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Abstract. A graph G is a grid intersection graph if G is the intersection graph of J# U .#, where J# and
& are, respectively, finite families of horizontal and vertical linear segments in the plane such that no
two parallel segments intersect. (This definition implies that every grid intersection graph is bipartite.)
Any family of segments realizing G is a representation of G. As a consequence of a characterization of
grid intersection graphs by Kratochvil [7], we observe that when a bipartite graph G = (U U W, E) with
minimum degree at least two is a grid intersection graph, then there exists a normalized representation
of G on the (r x s)-grid, where r = |U| and s = |W|. A natural problem, with potential applications
to circuit layout, is the following: among all the possible representations of G on the (r x s)-grid, find
a representation R such that the sum of the lengths of the segments in R is minimum. In this work we
introduce this problem and present a mixed integer programming formulation to solve it.

Keywords: intersection graph of segments, grid intersection graph, grid representation, integer pro-
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1 Introduction

Let .% be a finite family of sets. The intersection graph Q(.%) of Z is the graph G whose vertices
are in a one-to-one correpondence with the sets in .%, and (u,w) is an edge of G, for u # w, if
and only if the sets corresponding to u and w intersect. When .% is a family of linear segments
arranged in at most k directions in the plane, G is said to be a k-DIR graph [8]. In addition, G
is a PURE-k-DIR graph if G is a k-DIR graph and the segments can be arranged in such a way
that no two parallel segments intersect. (According to this definition, every PURE-k-DIR graph

is k-partite.)

Grid intersection graphs [6, 8] are exactly the PURE-2-DIR graphs. In other words, a graph G is
a grid intersection graph (gig, for short) if G = Q(° U .#), where .7 and .# are, respectively,
finite families of horizontal and vertical linear segments in the plane such that no two parallel
segments intersect. If G is a gig, we will assume that G' has bipartition V = U U W, where

vertices in U correspond to segments in .77 and vertices in W to segments in ..

Gigs form an important subclass of intersection graphs of linear segments in the plane. The
latter class have applications in areas such as air traffic optimization [4], circuit design [9], and
computational geometry [3]. The paper [8] by Kratochvil and Matousek is a deep theoretic

study on intersection graphs of segments.
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Denote by (r x s)-grid the finite subset of points of the cartesian plane corresponding to the
crossings defined by the lines with equations y =4, 1 < i <r,and x =5, 1 < j < s. Given
positive integers r, s and a graph G, Gavril [5] showed that the problem of recognizing whether G
is an intersection graph for segments on the (r x s)-grid is NP-complete (here, parallel segments
are allowed to intersect.) Kratochvil [7] showed that the problem of deciding whether a given
bipartite graph is a gig is also NP-complete. Hartman, Newman, and Ziv [6] proved that every
planar bipartite graph is a gig. Moreover, they show infinite families of bipartite graphs which
are not gigs. In a latter work, Bellantoni, Hartman, Przytycka and Whitesides [1] proved that
every bipartite graph of boxicity two is a gig. (The bozicity of a graph G is the smallest b such
that G is the intersection graph of parallelepipeds in the Euclidean b-space with edges parallel

to the coordinate axes.)

In the paper [7], it is presented a characterization of gigs in terms of vertex orderings admitting
no forbidden structures called volkswagens. (This characterization shall be discussed in the next
section.) As a direct consequence of this characterization, we observe that when a bipartite
graph G = (UUW, F) with minimum degree at least two is a gig, then there exists a normalized
representation of G on the (r x s)-grid, where r = |U| and s = |W|. Thus, a natural question
is to obtain, among all the possible representations of G on the (r x s)-grid, a representation R
such that the sum of the lengths of the segments in R is minimum. In this work we introduce
this problem (Sections 2 and 3) and present a mixed integer programming formulation to solve

it (Section 4.)

The problem of finding optimum representations of gigs has potential applications to fields
such as circuit layout. One of the most known problems in VLSI layout consists of finding a
mapping from the vertices of a graph G to points of a grid, together with an incidence-preserving
assignment of the edges of G to paths on the grid, where the paths must follow grid guidelines
and cannot overlap (although they may cross at a point.) Finding a VLST layout with minimum
length for the longest wire is NP-hard [2]. Other intersection graphs in connection with VLSI

layout and computational geometry are retangle intersection graphs [10].

2 Background

The graphs considered in this work are undirected and without loops or multiple edges. Let G
denote a gig. The vertex set and the edge set of G are denoted by V and FE, respectively, where
|V| = n and |E| = m. The degree of a vertex v is denoted by §(v), and the minimum degree
of a vertex in G by §(G). Assume that G has bipartition V = U U W, where the color classes
satisfy |U| =r and |W| = s.



