
Approximate L(δ1, δ2, . . . , δt)-Coloring of Trees
and Interval Graphs

Alan A. Bertossi
Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7,
40127 Bologna, Italy

Cristina M. Pinotti
Department of Computer Science and Mathematics, University of Perugia,
Via Vanvitelli 1, 06123 Perugia, Italy

Given a vector (δ1, δ2, . . . , δt) of nonincreasing positive
integers, and an undirected graph G = (V , E), an
L(δ1, δ2, . . . , δt)-coloring of G is a function f from the ver-
tex set V to a set of nonnegative integers such that
|f (u) − f (v)| ≥ δi , if d (u, v) = i , 1 ≤ i ≤ t , where d (u, v)
is the distance (i.e., the minimum number of edges)
between the vertices u and v . An optimal L(δ1, δ2, . . . , δt)-
coloring for G is one minimizing the largest integer used
over all such colorings. Such a coloring problem has rele-
vant applications in channel assignment for interference
avoidance in wireless networks. This article presents
efficient approximation algorithms for L(δ1, δ2, . . . , δt)-
coloring of two relevant classes of graphs—trees, and
interval graphs. Specifically, based on the notion of
strongly simplicial vertices, O(n(t+δ1)) and O(nt 2δ1) time
algorithms are proposed to find α-approximate colorings
on interval graphs and trees, respectively, where n is the
number of vertices and α is a constant depending on t
and δ1, . . . , δt . Moreover, an O(n) time algorithm is given
for the L(δ1, δ2)-coloring of unit interval graphs, which
provides a 3-approximation. © 2007 Wiley Periodicals, Inc.
NETWORKS, Vol. 49(3), 204–216 2007

Keywords: wireless networks; channel assignment; L(δ1, δ2, . . . ,
δt)-coloring; interval graphs; trees; approximation algorithms

1. INTRODUCTION

In the channel assignment problem for wireless net-
works, the scarce radio spectrum is partitioned into a set of
disjoint channels that can be used simultaneously by trans-
mitting stations while maintaining acceptable radio signals.
The same channel can be reused by two stations at the
same time provided that no interference arises. However,

Received February 2006; accepted August 2006
Correspondence to: C. M. Pinotti; e-mail: pinotti@unipg.it
DOI 10.1002/net.20154
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2007 Wiley Periodicals, Inc.

the interference phenomena are so strong that even different
channels assigned to two near stations must be sufficiently
apart in the radio spectrum. To avoid such interference, a
separation vector (δ1, δ2, . . . , δt) of nonincreasing positive
integers is introduced in such a way that channels assigned
to interfering stations at distance i should be at least δi apart,
with 1 ≤ i ≤ t, while the same channel can be reused only at
stations whose distance is larger than t [20]. The purpose of
channel assignment algorithms is, therefore, to assign chan-
nels to the stations so that the above channel separations are
satisfied and the difference between the highest and lowest
channels assigned is kept as small as possible.

Formally, the channel assignment problem can be modeled
as an appropriate coloring problem on an undirected graph
G = (V , E), representing the wireless network topology,
whose vertices V correspond to stations, and edges E corre-
spond to pairs of stations whose transmission areas intersect.
Specifically, given a vector (δ1, δ2, . . . , δt) of nonincreasing
positive integers, and an undirected graph G = (V , E), an
L(δ1, δ2, . . . , δt)-coloring of G is a function f from the vertex
set V to the set of nonnegative integers {0, . . . , λ} such that
|f (u) − f (v)| ≥ δi whenever d(u, v) = i, 1 ≤ i ≤ t, where
d(u, v) is the distance (i.e., the minimum number of edges)
between the vertices u and v. An optimal L(δ1, δ2, . . . , δt)-
coloring for G is one minimizing the largest used color λ

over all such colorings. Note that, because the set of col-
ors includes 0, the overall number of colors involved in an
optimal coloring f is, in fact, λ + 1 (although, due to the
channel separation constraint, some colors in {1, . . . , λ − 1}
might not be actually assigned to any vertex). Thus, the
channel assignment problem consists of finding an optimal
L(δ1, δ2, . . . , δt)-coloring for G.

When the separation vector (δ1, δ2, . . . , δt) is equal to
(1, 1, . . . , 1), the channel assignment problem has been
widely studied in the past [2, 3, 14, 21, 23]. In particular,
the intractability of optimal L(1, . . . , 1)-coloring, for any
positive integer t, has been proved by McCormick [21].

NETWORKS—2007—DOI 10.1002/net

Optimal L(1, . . . , 1)-colorings, for any positive integer t,
have been proposed in [3, 5] for rings, bidimensional grids,
and honeycomb grids, and in [1] for trees and interval
graphs. Moreover, when the separation vector is equal to
(δ1, 1, . . . , 1), optimal L(δ1, 1, . . . , 1)-colorings have been
proposed in [6,24] for rings, bidimensional grids, and cellular
grids. Optimal solutions for the L(δ1, δ2)-coloring problem
on bidimensional grids, and cellular grids have been given
by Van Den Heuvel et al. [25], who also provided an optimal
L(2, 1, 1)-coloring for bidimensional grids. The L(2, 1, 1)-
coloring problem has also been optimally solved for cellular
grids, honeycomb grids, and rings in [6]. The L(2, 1)-coloring
has been investigated in [7, 13, 19, 22]. In particular, solu-
tions for the L(2, 1)-coloring of unit interval graphs and
trees have been found, respectively, by Sakai [22] and by
Chang and Kuo [13]. Approximate solutions for outerplanar,
permutation, and split graphs have also been presented by
Bodlaender et al. [7]. Zhou et al. [26] provided polynomial
time algorithms for optimally L(1, 1)-coloring graphs with
bounded treewidth. Georges and Mauro [16] gave bounds on
the L(δ1, δ2)-coloring of some trees with maximum degree no
larger than δ1

δ2
or no smaller than three [17], while Calamoneri

et al. [11] considered the L(δ1, δ2)-coloring of trees in the case
that δ1 < δ2. Moreover, bounds for the L(δ1, 1)-coloring of
k-trees were provided by Chang et al. [12]. Finally, a recent
annotated bibliography on the L(δ1, δ2)-coloring problem for
several special classes of graphs can be found in [10].

This article investigates the channel assignment problem
for general separation vectors on some specific classes of
graphs—trees and interval graphs—which occur in model-
ing realistic wireless network topologies. Indeed, trees model
hierarchical topologies, while interval graphs model wireless
networks serving narrow surfaces, like highways or val-
leys confined by natural barriers (e.g., mountains or lakes).
It is still unknown whether finding optimal L(δ1, . . . , δt)-
colorings of trees or interval graphs is polynomially time
solvable or not. Some authors conjecture that even the
L(δ1, δ2)-coloring problem with δ2 > 1 is NP-hard for trees
and unit interval graphs [10]. In the rest of this article, the
following original results will be proposed, which extend
those previously presented in [4] for the L(1, . . . , 1)-coloring
problem of trees and interval graphs. First, the notions of
t-simplicial and strongly simplicial vertices of a graph are
recalled in Section 2. Then, Sections 3 and 4 present two
polynomial time algorithms to approximate the L(δ1, . . . , δt)-
coloring problem on interval graphs and trees, respectively.
Such algorithms run in O(n(t + δ1)) and O(nt2δ1) time,
respectively, where n is the number of vertices. A better
approximate solution for L(δ1, δ2)-coloring of unit interval
graphs is also given in Subsection 3.2, which generalizes that
proposed in [22] for the L(2, 1)-coloring problem. Finally,
conclusions are offered in Section 5.

2. PRELIMINARIES

Throughout this article, it is assumed that G is a con-
nected undirected graph with at least two vertices, and that

the separations satisfy δ1 ≥ δ2 ≥ · · · ≥ δt . When δ1 = δ2 =
· · · = δt = 1, the L(1, . . . , 1)-coloring problem reduces to the
classical vertex coloring problem on the t-th power Gt of the
graph G. The vertex set of Gt is the same as the vertex set of
G, while the edge uv belongs to the edge set of Gt if and only
if the distance d(u, v) between the vertices u and v in G is at
most t. Now, colors must be assigned to the vertices of Gt so
that every pair of vertices connected by an edge are assigned
different colors and the minimum number of colors is used.
Hence, the role of maximum cliques in Gt is apparent for
deriving lower bounds on the minimum number of channels
for the L(1, . . . , 1)-coloring problem on G. A clique K for Gt

is a subset of vertices of Gt such that for each pair of vertices
in K there is an edge. Clearly, a clique of size k in the power
graph Gt implies that at least k different colors are needed to
color Gt . In other words, the size of the largest clique in Gt is
a lower bound for the L(1, . . . , 1)-coloring problem on G. Of
course, a lower bound for the L(1, . . . , 1)-coloring problem is
also a lower bound for the L(δ1, 1, . . . , 1)-coloring problem,
with δ1 ≥ 1.

