 (

in
 %

)

Simulation scenario

node utilization InP1 node utilization InP2 link utilization In1 link utilization In2

Fig. 7. Average node and link utilization per simulation and per provider for the dynamic pricing algorithm with averages.

single InP (M1 versus M2), the delta for those requests that
could be embedded by both InPs remains stable.

TABLE VI
COMPARISON OF AVERAGE REVENUE PER VNR FOR THE DYNAMIC

PRICING ALGORITHM WITH AVERAGES.

simulation average average average average
revenue P1 revenue P2 revenue M1 revenue M2

1 93% 62% 100% 91%
2 89% 66% 100% 92%
3 100% 62% 97% 96%
4 100% 62% 98% 98%
5 97% 61% 100% 86%
6 96% 56% 100% 98%
7 98% 73% 100% 89%
8 100% 71% 98% 69%

As a consequence of the increased number of VNRs that
could be embedded by the first InP and the increase in the rel-
ative difference in the average revenue per VNR between InP1
and InP2, we would expect an increase in the total revenue
as well as in the node and link utilization levels. Figures 7
and 8 confirm these expectations. As such, we have shown
via simulation that the approach with averages (Algorithm
3) outperforms the approach with scaling (Algorithm 2) as
it is able to handle multiple constrained resources that are
interrelated.

VI. CONCLUSION AND OUTLOOK

This article discusses how pricing can increase the total
revenue of an InP in a competitive market with price-sensitive
customers. Two different pricing approaches are analyzed: a
traditional static pricing approach and the proposed dynamic
pricing approach.

The proposed approach is a heuristic which is able to
increase the total revenue of the InP compared to a static
pricing approach by pricing resources differently over time.
To determine the appropriate price, a combination of market

30

18

17

16

85

64

17

10

0 20 40 60 80 100

1

2

3

4

5

6

7

8

Revenue difference between infrastructure provider 1 (dynamic)

and infrastructure provider 2 (static) in percent points

S
im

u
la

ti
o

n
 S

et
u

p

Fig. 8. Percent points difference in revenue of InP1 (dynamic) compared to
InP2 (static) per simulation for the dynamic pricing algorithm with averages.

data, historic data and the current state of the substrate
network is used. A two-fold strategy is followed: (1) when
the utilization of a particular substrate resource is low, VNRs
are attracted by setting the price below that of competitors
and (2) when the utilization of a particular substrate resource
is high, VNRs that provide a high revenue per unit of the
substrate resource are attracted by proposing a competitive
price while low value VNRs are only embedded if a premium
(compared to the static price) is paid. The proposed algorithm
tackles the two key challenges to apply this strategy: (1)
determination of the level at which the utilization of a resource
is considered as high and (2) determination of the price that
needs to be charged for a particular resource depending on the
current utilization level of that resource. The dynamic pricing
algorithm has been validated via simulations and outperforms
a static pricing approach significantly (by 8-85 percent points
for the considered scenarios).

Although the advantages of a dynamic pricing approach can
be observed through this paper, there are still many issues
that could be of interest for future research. For example, it
is unclear how the total revenue of an InP is affected when
multiple or all competing InP use a dynamic pricing algorithm,
this will therefore remain the focus of our future research
work.

ACKNOWLEDGMENT

This work is partly funded by the FP7 UNIFY (grant. no.
619609) and FLAMINGO, a Network of Excellence project
(grant. no. 318488), supported by the European Commission
under its Seventh Framework Programme.

REFERENCES

[1] P. Quinn and T. Nadeau, “Service function chaining problem statement,”
draft-ietf-sfc-problem-statement-10, 2014.

[2] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, Firstquarter 2016.

[3] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Pro-
visioning a virtual private network: a network design problem for
multicommodity flow,” in Proceedings of the thirty-third annual ACM
symposium on Theory of computing. ACM, 2001, pp. 389–398.

[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramakrishnan,
and J. E. Van der Merwe, “Resource management with hoses: point-
to-cloud services for virtual private networks,” Networking, IEEE/ACM
Transactions on, vol. 10, no. 5, pp. 679–692, 2002.