Any family of segments realizing G is called a representation of G. We denote by R a representa-
tion of G, and by R¢(v) the segment in R corresponding to the vertex v € V. For simplicity, we
omit the subscript G when there is no ambiguity. We write R(v) = [(z(v), y(v)), (z'(v), ' (v))],
where (z(v),y(v)) and (z'(v),y'(v)) are the extreme points of R(v) on the cartesian plane. The

length of R(v) is denoted by [(v), where I(v) > 0.
We assume that R has the following properties:

P1l: If v € U then R(v) = [(z(v),y(v)), (z(v) + I(v),y(v))], and if v € W then R(v) =
[(z(v),y(v)), (z(v),y(v) +1(v))].

P2: Any two horizontal (vertical) segments in R do not lie on the same line. That is, if v,z € U
then y(v) # y(z), and if v,z € W then z(v) # z(2).

2.1 A characterization of grid intersection graphs by Kratochvil

In [7], Kratochvil presented a characterization of grid intersection graphs, which is described
in what follows. Let u; < us < ... < u, and w; < wy < ... < wg be orderings of the color
classes U and W of a bipartite graph G. Relatively to these orderings, a volkswagen is a subset
of six vertices ug, up, Ue, Wi, wj, wy such that u, < up < ue, w; < wj < wy, (up,w;) ¢ E and

(uaawj)a (ucawj)a (U(,,’wi), (ubawk) € E. See Figure L.

Figure 1: A volkswagen.

Theorem 1 [7] A bipartite graph G is a gig if and only if its color classes admit orderings

without volkswagens.

Let us reconsider the above theorem in an equivalent form. Define max(v) (resp. min(v)) as

the maximum (resp. minimum) neighbor of v relatively to the orderings of U and W.

Corollary 2 A bipartite G is a gig if and only if its color classes admit orderings satisfying the

following condition:



(*) for every pair v,z of non-adjacent vertices belonging to distinct color classes,

if min(z) < v < max(z) then either mazx(v) < z or z < min(v).

Let R be a representation of a gig G and let v,z be non-adjacent vertices in V. Assume for
instance that v € U and z € W, that is, R(v) is horizontal and R(z) is vertical. In this
case, Condition (*) has the following geometric meaning: if R(v) lies between the bottommost
and the topmost horizontal segments intersecting R(z), then R(z) either lies to the right of
the rightmost vertical segment intercepting R(v), or it lies to the left of the leftmost vertical

segment intercepting R(v).

Let us briefly check Corollary 2. Assume that G is a gig and R is a representation of G satisfying
properties P1 and P2. Define now the orderings vy < ug < ... < up and wy < wo < ... < ws
in such a way that y(u1) < y(uz2) < ... < y(u,) and z(w1) < z(w2) < ... < x(ws). Observe
that if Condition (*) is not true, then there clearly exist non-adjacent vertices v,z such that

min(z),v, mazx(z), min(v), z, max(v) form a volkswagen, which is impossible.

Conversely, from the orderings in U and W satisfying Condition (*), define a representation R
as follows. For each w;, 1 <i <, let fi(u;) and fo(u;) be, respectively, the indices of min(u;)
and maz(u;) in the corresponding ordering and define R(u;) = [(fi1(uwi) — €,1), (fa(ui) + €,9)],
for some 0 < € < 1. Define analogously R(w;) = [(4, f1(w;) — €), (j, f2(w;) +€)], for 1 < j <.
It is not difficult to see that this representation realizes all necessary intersections and avoids

spurious crossings.

2.2 Graphs with minimum degree at least two

In the proof of sufficiency of Condition (*) in Corollary 2, we observe that when 6(G) > 1, f1(v)
and fy(v) are distinct for all v € U UW. In this case, if the representation R is constructed by
taking € = 0, the extreme points of every segment in R have integer coordinates and are placed

on the (r x s)-grid. Let us call such a representation a (r x s)-grid representation.

Corollary 3 Let G be a bipartite graph with 6(G) > 1. Then G is a gig if and only if there

exists a (r X s)-grid representation of G.

The corollary above is interesting in the sense that every gig G satisfying §(G) > 1 can be
represented in a normalized, natural form by using (r — 1) x (s — 1) area units. (Observe an
example in Figure 2.) In fact, it turns out that the case 6(G) > 1 is the only important one to

be considered. We discuss this matter in what follows.



Note that if v is a vertex of degree one in a bipartite graph G, then G is a gig if and only if G —v
is a gig. Thus, the construction of a representation of G can be done in three steps: first, we
repeatedly delete vertices of degree one until we obtain a graph G’ with no such vertices; second,
we try to obtain a representation R’ of G’; finally, we simply add to R’ segments corresponding

to the vertices deleted in the first step, in order to obtain a representation R of G.

This shows that vertices of degree one are not an obstacle to finding representations. In the next

sections, we will therefore focus our attention on graphs with minimum degree at least two.