For any value of t ≤ |V |, let λ∗
G,t denote the minimum

value of λ over all the L(1, . . . , 1)-colorings f : V → {0, . . . ,
λ} of G = (V , E). Note that: (i) λ∗

G,1 ≥ 1, because G is
assumed to be connected and to have at least two vertices;
(ii) λ∗

G,t = λ∗
Gt ,1; and (iii) λ∗

G,t + 1 is at least as large as the
size ωGt of the largest clique in Gt .

Lemma 1. Any L(δ1, δ2, · · · , δt)-coloring requires at least
max1≤j≤t{δjλ

∗
G,j} as the largest color.

Proof. Because δ1 ≥ δ2 ≥ · · · ≥ δt , any L(δ1, δ2, . . . , δj)-
coloring, for any value of j ≤ t, requires at least as
many colors as any L(δj, δj, . . . , δj)-coloring, which, in turn,
requires at least δjλ

∗
G,j as the largest color. ■

Given G = (V , E), let S be a subset of V , and let G[S]
denote the subgraph of G induced by S, that is, G[S] =
(S, {uv ∈ E : u, v ∈ S}). A vertex x of G is called t-simplicial
when, for every pair of vertices u and v such that d(x, u) ≤ t
and d(x, v) ≤ t, it holds also that d(u, v) ≤ t. A vertex x is
called strongly simplicial when x is t-simplicial for any value
of t. Moreover, let Nt(v) denote all the vertices at distance at
most t from v, that is, Nt(v) = {u ∈ V : d(u, v) ≤ t}.
Lemma 2 ([4]). Given G = (V , E) and an integer t, let v be
a t-simplicial vertex of G. Consider G′ = G[V − {v}] and let
f ′ be an optimal L(1, . . . , 1)-coloring of G′ using λ∗

G′,t as the
largest color. Define an L(1, . . . , 1)-coloring f of V extending
f ′ to v so that

f (x) =




min{i : i �= f ′(u) for each u ∈ G′

with d(u, v) ≤ t} if x = v,

f ′(x) if x ∈ V − {v}.
Then f is an optimal L(1, . . . , 1)-coloring for G.

Proof. Clearly, λ∗
G,t ≥ λ∗

G′,t . If f (v) ≤ λ∗
G′,t , then f is

trivially optimal. Assume, therefore, that f (v) > λ∗
G′,t . Then

NETWORKS—2007—DOI 10.1002/net 205

{f ′(u):u ∈ Nt(v) − {v}} = {0, . . . , λ∗
G′,t}. Because v is

t-simplicial, any two vertices in Nt(v) are at distance at most t,
and hence, Nt(v) is a clique of Gt . Because |Nt(v)| = λ∗

G′,t +2
and f (v) = λ∗

G′,t + 1, then f is optimal. ■

Note that verifying whether a vertex is t-simplicial or not
can be done in polynomial time [1]. Therefore, Lemma 2
implies the existence of an algorithm that optimally solves
in polynomial time the L(1, . . . , 1)-coloring problem using
exactly ωGt colors for any class of graphs closed under taking
induced subgraphs and with the property that every graph of
that class has a t-simplicial vertex. The next lemma shows that
there is always an L(δ1, δ2, . . . , δt)-coloring for such a class
of graphs where the largest used color is bounded from above
by a function of the clique sizes ωGj and of the separations δj,
with 1 ≤ j ≤ t.

Lemma 3. Given G = (V , E) and t, let v be a strongly sim-
plicial vertex of G, and consider G′ = G[V −{v}]. Then there
is an L(δ1, δ2, . . . , δt)-coloring such that f (v) = c, where
c ∈ {0, 1, . . . , λ∗

G,t + 2(δt − 1)λ∗
G,t + ∑t−1

j=1 2(δj − δj+1)λ
∗
G,j}.

Proof. Because v is strongly simplicial, any two vertices
in Nj(v) are at distance at most j, for every 1 ≤ j ≤ t. Hence,
Nt(v) is a clique of Gt , and thus |Nt(v)| ≤ ωGt . Therefore, at
most, |Nt(v)|−1 ≤ λ∗

G,t colors have been used for Nt(v)−{v}.
Each of them forbids 2(δt −1) colors due to the δt-separation
constraint, and overall 2(δt − 1)λ∗

G,t colors are forbidden.
Moreover, for any 1 ≤ j ≤ t − 1, v is j-simplicial, and hence,
Nj(v) is a clique of Gj, and |Nj(v)| − 1 ≤ λ∗

G,j. Because each
color assigned to a vertex of Nj(v) − {v} forbids 2(δj − δj+1)

colors, 2(δj − δj+1)λ
∗
G,j colors are forbidden due to the δj-

separation constraint. Before coloring v, the total number of
used and forbidden colors is λ∗

G,t+2(δt−1)λ∗
G,t+

∑t−1
j=1 2(δj−

δj+1)λ
∗
G, j. Therefore, there is at least an available color c

in {0, 1, . . . , λ∗
G,t + 2(δt − 1)λ∗

G,t + ∑t−1
j=1 2(δj − δj+1)λ

∗
G, j}

that can be assigned to v. ■

In the next two sections, the above properties will be
exploited to derive approximate solutions for the L(δ1,
δ2, . . . , δt)-coloring problem on two classes of graphs: inter-
val graphs and trees.

3. INTERVAL GRAPHS

A graph G = (V , E) is termed an interval graph if it has
an interval representation, namely, if each vertex of V can be
represented by an interval of the real line such that there is
an edge uv ∈ E if and only if the intervals corresponding to u
and v intersect. More formally, let the graph G = (V , E) have
n vertices. Two integers lv and rv, with lv < rv, (the interval
endpoints) are associated with every vertex v of G, and there
is an edge uv ∈ E if and only if lu < lv < ru or lu < rv < ru.
Without loss of generality, one can assume that all the 2n
interval endpoints are distinct and are indexed from 1 to 2n.

Several alternative characterizations of interval graphs
have been proposed so far in the literature [9]. Polynomial

time algorithms to recognize interval graphs and compute
their interval representations are known [8, 15]. Polynomial
time algorithms are also known for the classical vertex col-
oring problem on interval graphs [9]. Because it is known
that a power of an interval graph is also an interval graph,
the L(1, . . . , 1)-coloring problem for an interval graph G can
be solved in polynomial time [1] by coloring the interval
graph Gt .

The following lemma, which is useful to find an approx-
imate L(δ1, δ2, . . . , δt)-coloring, shows how to locate a
strongly simplicial vertex of an interval graph.

Lemma 4 ([4]). In an interval graph, the vertex with
maximum left endpoint is strongly simplicial.

Proof. Let G = (V , E) be an interval graph with n ver-
tices, and consider its interval representation. Let x be the
vertex of G whose left endpoint lx is maximum. Consider
two vertices u and v such that d(u, x) ≤ t and d(v, x) ≤ t.
Without loss of generality, let lu < lv < lx. Because there
is a shortest path sp(u, x) between u and x, there must be a
vertex w ∈ sp(u, x) − {x} such that lw ≤ lv < rw. There-
fore, d(u, v) ≤ d(u, w) + 1 ≤ d(u, x) ≤ t, and vertex x is
t-simplicial. Because such a condition holds for any t ≤ n,
vertex x is strongly simplicial. ■

Lemma 4 suggests that one can scan the vertices of
an interval graph by increasing left endpoints, because in
this way, a t-simplicial vertex v of the induced subgraph
G[{1, . . . , v}] is processed at each step, for 1 ≤ v ≤ n.

3.1. Approximate L(δ1, . . . , δt)-Coloring
of Interval Graphs

In this subsection, an O(n(t + δ1)) time algorithm is
proposed to find an approximate L(δ1, . . . , δt)-coloring of
interval graphs.

Consider the interval representation of G, and assume that
the intervals (vertices) are indexed by increasing left end-
points, namely l1 < l2 < · · · < ln. For each endpoint k, an
interval v is called open if lv ≤ k < rv and deepest if it is
open and its right endpoint is maximum.

The algorithm maintains a family of t + 1 sets of col-
ors, called palettes, denoted by P0, P1, . . . , Pt . The palette
P0 is initialized to the set of colors {0, 1, . . . , U}, where
U = λ∗

G,t +2(δt −1)λ∗
G,t +

∑t−1
j=1 2(δj − δj+1)λ

∗
G,j. As shown

by Lemma 3, such a color set is sufficiently large to obtain
a legal L(δ1, . . . , δt)-coloring for G. The palette P0 contains
the readily usable colors. A color can leave P0 because it is
assigned to an interval. In such a case, the color is inserted into
Pt , and it will go downward through all the previous palettes
before being reusable. Precisely, the palette Pt includes the
colors used for the currently open intervals, while the generic
palette Pi, with 1 ≤ i ≤ t−1, contains the colors that could be
reused as soon as all the next i consecutive deepest intervals
will be ended. A color can leave P0 without being assigned
to any interval just because another used color forbids it.