[5] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM Computer Communication Review,
vol. 33, no. 2, pp. 65–81, 2003.

[6] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 1888–1906, 2013.

[7] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on. IEEE, 2014, pp. 7–13.

[8] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary, “Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions,” IFIP/IEEE IM, 2015.

[9] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in Network and Service Management
(CNSM), 2014 10th International Conference on. IEEE, 2014, pp.
418–423.

[10] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet,
and P. Demeester, “Network service chaining with optimized network
function embedding supporting service decompositions,” Computer Net-
works, 2015.

[11] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for nfv chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565–1570, 2014.

[12] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” http://arxiv.org/abs/1503.06377, 2015,
[Online; accessed 5-November-2015].

[13] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in Network Softwarization (NetSoft
2015), 2015 IEEE Conference on. IEEE, 2015, pp. 1–9.

[14] G. Bitran and R. Caldentey, “An overview of pricing models for rev-
enue management,” Manufacturing & Service Operations Management,
vol. 5, no. 3, pp. 203–229, 2003.

[15] M. K. Geraghty and E. Johnson, “Revenue management saves national
car rental,” Interfaces, vol. 27, no. 1, pp. 107–127, 1997.

[16] B. C. Smith, J. F. Leimkuhler, and R. M. Darrow, “Yield management
at american airlines,” interfaces, vol. 22, no. 1, pp. 8–31, 1992.

[17] B. Javadi, R. K. Thulasiram, and R. Buyya, “Statistical modeling of
spot instance prices in public cloud environments,” in Utility and Cloud
Computing (UCC), 2011 Fourth IEEE International Conference on.
IEEE, 2011, pp. 219–228.

[18] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou, “Distributed
systems meet economics: pricing in the cloud,” in Proceedings of the
2nd USENIX conference on Hot topics in cloud computing. USENIX
Association, 2010, pp. 6–6.

[19] V. Kantere, D. Dash, G. Francois, S. Kyriakopoulou, and A. Ailamaki,
“Optimal service pricing for a cloud cache,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 23, no. 9, pp. 1345–1358, 2011.

[20] H. Xu and B. Li, “A study of pricing for cloud resources,” ACM
SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 3–
12, 2013.

[21] ——, “Dynamic cloud pricing for revenue maximization,” Cloud Com-
puting, IEEE Transactions on, vol. 1, no. 2, pp. 158–171, 2013.

[22] N. Bouten, M. Claeys, R. Mijumbi, J. Serrat, J. Famaey, S. Latré, and
F. De Turck, “Semantic validation of affinity constrained service function
chain requests,” in Network Softwarization (NetSoft 2016), 2016 IEEE
Conference on. IEEE, 2016, pp. 1–9.

[23] R. Mijumbi, J.-L. Gorricho, J. Serrat, J. Rubio-Loyola, and R. Aguero,
“Survivability-oriented negotiation algorithms for multi-domain virtual
networks,” in Network and Service Management (CNSM), 2014 10th
International Conference on. IEEE, 2014, pp. 276–279.

[24] A. Jarray and A. Karmouch, “Vcg auction-based approach for efficient
virtual network embedding,” in Integrated Network Management (IM
2013), 2013 IFIP/IEEE International Symposium on. IEEE, 2013, pp.
609–615.

[25] S. Latre, J. Famaey, F. De Turck, and P. Demeester, “The fluid internet:
service-centric management of a virtualized future internet,” Communi-
cations Magazine, IEEE, vol. 52, no. 1, pp. 140–148, 2014.

[26] W. Tavernier, B. Naudts, D. Colle, M. Pickavet, and S. Verbrugge, “Can
open-source projects (re-) shape the sdn/nfv-driven telecommunication
market?” it-Information Technology, vol. 57, no. 5, pp. 267–276, 2015.

[27] R. Mijumbi, J. Serrat, J.-L. Gorricho, and R. Boutaba, “A path generation
approach to embedding of virtual networks,” Network and Service
Management, IEEE Transactions on, vol. 12, no. 3, pp. 334–348, 2015.