Figure 2: A (4 x 4)-grid representation of a gig.

3 An optimization problem on grid representations

Let G be a gig with §(G) > 1. A natural question that arises is the following: among all the
possible (r x s)-grid representations of G, how to obtain a representation R such that the sum
of the lengths of the segments in R is minimum? In this section, we introduce formally the GRID

combinatorial optimization problem to deal with these question.

Let R be a (r x s)-grid representation of G. We define

len(R) = Z l(v)

veEV

Next, we define len(G) as the minimum value len(R) amongst all possible (r x s)-grid represen-

tations R of G:

len(G) = min{ len(R) | R is a (r x s)—grid representation of G }. (1)

The following lemma gives a lower and an upper bound for len(G):

Lemma 4 Let G be a gig with 6(G) > 1. Then:

4 < 2m —n < len(G) < [n?/2] — n. (2)



Proof:

The lower bound comes from the observation that, in any (r x s)-grid representation of G,
I(v) > d§(v) —1, forallveV. (3)

Moreover, the assumption 0(G) > 1 implies 2m —n > 4. With respect to the upper bound, note
that the complete bipartite graph K, ¢ has maximum value of len amongst all gigs with n = r+s
vertices. Therefore len(G) < len(K,s) = r(s — 1) + s(r — 1). Notice that the expression for
len(K, ), when subject to the restriction r + s = n, attains the maximum value for r = |n /2]

and s = [n/2]. Thus, the lemma follows.

We now formulate the GRID problem (decision version) as follows:

Instance: A bipartite graph G with 6(G) > 1, an integer ¢ such that ¢ > 4.
Question: Is there a (r x s)-grid representation R of G such that len(R) < £7

Theorem 5 GRID is NP-complete.

Proof:

We can easily check in polynomial time whether a given (r x s)-grid representation R of G
satisfies len(R) < £. Therefore, GRID is in NP. On the other hand, recall that the problem II
of recognizing whether a given bipartite graph H is a gig is NP-complete [7]. Let us show a
reduction from II to GRID. Given a bipartite graph H, repeatedly delete vertices of degree one
until we obtain a graph H; containing no such vertices; then remove isolated vertices from Hq,
obtaining a graph Hy which either is empty or satisfies §(Hz) > 1. Define G = Hy U Cy and
¢ = [n2/2] — n, +4, where n, is the number of vertices of Hy. By Lemma 4, if Hy is a gig then
len(Hs) < [n?/2] —n,. Thus, H is a gig if and only if there is a (r x s)-grid representation R
of G satisfying len(R) < /4.

4 A mixed integer programming formulation for GRID

In this section we consider a bipartite graph G with §(G) > 1 and present a mixed integer
programming formulation MIPF for GRID, such that G is a gig if and only if there is a feasible
solution for MIPF. Furthermore, if MIPF has a feasible solution, then it has an optimal solution
which defines an (r x s)-grid representation R of G such that len(R) is minimum, i.e. len(R) =
len(Q).

We define, for each vertex v € U U W, the variables z(v), y(v) and [(v). As mentioned

in Section 2, (z(v),y(v)) represents an extreme point of R(v) on the cartesian plane and I(v)



represents the length of R(v). Since our goal is to obtain a representation of G on the (r x s)-grid,

we impose the following constraints on z(v) and y(v), for each v € U U W

1<z(v) <s (4)

1<y() <r (5)

Consider now an edge (u,w) € E such that v € U and w € W. Then the following constraints
must be satisfied:

z(u) < z(w) < z(u) +1(u) (6)

and

y(w) < ylu) < y(w) +H(w). (7)

In order to present the next constraints of MIPF, let us partition the set of non-edges of G as

follows:

Ei ={(u,w) € E|u€cUand w e W}
By ={(u,v/) € E|u €U and v € U}
Ey={(w,w') € E|weW and w' € W}

We analyze each set above separately. The constant K considered in the following analysis is
defined by K = max{r, s}.

If (u,w) € Ey, it is straightforward to see that one of the following relations should be satisfied
at R:

either
z(w) — z(u) —l(u) =1 >0 (8)
z(u) —z(w) —1>0 9)
In addition, either
y(u) —y(w) —l(w) =1 >0 (10)
y(w) —y(u) =120 (11)

The four possibilities above are represented in Figure 3.
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Figure 3: Possibilities for (u,w) € Ej: (a) Relation (8); (b) Relation (9); (c) Relation (10);
(d) Relation (11)

Now, in order to guarantee that at least one of the four situations modeled by relations (8)-(11)
is satisfied at R, we first define the binary variables a(u,w), a(w,u), B(u,w) and B(w,u) and

impose the following constraints over them:

Blu,w) — < 1 (14)

(15)

Since K was defined large enough, note that the absolute value of each fraction on the expressions