206 NETWORKS—2007—DOI 10.1002/net

Algorithm Interval-Coloring (G = (V , E), t, δ1, . . . , δt);

U := λ∗
G,t + 2(δt − 1)λ∗

G,t + ∑t−1
j=1 2(δj − δj+1)λ

∗
G,j;

Lv := ∅ for every vertex v = 1, . . . , n;
P0 := {0, 1, . . . , U} and Pj := ∅ for j = 1, . . . , t;
taboo[γ] := 0 for γ = 0, . . . , U;
max := 0;
δt+1 := 0;
for k := 1 to 2n do

if k = lv for some v, then
extract a color c from P0;
f (v) := c;
for each color max{0, c − δ1 + 1} ≤ γ ≤ min{c + δ1 − 1, U} do

if γ ∈ P0 then extract γ from P0;
taboo[γ] := taboo[γ]+1;

insert color c into both Lv and Pt ;
if rv > max then set max := rv and deep := v;

otherwise, if k = rv for some v, then
for each color c in Lv do

let j be such that c ∈ Pj;
extract c from Pj;
for each color max{0, c − δt−j+1 + 1} ≤ γ ≤ max{0, c − δt−j+2}
or min{c + δt−j+2, U} ≤ γ ≤ min{0, c + δt−j+1 − 1, U} do

if γ �= c then taboo[γ] := taboo[γ]−1;
if taboo[γ] = 0 then insert γ into P0;

if j > 1 then
insert c into both Pj−1 and LDEEP

else
taboo[c] := taboo[c]−1;
if taboo[c]=0 then insert c into P0;

FIG. 1. The approximate algorithm for L(δ1, . . . , δt)-coloring of interval graphs.

A counter is used to keep track of how many used colors
currently forbid it.

Figure 1 illustrates the algorithm for L(δ1, . . . , δt)-
coloring of interval graphs, called Interval-Coloring. The
algorithm scans the 2n interval endpoints from left to right.
Whenever a new interval v begins (that is, a left endpoint
lv is encountered), v is colored by a color c extracted from
the palette P0 and, if needed, the deepest interval is updated.
The used color c is put both in the palette Pt and in the set
Lv of colors that depend on vertex v. Moreover, all the col-
ors γ with |γ − c| < δ1 are forbidden by c, and thus their
counters are incremented. Whenever an interval v ends (that
is, a right endpoint rv is encountered), every color c belong-
ing to Lv is deleted from its current palette, say Pj. Because
the δt−j+1-separation constraint due to c does not hold any
more, all the colors γ with δt−j+2 ≤ |γ − c| < δt−j+1 are no
longer forbidden by c, and their counters are decremented.
A color γ becomes available whenever its counter reaches 0,
and in such a case it is reinserted in P0. Whenever j is larger
than 1, the color c, previously extracted from Pj, is moved
to palette Pj−1 and inserted in the set LDEEP of the colors
which depend on the current deepest interval, which is main-
tained in the deep variable. If j = 1, the color c becomes

reusable and is inserted into P0, provided that its counter
becomes 0.

Lemma 5. Consider the Interval-Coloring algorithm at the
beginning of iteration k with k = lv for some interval v to be
colored. Consider any color c ∈ Pj, and let w be the rightmost
interval colored by c. Then v is at distance t − j + 1 from w;
that is, d(w, v) = t − j + 1.

Proof. Note that an interval u is colored as soon as its
left endpoint is reached and f (u) is set. If j = t, the interval w
is still open, because otherwise c would have been extracted
from Pt when k = rw. Therefore, lw < lv < rw and d(w, v) =
1 = t − t + 1. If 0 ≤ j < t, then w has ended, and c has been
moved through the lists LDEEP of t − j consecutive deepest
intervals, because the deepest intervals form a shortest path
from w to v, d(w, v) = t − j + 1. ■

Lemma 6. Consider the Interval-Coloring algorithm at the
beginning of iteration k, and let c be any color.

• If c ∈ P0, then c is readily usable, and it does not forbid any
other color;

NETWORKS—2007—DOI 10.1002/net 207

• If c ∈ Pj with j > 0, then c cannot be used, and it forbids all
the colors γ such that c − δt−j+1 + 1 ≤ γ ≤ c + δt−j+1 − 1;

• If c �∈ P0 ∪ · · · ∪ Pt, then it is forbidden, but it does not forbid
any other color.

Proof. If c ∈ P0, then taboo[c] = 0. The algorithm can
work on c only when k = lv. By Lemma 5, d(w, v) = t + 1,
and thus c can be assigned to v and it does not forbid any
other color.

If c ∈ Pj with j > 0, then d(w, v) = t − j+1 by Lemma 5,
and thus c cannot be yet assigned to any interval. When c was
inserted into Pt , each color γ with |γ −c| < δ1 was forbidden
by incrementing its counter taboo[γ]. Moving c downward
through the palettes, the distance between w and the yet uncol-
ored intervals increases by Lemma 5, and thus the counters of
the farthest colors are decremented. Precisely, when c moves
from Pj+1 to Pj, the counter taboo[γ] is decremented for
each color γ with δt−j+1 ≤ |γ − c| < δt−j. Hence, only the
counters for the colors in [c − δt−j+1 +1, . . . , c + δt−j+1 −1]
still remain to be decremented.

Finally, if c does not belong to any palette, then two cases
may arise. In the first case, c was extracted from P1, the coun-
ters of all its remaining forbidden colors were decremented,
but c was not inserted into P0 because its counter was greater
than zero. In the second case, c was extracted from P0 because
its counter was incremented by another color. In both cases,
by Lemma 5, the distance between w, and the yet uncolored
intervals is larger than t and c does not forbid any other color.
Assume that taboo[c] = h. Then, there are h colors, each
belonging to some palette Pj, with j > 0, that incremented
taboo[c]. Each of these colors will decrement taboo[c] no
later than when it will be extracted from P1. Hence, as soon
as taboo[c] becomes 0, c will be reinserted into P0. ■

Lemma 7. The largest color used by the Interval-Coloring
algorithm is at most U = λ∗

G,t +2(δt −1)λ∗
G,t +

∑t−1
j=1 2(δj −

δj+1)λ
∗
G,j .

Proof. By Lemma 3, there is an L(δ1, . . . , δt)-coloring
of G using the colors {0, . . . , U}. To show that the Interval-
Coloring algorithm succeeds in coloring using so many
colors, one needs to prove that there is an available color
in P0 whenever an interval v has to be colored. For such a
goal, by Lemma 6, observe that each color belonging to Pj,
with j > 0, forbids 2(δt−j+1 − 1) + 1 colors, itself included.
Note that each forbidden color not included in any palette is
already taken into account because it is forbidden by some
color in the palettes. Hence, at any iteration k of the algo-
rithm, the overall number of forbidden and used colors is at
most

∑t
j=1(2(δt−j+1 − 1) + 1)|Pj|. The above formula can

be rewritten as

t∑
j=1

|Pj| +
t∑

j=1

2(δt−j+1 − 1)|Pj|

≤ λ∗
G,t +

t∑
j=1

2(δj − 1)|Pt−j+1|

= λ∗
G,t + 2(δt − 1)

t∑
j=1

|Pj| +
t∑

j=2

2(δt−j+1 − δt)|Pj|

= λ∗
G,t + 2(δt − 1)λ∗

G,t + 2(δt−1 − δt)

t∑
j=2

|Pj|

+
t∑

j=3

2(δt−j+1 − δt−1)|Pj|

. . .

= λ∗
G,t + 2(δt − 1)λ∗

G,t +
t−1∑
j=1

2(δj − δj+1)λ
∗
G,j = U.

Because there are U + 1 colors overall, out of which at most
U are used or forbidden, there is always an available color in
P0 that can be assigned to v. ■

Theorem 1. Let δmλ∗
G,m = max1≤j≤t{δjλ

∗
G,j}, and recall

that δt+1 = 0. The Interval-Coloring algorithm gives an α-
approximation with α = min {2t, 2δm+1−1

δt
+ 2(δ1−δm+1)

δm
}.

Proof. To find the approximation factor, the ratio α = U
L

between the upper bound U given by Lemma 7 and the lower
bound L given by Lemma 1 has to be evaluated. Precisely,
such a ratio is

U

L
= λ∗

G,t + 2(δt − 1)λ∗
G,t + ∑t−1

j=1 2(δj − δj+1)λ
∗
G,j

δmλ∗
G,m

Although the ratio can be evaluated exactly because all the
values of λ∗

G,j = λ∗
Gj ,1 can be computed in polynomial

time [1], U/L can be bounded from above by a constant,
which depends only on t, δ1, δm, δm+1, and δt . Because
L = δmλ∗

G,m, one has
λ∗

G,j

δmλ∗
G,m

≤ 1
δj

. Then

U

L
≤ 2

t−1∑
j=1

δj − δj+1

δj
+ (2δt − 1)λ∗

G,t

δmλ∗
G,m

≤ 2
t−1∑
j=1

(
1 − δj+1

δj

)
+ 2δtλ

∗
G,t

δmλ∗
G,m

≤ 2(t − 1) + 2

= 2t.

Moreover, assuming m ≤ t −1, one can bound U as follows:

U = (2δt − 1)λ∗
G,t +

m∑
j=1

2(δj − δj+1)λ
∗
G,j

+
t−1∑

j=m+1

2(δj − δj+1)λ
∗
G,j

≤ (2δt − 1)λ∗
G,t + λ∗

G,m

m∑
j=1

2(δj − δj+1)

+ λ∗
G,t

t−1∑
j=m+1

2(δj − δj+1)

208 NETWORKS—2007—DOI 10.1002/net

= (2δt − 1)λ∗
G,t + λ∗

G,m2(δ1 − δm+1) + λ∗
G,t2(δm+1 − δt)

= (2δm+1 − 1)λ∗
G,t + 2(δ1 − δm+1)λ

∗
G,m.

Therefore, recalling that
λ∗

G,t

δmλ∗
G,m

≤ 1
δt

, it follows that

U

L
≤ (2δm+1 − 1)λ∗

G,t + 2(δ1 − δm+1)λ
∗
G,m

δmλ∗
G,m

≤ 2δm+1 − 1

δt
+ 2(δ1 − δm+1)

δm
.

Finally, if m = t, then

U

L
≤ (2δt − 1)λ∗

G,t + ∑t−1
j=1 2(δj − δj+1)λ

∗
G,t−1

δtλ
∗
G,t

≤ (2δt − 1)λ∗
G,t + 2(δ1 − δt)λ

∗
G,t

δtλ
∗
G,t

= 2δ1 − 1

δt
= 2δt+1 − 1

δt
+ 2(δ1 − δt+1)

δt
. ■

It is worth noting that the Interval-Coloring algorithm pro-
vides a 4-approximation for the L(δ1, δ2)-coloring problem,
as one can easily check by setting t = 2 in the formula for α

given by Theorem 1. However, a better approximation can be
found, even for arbitrary t, when δ1 can be the only separation
greater than 1.

Corollary 1 ([4]). When δ2 = · · · = δt = 1, the Interval-
Coloring algorithm yields a 3-approximate L(δ1, 1, . . . , 1)-
coloring.

Proof. When the separation vector is (δ1, 1, . . . , 1), the
ratio between the upper bound and the lower bound simplifies
as follows:

U

L
= λ∗

G,t + 2(δ1 − 1)λ∗
G,1

max
{
δ1λ

∗
G,1, λ∗

G,t

} .

If δ1λ
∗
G,1 ≥ λ∗

G,t , the above ratio becomes

U

L
= λ∗

G,t + 2(δ1 − 1)λ∗
G,1

δ1λ
∗
G,1

≤ 3δ1λ
∗
G,1 − 2λ∗

G,1

δ1λ
∗
G,1

≤ 3 − 2

δ1
≤ 3.

If δ1λ
∗
G,1 < λ∗

G,t , the ratio is

U

L
= λ∗

G,t + 2(δ1 − 1)λ∗
G,1

λ∗
G,t

≤ 3λ∗
G,t − 2λ∗

G,1

λ∗
G,t

≤ 3 − 2
λ∗

G,1

λ∗
G,t

≤ 3. ■

Theorem 2. The Interval-Coloring algorithm runs in
O(n(t + δ1)) time.

Proof. The algorithm starts by computing the upper
bound U, which depends on λ∗

G,j, for 1 ≤ j ≤ t. Recall-
ing that λ∗

Gj ,1 = λ∗
G,j, one needs to compute all the power

graphs Gj, with 1 ≤ j ≤ t, which can be done in O(nt)
time [1]. Given Gj, λ∗

Gj ,1 can be computed in O(n) time [18].
Therefore, the computation of all the λ∗

G,j, and hence, of U,
needs O(nt) time. Because U = O(nδ1), the initialization of
P0 and taboo takes O(nδ1) time.

To perform insertions and extractions in constant time, all
the palettes Pi, 0 ≤ i ≤ t and all the sets Lv, with 1 ≤ v ≤ n,
are implemented by doubly linked lists. At any iteration, any
color c can belong at most to one palette and to one set LDEEP.
Thus, because no more than U colors can be used, a vector C,
indexed by colors, can be maintained. Each vector entry C[c]
stores the current palette index j, to which c belongs, along
with a pointer to the position of c within the doubly linked
list Pj. When a color c is inserted in either a palette Pj or a set
of colors LDEEP, such a color is added at the front of the list
and the vector entry C[c] is accordingly updated. Overall,
an insertion takes constant time. The extraction of color c
from a palette Pj is performed in constant time by retrieving
from C[c] the pointer to c within the list Pj. In the latter case,
the vector entry C[c] is also accordingly updated in constant
time.

To evaluate the overall time complexity, observe that the
algorithm consists of 2n iterations and, at every iteration k,
each step takes O(δ1) time, except the scan of list Lv when-
ever interval v ends. Each color c, after being assigned to a
vertex, goes through t lists LDEEP before being reassigned to
another vertex. In fact, every time c moves from palette Pj to
Pj−1, the distance between the last vertex colored c and the
uncolored vertices increases by one as shown in Lemma 5.
Hence, between two consecutive assignments of the same
color c, there are at most t + 1 moves, each performed in a
different iteration. Overall such t + 1 moves take O(t) time
for insertions and extractions, and O(δ1) time for updating
the taboo counters. Let mc be the overall number of vertices
of G colored c. Therefore, the total time required by color c is
O((t+δ1)mc). Summing up over all the colors assigned to the
intervals, the overall time is

∑
c O((t+δ1)mc) = O(n(t+δ1)),

because
∑

c mc = n. In conclusion, the algorithm takes
O(n(t + δ1)) time provided that the interval representation
of G is available and the 2n interval endpoints are sorted. ■

3.2. Approximate L(δ1, δ2)-Coloring of Unit
Interval Graphs

This subsection deals with the L(δ1, δ2)-coloring prob-
lem on the class of unit interval graphs. This is a subclass
of interval graphs in which all the intervals have the same
length, or equivalently, for which no interval is properly con-
tained within another. Recalling that vertices are assumed to
be indexed by increasing left endpoints, the main property
of unit interval graphs is that whenever v < u and vu ∈ E,
then the vertex set {v, v + 1, . . . , u − 1, u} forms a clique and
u ≤ v + λ∗

G,1 (as a consequence, the maximum vertex w at
distance 2 from v satisfies w ≤ v + 2λ∗

G,1).

NETWORKS—2007—DOI 10.1002/net 209

Algorithm Unit-Interval-Coloring (G = (V , E), δ1, δ2);

if δ1 > 2δ2 then
for v := 1 to n do

p := (v − 1) mod (2λ∗
G,1 + 2);

f (v) :=
{

δ1(λ
∗
G,1 − p) if 0 ≤ p ≤ λ∗

G,1
δ1(λ

∗
G,1 − p) + δ2 if λ∗

G,1 + 1 ≤ p ≤ 2λ∗
G,1 + 1

if δ1 ≤ 2δ2 then
for v := 1 to n do

f (v) := (2δ2(v − 1)) mod (2δ2λ
∗
G,1 + 3δ2);

FIG. 2. The L(δ1, δ2)-coloring algorithm for unit interval graphs.

In this subsection, it is assumed that the unit interval
graph to be colored is not a path, because otherwise the
optimal L(δ1, δ2)-coloring algorithm in [25] can be applied.
In Figure 2, a linear time algorithm, called Unit-Interval-
Coloring, is presented. The algorithm distinguishes two cases
and uses either at most δ2 additional colors with respect to
the optimum when δ1 > 2δ2, or at most 2δ2 additional colors
when δ1 ≤ 2δ2.

Theorem 3. The Unit-Interval-Coloring algorithm finds a
3-approximate L(δ1, δ2)-coloring.

Proof. Let us start by showing that the δ1- and δ2-separa-
tion constraints are satisfied.