(12)-(15) lies between 0 and 1. Therefore, these expressions guarantee that:

o If z(w) — z(u) —I(u) — 1 < 0 then a(u,w) =0



o If r(u) — z(w) — 1 <0 then a(w,u) =0
o If y(u) —y(w) —l(w) — 1 < 0 then f(u,w) =0

o If y(w) —y(u) — 1 <0 then f(w,u) =0

Finally, the following constraint guarantees that at least one of the four relations (8)-(11) is
satisfied at R:
a(u,w) + e(w, u) + Bu, w) + Blw,u) > 1. (16)

Observe that a(u, w) and a(w, u) are not simultaneously equal to one, since these variables model
mutually exclusive situations. Similarly, 5(u,w) and B(w,u) are not simultaneously equal to
one. However, it is possible to have a(u,w) (or a(w,u)) and B(u,w) (or B(w,u)) equal to one

at the same solution.

We consider now the non-edges (u,u') € F2. Recall from Section 2 that R must satisfy P2.

Thus, one of the two following relations must be satisfied:

either
y(u') —y(u) =1>0 (17)
or

y(u) —y(u') =1 > 0. (18)

In order to guarantee that either (17) or (18) is satisfied, we introduce now the binary variables

v(u,u') and y(u',u) and the following constraints:

Yty - WLy (19
Yy — I (20

Therefore:

o If y(u') —y(u) —1 < 0 then y(u,u') =0

o If y(u) —y(u') —1 <0 then y(uv',u) =0

In addition, to guarantee that either (17) or (18) is satisfied, we impose the constraint:

y(u, ') +y(u,u) =1 (21)



It remains to analyze the non-edges (w,w') € E5. This analysis is analogous to the previous one

we did for the non-edges (u,u’) € Ey. We define the binary variables 7(w,w’) and 7(w', w) for

each (w,w') € E5, and impose the constraints:

z(w') —z(w) =1

T(w,w') —

K

z(w) —z(w') -1

(w',w) -

(w,w') + 7(w',w) =1

K

IA

IN

(22)

(23)

(24)

Now, we are able to present the mixed integer programming formulation MIPF for the GRID

problem, considering the objective function given by (1) and the constraints previously presented.

(MIPF) Minimize Yoy [(v)
Subject to:

For each v € V:

(@(

(z(u) — z(w) —1) —

(y(u) — y(w) —l(w) = 1) —
y(w) —y(u) —1) — Kp
aEu,w; + a(w,u) + B(u,

Y(u, ') +y(u',u) =
v(u, '), y(u',u) € {0,1}



For each (w,w') € E such that w € W, w' € W:

(z(w') —z(w) = 1) = K1(w,w') + K >0 (22)
(z(w) —z(w') - 1)+ Kr(w',w) + K >0 (23)
T(w,w') + 7(w', w) = (24)
T(w,w"), 7(w',w) € {0,1}

The previous discussions in this section allow us to conclude the following result:

Theorem 6 Let G = (U U W, E) be a bipartite graph with 6(G) > 1, |U| = r and |W| = s.
Then G is a gig if and only if there is a feasible solution for MIPF. Furthermore, if MIPF has
a feasible solution, then it has an optimal solution which defines an (r X s)-grid representation

R of G such that len(R) is minimum, i.e. len(R) = len(G).

It is worth remarking that, given a bipartite graph G, one can use MIPF simply to test whether
G is a gig, by solely verifying the existence of a feasible solution. In this case, computational

efforts for minimizing the objective function can be avoided.

The corollary below is an important property of MIPF:

Corollary 7 In any optimum solution of MIPF, the variables x(v), y(v) and l(v), for allv € V,

have integer values.

Proof:

For every pair of distinct vertices u,u’ € U, relation (17) or relation (18) must be satisfied,
and this implies |y(u) — y(u')] > 1. Since |U| = r and constraint (5) is satisfied, we conclude
that, in any feasible solution of MIPF, y(u) € {1,2,...,r}, for every u € U. Similarly, z(w) €
{1,2,...,s}, for every w € W.

Now, let v € U and consider the horizontal segment R(v) in an optimum solution s* of MIPF.
We already know that y(v) has an integer value. We need to show that z(v) and I(v) also have
integer values. Since 0(v) > 1, R(v) must intersect at least two distinct vertical segments R(w)
and R(w'), for w,w’ € W. Assume that R(w) and R(w') are, respectively, the leftmost and the
rightmost vertical segments intercepting R(v) in s*. The minimization of the objetive function
naturally sets z(v) = z(w) and [(v) = z(w') — z(w). To complete the proof, recall from the

previous paragraph that z(w) and z(w') have integer values.

The proof for the case v € W is analogous.



Finally, observe that relations (2) and (3) are valid inequalities for the optimal solution of MIPF

and can be used in a computational implementation.
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