When δ1 > 2δ2, the algorithm colors the vertices by
repeating the following sequence of colors of length 2λ∗

G,1+2:

0, δ1, 2δ1, . . . , λ∗
G,1δ1, δ2, δ1 + δ2, δ1 + 2δ2, . . . , λ∗

G,1δ1 + δ2.

Consider a vertex v colored c = jδ1, with 0 ≤ j ≤ λ∗
G,1

(analogous reasoning holds when c = jδ1 + δ2). First of all,
the color c is used exactly once within the sequence. Thus, if c
is assigned to vertex v, then it is reused at vertex v+2λ∗

G,1+2,
which is at distance at least 3 from v, because otherwise λ∗

G,1
would not be optimal. To satisfy the δ1-separation constraint,
it remains to check that all the colors c − δ1 + 1, . . . , c − 1,
c + 1, . . . , c + δ1 − 1 cannot be reused for any vertex at
distance 1 from v. Among such colors, only the color c + δ2

is used in the sequence, and it is assigned to the vertices
v ± (λ∗

G,1 + 1), as one can easily check by inspecting the
sequence above. The vertices v and v ± (λ∗

G,1 + 1) cannot
be adjacent, because otherwise there would be a clique of
size λ∗

G,1 + 2, including vertices v, v ± 1, . . . , v ± (λ∗
G,1 + 1),

which contradicts the optimality of λ∗
G,1. Moreover, the δ2-

separation constraint trivially follows from the fact that the
colors c − δ2 + 1, . . . , c − 1, c + 1, . . . , c + δ2 − 1 are never
used.

When δ1 ≤ 2δ2, the algorithm colors the vertices by
repeating the following sequence of colors of length 2λ∗

G,1+3:

0, 2δ2, 4δ2, . . . , 2(λ∗
G,1 + 1)δ2, δ2, 3δ2, 5δ2, . . . , 2λ∗

G,1δ2 + δ2.

Consider, again, a vertex v colored f (v) = c. As in the
previous case, the color c is used exactly once within the

sequence. Thus, if c is assigned to vertex v, then it is reused
at vertex v + 2λ∗

G,1 + 3, which cannot be at distance 1 or
2 from v. With regard to the δ1-separation constraint, note
that, other than c, only the colors c ± δ2 are used in the
sequence. They are assigned to vertices v ∓ (λ∗

G,1 + 1),
as one can easily check by computing f (v ∓ (λ∗

G,1 + 1)).
Those vertices cannot be adjacent because otherwise the
vertices v, v ∓ 1, . . . , v ∓ (λ∗

G,1 + 1) would form a clique,
contradicting the optimality of λ∗

G,1. Furthermore, the colors
c − δ2 + 1, . . . , c − 1, c + 1, . . . , c + δ2 − 1 are never used,
and hence, the δ2-separation constraint holds too.

To find the approximation, observe that, by Lemma 1,
the largest color used by any L(δ1, δ2)-coloring is at least
L = max

{
δ1λ

∗
G,1, δ2λ

∗
G,2

}
. When δ1 > 2δ2, L becomes δ1λ

∗
G,1

because δ2λ
∗
G,2 ≤ 2δ2λ

∗
G,1 < δ1λ

∗
G,1. In contrast, when δ1 ≤

2δ2, L can be either δ1λ
∗
G,1 or δ2λ

∗
G,2. On the other hand, the

maximum color U used by the algorithm is δ1λ
∗
G,1 + δ2 when

δ1 > 2δ2, and 2δ2λ
∗
G,1 + 3δ2 when δ1 ≤ 2δ2. Therefore

U

L
=




δ1λ
∗
G,1+δ2

δ1λ
∗
G,1

if δ1 > 2δ2,

2δ2λ
∗
G,1+2δ2

max{δ1λ
∗
G,1,δ2λ

∗
G,2} if δ1 ≤ 2δ2.

Although the ratio U/L can be evaluated exactly, because
the values of λ∗

G,1 and λ∗
G,2 can be computed in polynomial

time [1], U/L can be bounded from above by a constant,
independent of G, δ1, and δ2.

Specifically, when δ1 > 2δ2, the ratio is

δ1λ
∗
G,1 + δ2

δ1λ
∗
G,1

= 1 + δ2

δ1

1

λ∗
G,1

≤ 3

2
,

because
δ2

δ1

1

λ∗
G,1

≤ 1

2

from the assumption that the unit interval graph is connected.
Moreover, when δ1 ≤ 2δ2 and L = δ1λ

∗
G,1, the above ratio

becomes

2δ2λ
∗
G,1 + 2δ2

δ1λ
∗
G,1

= 2
δ2

δ1

(
1 + 1

λ∗
G,1

)
≤ 3,

210 NETWORKS—2007—DOI 10.1002/net

because
δ2

δ1
≤ 1 and

1

λ∗
G,1

≤ 1

2

from the assumption that the unit interval graph is not a path.
Finally, when δ1 ≤ 2δ2 and L = δ2λ

∗
G,2,

2δ2λ
∗
G,1 + 2δ2

δ2λ
∗
G,2

= 2
λ∗

G,1

λ∗
G,2

(
1 + 1

λ∗
G,1

)
≤ 3,

because
λ∗

G,1

λ∗
G,2

≤ 1 and
1

λ∗
G,1

≤ 1

2

as in the previous case. ■

It is worth noting that, when δ1 = 2 and δ2 = 1,
the ratio U/L becomes

2λ∗
G,1+2

2λ∗
G,1

, namely the same derived in
[22] for the L(2, 1)-coloring problem on unit interval graphs.

4. TREES

An undirected graph T = (V , E) is a free tree when it is
connected and it has exactly |V | − 1 edges. Given a vertex
v of a free tree T , Adj(v) denotes the set of vertices adjacent
to v. Given also an integer t, Nt(v) denotes the set of vertices
at distance at most t from v. Clearly, Adj(v) = N1(v) − {v}.
A rooted tree is a free tree in which a vertex r is identified as a
root and all the other vertices are ordered by levels, where the
level �(v) of a vertex v is equal to the distance d(r, v). Thus,
all the vertices adjacent to v are partitioned into its father,
denoted by father(v), which is at level �(v) − 1, and into its
children, which are at level �(v)+ 1. The height h of a tree T
is the maximum level of its vertices. For each vertex v of T ,
let anci(v) denote the ancestor of v at distance i from v (which
clearly is at level �(v)−i). Of course, anc1(v) = father(v) and
anc0(v) = v. Moreover, lca(u, v) denotes the lowest common
ancestor of u and v, that is, the vertex with maximum level
among all the common ancestors of both u and v. Finally,
given a vertex v of T , Tv denotes the induced subtree rooted
at v consisting of all the vertices having v as an ancestor.

To derive an approximate L(δ1, . . . , δt)-coloring of a
rooted tree, the following lemma is useful because it shows
how to locate a strongly simplicial vertex.

Lemma 8 ([4]). In a rooted tree of height h, any vertex at
level h is strongly simplicial.

Proof. Let T be a rooted tree and consider a ver-
tex x with �(x) = h. Let t be any arbitrary integer not
larger than 2h. Consider two vertices u and v such
that d(u, x) ≤ t and d(v, x) ≤ t. Consider also the short-
est paths sp(x, v), sp(x, u), and sp(x, w), where w is the
vertex of smallest level belonging to both sp(x, v) and
sp(x, u). Because �(x) ≥ max{�(u), �(v)}, then min{d(u, w),
d(v, w)} ≤ d(x, w). Assume w.l.o.g. d(u, w) to be minimum.
Then d(u, v) = d(u, w) + d(w, v) ≤ d(x, w) + d(w, v) ≤

d(x, v) ≤ t. Therefore, vertex x is t-simplicial. Because such
a condition holds for any t ≤ 2h, x is strongly simplicial. ■

Lemma 8 suggests visiting the tree in breadth-first-search
order, namely scanning the vertices by increasing levels.
Hereafter, it is assumed that the vertices are numbered accord-
ing to the breadth-first search order, obtained by starting the
visit from the root. Precisely, the vertices are numbered level
by level, and those at the same level from left to right. In this
way, when a vertex v is considered, v is a t-simplicial vertex
of the subtree T [{1, 2, . . . , v}] induced by the first v vertices
of T , for 1 ≤ v ≤ n.

4.1. Approximate L(δ1, . . . , δt)-Coloring of Trees

In this subsection, an O(nt2δ1) time algorithm is exhibited
to find an approximate L(δ1, . . . , δt)-coloring of trees.

The algorithm assumes a double representation of T , con-
sidering T both as a free tree and as the rooted tree T1.
Specifically, Adj(v), father(v), and �(v) are maintained for
each vertex v. As before, the algorithm maintains the palette
P0 of readily usable colors, initialized to the set {0, 1, . . . , U},
where U is the upper bound given by Lemma 3. Again, a
counter taboo[c] keeps track of how many used colors forbid
color c.

The Tree-Coloring algorithm, illustrated in Figure 3,
uses three procedures: Ancestor, Up-Neighborhood-BFS,
and Clear-BFS, depicted in Figures 4, 5, and 6, respectively.
Tree-Coloring first performs a preprocessing to compute the
upper bound U, which depends on λT ,j, for each j, 1 ≤ j ≤ t.

The algorithm scans the n vertices according to the BFS
numbering. At each iteration, v represents the vertex to be
colored next, while u is the last colored vertex. Hence, u =
v − 1, for 2 ≤ v ≤ n. To color v, one needs to determine the
set of colors already used and forbidden in the neighborhood
N ′

t (v) = Nt(v) ∩ T [{1, . . . , v}]. Such a set of colors depends
only on the distance d(z, v) for each vertex z ∈ N ′

t (v), and it
is computed incrementally with respect to the neighborhood
N ′

t (u) of the last colored vertex u.

Algorithm Tree-Coloring (T = (V , E), t, δ1, . . . , δt);

U := λ∗
T ,t + 2(δt − 1)λ∗

T ,t + ∑t−1
j=1 2(δj − δj+1)λ

∗
T ,j;

P0 := {0, 1, . . . , U};
taboo[γ] := 0 for γ = 0, . . . , U;
u := 1; δ0 := 0;
for v := 1 to n do

x := Ancestor(u, v);
if new then Clear-BFS(u);
Up-Neighborhood-BFS(v, x);
extract a color c from P0;
f (v) := c;
taboo[c] := taboo[c] + 1;
u := v;

FIG. 3. The tree-coloring algorithm for L(δ1, . . . , δt)-coloring of trees.

NETWORKS—2007—DOI 10.1002/net 211

Function Ancestor (u, v);

w := u; y := u; up := min{t, �(u)};
if �(v) = �(u) + 1

then i := 1; x := father(v)
else i := 0; x := v;

while x �= w and i < up do
y := w; w := father(y);
x := father(x); i := i + 1;

if x �= w or �(v) = �(u) + 1
then new := true
else new := false;

return(x)

FIG. 4. The Ancestor procedure to find the vertex x with maximum level
between lca(u, v) and anct(v). If x = lca(u, v) then y is the child of x on the
path between u and x.

The behavior of the Tree-Coloring algorithm depends on
whether N ′

t (v) and N ′
t (u) intersect or not, and on whether u

and v are at the same level or not. When �(v) = �(u) + 1
or when �(v) = �(u) and N ′

t (v) ∩ N ′
t (u) = ∅, the variable

new is set to true by the Ancestor function, the counters of
all the used and forbidden colors in the old neighborhood
N ′

t (u) are decremented by the Clear-BFS procedure, while

the distances and the forbidden colors in N ′
t (v) are com-

puted from scratch by the Up-Neighborhood-BFS procedure.
Indeed, although the neighborhoods N ′

t (v) and N ′
t (u) may

intersect when �(v) = �(u) + 1, each node z belonging to
the intersection has d(z, v) �= d(z, u), and thus its distance
and its forbidden colors have to be recomputed. In particular,
the empty intersection between N ′

t (v) and N ′
t (u) is recog-

nized by the Ancestor function when x = anct(v) is deeper
than lca(u, v), the least common ancestor between u and v.
When �(v) = �(u) and N ′

t (v) ∩ N ′
t (u) �= ∅, x = lca(u, v) is

deeper than anct(v), and x belongs to the shortest path sp(u, v)
between u and v. Consider the vertices y and y′, which are the
children of x on the paths sp(u, x) and sp(v, x), respectively. In
this case, the Ancestor function sets new to false and returns
x = lca(u, v) along with the vertex y. Indeed, y and y′ are the
roots of the subtrees Ty ∩ N ′

t (v) and Ty′ ∩ N ′
t (u) containing

each vertex z ∈ N ′
t (v) ∩ N ′

t (u) such that d(z, u) �= d(z, v).
The Up-Neighborhood-BFS procedure updates only the col-
ors already used and forbidden by vertices in Ty ∩ N ′

t (v) and
in Ty′ ∩ N ′

t (u), leaving unchanged those colors used and for-
bidden by vertices in (N ′

t (v) ∩ N ′
t (u)) − (Ty ∪ Ty′) because

for each vertex z in such a subset d(z, v) = d(z, u) holds.
Moreover, the procedure introduces new forbidden colors due
to the vertices in N ′

t (v) − N ′
t (u), and finally frees the colors

no longer used or forbidden by vertices in N ′
t (u) − N ′

t (v).

Procedure Up-Neighborhood-BFS (v, x);

dist(v) := 0; M := ∅;
Enqueue(Q, v);
while Q �= ∅ do

w := Dequeue(Q);
if w = x and not new then S := {y} else S := Adj(w);

(1) for each z ∈ S do
if �(x) ≤ �(z) ≤ �(v) and z < v and z is not marked then

if w = v or 0 < dist(w) < t then
(2) for each f (z) − δdist(z) + 1 ≤ γ ≤ f (z) + δdist(z) − 1 do

if γ �= f (z) then
taboo[γ] := taboo[γ] − 1;
if taboo[γ] = 0 then insert γ into P0;

dist(z) := dist(w) + 1; mark z;
(3) for each f (z) − δdist(z) + 1 ≤ γ ≤ f (z) + δdist(z) − 1 do

if γ �= f (z) then
if taboo[γ] = 0 then extract γ from P0;
taboo[γ] := taboo[γ] + 1;

if not new and w �= v and (dist(w) = 0 or dist(w) = t) and dist(z) > 0 then
(4) for each f (z) − δdist(z) + 1 ≤ γ ≤ f (z) + δdist(z) − 1 do

taboo[γ] := taboo[γ] − 1;
if taboo[γ] = 0 then insert γ into P0;

dist(z) := 0; mark z;
Enqueue(Q, z);

insert w into M;
for each z ∈ M do unmark z;

FIG. 5. The modified BFS procedure to compute distances and forbid colors for vertices in N ′
t (v) and clear

distances and colors for vertices in N ′
t (u) − N ′

t (v).

212 NETWORKS—2007—DOI 10.1002/net

Procedure Clear-BFS (u);

Enqueue(Q, u);
while Q �= ∅ do

w := Dequeue(Q);
for each z ∈ Adj(w) do

if dist(z) > 0 then
for each f (z) − δdist(z) + 1 ≤ γ ≤ f (z) + δdist(z) − 1 do

taboo[γ] := taboo[γ] − 1;
if taboo[γ] = 0 then insert γ into P0;

dist(z) := 0;
Enqueue (Q, z);

FIG. 6. The procedure to clear distances and colors for vertices in N ′
t (u) when �(v) = �(u) + 1 or N ′

t (v) ∩ N ′
t (u) = ∅.

Precisely, the Up-Neighborhood-BFS procedure is in-
voked with the aim of computing the distances from v of each
vertex z in N ′

t (v), and accordingly changing the taboo coun-
ters. This is done during a breadth-first search starting from
vertex v in which the label dist(z) is set to d(z, v), and each
separation constraint is updated by first decrementing the
counters of the colors γ with 0 < |f (z)−γ | < δd(z,u) and then
incrementing those of the colors with 0 < |f (z)−γ | < δd(z,v).
Summarizing, when new is true, the procedure computes
from scratch all the distances and forbidden colors for all
vertices in N ′

t (v). In contrast, when new is false, distances
and forbidden colors are computed from scratch only for ver-
tices in N ′

t (v) − N ′
t (u), they are updated only for a subset of

vertices in N ′
t (v) ∩ N ′

t (u), and they are cleared for those in
N ′

t (u) − N ′
t (v).

Lemma 9. Let the Tree-Coloring algorithm be at iteration
v just before coloring vertex v, and consider any vertex z in
T [{1, . . . , v}]. Then

dist(z) =
{

d(z, v) if z ∈ N ′
t (v),

0 otherwise.

Proof. The proof is by induction. If v = 1, N ′
t (v) = v

and dist(v) = d(v, v) = 0. Thus, assume as the inductive
hypothesis that the lemma holds up to u = v−1, and consider
a vertex z ≤ v.

If �(v) = �(u) and N ′
t (v) ∩ N ′

t (u) �= ∅, then x =
�(lca(u, v)) ≥ �(anct(v)) holds. In this case, to compute
d(z, v), the vertices of T [{1, . . . , v}] are ideally partitioned
into five subsets. Recall that y and y′ are the children of x on
sp(u, v).

(i) If z ∈ Ty ∩ N ′
t (v), then d(z, v) is different from d(z, u)

because x ∈ sp(v, z) but x �∈ sp(u, z). A symmetric
consideration also holds for z ∈ Ty′ ∩ N ′

t (u). Therefore,
dist(z) is recomputed as dist(z) = d(z, v) at iteration v
of the Tree-Coloring algorithm. Specifically, this is done
in Loop (1) by the Up-Neighborhood-BFS procedure.

(ii) If z ∈ N ′
t (v)−N ′

t (u), dist(z) is computed from scratch as
d(z, v) also in Loop (1) of the Up-Neighborhood-BFS
procedure during iteration v of the algorithm.

(iii) If z ∈ (N ′
t (v) ∩ N ′

t (u)) − (Ty ∪ Ty′), then x = lca(u, v)
belongs to both sp(u, z) and sp(v, z). Hence, d(v, z) =
d(u, z) because d(v, z) = d(v, x) + d(x, z) = d(u, x) +
d(x, z) = d(u, z) and �(v) = �(u). Thus, because by
the inductive hypothesis dist(z) = d(z, u), no action is
taken by the algorithm during iteration v.

(iv) If z ∈ N ′
t (u) − N ′

t (v), then dist(z) is set to zero in Loop
(4) by the Up-Neighborhood-BFS procedure. The con-
dition on z is checked in the if instruction just before
Loop (4). In fact, if z ∈ N ′

t (u)−{u} then dist(z) > 0 by
the inductive hypothesis. Moreover, z �∈ N ′

t (v) because
z is reached during the BFS visit after a vertex whose
distance from v is at least t.

(v) Finally, if z ∈ T [{1, . . . , v}] − (N ′
t (v) ∪ N ′

t (u)), then
dist(z) has been already cleared by the inductive hypoth-
esis in a previous iteration.

If �(v) = �(u) and N ′
t (v) ∩ N ′

t (u) = ∅, then �(anct(v)) >

�(lca(u, v)) holds. Again, T [{1, . . . , v}] is ideally partitioned
into three subsets.

(i) If z ∈ N ′
t (v), then dist(z) is set to d(v, z) during the

current iteration in Loop (1) of Up-Neighborhood-BFS.
(ii) If z ∈ N ′

t (u), then dist(z) is set to 0 at iteration v
of the algorithm by the Clear-BFS procedure. Such a
procedure performs a BFS starting from u visiting all
those vertices with dist(z) = d(u, z) > 0, which by the
inductive hypothesis coincides with N ′

t (u).
(iii) Finally, if z ∈ T [{1, . . . , v}] − ((N ′

t (v) ∪ N ′
t (u)), then

dist(z) has already been cleared in a previous iteration
by the inductive hypothesis.

If �(v) = �(u) + 1, although N ′
t (v) and N ′

t (u) may inter-
sect, dist(z) has to be recomputed also for every vertex
z ∈ N ′

t (u) ∩ N ′
t (v) because d(v, lca(u, v)) �= d(u, lca(u, v)).

Because dist(z) has to be recomputed for every vertex in
N ′

t (v), Tree-Coloring acts as when �(v) = �(u) and N ′
t (v) ∩

N ′
t (u) = ∅, and the proof is the same. ■

NETWORKS—2007—DOI 10.1002/net 213

Lemma 10. Let the Tree-Coloring algorithm be at iteration
v just before coloring vertex v, and consider any color c.

• If c is assigned to a vertex z ∈ N ′
t (v), then c �∈ P0 and c forbids

only the colors γ such that c−δd(z,v) +1 ≤ γ ≤ c+δd(z,v) −1.
• If c is not assigned to any vertex in N ′

t (v) and c �∈ P0, then c
is forbidden by at least a color assigned to a vertex in N ′

t (v),
but c does not forbid any color.

• If c ∈ P0, then c is readily usable and c does not forbid any
color.

Proof. If v = 1, then no color at all has been yet used or
forbidden. Thus, all the colors are in P0 and they are readily
usable. Assume, by the inductive hypothesis, that the lemma
holds for u = v − 1, and consider any color c.

If c is assigned to a vertex z ∈ N ′
t (v), c cannot be reas-

signed to v, because d(v, z) ≤ t. Indeed, Taboo[c] > 1, and
hence, c �∈ P0. Moreover, the counters of the old colors for-
bidden by the δd(z,u)-separation constraint are decremented
in Loop (2) where dist(z) = d(z, u) by Lemma 9, while
the counters of the new colors forbidden by the δd(z,v)-
separation constraint are incremented in Loop (3) where
dist(z) = d(z, v) has just been set. Note that the algorithm
properly works even if z �∈ N ′

t (u), because in such a case
δdist(z) = δ0 = 0, and thus no counter is decremented in
Loop (2).

If c is not assigned to any vertex of N ′
t (v) and c �∈ P0,

then Taboo[c] > 0 because it has been incremented during
Loop (3). Hence, c is forbidden by a vertex z ∈ N ′

t (v) such
that c �= f (z) and f (z) − δd(z,v) + 1 ≤ c ≤ f (z) + δd(z,v) − 1.

If c ∈ P0, the statement trivially holds if c has never been
assigned or forbidden. Then assume that c ∈ P0, and that
it has been freed either by the Up-Neighborhood-BFS pro-
cedure during Loop (2) or Loop (4), or by the Clear-BFS
procedure. If c was freed by f (z) during Loop (2), c was not
assigned to any vertex in N ′

t (v), but forbidden by just the
single vertex z. If c was freed by f (z) in Loop (4) or by Clear-
BFS, then either c was assigned to z (that is, c = f (z)) or c was
forbidden by just the single vertex z, with z ∈ N ′

t (u)− N ′
t (v).

In all cases, Taboo[c] = 0 and c is readily usable. ■

In practice, the above lemma guarantees that a legal
L(δ1, δ2, . . . , δt)-coloring is found, namely, a color c is
assigned to a vertex v only when it satisfies all the separa-
tion constraints due to colors assigned to vertices at distance
at most t from v. In particular, any vertex already colored c
is at distance greater than t from v.

Lemma 11. The largest color used by the Tree-Coloring
algorithm is at most U = λ∗

T ,t + 2(δt − 1)λ∗
T ,t +

∑t−1
j=1 2(δj −

δj+1)λ
∗
T ,j .

Proof. By Lemma 3, there is an L(δ1, . . . , δt)-coloring of
T using the colors {0, . . . , U}. To show that the Tree-Coloring
algorithm succeeds in coloring using so many colors, it is
enough to observe that N ′

t (v) − {v} = ⋃t
j=1 Dj(v) for each

vertex v, where Dj(v) = N ′
j (v) − N ′

j−1(v). When v has to
be colored, the overall number of forbidden and used colors

is given by
∑t

j=1(2(δj − 1) + 1)|Dj(v)|. Then the proof is
analogous to that of Lemma 7, where Pj is replaced by
Dt−j+1(v). ■

Theorem 4. Let δmλ∗
G,m = max1≤j≤t{δjλ

∗
G,j}, and recall that

δt+1 = 0. The Tree-Coloring algorithm gives an α-appro-
ximation with α = min

{
2t, 2δm+1−1

δt
+ 2(δ1−δm+1)

δm

}
.

Proof. The proof follows from Lemma 11 and Theo-
rem 1. ■

As a consequence of Theorem 4, the Tree-Coloring algo-
rithm provides a 4-approximate L(δ1, δ2)-coloring. If applied
to binary trees, however, a better approximation is attained.

Corollary 2. Let t be equal to 2 and let T be a binary tree.
Then the Tree-Coloring algorithm yields a 10

3 -approximate
L(δ1, δ2)-coloring.

Proof. When t = 2 and T is a binary tree, λ∗
T ,2 = 3 and

λ∗
T ,1 = 1. Therefore, the bounds U and L become, respec-

tively, U = 3 + 4(δ2 − 1)+ 2(δ1 − 1) and L = max{3δ2, δ1}.
If 3δ2 > δ1, one has

U

L
= 4δ2 + 2δ1 − 3

3δ2
≤ 4

3
+ 2δ1 − 3

δ1
≤ 10

3
.

If 3δ2 ≤ δ1, then

U

L
= 4δ2 + 2δ1 − 3

δ1
≤ 2+ 4δ2 − 3

3δ2
≤ 10

3
. ■

A better approximation can be reached for arbitrary t,
when the separation vector is (δ1, 1, . . . , 1).

Corollary 3 ([4]). When δ2 = · · · = δt = 1, the Tree-
Coloring algorithm yields a 3-approximate L(δ1, 1, . . . , 1)-
coloring.

Proof. The proof is the same as that of Corollary 1. ■

Theorem 5. The Tree-Coloring algorithm runs in O(nt2δ1)

time.

Proof. The preprocessing required to evaluate the upper
bound U takes O(nt2) time, because O(jn) time is needed
to compute λ∗

T j ,1 = λ∗
T ,j [1]. Because U = O(nδ1), the ini-

tialization of P0 and Taboo takes O(nδ1) time. The palette
P0 is implemented by means of a doubly-linked list of col-
ors and a vector C indexed by colors, so that insertions and
extractions take O(1) time as already explained in the proof
of Theorem 2. Moreover, the Ancestor function takes O(nt)
time because it is invoked once for each vertex, and each
invocation requires O(t) time.

214 NETWORKS—2007—DOI 10.1002/net

To determine the overall time complexity of the Tree-
Coloring algorithm, consider a generic vertex x and observe
that O(δ1) time is required whenever the value of dist(x) is
changed by the algorithm. Notice that dist(x) is set to 0 for the
first time at iteration x, when N ′

t (x) is computed by the Up-
Neighborhood-BFS procedure. At a generic iteration v > x,
dist(x) is changed whenever d(u, x) �= d(v, x) ≤ t with
u = v − 1. Moreover, dist(x) is set again to 0 if d(u, x) ≤ t
and d(v, x) > t or if �(v) = �(u) + 1.

Consider the vertices at a given level � of T , num-
bered according to their BFS-ordering, say v1, v2, . . . , vm.
Under such an assumption, d(vi, x) �= (.vj, x) if and only if
lca(vi, x) �= lca(vj, x). Consider also the subtree Tx rooted
at x, and let vl, . . . , vr be the vertices at level � of T , which
belong to Tx. Observe that dist(x) does not increase while the
vertices v1, . . . , vl−1 are examined, it remains the same while
examining vl, . . . , vr , and it does not decrease when exam-
ining vr+1, . . . , vm. Observe also that, if d(vi, x) = d(vj, x)
and v1 ≤ vi < vj < vl or vr < vi < vj ≤ vm, then
d(vi, x) = d(v, x) for every vertex v with vi ≤ v ≤ vj,
because such vertices are numbered in BFS-ordering and are
at the same level. This implies that all the vertices at level �,
for which dist(x) has a given value, are split into at most
two sequences of consecutive vertices and thus O(δ1) time is
required only at the beginning of each subsequence.

On the other hand, there are O(t) different values, no
larger than t, that dist(x) can assume, one for each possi-
ble lca(x, v) = anck(x) with 0 ≤ k ≤ � t

2
. Therefore,
O(tδ1) is required for updating dist(x) for iterations con-
cerning vertices at level �. Because x can be involved in the
neighborhoods of vertices of at most t + 1 levels, namely
at levels �(x), �(x) + 1, . . . , �(x) + t, the time taken by the
algorithm for updating dist(x) is O(t2δ1). Finally, the overall
time complexity is O(nt2δ1), because there are n vertices in
the tree. ■

5. CONCLUSION

This article has considered the channel assignment
problem for general separation vectors and two specific
classes of graphs—trees, and interval graphs. Based on
the notion of strongly simplicial vertices, O(n(t + δ1))

and O(nt2δ1) time algorithms have been proposed to find
α-approximate L(δ1, . . . , δt)-colorings on interval graphs
and trees, respectively, where α is a constant depending
on t and δ1, . . . , δt . When t = 2, such algorithms pro-
vide 4-approximate L(δ1, δ2)-colorings, while they yield
3-approximate L(δ1, 1, . . . , 1)-colorings when δ1 is the only
separation greater than 1. For t = 2 and binary trees,
a 10

3 -approximation is achieved. Moreover, a linear time
3-approximation algorithm giving an L(δ1, δ2)-coloring of
unit interval graphs has also been presented.

Several questions remain open. For instance, one
could devise better approximation algorithms for finding
L(δ1, . . . , δt)-colorings of interval graphs and trees, or one
could determine whether finding optimal L(δ1, δ2)-colorings
of unit interval graphs or trees is NP-hard or not.

REFERENCES

[1] G. Agnarsson, R. Greenlaw, and M.M. Halldorson, On pow-
ers of chordal graphs and their colorings, Congressus Numer
144 (2000), 41–65.

[2] R. Battiti, A.A. Bertossi, and M.A. Bonuccelli, Assigning
codes in wireless networks: Bounds and scaling properties,
Wireless Networks 5 (1999), 195–209.

[3] A.A. Bertossi and M.C. Pinotti, Mappings for conflict-
free access of paths in bidimensional arrays, circular lists,
and complete trees, J Parallel Distrib Comput 62 (2002),
1314–1333.

[4] A.A. Bertossi, M.C. Pinotti, and R. Rizzi, Channel assign-
ment on strongly-simplicial graphs, Proc. 3rd Int’l Workshop
on Wireless, Mobile and Ad Hoc Networks (WMAN), IEEE
IPDPS, Nice, 2003 (published on CD-ROM).

[5] A.A. Bertossi, M.C. Pinotti, R. Rizzi, and A.M. Shende,
Channel assignment for interference avoidance in honey-
comb wireless networks, J Parallel Distrib Comput 64 (2004),
1329–1344.

[6] A.A. Bertossi, M.C. Pinotti, and R.B. Tan, Channel assign-
ment with separation for interference avoidance in wire-
less networks, IEEE Trans Parallel Distrib Syst 14 (2003),
222–235.

[7] H.L. Bodlaender, T. Kloks, R.B. Tan, and J. van Leeuwen,
Approximations for λ-coloring of graphs, Comput J 47
(2004), 193–204.

[8] K.S. Booth and G.S. Lueker, Linear algorithms to rec-
ognize interval graphs and test for the consecutive ones
property, Proc. Seventh Annual ACM Symposium on Theory
of Computing, Albuquerque, NM, 1975, pp. 255–265.

[9] A. Brandsta̋dt, V.B. Le, and J.P. Spinrad, Graph classes: A
survey, SIAM, Philadelphia, PA, 1999.

[10] T. Calamoneri, The L(h, k)-labelling problem: A survey and
annotated bibliography, Comput J (2006), to appear.

[11] T. Calamoneri, A. Pelc, and R. Petreschi, Labeling trees
with a condition at distance two, Discrete Math 306 (2006),
1534–1539.

[12] G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu, and R.K. Yeh,
On L(d, 1)-labelings on graphs, Discrete Math 220 (2000),
57–66.

[13] G.J. Chang and D. Kuo, The L(2, 1)-labeling problem on
graphs, SIAM J Discrete Math 9 (1996), 309–316.

[14] I. Chlamtac and S.S. Pinter, Distributed nodes organization
algorithm for channel access in a multihop dynamic radio
network, IEEE Trans Comput 36 (1987), 728–737.

[15] D.G. Corneil, S. Olariu, and L. Stewart, The ultimate inter-
val graph recognition algorithm?, Proc. of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, San Fran-
cisco, 1998, pp. 175–180.

[16] J.P. Georges and D.W. Mauro, Generalized vertex labelings
with a condition at distance two, Congressus Numer 109
(1995), 141–159.

[17] J.P. Georges and D.W. Mauro, Labeling trees with a condi-
tion at distance two, Discrete Math 269 (2003), 127–148.

[18] M.C. Golumbic, Algorithmic graph theory and perfect
graphs, Academic Press, New York, 1980.

[19] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition
at distance 2, SIAM J Discrete Math 5 (1992), 586–595.

NETWORKS—2007—DOI 10.1002/net 215

[20] W.K. Hale, Frequency assignment: Theory and application,
Proceedings of the IEEE 68 (1980), 1497–1514.

[21] S.T. McCormick, Optimal approximation of sparse Hes-
sians and its equivalence to a graph coloring problem, Math
Program 26 (1983), 153–171.

[22] D. Sakai, Labeling chordal graphs: Distance two condition,
SIAM J Discrete Math 7 (1994), 133–140.

[23] A. Sen, T. Roxborough, and S. Medidi, Upper and lower
bounds of a class of channel assignment problems in cellular
networks, Proc. of IEEE INFOCOM’98, San Francisco, CA,
1998, Vol. 3, pp. 1284–1291.

[24] A.M. Shende, et al., A characterisation of optimal channel
assignments for wireless networks modelled as cellular and
square grids, Proc. 3rd Int’l Workshop on Wireless, Mobile
and Ad Hoc Networks (WMAN) IEEE IPDPS, Nice, 2003
(published on CD-ROM).

[25] J. Van den Heuvel, R.A Leese, and M.A. Shepherd, Graph
labelling and radio channel assignment, J Graph Theory 29
(1998), 263–283.

[26] X. Zhou, Y. Kanari, and T. Nishizeki, Generalized vertex
coloring of partial k-trees, IEICE Trans. Fundam Electron
Commun Comput Sci E83-A (2000), 671–678.

216 NETWORKS—2007—DOI 10.1002/net

